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1. Introduction

Ward and Dilworth [1] introduced a complete residuated lattice which is an
algebraic structure for many valued logic. Bělohlávek [2, 3] investigated the proper-
ties of fuzzy Galois connections and fuzzy closure operators on a residuated lattice
which supports part of foundation of theoretic computer science. On the other hand,
Georgescu and Popescue [4, 5] introduced fuzzy Galois connection in a generalized
residuated lattice as a non-commutative algebraic structure which is induced by two
implications.

As a dual sense of complete residuated lattice, Zheng and Wang [6] introduced a
complete co-residuated lattice as the generalization of t-conorm. For an extension
of Pawlak’s rough sets [7, 8], Junsheng and Qing [9] investigated (�,&)-generalized
fuzzy rough set on (L,�,&), where (L,&) is a complete residuated lattice and
(L,�) is complete coresiduated lattice. Ko and Kim [10] introduced the concepts
of fuzzy join and meet complete lattices using distance spaces instead of fuzzy par-
tially ordered spaces in complete co-residuated lattices. Moreover, Oh and kim [11]
investigated the properties of Alexandrov fuzzy topologies, distance functions, join
preserving maps and join approximation maps in complete co-residuated lattices.
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The aim of this paper is to study the notions and properties of generalized co-
residuated lattices as a non-commutative algebraic structure. Using right (resp.
left) distance spaces instead of fuzzy partially ordered spaces, we define various
connections, right (resp. left) isotone (antitone) maps and rough sets on a generalized
co-residuated lattice.

We investigate the properties of right and left closure on a generalized co-residuated
lattice. In particular, we obtain right (left) closure (interior) operators and rough
sets from various connections. We give their examples.

2. Preliminaries

As an extension of Zheng’s co-residuated lattices [6], we define generalized co-
residuated lattices as a non-commutative algebraic structure.

Definition 2.1. A structure (L,∨,∧,⊕,	,�,⊥,>) is called a generalized co-residuated
lattice, if it satisfies the following conditions:

(GR1) (L,∨,∧,⊥,>) is lattice, where > is the upper bound and > denotes the
universal lower bound,

(GR2) x⊕> = x and x⊕ (y ⊕ z) = (x⊕ y)⊕ z for all x, y, z ∈ L,
(GR3) it satisfies a co-residuation, i.e.,

a⊕ b ≥ c iff a ≥ c	 b iff b ≥ c� a.

A generalized co-residuated lattice is called co-residuated lattice, if x⊕ y = y ⊕ x
for each x, y ∈ L.

For α ∈ L,A ∈ LX , we denote (A	 α), (α⊕A), αX ∈ LX as

(A	 α)(x) = A(x)	 α, (α⊕A)(x) = α⊕A(x), αX(x) = α.

Put n1(x) = >	x and n2(x) = >�x. The condition n1(n2(x)) = n2(n1(x)) = x
for each x ∈ L is called a double negative law.

Example 2.2 ([10, 11]). (1) If a generalized co-residuated lattice (L,∨,∧,⊕,	,�,⊥,>)
is a co-residuated lattice, then 	 = � and n1 = n2.

(2) An infinitely distributive lattice (L,∨,∧,⊕ = ∨,⊥,>) is a co-residuated lat-
tice. In particular, the unit interval ([0, 1],∨,∧,⊕ = ∨, 0, 1) is a co-residuated lattice,
where

x	 y =
∧
{z ∈ L | y ∨ z ≥ x} =

{
0, if y ≥ x,
x, if y 6≥ x.

Put n(x) = 1 	 x = 1 for x 6= 1 and n(1) = 0. Then n(n(x)) = 0 for x 6= 1 and
n(n(1)) = 1. Thus n does not satisfy a double negative law.

(3) Let ([0, 1],∨,∧,⊕, 0, 1) be a co-residuated lattice, where

x⊕ y = (xp + yp)
1
p ∧ 1, 1 ≤ p <∞,

x	 y =
∧
{z ∈ [0, 1] | (zp + yp)

1
p ≥ x}

=
∧
{z ∈ [0, 1] | z ≥ (xp − yp)

1
p }

= (xp − yp)
1
p ∨ 0.

Put n(x) = 1	 x = (1− xp)
1
p for 1 ≤ p <∞. Then n(n(x)) = x for x ∈ [0, 1]. Thus

n satisfies a double negative law.
130
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(4) Let L ⊂ {(x, y) ∈ R2 | x > 0} be a set and for (x1, y1), (x2, y2) ∈ L, we define

(x1, y1) ≤ (x2, y2)if and only if x1 < x2 or x1 = x2, y1 ≤ y2.

Then the structure (L,∨,∧,⊕,	,�, ( 1
2 , 1), (1, 0)) is a generalized co-residuated lat-

tice with a double negative law where ⊥ = ( 1
2 , 1) is the least element and > = (1, 0)

is the greatest element from the following statements:

(x1, y1)⊕ (x2, y2) = (2x1x2, 2x2y1 + y2 − 2x2) ∧ (1, 0),
(x1, y1)	 (x2, y2) = ( x1

2x2
, 1 + y1−y2

2x2
) ∨ ( 1

2 , 1),

(x1, y1)� (x2, y2) = ( x1

2x2
, y1 + x1

x2
(1− y2)) ∨ ( 1

2 , 1).

Furthermore, we have (x, y) = n2(n1(x, y)) = n1(n2(x, y)) from:

n1(x, y) = (1, 0)	 (x, y) = ( 1
2x , 1−

y
2x ),

n2(x, y) = (1, 0)� (x, y) = ( 1
2x ,

1
x (1− y)),

n2(n1(x, y)) = (1, 0)� ( 1
2x , 1−

y
2x ) = (x, y),

n1(n2(x, y)) = (1, 0)	 ( 1
2x ,

1
x (1− y)) = (x, y).

Let A = {( 2
3 , y) | y ∈ R} be given. Then

∨
A and

∧
A do not exist. Thus L is not

complete.

In this paper, we assume (L,∨,∧,⊕,	,�,⊥,>) is a generalized co-residuated
lattice with a double negative law and and if the family supremum or infumum
exists, we denote

∨
and

∧
.

3. Residuated and Galois connections

In this section, we study notions of residuated and Galois connections on gener-
alized co-residuated lattices. Moreover, we investigate the relations between various
connections and operators.

Lemma 3.1. For each x, y, z, xi, yi ∈ L, we have the following properties.
(1) If y ≤ z, (x⊕ y) ≤ (x⊕ z), x	 y ≤ x	 z and z 	 x ≤ y 	 x for 	 ∈ {	,�}.
(2) y ⊕ (x� y) ≥ x and (x	 y)⊕ y ≥ x.
(3) x	(

∧
i∈Γ yi) =

∨
i∈Γ(x	yi) and (

∨
i∈Γ xi)	y =

∨
i∈Γ(xi	y) for 	 ∈ {	,�}.

(4) x	(
∨

i∈Γ yi) ≤
∧

i∈Γ(x	yi) and (
∨

i∈Γ xi)	y =
∧

i∈Γ(xi	y) for 	 ∈ {	,�}.
(5) x⊕ (y 	 z) ≥ (x⊕ y)	 z and (x� y)⊕ z = (x⊕ z)� y.
(6) x	 (y ⊕ z) = (x	 z)	 y and (x� y)� z = x� (y ⊕ z).
(7) (x	 y)� z = (x� z)	 y.
(8) (y � z)⊕ (x� y) ≥ x� z and (x	 y)⊕ (y 	 z) ≥ x	 z.
(9) (x� z) ≥ (y ⊕ x)� (y ⊕ z) and (x	 z) ≥ (x⊕ y)	 (z ⊕ y).
(10) y � z ≥ (x� z)	 (x� y) and x� y ≥ (x� z)� (y � z).
(11) x	 y ≥ (x	 z)	 (y 	 z) and y 	 z ≥ (x	 z)� (x	 y).
(12) x	 x = x� x = ⊥, x	⊥ = x�⊥ = x and ⊥	 x = ⊥� x = ⊥.
(13) x	 y = ⊥ iff x ≤ y iff x� y = ⊥.
(14) x⊕ y = ⊥ iff x = ⊥ and y = ⊥.
(15) x	 y = n1(y)� n1(x) and x� y = n2(y)	 n2(x).
(16) n1(y ⊕ z) = n1(z) 	 y and n2(y ⊕ z) = n2(y) � z. Moreover, n2(x 	 y) =

y ⊕ n2(x) and n1(x� y) = n1(x)⊕ y.
(17) For each k = 1, 2, nk(

∧
i∈Γ xi) =

∨
i∈Γ nk(xi) and nk(

∨
i∈Γ xi) = nk(

∧
i∈Γ xi).
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Proof. (1) Since y = y∧z, x⊕y = x⊕(y∧z) = (x⊕y)∧(x⊕z). Then (x⊕y) ≤ (x⊕z).
Since y ≤ z ≤ (z 	 x) ⊕ x, y 	 x ≤ z 	 x. Since x ≤ (x 	 y) ⊕ y ≤ (x 	 y) ⊕ z,
x	 z ≤ x	 y. The cases of � are similarly proved.

(2) Since x� y ≥ x� y, y ⊕ (x� y) ≥ x. Since x	 y ≥ x	 y, (x	 y)⊕ y ≥ x.
(3) By (1), (

∨
i∈Γ xi)	 y ≥

∨
i∈Γ(xi 	 y). Since (

∨
i∈Γ(xi 	 y))⊕ y ≥

∨
i∈Γ((xi 	

y)⊕ y) ≥
∨

i∈Γ xi, (
∨

i∈Γ xi)	 y ≤
∨

i∈Γ(xi 	 y).
By (1), x	 (

∧
i∈Γ yi) ≥

∨
i∈Γ(x	 yi). Since

∨
i∈Γ(x	 yi)⊕ (

∧
i∈Γ yi) ≥

∧
i∈Γ((x	

yi)⊕ yi) ≥ x,
∨

i∈Γ(x	 yi) ≥ x	 (
∧

i∈Γ yi).
(4) It follows from (1).
(5) Since x⊕ ((y 	 z)⊕ z) ≥ x⊕ y, x⊕ (y 	 z) ≥ (x⊕ y)	 z.
Since y ⊕ ((x� y)⊕ z) = (y ⊕ (x� y))⊕ z ≥ x⊕ z, (x� y)⊕ z ≥ (x⊕ z)� y.
(6) Since (x	(y⊕z))⊕(y⊕z) ≥ x iff (x	(y⊕z))⊕y ≥ x	z, x	(y⊕z) ≥ (x	z)	y.

Since ((x 	 z) 	 y) ⊕ y ⊕ z ≥ (x 	 z) ⊕ z ≥ x, (x 	 z) 	 y ≥ x 	 (y ⊕ z). Then
x	 (y ⊕ z) = (x	 z)	 y.

Since y⊕z⊕(x�(y⊕z)) ≥ x iff z⊕(x�(y⊕z)) ≥ x�y, x�(y⊕z) ≥ (x�y)�z.
Since y ⊕ z ⊕ ((x � y) � z) ≥ y ⊕ (x � y) ≥ x, (x � y) � z ≥ x � (y ⊕ z). Then
(x� y)� z = x� (y ⊕ z)

(7) Since (z ⊕ ((x 	 y) � z)) ⊕ y ≥ (x 	 y) ⊕ y ≥ x, ((x 	 y) � z) ⊕ y ≥ x � z.
Then (x 	 y) � z ≥ (x � z) 	 y. Since z ⊕ (((x � z) 	 y)) ⊕ y) ≥ z ⊕ (x � z) ≥ x,
z ⊕ ((x� z)	 y) ≥ x	 y. Thus (x� z)	 y ≥ (x	 y)� z.

(8) Since x 	 y ≥ x 	 y, y ⊕ (x 	 y) ≥ x. Moreover, y ≥ x 	 (x 	 y). Since
(x	 y)⊕ (y 	 z)⊕ z ≥ (x	 y)⊕ y ≥ x, (x	 y)⊕ (y 	 z) ≥ x	 z.

(9) Since (z ⊕ (y � z))⊕ (x� y) ≥ y ⊕ (x� y) ≥ x, (y � z)⊕ (x� y) ≥ x� z.
(10) Since (y⊕ z)⊕ (x� z) = y⊕ (z⊕ (x� z)) ≥ y⊕x, (x� z) ≥ (y⊕x)� (y⊕ z).
Since (x	 z)⊕ (z ⊕ y) = ((x	 z)⊕ z)⊕ y) ≥ x⊕ y, (x	 z) ≥ (x⊕ y)	 (z ⊕ y).
(11) Since (y ⊕ z) ⊕ (x 	 y) ≥ x ⊕ z, x 	 y ≥ (x ⊕ z) 	 (y ⊕ z). Since x ⊕ (y 	

x)⊕ (z 	 y) ≥ z, y	 x ≥ (z 	 x)	 (z 	 y). Since x⊕ y ≤ z ⊕ (x	 z)⊕w⊕ (y	w),
(x⊕ y)	 (z ⊕ w) ≤ (x	 z)⊕ (y 	 w).

(12) Let x ⊕ ⊥ = ⊥ ⊕ x = x. Then x 	 x = x � x = ⊥. x 	 ⊥ =
∧
{z ∈ L |

z ⊕⊥ ≥ x} = x, and x�⊥ =
∧
{z ∈ L | ⊥ ⊕ z ≤ x} = x.

(13) Let x	 y = ⊥. Then y = ⊥⊕ y = (x	 y)⊕ y =
∧
{z ∈ L | z ⊕ y ≥ x} ⊕ y =∧

{z ⊕ y ∈ L | z ⊕ y ≥ x} ≥ x. Thus x ≤ y.
Let x ≤ y. Then x 	 y =

∧
{z ∈ L | z ⊕ y ≥ x} = ⊥. Other cases are similarly

proved.
(14) Let x ⊕ y = ⊥. Then y = y 	 (x ⊕ y) = (y 	 y) 	 x = ⊥ 	 x = ⊥ and

x = x� (x⊕ y) = (x� x)� y = ⊥� y = ⊥. Conversely, ⊥⊕⊥ = ⊥.
(15) By (11), x	 y ≥ (>	 y)� (>	 x) = n1(y)� n1(x). By (10),

x� y ≥ (>� y)	 (>� x) = n2(y)	 n2(x).

Moreover, we have

x	 y = n2(n1(x))	 n2(n1(y)) ≤ n1(y)� n1(x)

and

x� y = n1(n2(x))� n1(n2(y)) ≤ n2(y)	 n2(x).

Thus x	 y = n1(y)� n1(x) and x� y = n2(y)	 n2(x).
132
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(16) By (6), n1(y ⊕ z) = >	 (y ⊕ z) = (>	 z)	 y = n1(z)	 y and n2(y ⊕ z) =
>� (y ⊕ z) = (>� y)� z = n2(y)� z.

(17) By (3), nk(
∧

i xi) =
∨

i nk(xi) for each k = 1, 2. Since
∧

i xi = n2(n1(
∧

i xi)) =
n2(
∨

i n1(xi)),
∧

i n2(xi) = n2(
∨

i n1(n2(xi))) = n2(
∨

i xi). Other cases are similarly
proved. �

Definition 3.2. Let X be a set. A function drX : X × X → L is called a right
distance function, if it satisfies the following conditions:

(D1) drX(x, x) = ⊥ for all x ∈ X,
(D2) If drX(x, y) = drX(y, x) = >, then x = y,
(R) drX(x, y)⊕ drX(y, z) ≥ drX(x, z), for all x, y, z ∈ X.
A function dlX : X ×X → L is called a left distance function, if it satisfies (D1),

(D2) and
(L) dlX(y, z)⊕ dlX(x, y) ≥ dlX(x, z), for all x, y, z ∈ X.
The triple (X, drX , d

l
X) is a bi-distance space.

Example 3.3. (1) We define a function drL, d
l
L : L× L→ L as

drL(x, y) = x	 y, dlL(x, y) = x� y.

By Lemma 3.1 (8), (L, drL, d
l
L) is a bi-distance space.

(2) We define a function drLX , d
l
LX : LX × LX → L as

drLX (A,B) =
∨

x∈X(A(x)	B(x)), dlLX (A,B) =
∨

x∈X(A(x)�B(x)).

By Lemma 3.1 (8), (LX , drLX , d
l
LX ) is a bi-distance space.

Definition 3.4. Let X and Y be two sets. Let F,H : LX → LY and G,K : LY →
LX be operators.

(1) The pair (F,G) is called a residuated connection between X and Y if for
A ∈ LX and B ∈ LY , F (A) ≤ B iff A ≤ G(B).

(2) The pair (H,K) is called a Galois connection between X and Y , if for A ∈ LX

and B ∈ LY , B ≤ H(A) iff A ≤ K(B).
(3) The pair (H,K) is called a dual Galois connection between X and Y , if for

A ∈ LX and B ∈ LY , H(A) ≤ B iff K(B) ≤ A.
(4) A map F : LX → LY is a right isotone map, if for all A, B ∈ LX , drLX (A,B) ≥

drLY (F (A), F (B)).

(5) A map F : LX → LY is a left isotone map, if for all A, B ∈ LX , dlLX (A,B) ≥
dlLY (F (A), F (B)).

(6) A map F : LX → LY is a right antitone map, if for all A, B ∈ LX ,
dlLX (A,B) ≥ drLY (F (B), F (A)).

(7) A map F : LX → LY is a left antitone map, if for all A, B ∈ LX , drLX (A,B) ≥
dlLY (F (B), F (A)).

Theorem 3.5. Let G : LX → LY be a map.
(1) A map G : LX → LY is a right isotone map iff α ⊕ G(A) ≥ G(α ⊕ A) and

G(A) ≤ G(B) for A ≤ B iff G(A� α) ≥ G(A)� α and G(A) ≤ G(B) for A ≤ B.
(2) A map G : LX → LY is a left isotone map iff G(A) ⊕ α ≥ G(A ⊕ α) and

G(A) ≤ G(B) for A ≤ B iff G(A	 α) ≥ G(A)	 α and G(A) ≤ G(B) for A ≤ B.
133
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(3) A map G : LX → LY is a left antitone map iff G(α ⊕ A) ≥ G(A) 	 α and
G(B) ≤ G(A) for A ≤ B iff G(A)⊕ α ≥ G(A� α) and G(B) ≤ G(A) for A ≤ B.

(4) A map G : LX → LY is a right antitone map iff G(A ⊕ α) ≥ G(A) � α and
G(B) ≤ G(A) for A ≤ B iff α⊕G(A) ≥ G(A	 α) and G(B) ≤ G(A) for A ≤ B.

(5) If G : LX → LY is a left isotone map, then n2G : LX → LY is a right antitone
map.

(6) If G : LX → LY is a right isotone map, then n1G : LX → LY is a left antitone
map.

(7) If G : LX → LY is a right antitone map, then n1G : LX → LY is a left
isotone map.

(8) If G : LX → LY is a left antitone map, then n2G : LX → LY is a right
isotone map.

Proof. (1) Let drLX (A,B) ≥ drLY (G(A), G(B)). Put A = α⊕B. Then

α ≥ drLX (α⊕B,B) ≥ drLY (G(α⊕B), G(B)).

Thus α⊕G(B) ≥ G(α⊕B).
Conversely, put α = drLX (A,B). Since drLX (A,B)⊕B ≥ A,

drLX (A,B)⊕G(B) ≥ G(drLX (A,B)⊕B) ≥ G(A).

So drLX (A,B) ≥ drLY (G(A), G(B)).
Second, let α⊕G(A) ≥ G(α⊕A) and G(A) ≤ G(B) for A ≤ B. Since α⊕G(A�

α) ≥ G(α⊕ (A� α)) ≥ G(A), G(A� α) ≥ G(A)� α.
Conversely, let G(A � α) ≥ A � α and G(A) ≤ G(B) for A ≤ B. Since G((α ⊕

A)� α) ≥ G(α⊕A)� α iff α⊕G((α⊕A)� α) ≥ G(α⊕A), we have

G(α⊕A) ≤ α⊕G((α⊕A)� α) ≤ α⊕G(A).

(3) LetG : LX → LY be a left antitone map. Then drLX (A,B) ≥ dlLY (G(B), G(A)).

Put A = α⊕B. Then α ≥ drLX (α⊕B,B) ≥ dlLY (G(B), G(α⊕B)). Thus G(α⊕B) ≥
G(B)	 α.

Conversely, since G(drLX (A,B)⊕B) ≥ G(B)	drLX (A,B) and G(drLX (A,B)⊕B) ≤
G(A) for drLX (A,B)⊕B ≥ A, we have

drLX (A,B) ≥ G(B)�G(drLX (A,B)⊕B) ≥ G(B)�G(A).

Second, we show that G(α ⊕ A) ≥ G(A) 	 α and G(B) ≤ G(A) for A ≤ B iff
G(A)⊕ α ≥ G(A� α) and G(B) ≤ G(A) for A ≤ B.

Let G(α⊕ A) ≥ G(A)	 α and G(B) ≤ G(A) for A ≤ B. Then G(α⊕ A)⊕ α ≥
G(A). Thus we get

G(A)⊕ α ≥ G(α⊕ (A� α))⊕ α ≥ G(A� α).

Let G(A) ⊕ α ≥ G(A � α) and G(B) ≤ G(A) for A ≤ B. Then G(A) ≥ G(A �
α)	 α. Put A = α⊕B. Then G(α⊕B) ≥ G((α⊕B)� α)	 α ≥ G(B)	 α.

(5) Let G : LX → LY be a left isotone map. Then by Lemma 3.1 (15), we have

dlLX (A,B) ≤ dlLY (G(A), G(B)) = drLY (n2G(B), n2G(A)).

Thus n2G : LX → LY is a right antitone map.
(6) Let G : LX → LY be a right isotone map. Then by Lemma 3.1 (15), we get

drLX (A,B) ≥ drLY (G(A), G(B)) = elLY (n1G(B), n1G(A)).
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Thus n1G : LX → LY is a left antitone map.
(2), (4), (7) and (8) are proved similar methods as (1), (3), (5) and (6) respectively.

�

Definition 3.6. A map C : LX → LX is called a right (resp. left) closure operator,
if it satisfies the following conditions:

(C1) A ≤ C(A), for all A ∈ LX .
(C2) C(C(A)) = C(A), for all A ∈ LX .
(C3) C is a right (resp. left) isotone map.
A map I : LX → LX is called a right (resp. left) interior operator, if it satisfies

the following conditions:
(I1) I(A) ≤ A for all A ∈ LX ,
(I2) I(I(A)) = I(A) for all A ∈ LX

(I3) I is a right (resp. left) isotone map.
The pair (I(A), C(A)) ic called a rough set of A.

Theorem 3.7. (1) Let C : LX → LX be a right closure operator. Define a map
I : LX → LX as I(A) = n1(C(n2(A))). Then I is a left interior operator where
(I(A), C(A)) is a rough set of A.

(2) Let C : LX → LX be a left closure operator. Define a map I : LX → LX as
I(A) = n2(C(n1(A))). Then I is a right interior operator where (I(A), C(A)) is a
rough set of A.

Proof. (1) (I1) Since n2(A) ≤ C(n2(A)), I(A) = n1(C(n2(A))) ≤ n1(n2(A)) = A.
(I2) bI(I(A)) = n1(C(n2(n1(C(n2(A)))))) = n1(C(C(n2(A)))) = n1(n2(A)) =

A.
(I3) I is a left isotone map from:

dlLX (A,B) = drLX (n2(B), n2(A)) ≥ drLX (C(n2(B)), C(n2(A)))
= dlLX (n1(C(n2(A))), n1(C(n2(B)))) = dlLX (I(A), I(B)).

(2) It is proved by a similar method as (1). �

Theorem 3.8. Let G : LX → LY and H : LY → LX be two maps.
(1) A pair (G,H) is a residuated connection with two right isotone maps G and

H iff for all A ∈ LX and B ∈ LY , drLY (G(A), B) = drLX (A,H(B)).
(2) A pair (G,H) is a residuated connection with two left isotone maps G and H

iff for all A ∈ LX and B ∈ LY , dlLY (G(A), B) = dlLX (A,H(B)).
(3) A pair (G,H) is a Galois connection with right antitone map G and left

antitone map H iff for all A ∈ LX and B ∈ LY , dlLX (A,H(B)) = drLY (B,G(A)).
(4) A pair (G,H) is a Galois connection with left antitone map G and right

antitone map H iff for all A ∈ LX and B ∈ LY , drLX (A,H(B)) = dlLY (B,G(A)).
(5) A pair (G,H) is a dual Galois connection with right antitone map G and left

antitone map H iff for all A ∈ LX and B ∈ LY , dlLX (H(B), A) = drLY (G(A), B).
(6) A pair (G,H) is a dual Galois connection with left antitone map G and right

antitone map H iff for all A ∈ LX and B ∈ LY , drLX (H(B), A) = dlLY (G(A), B).

Proof. (1) Let (G,H) be a residuated connection. Then G(A) ≤ G(A) iff A ≤
H(G(A)) andH(B) ≤ H(B) iffG(H(B)) ≤ B. Thus drLY (G(A), B) = drLX (A,H(B))
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from

drLY (G(A), B) ≥ drLX (A,H(G(A)))⊕ drLX ((H(G(A)), H(B)) ≥ drLX (A,H(B)),
drLX (A,H(B)) ≥ drLY (G(A), G(H(B)))⊕ drLY (G(H(B)), B) ≥ erLY (G(A), B).

Conversely, since drLY (G(A), B) = drLX (A,H(B)) for all A ∈ LX and B ∈ LY ,
drLX (A,H(B)) = ⊥ A ≤ H(B) iff G(A) ≤ B iff drLY (G(A), B) = ⊥. Then (G,H)
is a residuated connection. Put B = G(A). Then ⊥ = drLY (G(A), G(A)) =
drLX (A,H(G(A))). Thus A ≤ H(G(A)). Put A = H(B). Then we similarly ob-
tain G(H(B)) ≤ B. Thus we obtain two right isotone maps G and H from:

drLX (A,B) = drLX (A,B)⊕ drLX (B,H(G(B)))
≥ drLX (A,H(G(B))) = drLY (G(A), G(B)),
drLY (A,B) = drLY (G(H(A)), A)⊕ drLY (A,B)
≥ drLY (G(H(A), B) = drLX (H(A), H(B)).

(3) Let (G,H) be a Galois connection. Then G(A) ≤ G(A) iff A ≤ H(G(A)) and
H(B) ≤ H(B) iff B ≤ G(H(B)). Moreover, since G is a right antitone map and H
is a left antitone map, we have

drLY (B,G(A)) ≥ dlLX (H(G(A)), H(B)) ≥ dlLX (A,H(B)),
dlLX (A,H(B)) ≥ drLY (G(H(B)), G(A)) ≥ drLY (B,G(A)).

Thus dlLX (A,H(B)) = drLY (B,G(A)).

Conversely, since dlLX (A,H(B)) = drLY (B,G(A)), A ≤ H(B) iff B ≤ G(A).
Moreover,

drLY (G(A), G(B)) = dlLX (B,H(G(A))) ≤ dlLX (B,A),
dlLX (H(A), H(B)) = drLY (B,G(H(A))) ≤ drLY (B,A).

(5) Let (G,H) be a dual Galois connection. Then G(A) ≤ G(A) iff H(G(A)) ≤ A
and H(B) ≤ H(B) iff G(H(B)) ≤ B. Moreover, since G is a right antitone map
and H is a left antitone map, we have

drLY (G(A), B) ≥ dlLX (H(B), H(G(A))) ≥ dlLX (H(B), A),
dlLX (H(B), A) ≥ drLY (G(A), G(H(B))) ≥ drLY (G(A), B).

Thus dlLX (H(B), A) = drLY (G(A), B).

Conversely, since dlLX (A,H(B)) = drLY (B,G(A)), H(B) ≤ A iff G(A) ≤ B.
Moreover,

drLY (G(A), G(B)) = dlLX (H(G(B)), A) ≤ dlLX (B,A),
dlLX (H(A), H(B)) = drLY (G(H(B)), A) ≤ drLY (B,A).

(2), (4) and (6) are similarly proved as (1), (3) and (5) respectively. �

Theorem 3.9. Let G : LX → LY and H : LY → LX be right isotone maps with a
residuated connection (G,H). Then the following statements hold:

(1) H ◦G : LX → LX is a right closure operator,
(2) G ◦H : LY → LY is a right interior operator,
(3) if X = Y , then (G(H(A)), H(G(A))) is a rough set of A.
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Proof. (1) Since A ≤ H(G(A)), H(G(A)) ≤ H(G(H(G(A)))) for all A ∈ LX . Since
B ≥ G(H(B)), G(A) ≥ G(H(G(A))) and H(G(A)) ≥ H(G(H(G(A)))). Then
H(G(A)) = H(G(H(G(A)))). Since G and H are right isotone maps, drLX (A,B) ≥
drLX (H(G(A)), H(G(B))).

(2) and (3) are similarly proved as (1) and the definition of rough set. �

Corollary 3.10. Let G : LX → LY and H : LY → LX be left isotone maps with a
residuated connection (G,H). Then the following statements hold:

(1) H ◦G : LX → LX is a left closure operator,
(2) G ◦H : LY → LY is a left interior operator,
(3) If X = Y , then (G(H(A)), H(G(A))) is a rough set of A.

Theorem 3.11. Let G : LX → LY be a right antitone map and H : LY → LX be a
left antitone map with a Galois connection (G,H). Then

(1) H ◦G : LX → LX is a left closure operator,
(2) G ◦H : LY → LY is a right closure operator.

Proof. (1) Since A ≤ H(G(A)), H(G(A)) ≤ H(G(H(G(A)))) for all A ∈ LX . Since
B ≤ G(H(B)) then G(A) ≤ G(H(G(A))) and H(G(A)) ≥ H(G(H(G(A)))), because
H is a left antitone map. Then H(G(A)) = H(G(H(G(A)))).

Since G is a right antitone map and H is a left antitone map, dlLX (A,B) ≥
drLX (G(B), G(A)) ≥ dlLX (H(G(A)), H(G(B))).

(2) is similarly proved as (1). �

Corollary 3.12. Let G : LX → LY be a left antitone map and H : LY → LX be a
right antitone map with a Galois connection (G,H). Then

(1) H ◦G : LX → LX is a right closure operator,
(2) G ◦H : LY → LY is a left closure operator.

Theorem 3.13. Let G : LX → LY be a right antitone map and H : LY → LX be a
left antitone map with a dual Galois connection (G,H). Then

(1) H ◦G : LX → LX is a left interior operator,
(2) G ◦H : LY → LY is a right interior operator.

Proof. (1) Since H(G(A)) ≤ A, H(G(H(G(A)))) ≤ H(G(A)) for all A ∈ LX . Since
G(H(B)) ≤ B, G(H(G(A))) ≤ G(A) and H(G(A)) ≤ H(G(H(G(A)))), because H
is a left antitone map. Then H(G(A)) = H(G(H(G(A)))).

Since G is a right antitone map and H is a left antitone map, dlLX (A,B) ≥
drLX (G(B), G(A)) ≥ dlLX (H(G(A)), H(G(B))).

(2) is similarly proved as (1). �

Corollary 3.14. Let G : LX → LY be a left antitone map and H : LY → LX be a
right antitone map with a Galois connection (G,H). Then

(1) H ◦G : LX → LX is a right interior operator,
(2) G ◦H : LY → LY is a left interior operator.

Theorem 3.15. Let F,G : LX → LX be maps such that drLX (F (A), B) = drLX (A,G(B)).
Then the following statements are equivalent.

(1) F is a right interior operator.
(2) G is a right closure operator.
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(3) F ◦G = F .
(4) G ◦ F = G.

Proof. Since drLX (F (A), B) = drLX (A,G(B)), by Theorem 3.8 (1), F and G are right
isotone maps.

(1) ⇒(2). Since ⊥ = drLX (F (A), A) = drLX (A,G(A)), A ≤ G(A). Then we have
drLX (G(G(A)), G(A)) = drLX (F (G(G(A))), A)

= drLX (F (F (G(G(A)))), A)
= drLX (F (G(G(A))), G(A))
= drLX (G(G(A)), G(G(A)))
= ⊥.

Thus G is a right closure operator.
(2)⇒(3). Since F is a right isotone map, ⊥ = drLX (A,G(A)) ≥ drLX (F (A), F (G(A))).

Then F (A) ≤ F (G(A)). Moreover, F (A) = F (G(A)) from:
drLX (F (G(A)), F (A)) = drLX (G(A), G(F (A)))

= drLX (G(A), G(G(F (A))))
≤ drLX (A,G(F (A)))
= ⊥. [Since G is a right isotone map]

(3) ⇒(4). Let F ◦G = F . Then G ◦ F ◦G = G ◦ F . Since

⊥ = drLX (F (G(A)), F (G(A))) = drLX (G(A), G(F (G(A))))

and
⊥ = drLX (G(A), G(A)) = drLX (F (G(A)), A),

G◦F ◦G ≥ G and F ◦G(A) ≤ A. Thus G◦F ◦G(A) ≤ G(A). So G◦F = G◦F ◦G = G.
(4) ⇒(3). It follows from F ◦G ◦ F = F .
(3) and (4) ⇒(1).

drLX (F (A), A) ≤ drLX (F (A), F (G(A)))⊕ drLX (F (G(A)), A) = ⊥,
drLX (F (A), F (F (A))) = drLX (A,G(F (F (A)))) = drLX (A,G(F (A))) = ⊥.

�

Corollary 3.16. Let F,G : LX → LX be maps such that dlLX (F (A), B) = dlLX (A,G(B)).
Then the following statements are equivalent.

(1) F is a left interior operator.
(2) G is a left closure operator.
(3) F ◦G = F .
(4) G ◦ F = G.

Corollary 3.17. Let F,G : LX → LX be maps such that dlLX (F (A), B) = dlLX (A,G(B)).
Then the following statements are equivalent.

(1) F is a left closure operator.
(2) G is a left interior operator.
(3) G ◦ F = F .
(4) F ◦G = G.

Corollary 3.18. Let F,G : LX → LX be maps such that drLX (F (A), B) = drLX (A,G(B)).
Then the following statements are equivalent.

(1) F is a right closure operator.
(2) G is a right interior operator.
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(3) G ◦ F = F .
(4) F ◦G = G.

4. Examples of interior and closure operators

In this section, we investigate interior, closure operators and rough sets for an in-
formation (X,Y,R ∈ LX×Y ), where X is a set of objects and Y is a set of attributes.

Definition 4.1. For eachA ∈ LX andB ∈ LY andR ∈ LX×Y , R⊕,⊕R,R	, R�,	R,�R :
LX → LY are defined as:

R⊕(A)(y) =
∧

x∈X(R(x, y)⊕A(x)), ⊕R(A)(y) =
∧

x∈X(A(x)⊕R(x, y)),
R	(A)(y) =

∨
x∈X(R(x, y)	A(x)), R�(A)(y) =

∨
x∈X(R(x, y)�A(x)),

	R(A)(y) =
∨

x∈X(A(x)	R(x, y)), �R(A)(y) =
∨

x∈X(A(x)�R(x, y)),
R1⊕(A)(y) =

∧
x∈X(n1R(x, y)⊕ n1A(x)), 2⊕R(A)(y) =

∧
x∈X(n2A(x)⊕ n2R(x, y)).

Theorem 4.2. (1) R⊕ and �R−1 are left isotone maps with a residuated connection
(�R−1, R⊕).

(2) R⊕ ◦� R−1 : LY → LY is a left closure operator.
(3) �R−1 ◦R⊕ : LX → LX is a left interior operator.
(4) (�R−1 ◦R⊕(A), R−1⊕ ◦� R(A)) is a rough set of A ∈ LX .
(5) If X = Y , then (�R−1 ◦R⊕(A), R⊕ ◦� R−1(A)) is a rough set of A ∈ LX .

Proof. (1) Since R(x, y) ⊕ B(x) ⊕ (A(x) � B(x)) ≥ R(x, y) ⊕ A(x), dlLX (A,B) ≥
dlLY (R⊕(A), R⊕(B)). Since (B(y) � R(x, y)) ⊕ (A(y) � B(y)) ≤ A(y) � R(x, y),

dlLY (A,B) ≥ dlLX (�R−1(A),�R−1(B)). Then by Theorem 3.8 (2), we only show the
following statement:

dlLY (B,R⊕(A)) =
∨

y∈Y (B(y)�R⊕(A)(y))

=
∨

y∈Y

(
B(y)�

∧
x∈X(R(x, y)⊕A(x))

)
=
∨

y∈Y
∨

x∈X

(
(B(y)�R(x, y))�A(x)

)
=
∨

x∈X

(∨
y∈Y (B(y)�R(x, y))�A(x)

)
=
∨

x∈X

(�
R−1(B)(x)�A(x)

)
= dlLX (�R−1(B), A).

(2), (3) and (4), (5) follow from Corollary 3.10 and the definition of a rough
set. �

Theorem 4.3. (1) ⊕R and 	R−1 are right isotone maps with a residuated connec-
tion (	R−1,⊕R).

(2) ⊕R ◦	 R−1 : LY → LY is a right closure operator.
(3) 	R−1 ◦⊕ R : LX → LX is a right interior operator.
(4) (	R−1 ◦⊕ R(A),−1⊕R ◦	 R(A)) is a rough set of A.
(5) If X = Y , then (	R−1 ◦⊕ R(A),⊕R ◦	 R−1(A)) is a rough set of A.

Proof. (1) Since (A(x) 	 B(x)) ⊕ B(x) ⊕ R(x, y) ≥ A(x) ⊕ R(x, y), drLX (A,B) ≥
drLY (⊕R(A),⊕R(B)). Since (A(y) 	 B(y)) ⊕ (B(x) 	 R(x, y)) ≥ A(x) 	 R(x, y),

drLY (A,B) ≥ drLX (	R−1(A),	R−1(B)). Then by Theorem 3.8 (1), we only show
the following statement:
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drLY (B,⊕R(A)) =
∨

y∈Y (B(y)	⊕ R(A)(y))

=
∨

y∈Y

(
B(y)	

∧
x∈X(A(x)⊕R(x, y))

)
=
∨

y∈Y
∨

x∈X

(
B(y)	 (A(x)⊕ (R(x, y))

)
=
∨

x∈X

(∨
y∈Y (B(y)	R(x, y))	A(x)

)
= drLX (	R−1(B), A).

(2), (3) and (4), (5) follow from Theorem 3.9 and the definition of a rough set. �

Theorem 4.4. Let (X, dlX) be a left distance function. Let �(dlX)−1, (dlX)⊕, : LX →
LX be maps in above theorem with R−1 = (dlX)−1. Then the following statements
hold.

(1) �(dlX)−1 is a left closure operator.
(2) (dlX)⊕ is a left interior operator with a rough set ((dlX)⊕(A),� (dlX)−1(A)) for

each A ∈ LX .
(3) (dlX)⊕ =� (dlX)−1 ◦ (dlX)⊕.
(4) (dlX)⊕ ◦� (dlX)−1 =� (dlX)−1.
(5) Define I : LX → LX as I(A) = n2(�(dlX)−1(n1(A))). Then I is a right

interior operator such that I(A) =
∧

z∈X(A(z)⊕ n2(n2(dlX(y, z)))).

(6) Define C : LX → LX as C(A) = n2((dlX)⊕(n1(A))). Then C is a right closure
operator such that C(A)(y) =

∨
x∈X(A(x)	 n2(n2(dlX(x, y)))).

Proof. (1) Since (B(y)� dlX(x, y))⊕ (A(y)�B(y)) ≥ A(y)� dlX(x, y),

dlLX (A,B) ≥ dlLX (�(dlX)−1(A),� (dlX)−1(B)).

Since dlX is a left distance function,
∨

y∈X((dlX(y, z)⊕ dlX(x, y)) = dlX(x, z). Thus

�(dlX)−1(A)(y) =
∨
z∈X

(B(z)� dlX(y, z)) ≥ B(y)� dlX(y, y) = A(y)

and

�(dlX)−1(�(dlX)−1(B))(x) =
∨

y∈X(�(dlX)−1(B)(y)� dlX(x, y))

=
∨

y∈X

(∨
z∈X(B(z)� dlX(y, z))� dlX(x, y)

)
=
∨

z∈X

(
B(z)�

∧
y∈X(dlX(y, z)⊕ dlX(x, y))

)
=
∨

z∈X(B(z)� dlX(x, z))

=� (dlX)−1(B)(x).
Thus �(dlX)−1 is a left closure operator.

(2) Since dlX(x, y)⊕B(x)⊕ (A(x)�B(x)) ≥ dlX(x, y)⊕A(y),

dlLX (A,B) ≥ dlLX ((dlX)⊕(A), (dlX)⊕(B)).

Since dlX is a left isotone map,
∧

y∈X((dlX(y, z)⊕ dlX(x, y)) = dlX(x, z). Then

(dlX)⊕(A) ≤ A
and

(dlX)⊕((dlX)⊕(A))(y) =
∧

z∈X(dlX(z, y)⊕ (dlX)⊕(A)(z))
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=
∧

z∈X((dlX(z, y)⊕
∧

x∈X(dlX(x, z)⊕A(x)))

=
∧

z∈X(
∧

x∈X((dlX(z, y)⊕ dlX(x, z))⊕A(x)))

=
∧

x∈X(
∧

z∈X((dlX(z, y)⊕ dlX(x, z))⊕A(x)))

=
∧

x∈X((dlX(x, y)⊕A(x))

= (dlX)⊕(A)(y).
(3) Since (dlX)⊕ ≤� (dlX)−1 ◦ (dlX)⊕, by (1), we only show

(dlX)⊕ ≥� (dlX)−1 ◦ (dlX)⊕

from:

⊥ = drLX ((dlX)⊕(A), (dlX)⊕(A)) = drLX ((dlX)⊕(A), (dlX)⊕((dlX)⊕(A)))
= drLX ((�(dlX)−1((dlX)⊕(A)), (dlX)⊕(A)).

(2) and (4) are similarly proved as (1) and (3).
(5) By Theorem 3.8 (2), I is a right interior operator. Moreover,

I(A)(x) = n2(�(dlX)−1(n1(A))(x) = n2(
∨

y∈X(n1(A)(y)� dlX(x, y)))

=
∧

y∈X n2((n1(A)(y)� dlX(x, y))) =
∧

y∈X n2(n2(dlX(x, y))	A(y))

=
∧

y∈X(A(y)⊕ n2(n2(dlX(x, y)))). [By Lemma 3.1 (15), 16)]

(6) It is similarly proved as (5). �

Corollary 4.5. Let (X, drX) be a right distance function. Let 	(drX)−1,⊕ (drX), :
LX → LX be maps in above theorem with R−1 = (drX)−1. Then the following
statements hold.

(1) 	(drX)−1 is a right closure operator.
(2) ⊕(drX) is a right interior operator with a rough set (⊕(drX)(A),	 (drX)−1(A))

for each A ∈ LX .
(3) ⊕(drX) =	 (drX)−1 ◦⊕ (drX).
(4) ⊕(drX) ◦	 (drX)−1 =	 (drX)−1.

Theorem 4.6. (1) R� is a right antitone map and R−1	 is a left antitone map.
(2) R	 is a left antitone map and R−1� is a right antitone map.
(3) The pair (R�, R−1	) is a dual Galois connection.
(4) The pair (R	, R−1�) is a dual Galois connection.
(5) R−1	 ◦R� : LX → LX is a left interior operator and R� ◦R−1	 : LY → LY

is a right interior operator.
(6) R−1� ◦R	 : LX → LX is a right interior operator and R	 ◦R−1� : LY → LY

is a left interior operator.

Proof. (1) Since (A(x)�B(x))⊕ (R(x, y)�A(x)) ≥ R(x, y)�B(x),

dlLX (A,B) ≥ drLY (R�(B), R�(A)).

Since (R(x, y)	A(y))⊕ (A(y)	B(y)) ≥ R(x, y)	B(y),

drLX (A,B) ≥ dlLY (R−1	(B), R−1	(A)).

(2) It is similarly proved as (1).
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(3) From Theorem 3.8 (1), dlLX (R−1	(B), A) = drLY (R�(A), B) from:

dlLX (R−1	(B), A)
=
∨

x∈X(R−1	(B)(x)�A(x))
=
∨

x∈X(
∨

y∈X(R(x, y)	B(y))�A(x))

=
∨

x∈X
∨

y∈X((R(x, y)�A(x))	B(y))

=
∨

y∈X(R�(A)	B(y))

= drLY (R�(A), B).

(2) and (4) are similarly proved as (1) and (3) respectively.
(5) and (6) are proved from Theorem 3.11 and Corollary 3.12 respectively. �

Theorem 4.7. (1) R1⊕ is a right antitone map and 2⊕R−1 is a left antitone map.
(2) The pair (R1⊕,2⊕R−1) is a Galois connection.
(3) 2⊕R−1◦R1⊕ : LX → LX is a left closure operator and R1⊕◦2⊕R−1 : LY → LY

is a right closure operator.

Proof. (1) Since (n1R(x, y) ⊕ n1A(x)) ⊕ (n1B(x) � n1A(x)) ≥ R(x, y) ⊕ n1B(x),
(A(x)	B(x)) = (n1B(x)�n1A(x)) ≥ (n1R(x, y)⊕n1B(x))� (n1R(x, y)⊕n1A(x)).
Then we have

drLX (A,B) ≥ dlLY (R1⊕(B), R1⊕(B)).

Since (n2B(y)	 n2A(y))⊕ (n2A(y)⊕ n2R
−1(x, y) ≥ n2B(y)⊕ n2R

−1(x, y),

(A(y)�B(y)) = (n2B(y)	n2A(y)) ≥ (n2B(y)⊕n2R
−1(x, y))	(n2A(y)⊕n2R

−1(x, y)).

Thus we get

dlLY (A,B) ≥ drLX (2⊕R−1(B),2⊕R−1(A)).

(2) From Theorem 3.8 (4), dlLX (R−1	(B), A) = drLY (R�(A), B) from:

dlLY (B,R1⊕(A)) =
∨

y∈Y (B(y)�R1⊕(A)(y))

=
∨

x∈X(B(y)�
∧

y∈X(n1R(x, y)⊕ n1(A)(y)))

=
∨

x∈X
∨

y∈X((B(y)� n1R(x, y))� n1(A)(y))

=
∨

x∈X
∨

y∈X(A(y)	 n2((B(y)� n1R(x, y))))

=
∨

x∈X
∨

y∈X(A(y)	 n2(R(x, y)	 n2B(y)))

=
∨

x∈X
∨

y∈X(A(y)	 (n2(B)(y)⊕ n2R(x, y)))

= drLY (A,2⊕R−1(B)).

(3) It follows from Theorem 3.11. �

Example 4.8. Let (L,⊕,⊕,	,�, ( 1
2 , 1), (1, 0)) be a generalized co-residuated lattice

with a double negative law, where ⊥ = ( 1
2 , 1) is the least element and > = (1, 0) is

the greatest element in Example 2.2 (7).
Let X = {a, b, c} be a set. Define dX , d

l
X : X ×X → L as

dX =

 ( 1
2 , 1) ( 4

5 ,−1) (3
5 , 0)

( 7
10 ,−2) (1

2 , 1) (4
5 , 0)

( 1
2 , 3) ( 7

10 ,−
4
3 ) ( 1

2 , 1)


dlX =

 ( 1
2 , 1) ( 3

4 ,
1
4 ) ( 3

5 ,
2
5 )

( 7
10 ,−

11
10 ) ( 1

2 , 1) ( 7
12 ,−

4
3 )

( 3
5 ,

8
5 ) (2

3 ,−
1
3 ) (1

2 , 1)


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Then we easily show that dX is a right and left distance function and dlX is a left
distance function. But dlX is not a right distance function, because

dlX(b, c)⊕ dlX(c, a) = ( 7
12 ,−

4
3 )⊕ ( 3

5 ,
8
5 ) = ( 7

10 ,−
6
5 ) 6≥ dlX(b, a) = ( 7

10 ,−
11
10 ) .

By Theorem 4.4 and Corollary 4.5, we have various rough sets as follows, for each
A ∈ LX ,

(d⊕X(A),� (dX)−1(A)), (⊕dX(A),	 d−1
X (A)), ((dlX)⊕(A),� (dlX)−1(A)).

Since
⊕(dlX)(A)(y) =

∧
x∈X(A(x)⊕ dlX(x, y))

	(dlX)−1(A)(x) =
∨

y∈X(A(y)	 dlX(x, y))

for D = (( 3
4 ,

1
4 ), ( 5

6 ,
11
6 ), ( 1

2 ,
3
2 )),

⊕(dlX)(D) = ((3
5 ,

8
5 ), ( 2

3 ,
1
3 ), ( 1

2 ,
3
2 ))

	(dlX)−1(D) = ((3
4 ,

1
4 ), ( 5

6 ,
11
6 ), ( 5

8 ,
21
8 ))

	(dlX)−1(⊕(dlX)(D)) = ((3
5 ,

8
5 ), ( 4

5 ,−
1
2 ), ( 1

2 ,
3
2 ))

⊕(dlX)(	(dlX)−1(D)) = ((3
4 ,

1
4 ), ( 5

6 ,−
25
12 ), ( 5

8 ,
21
8 ))

Since dlX is not a right distance function, in general, ⊕(dlX)(D) 6=	 (dlX)−1(⊕(dlX)(D))
and 	(dlX)−1(D) 6=⊕ (dlX)(	(dlX)−1(D)). Moreover, ⊕(dlX) is not a right interior
operator because , for ⊥b with ⊥b(b) = ⊥ and ⊥b(x) = > for x 6= b,

⊕(dlX)(⊥b)(−) =
∧

x∈X(⊥b(x)⊕ dlX(x,−)) = dlX(b,−) = (( 7
10 ,−

11
10 ), ( 1

2 , 1), ( 7
12 ,−

4
3 ))

⊕(dlX)((−)⊕(dlX)(⊥b))(−) = (( 7
10 ,−

6
5 ), ( 1

2 , 1), ( 7
12 ,−

4
3 )).

As a information system (X,Y,R ∈ LX×Y ), let X = {a, b, c} be a set of objects
and Y = {u, v} be a set of attributes with an information R ∈ LX×Y as

R =

 (1, 0) ( 5
8 ,

5
2 )

( 2
3 ,−1) ( 3

4 ,
1
4 )

( 1
2 , 2) ( 1

2 , 1)


For A = (( 2

3 , 1), ( 1
2 , 2), ( 3

4 ,−1)),

R⊕(A) = (( 2
3 , 0), ( 3

4 ,−1)), ⊕R(A) = ((2
3 ,−

7
3 ), ( 3

4 ,−1)),
R	(A) = ((3

4 ,
1
4 ), ( 3

4 ,−
3
4 )), R�(A) = ((3

4 , 0), ( 3
4 ,−

5
4 )),

	R(A) = (( 3
4 ,−2), ( 3

4 ,−1)), �R(A) = ((3
4 ,−

5
2 ), ( 3

4 ,−1)),
R1⊕(A) = (( 3

4 ,
1
4 ), (1, 0)), 2⊕R(A) = (( 3

4 , 0), (1, 0)).

For B = (( 3
5 , 2), ( 2

3 ,−1)),

R−1⊕(B) = ((5
6 ,

5
6 ), ( 4

5 ,
14
5 ), ( 3

5 ,
16
5 )), ⊕R−1(B) = (( 5

6 , 0), ( 4
5 ,

1
3 ), ( 3

5 , 3)),
R−1	(B) = ((5

6 ,−
2
3 ), ( 5

9 ,−
3
2 ), ( 1

2 , 1)), R−1�(B) = (( 5
6 ,−

5
3 ), ( 5

9 ,−
19
9 ), ( 1

2 , 1)),
	R−1(B) = (( 8

15 ,−
9
5 ), ( 1

2 , 1), ( 2
3 ,−1)), �R−1(B) = (( 8

15 ,−
13
5 ), ( 1

2 , 1), ( 2
3 ,−1)),

(R−1)1⊕(B) = ((5
6 ,−

2
3 ), (1, 0), (1, 0)), 2⊕R−1(B) = ((5

6 ,−
5
3 ), (1, 0), (1, 0)).

Rough sets of A ∈ LX are

(�R−1 ◦R⊕(A), R−1⊕ ◦� R(A)),
(	R−1 ◦⊕ R(A),−1⊕R ◦	 R(A)),
(�R−1(R⊕(A)),2⊕R−1(R1⊕(A))),
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where
R−1⊕(�R(A)) = ((15

16 ,
5
4 ), (1,− 11

2 ), ( 3
4 ,−1)),

⊕R−1(	R(A)) = ((15
16 , 0), (1,−5), ( 3

4 ,−1)),
	R−1(⊕R(A)) = ((3

5 ,−
9
5 ), ( 1

2 , 1), ( 3
4 ,−1)),

�R−1(R⊕(A)) = ((3
5 ,−

29
20 ), ( 1

2 , 2), ( 3
4 ,−1)),

2⊕R−1(R1⊕(A)) = (( 2
3 , 1), ( 2

3 ,
9
8 ), (1, 0)).

5. Conclusion

In this paper, we are interested distance spaces instead of fuzzy partially ordered
sets on generalized co-residuated lattices as a non-commutative algebraic structure.
Using distance functions, we have investigated the relations between various closure
(interior) operators and various connections. Moreover, as an application, we give
various rough sets for an information system in Section 4.

In the future, we plan to investigate fuzzy concepts, information systems and
decision rules by using the concepts of distance spaces in generalized co-residuated
lattices.
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