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Abstract. In this paper, we redefine an intuitionistic neutrosophic set
and study some of its properties. Next, we newly define the correlation
coefficient and the cosine similarity measure based on intuitionistic neu-
trosophic sets and deal with some of their properties. Finally, by using
the correlation coefficient and the cosine similarity measure which we pro-
pose, we propose an algorithms solving decision-making problems and give
examples.
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1. Introduction

In 1965, Zadeh [1] had initially introduced the notion of fuzzy sets as the gen-
eralization of classical sets in order to express the real world as it is. After then,
numerous mathematicians have been trying to find a mathematical expression of
uncertainties and ambiguities which can be applied not only to Mathematics but
also to engineering, medicine and social sciences, etc. For examples, an interval-
valued fuzzy set (Zadeh [2], 1975 and Gorzalczany [3],1987), a rough set (Pawlak [4],
1982), an intuitionistic fuzzy set (Atanassov [5], 1983), an interval-valued intuition-
istic fuzzy set (Atanassov and Gargov [6], 1989), a vague set (Gau and Buchrer [7],
1993), a neutrosophic set (Smarandache [8], 1998), a bipolar fuzzy set (Zhang [9],
1998), a soft set (Molodtsov [10],1999), etc. Wang et al. [11] defined a single-valued
neutrosophic set as an instance of neutrosophic set which can be used in real scien-
tific and engineering applications. Moreover, Jun et al. [12] proposed the concept of
cubic sets composed of an interval-valued fuzzy set and a fuzzy set. Smarandache
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et al. [13] extended a cubic set to a neutrosophic cubic set. Jun [14] defined a
cubic intuionistic set as a pair of an interval-valued intuitionistic fuzzy set and an
intuitionistic fuzzy set. Recently, Lee et al. [15] introduced the notion of octahedron
sets composed of three components: an interval-valued fuzzy set, an intuitionistic
fuzzy set and a fuzzy set, which will provide more information about ambiguity and
uncertainty common in everyday life as the generalization of a cubic set [12] and a
cubic interval-valued intuitionistic fuzzy set [16] (See [17, 18, 19] for research articles
to which an octahedron set was applied).

Decision-making problems are very important in establishing foreign policy, na-
tional defense policy, economic policy, various election strategies, and prevention
policy of the recent worldwide coronavirus, etc. So, many mathematicians have
dealt with decision-making problems using the above-mentioned various kinds of
fuzzy concepts or fused fuzzy concepts. Mainly, they presented algorithms for deci-
sion making in three directions: aggregation operators, similarity measures and cor-
relation coefficients based on various fuzzy sets. We can see that many researchers
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] have dealt with decision making problems
by using the correlation coefficients and cosine similarity measures. In particular,
Broumi et al. [31] defined the distance between n-valued interval neutrosophic sets
and applied it to medical diagnosis problems. Deli et al. [32] defined some dis-
tances between neutrosophic redefined sets and applied them to medical diagnosis
problems. Moreover, Ye [33] dealt with multicriteria decision-making problems by
using the correlation coefficient for single valued neutrosophic sets. Broumi and Deli
[34] defined the correlation measure for neutrosophic sets and applied it to medical
dignosis problems.

The aim of this paper is to define the correlation coefficient and cosine similarity
measure based on intuitionistic single-valued neutrosophic sets and propose an al-
gorithm to use multicriteria decision-making problems. In order to accomplish such
research, this paper is composed of six sections: In Section 2, we recall some defi-
nitions related to intuitionistic fuzzy sets and single-valued neutrosophic sets. Also
we recall the definitions of the correlation coefficient between intuitionistic fuzzy
sets. In Section 3, we redefine an intuitionistic single-valued neutrosophic set and
deal with some of its properties, and give some examples. In Section 4, we define
the correlation coefficient and the cosine similarity measure between intuitionistic
single-valued neutrosophic sets and study some of their properties. In Section 5,
we propose the algorithms of the weighted correlation coefficient and the weighted
cosine similarity measure between each alternative and the ideal alternative which
are utilized to rank the alternatives and to determine the best one(s). They can
handle not only incomplete information but also the indeterminate information and
inconsistent information which exist commonly in real situations. And we give an
illustrative example as the application of the proposed decision-making method. In
Section 6, we propose the algorithm of pattern recognition for the correlation coeffi-
cient and cosine similarity measure between intuitionistic single-valued neutrosophic
sets and give an illustrative example.
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2. Preliminaries

In this section, we list some basic definitions and notations needed in the next
sections. Throughout this paper, I denotes the unit closed interval [0, 1] in the set
of real numbers R.

Let I ⊕ I = {ā = (a∈, a6∈) ∈ I × I : a∈ + a6∈ ≤ 1}. Then each member ā of I ⊕ I
is called an intuitionistic point or intuitionistic number. In particuar, we denote
(0, 1) and (1, 0) as 0̄ and 1̄, respectively. Refer to [35] for the definitions of ≤ and
= on I ⊕ I, the complement of an intuitionistic number, and the infimum and the
supremum of any intuitionistic numbers.

For a set X, a mapping A : X → I is called a fuzzy set in X and the set of all
fuzzy sets in X is denoted by IX or FS(X). Refer [1, 36] to basic operations on IX .

Definition 2.1 ([37]). For a nonempty set X, a mapping Ā : X → I ⊕ I is
called an intuitionistic fuzzy set (briefly, IFS) in X, where for each x ∈ X, Ā(x) =
(A∈(x), A6∈(x)), and A∈(x) and A 6∈(x) represent the degree of membership and the
degree of nonmembership of an element x to Ā, respectively. Let (I⊕I)X or IFS(X)
denote the set of all IFSs in X and for each Ā ∈ (I ⊕ I)X , we write A = (A∈, A6∈).
In particular, 0̄ and 1̄ denote the IF empty set and the IF whole set in X defined
by, respectively: for each x ∈ X,

0̄(x) = 0̄ and 1̄(x) = 1̄.

For each A ∈ IFS(X) and each x ∈ X,

π(x) = 1−A∈(x)−A 6∈(x)

is called the intuitionistic index of x in A. It is hesitancy degree of x to X (See
[37, 38, 39, 40]). It is clear that 0 ≤ π(x) ≤ 1 for each x ∈ X.

Definition 2.2 ([11]). LetX be a nonempty set. Then a mappingA =
〈
AT , AI , AF

〉
:

X → I × I × I is called a single-valued neutrosophic set (briefly, SVNS) in X,
where AT [resp. AI and AF ] is called the truth-membership [resp. indeterminacy-
membership and falsity-membership] function of A. We denote the set of all SVNSs
in X as SV NS(X).

Definition 2.3 ([11]). Let X be a nonempty set and let A, B ∈ SV NS(X).
(i) We say that A is contained in B or A is subset of B, denoted by A ⊂ B, if

AT (x) ≤ BT (x), AI(x) ≤ BI(x), AF (x) ≥ BF (x) for each x ∈ X.
(ii) We say that A and B are equal, denoted by A = B, if A ⊂ B and B ⊂ A.

Definition 2.4 ([11]). Let X be a nonempty set and let A, B ∈ SV NS(X).
(i) The union of A and B, denoted by A ∪B, is a single-valued neutrosophic set

in X defined as: for each x ∈ X,

(A ∪B)T (x) = AT (x) ∨BT (x),

(A ∪B)I(x) = AI(x) ∨BI(x),

(A ∪B)F (x) = AF (x) ∧BF (x).
83
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(ii) The intersection of A and B, denoted by A∩B, is a single-valued neutrosophic
set in X defined as: for each x ∈ X,

(A ∩B)T (x) = AT (x) ∧BT (x),

(A ∩B)I(x) = AI(x) ∧BI(x),

(A ∩B)F (x) = AF (x) ∨BF (x).

Definition 2.5 ([11]). Let X be a nonempty set and let A, B ∈ SV NS(X).
(i) The complement of A, denoted by c(A), is a single-valued neutrosophic set in

X defined as: for each x ∈ X,

c(A)T (x) = AF (x), c(A)I(x) = 1−AI(x), c(A)F (x) = AT (x).

(ii) The difference of A and B, denoted by A \B, is a single-valued neutrosophic
set in X defined as: for each x ∈ X,

(A \B)T (x) = AT (x) ∧BF (x),

(A \B)I(x) = AI(x) ∧ (1−BI(x)),

(A \B)F (x) = AF (x) ∨BT (x).

It is obvious that A \B = A ∩ c(B).
Now we recall some definitions of correlation coefficients for intuitionistic fuzzy

sets.

Definition 2.6 ([41, 42]). Let X = {x1, x2, · · · , xn} be a universe set and let
A ∈ IFS(X). Then the average of A, denoted by E(A), is defined by:

E(A) = (Ā∈, Ā 6∈) =

(
1

n
Σni=1A

∈(xi),
1

n
Σni=1A

6∈(xi)

)
.

Definition 2.7. LetX = {x1, x2, · · · , xn} be a universe set and let A, B ∈ IFS(X).
Then the correlation coefficient of A and B, denoted by ρ(A,B), is defined as:

(i) the correlation coefficient by Gerstenkorn and Mansko (See [20])

ρGM (A,B) =
C(A,B)√
T (A)T (B)

,

where C(A,B) = Σni=1[A∈(xi)B
∈(xi) +A 6∈(xi)B

6∈(xi)],
T (A) = Σni=1[(A∈(xi))

2 + (A 6∈(xi))
2],

T (B) = Σni=1[(B∈(xi))
2 + (B 6∈(xi))

2],
(ii) the correlation coefficient by Hung (See [43])

ρH(A,B) =
1

2
(ρ1 + ρ2),

where ρ1 =
Σn

i=1(A∈(xi)−Ā∈)(B∈(xi)−B̄∈)√
Σn

i=1(A∈(xi)−Ā∈)2
√

Σn
i=1(B∈(xi)−B̄∈)2

,

ρ2 =
Σn

i=1(A6∈(xi)−Ā 6∈)(B 6∈(xi)−B̄ 6∈)√
Σn

i=1(A 6∈(xi)−Ā6∈)2
√

Σn
i=1(B 6∈(xi)−B̄ 6∈)2

,

(iii) the correlation coefficient by Park et al. (See [44])

ρP (A,B) =
1

2
(ρ1 + ρ2 + ρ3),
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where ρ3 =
Σn

i=1(πA(xi)−π̄A)(πB(xi)−π̄B)√
Σn

i=1(πA(xi)−π̄A)2
√

Σn
i=1(πB(xi)−π̄B)2

,

(iv) the correlation coefficient by Xu (See [45])

ρX(A,B) =
1

2n
Σni=1

[
4A∈min +4A∈max
4A∈i +4A∈max

+
4A 6∈min +4A 6∈max
4A 6∈i +4A 6∈max

]
,

where, 4A∈i =| A∈(xi)−B∈(xi) |, 4A 6∈i =| A 6∈(xi)−B 6∈(xi) |,
5A∈max = maxA∈i , 5A 6∈max = maxA 6∈i ,

5A∈min = minA∈i , 5A 6∈min = minA 6∈i .
(v) the correlation coefficient by Liu et al. (See [42])

ρL(A,B) =
C(A,B)√
D(A)D(B)

,

where C(A,B) = 1
n−1Σni=1di(A)di(B),

D(A) = 1
n−1Σni=1d

2
i (A), D(B) = 1

n−1Σni=1d
2
i (B),

di(A) = (A∈(xi)− Ā∈)− (A 6∈(xi)− Ā 6∈),

di(B) = (B∈(xi)− B̄∈)− (B 6∈(xi)− B̄ 6∈) for all i = 1, 2, · · · , n.

Definition 2.8 ([27]). Let X = {x1, x2, · · · , xn} be a universe set and let A, B ∈
IFS(X). For all i = 1, 2, · · · , n, let us denote di(A) and di(B) as follows:

di(A) = (A∈(xi)− Ā∈)− (A 6∈(xi)− Ā 6∈), di(B) = (B∈(xi)− B̄∈)− (B 6∈(xi)− B̄ 6∈).

(i) The variance of A, denoted by D(A), is defined by:

D(A) =
1

n− 1
Σni=1[(A∈(xi)− Ā∈)2 + (A 6∈(xi)− Ā 6∈)2 + d2

i (A)].

(ii) The covariance of A and B, denoted by Cov(A,B), is defined by:
Cov(A,B) = 1

n−1Σni=1[(A∈(xi)− Ā∈)(B∈(xi)− B̄∈)

+(A 6∈(xi)− Ā 6∈)(B 6∈(xi)− B̄ 6∈) + di(A)di(B)].
(iii) The correlation coefficient of A and B, denoted by ρ(A,B), is defined by:

ρ(A,B) =
Cov(A,B)√
D(A)D(B)

.

3. Intuitionistic single-valued neutrosophic sets

In this section, first of all, we recall the concept of an intuitionistic neutrosophic
set proposed by Bhowmik and Pal [46].

Definition 3.1. Let X be a nonempty set. Then a mapping A =
〈
AT , AI , AF

〉
:

X → I × I × I is called an intuitionistic neutrosophic set (briefly, INS) in X, if it
satisfies the following conditions: for each x ∈ X,

AT (x) ∧AF (x) ≤ 0.5, AT (x) ∧AI(x) ≤ 0.5, AF (x) ∧AI(x) ≤ 0.5.

It is obvious that 0 ≤ AT (x) +AI(x) +AF (x) ≤ 1 for each x ∈ X.

For operations for intuitionistic neutrosophic sets and their properties, see [46].

Now contrary to the definition introduced by Bhowmik and Pal, we define an
intuitionistic single-valued neutrosophic set as follows.
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Definition 3.2. Let X be a nonempty set. Then a mapping A =
〈
AT , AI , AF

〉
:

X → (I ⊕ I)× (I ⊕ I)× (I ⊕ I) is called an intuitionistic single-valued neutrosophic
set (briefly, ISVNS) in X, where

AT = (AT,∈, AT, 6∈), AI = (AI,∈, AI,6∈), AF = (AF,∈, AF,6∈) ∈ IFS(X)

and AT [resp. AI and AF ] is called the intuitionistic truth-membership [resp. intu-
itionistic indeterminacy-membership and intuitionistic falsity-membership] function
of A. In particular, 0̇ [resp. 1̇] denotes the intuitionistic single-valued neutrosophic
empty [resp. whole] set in X and defined by: for each x ∈ X,

0̇(x) = 〈0̄, 0̄, 1̄〉 [resp. 1̇(x) =
〈
1̄, 1̄, 0̄]

〉
].

We will denote the set of all ISVNSs in X as ISV NS(X).

When X is continuous, an ISVNS A in X can be written by

A =

∫
X

〈
(AT,∈(x), AT, 6∈(x)), (AI,∈(x), AI,6∈(x)), (AF,∈(x), AF,6∈(x))

〉
/x,

where x ∈ X.
When X is discrete, an ISVNS A in X can be written by: for each xi ∈ X,

A = Σni=1

〈
(AT,∈(xi), A

T, 6∈(xi)), (A
I,∈(xi), A

I,6∈(xi)), (A
F,∈(xi), A

F,6∈(xi))
〉
/xi,

where xi ∈ X.

In an election, polls of voters about each candidate are mainly conducted from the
perspective of a neutrosophic set (i.e., truth-membership, indeterminacy-membership,
falsity-membership). The results of these polls and votes may not generally match.
It is believed to be due to the choice of indeterminacy-membership on the day of vot-
ing. Therefore, it is necessary to understand the voting propensity of indeterminacy-
membership by conducting an opinion poll from the perspective of the intuitionistic
single-valued netrosophic set proposed by us.

Example 3.3. (1) Suppose X = {x1, x2, x3}, where x1 is the capability, x2 is the
trustworthness and x2 is the price of sementic web services. The membership values
of x1, x2 and x3 are in I ⊕ I. Each member of X is commonly used to define
the quality of service of sementic web services (See [47]) and is obtained from the
questionnaire of some domain experts. Each option could be a degree of “good
service”, a degree of indeterminacy and a degree of “poor service”. Let us consider
two ISVNSs A and B given by:

A = 〈(0.3, 0.6), (0.4, 0.5), (0.5, 0.4)〉 /x1 + 〈(0.5, 0.3), (0.2, 0.7), (0.3, 0.6)〉 /x2

+ 〈(0.7, 0.2), (0.2, 0.7), (0.2, 0.7)〉 /x3,
B = 〈(0.6, 0.3), (0.1, 0.8), (0.2, 0.7)〉 /x1 + 〈(0.3, 0.6), (0.2, 0.7), (0.6, 0.2)〉 /x2

+ 〈(0.4, 0.5), (0.2, 0.7), (0.5, 0.4)〉 /x3.
(2) Let Ā ∈ IFS(X). Then it is clear that

〈
Ā, 0̄, Āc

〉
∈ ISV NS(X).

(3) Let A ∈ ISV NS(X). Then it is obvious that AT , AI , AF ∈ IFS(X).
(4) Let A =

〈
AT , AI , AF

〉
be a single-valued neutrosophic set in X. Then it is

easily check that
〈
(AT , AT

c
), (AI , AI

c
), (AF , AF

c
)
〉
∈ ISV NS(X).
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(5). Let X = {a, b, c} and consider the mapping A : X → I × I × I in X defined
as follows:

A(a) = 〈0.7, 0.3, 0.5〉 , A(b) = 〈0.6, 0.4, 0.3〉 , A(c) = 〈0.4, 0.5, 0.8〉 .

Then we can easily check that A is an intuitionistic neutrosophis set in X in the
sense of Bhowmik and Pal. Moreover, we can see that

A = 〈(0.7, 0.3), (0.3, 0.7), (0.5, 0.5)〉 /a+ 〈(0.6, 0.4), (0.4, 0.6), (0.3, 0.7)〉 /b
+ 〈(0.4, 0.6), (0.5, 0.5), (0.7, 0.3)〉 /c

is an intuitionistic single-valued neutrosophic set in X.

From (2), (3) and (4), we can consider an ISVNS as the generalization of both an
IFS and a SVNS. Also, from (5), we can consider an ISVNS as the generalization of
an INS.

Definition 3.4. Let X be a nonempty set and let A, B ∈ SV NS(X).
(i) We say that A is contained in B or A is subset of B, denoted by A ⊂ B, if for

each x ∈ X,

AT (x) ≤ BT (x), i.e., AT,∈(x) ≤ BT,∈(x), AT, 6∈(x) ≥ BT, 6∈(x),

AI(x) ≤ BI(x), i.e., AI,∈(x) ≤ BI,∈(x), AI,6∈(x) ≥ BI,6∈(x),

AF (x) ≥ BF (x), i.e., AF,∈(x) ≥ BF,∈(x), AF,6∈(x) ≤ BF,6∈(x).

(ii) We say that A and B are equal, denoted by A = B, if A ⊂ B and B ⊂ A.

Example 3.5. Let A, B ∈ ISV NS(X) given in Example 3.3 (1). Then we can
easily check that A 6⊂ B and B 6⊂ A.

From Definitions 3.2 and 3.4, we get the following.

Proposition 3.6. For any A ∈ ISV NS(X), 0̇ ⊂ A ⊂ 1̇.

Definition 3.7. Let X be a nonempty set, let A, B ∈ ISV NS(X) and let (Aj)j∈J
be a family of ISVNSs in X indexed by J .

(i) The intersection of A and B, denoted by A ∩B, is an ISVNS in X defined as
follows: for each x ∈ X,

(A ∩B)(x) =
〈
AT (x) ∧BT (x), AI(x) ∧BI(x), AF (x) ∨BF (x)

〉
,

where

AT (x) ∧BT (x) = (AT,∈(x) ∧BT,∈(x), AT, 6∈(x) ∨BT, 6∈(x)),

AI(x) ∧BI(x) = (AI,∈(x) ∧BI,∈(x), AI,6∈(x) ∨BI,6∈(x)),

AF (x) ∨BF (x) = (AF,∈(x) ∨BF,∈(x), AF,6∈(x) ∧BF,6∈(x)).

(ii) The intersection of (Aj)j∈J , denoted by
⋂
j∈J Aj , is an ISVNS in X defined

as follows: for each x ∈ X,⋂
j∈J

Aj

 (x) =

〈∧
j∈J

ATj (x),
∧
j∈J

AIj (x),
∨
j∈J

AFj (x)

〉
,
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where ∧
j∈J

ATj (x) =

∧
j∈J

AT,∈j (x),
∨
j∈J

AT, 6∈j (x)

 ,

∧
j∈J

AIj (x) =

∧
j∈J

AI,∈j (x),
∨
j∈J

AI,6∈j (x)

 ,

∨
j∈J

AFj (x) =

∨
j∈J

AF,∈j (x),
∧
j∈J

AF,6∈j (x)

 .

(iii) The union of A and B, denoted by A ∪ B, is an ISVNS in X defined as
follows: for each x ∈ X,

(A ∪B)(x) =
〈
AT (x) ∨BT (x), AI(x) ∨BI(x), AF (x) ∧BF (x)

〉
,

where

AT (x) ∨BT (x) = (AT,∈(x) ∨BT,∈(x), AT, 6∈(x) ∧BT, 6∈(x)),

AI(x) ∨BI(x) = (AI,∈(x) ∨BI,∈(x), AI,6∈(x) ∧BI,6∈(x)),

AF (x) ∧BF (x) = (AF,∈(x) ∧BF,∈(x), AF,6∈(x) ∨BF,6∈(x)).

(iv) The union of (Aj)j∈J , denoted by
⋃
j∈J Aj , is an ISVNS in X defined as

follows: for each x ∈ X,⋃
j∈J

Aj

 (x) =

〈∨
j∈J

ATj (x),
∨
j∈J

AIj (x),
∧
j∈J

AFj (x)

〉
,

where ∨
j∈J

ATj (x) =

∨
j∈J

AT,∈j (x),
∧
j∈J

AT, 6∈j (x)

 ,

∨
j∈J

AIj (x) =

∨
j∈J

AI,∈j (x),
∧
j∈J

AI,6∈j (x)

 ,

∧
j∈J

AFj (x) =

∧
j∈J

AF,∈j (x),
∨
j∈J

AF,6∈j (x)

 .

Example 3.8. Let A, B ∈ ISV NS(X) given in Example 3.3 (1). Then we have
A ∩B = 〈(0.3, 0.6), (0.1, 0.8), (0.5, 0.4)〉 /x1 + 〈(0.3, 0.6), (0.2, 0.7), (0.6, 0.2)〉 /x2

+ 〈(0.4, 0.5), (0.2, 0.7), (0.5, 0.4)〉 /x3,
A ∪B = 〈(0.6, 0.3), (0.4, 0.5), (0.2, 0.7)〉 /x1 + 〈(0.5, 0.3), (0.2, 0.7), (0.3, 0.6)〉 /x2

+ 〈(0.7, 0.2), (0.2, 0.7), (0.2, 0.7)〉 /x3.

From Definitions 3.4 and 3.7, we get the followings.
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Proposition 3.9. Let A, B, C ∈ ISV NS(X). Then
(1) if A ⊂ B and B ⊂ C, then A ⊂ C,
(2) A ⊂ A ∪B and B ⊂ A ∪B,
(3) A ∩B ⊂ A and A ∩B ⊂ B,
(4) A ⊂ B if and only if A ∩B = A,
(5) A ⊂ B if and only if A ∪B = B.

Proposition 3.10. Let A, B, C ∈ ISV NS(X) and let (Aj)j∈J be a family of
SVNSs in X indexed by J . Then

(1) (Idempotent laws) A ∪A = A, A ∩A = A,
(2) (Commutative laws) A ∪B = B ∪A, A ∩B = B ∩A,
(3) (Associative laws) A∪ (B ∪C) = (A∪B)∪C, A∩ (B ∩C) = (A∩i B)∩i C,
(4) (Distributive laws) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),⋃
j∈J(Aj ∩B) = (

⋃
j∈J Aj) ∩B,⋂

j∈J(Aj ∪B) = (
⋂
j∈J Aj) ∪B,

(5) (Absorption laws) A ∪ (A ∩B) = A, A ∩ (A ∪B) = A.

Definition 3.11. Let A, B ∈ ISV NS(X). Then
(i) the complement of A, denoted by c(A), is an ISVNS in X defined as follows:

for each x ∈ X,

c(A)(x) =
〈
AF (x), AI

c
(x), AT (x)

〉
,

where AI
c
(x) = (AI,6∈, AI,∈),

(ii) the difference of A and B, denoted by A \ B, is an ISVNS in X defined as
follows: for each x ∈ X,

(A \B)(x) =
〈
AT (x) ∧AF (x), AI(x) ∧AIc(x), AF (x) ∨AT (x)

〉
.

From Definitions 3.7 and 3.11, it is clear that A \B = A ∩ c(B).

Example 3.12. Let A, B ∈ ISV NS(X) given in Example 3.3 (1). Then we have
c(A) = 〈(0.5, 0.4)(0.3, 0.6), (0.5, 0.4), (0.3, 0.6)〉 /x1+〈(0.3, 0.6), (0.7, 0.2), (0.5, 0.3)〉 /x2

+ 〈(0.2, 0.7), (0.7, 0.2), (0.7, 0.2)〉 /x3,
A \B = 〈(0.2, 0.7), (0.4, 0.5), (0.6, 0.3)〉 /x1 + 〈(0.5, 0.3), (0.2, 0.7), (0.3, 0.6)〉 /x2

+ 〈(0.5, 0.4), (0.2, 0.7), (0.4, 0.5)〉 /x3.

From Definitions 3.4, 3.7 and 3.11, we have the following properties.

Proposition 3.13. Let A, B, C ∈ ISV NS(X) and let (Aj)j∈J be a family of
SVNSs in X indexed by J . Then

(1) (DeMorgan’s laws) c(A ∪B) = c(A) ∩ c(B), c(A ∩B) = c(A) ∪ c(B),
c(
⋃
j∈J Aj) =

⋂
j∈J c(Aj), c(

⋂
j∈J Aj) =

⋃
j∈J c(Aj),

(2) c(c(A)) = A,
(3) (3a) A ∪ 0̇ = A, A ∩ 0̇ = 0̇,

(3b) A ∪ 1̇ = 1̇, A ∩ 1̇ = A,
(3c) c(1̇) = 0̇, c(0̇) = 1̇,
(3d) A ∪ c(A) 6= 1̇, A ∩ c(A) 6= 0̇ in general (See Example 3.14).
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Example 3.14. Let A be the ISVNS in X given in Example 3.3 (1). Then we can
easily check that A ∪ c(A) 6= 1̇, A ∩ c(A) 6= 0̇.

From Propositions 3.10 and 3.13, we can see that (ISV NS(X),∪,∩, c, 1̇, 0̇) forms
a Boolean algebra except the condition (3d).

Definition 3.15. Let X, Y be non-empty universe sets, A ∈ ISV NS(X), B ∈
ISV NS(Y ) and let f : X → Y be a mapping.

(i) The preimage of B under f , denoted by f−1(B), is the ISVNS in X defined
as: for each x ∈ X,

f−1(B)(x) =
〈
BT (f(x)), BI(f(x)), BF (f(x))

〉
,

where BT (f(x)) = (BT,∈(f(x)), BT, 6∈(f(x))), BI(f(x)) = (BI,∈(f(x)), BI,6∈(f(x))),
BF (f(x)) = (BF,∈(f(x)), BF,6∈(f(x))).

In fact, f−1(B) =
〈
f−1(BT ), f−1(BI), f−1(BF )

〉
.

(ii) The image of A under f , denoted by f(A), is the ISVNS in Y defined as: for
each y ∈ Y ,

f(A)(y) =
〈
f(AT )(y), f(AI)(y), f(AF )(y)

〉
,

where f(AT )(y) = (f(AT,∈)(y), 1− f(1−AT, 6∈)(y)),
f(AI)(y) = (f(AI,∈)(y), 1− f(1−AI,6∈)(y)),
f(AF )(y) = (f(AF,∈)(y), 1− f(1−AI,6∈)(y)).

In fact, f(A) =
〈
f(AT ), f(BI), f(BF )

〉
.

Example 3.16. Let X = {x1, x2, x3}, Y = {y1, y2, y3, y4} and let f : X → Y be
the mapping given by f(x1) = f(x2) = y1, f(x3) = y2. Let us consider an ISVNS A
in X and an ISVNS B in Y respectively given by:

A = 〈(0.3, 0.6), (0.4, 0.5), (0.5, 0.4)〉 /x1 + 〈(0.5, 0.3), (0.2, 0.7), (0.3, 0.6)〉 /x2

+ 〈(0.7, 0.2), (0.2, 0.7), (0.2, 0.7)〉 /x3,
B = 〈(0.6, 0.3), (0.1, 0.8), (0.2, 0.7)〉 /y1 + 〈(0.3, 0.6), (0.2, 0.7), (0.6, 0.2)〉 /y2

+ 〈(0.4, 0.5), (0.2, 0.7), (0.5, 0.4)〉 /y3 + 〈(0.5, 0.4), (0.7, 0.2), (0.4, 0.5)〉 /y4.
Then we can easily obtain the followings:

f−1(B) = 〈(0.6, 0.3), (0.1, 0.8), (0.2, 0.7)〉 /x1+〈(0.6, 0.3), (0.1, 0.8), (0.2, 0.7)〉 /x2

+ 〈(0.3, 0.6), (0.2, 0.7), (0.6, 0.2)〉 /x3,
f(A) = 〈(0.5, 0.3), (0.4, 0.5), (0.5, 0.4)〉 /y1 + 〈(0.7, 0.2), (0.2, 0.7), (0.2, 0.7)〉 /y2

+ 〈(0, 1), (0, 1), (0, 1)〉 /y3 + 〈(0, 1), (0, 1), (0, 1)〉 /y4.

Proposition 3.17. Let A, A1, A2 ∈ ISV NS(X), (Aj)j∈J ⊂ ISV NS(X), let
B, B1, B2 ∈ ISV NS(Y ), (Bj)j∈J ⊂ ISV NS(Y ) and let f : X → Y be a mapping.
Then we have

(1) if A1 ⊂ A2, then f(A1) ⊂ f(A2),
(2) if B1 ⊂ B2, then f−1(B1) ⊂ f−1(B2),
(3) A ⊂ f−1(f(A)) and if f is injective, then A = f−1(f(A)),
(4) f(f−1(B)) ⊂ B and if f is surjective, f(f−1(B)) = B,
(5) f−1(

⋃
j∈J Bj) =

⋃
j∈J f

−1(Bj),

(6) f−1(
⋂
j∈J Bj) =

⋂
j∈J f

−1(Bj),

(7) f(
⋃
j∈J Aj) =

⋃
j∈J f(Aj),

(8) f(
⋂
j∈J Aj) ⊂

⋂
j∈J f(Aj) and if f is injective, then f(

⋂
j∈J Aj) =

⋂
j∈J f(Aj),

90



Baek et al./Ann. Fuzzy Math. Inform. 23 (2022), No. 1, 81–105

(9) if f is surjective, then f(c(A)) ⊂ f(c(A)),
(10) f−1(c(B)) = f−1(c(B)),
(11) f−1(0̇) = 0̇, f−1(1̇) = 1̇,
(12) f(0̇) = 0̇ and if f is surjective, then f(1̇) = 1̇.

Proof. From Definition 3.15, the proofs are straightforward. �

4. A correlation coefficient and cosine measure for ISVNSs

We can think that an ISVNS is a generalization of classic set, fuzzy set, intu-
itionistic set and single-valued set. In this section, first of all, as the extension of
the correlation of intuitionistic fuzzy sets (See Gerstenkorn and Mańko [20] and Ye
[22]) and single-valued neutrosophic sets (See Ye [33]), we introduce the concepts
of the informational energy of an ISVNS, the correlation of two ISVNSs and the
correlation coefficient of two ISVNSs which may be in real scientific and engineering
applications. Next, by modifying a cosine measure for IFSs proposed by Ye [29],
we define a cosine measure for ISVNSs. Finally, we propose a correlation coefficient
between ISVNSs by modifying a correlation coefficient for IFSs introduced by Thao
[27].

Definition 4.1 (See [33]). Let X = {x1, x2, · · · , xn} be the universe set and let
A, B ∈ SV NS(X). Then

(i) the informational energy of A, denoted by E
SV NS

(A), is defined as:

E
SV NS

(A) = Σni=1[(AT (xi))
2 + (AI(xi))

2 + (AF (xi))
2],

(ii) the correlation between A and B, denoted by C
SV NS

(A,B), is defined as:

C
SV NS

(A,B) = Σni=1[AT (xi)B
T (xi) +AI(xi)B

I(xi) +AF (xi)B
F (xi)],

(iii) the correlation coefficient between A and B, denoted by ρ
SV NS

(A,B), is
defined as:

(4.1) ρ
SV NS

(A,B) =
C

SV NS
(A,B)√

E
SV NS

(A)E
SV NS

(B)
.

Definition 4.2 (See [33]). Let X = {x1, x2, · · · , xn} be the universe set, let A, B ∈
SV NS(X) and let w = (w1, w2, · · · , wn) be the weighting vector xi (i = 1, 2, , · · · , n),
where wi ≥ 0 and Σni=1wi = 1. Then

(i) the weighted informational energy of A, denoted by E
WSV NS

(A), is defined as:

E
WSV NS

(A) = Σni=1wi[(A
T (xi))

2 + (AI(xi))
2 + (AF (xi))

2],

(ii) the weighted correlation between A and B, denoted by C
WSV NS

(A,B), is
defined as:

C
WSV NS

(A,B) = Σni=1wi[A
T (xi)B

T (xi) +AI(xi)B
I(xi) +AF (xi)B

F (xi)],
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(iii) the weighted correlation coefficient betweenA andB, denoted by ρ
WSV NS

(A,B),
is defined as:

(4.2) ρ
WSV NS

(A,B) =
C

WSV NS
(A,B)√

E
WSV NS

(A)E
WSV NS

(B)
.

It is clear that if w = (1/n, 1/n, · · · , 1/n), then ρ
WSV NS

(A,B) = ρ
SV NS

(A,B).

Now by combining Definitions 3.2 and 4.1, we can define the correlation coefficient
between two ISVNSs as follows.

Definition 4.3. Let X = {x1, x2, · · · , xn} be the universe set and let A, B ∈
ISV NS(X). Then

(i) the informational energy of A, denoted by E
ISV NS

(A), is defined as:
E

ISV NS
(A) = Σni=1[(AT,∈(xi))

2 + (AT, 6∈(xi))
2 + (AI,∈(xi))

2

+(AI,6∈(xi))
2 + (AF,∈(xi))

2 + (AF,6∈(xi))
2],

(ii) the correlation between A and B, denoted by C
ISV NS

(A,B), is defined as:
C

ISV NS
(A,B) = Σni=1[AT,∈(xi)B

T,∈(xi) +AT, 6∈(xi)B
T, 6∈(xi)

+AI,∈(xi)B
I,∈(xi) +AI,6∈(xi)B

I,6∈(xi)
+AF,∈(xi)B

F,∈(xi) +AF,6∈(xi)B
F,6∈(xi)],

(iii) the correlation coefficient between A and B, denoted by ρ
ISV NS

(A,B), is
defined as:

(4.3) ρ
ISV NS

(A,B) =
C

ISV NS
(A,B)√

E
ISV NS

(A)E
ISV NS

(B)
.

Proposition 4.4. Let X = {x1, x2, · · · , xn} be the universe set and let A, B ∈
ISV NS(X). Then we have

(1) ρ
ISV NS

(A,A) = E
ISV NS

(A),
(2) ρ

ISV NS
(A,B) = ρ

ISV NS
(B,A),

(3) ρ
ISV NS

(A,B) = 1, if A = B
(4) 0 ≤ ρ

ISV NS
(A,B) ≤ 1.

Proof. From Definition 4.3, the proofs of (1), (2) and (3) are obvious.
(4) It is clear that 0 ≤ ρ

ISV NS
(A,B). We recall the Cauchy-Schwarz inequality:

for any (x1, x2, · · · , xn), (y1, y2, · · · , yn) ∈ Rn,

(4.4) (x1y1 + x2y2 + · · ·+ xnyn)2 ≤ (x2
1 + x2

2 + · · ·+ x2
n)(y2

1 + y2
2 + · · ·+ y2

n).

Then by (4.4), we get easily the following inequality: for each xi ∈ X,

AT,∈(xi)B
T,∈(xi) +AT, 6∈(xi)B

T, 6∈(xi) +AI,∈(xi)B
I,∈(xi)

+AI,6∈(xi)B
I,6∈(xi) +AF,∈(xi)B

F,∈(xi) +AF,6∈(xi)B
F,6∈(xi)

≤
√

(AT,∈(xi))2+(AT, 6∈(xi))2+(AI,∈(xi))2+(AI,6∈(xi))2+(AF,∈(xi))2+(AF,6∈(xi))2

·
√

(BT,∈(xi))2+(BT, 6∈(xi))2+(BI,∈(xi))2+(BI,6∈(xi))2+(BF,∈(xi))2+(BF,6∈(xi))2.

Thus we have C
ISV NS

(A,B) ≤
√
E

ISV NS
(A)E

ISV NS
(B). So ρ

ISV NS
(A,B) ≤ 1. �

In a general way, if decision makers give different weight value to each element
in the given universe set, then the result of decision may be different. Thus in
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particular, it is very important to consider the weight of element in decision-making
problems. By modifying Definition 4.2, we have the following definition.

Definition 4.5. LetX = {x1, x2, · · · , xn} be the universe set, letA, B ∈ ISV NS(X)
and let w = (w1, w2, · · · , wn) be the weighting vector xi (i = 1, 2, , · · · , n), where
wi ≥ 0 and Σni=1wi = 1. Then

(i) the weighted informational energy of A, denoted by E
WISV NS

(A), is defined
as:

E
WISV NS

(A) = Σni=1wi[(A
T,∈(xi))

2 + (AT, 6∈(xi))
2 + (AI,∈(xi))

2

+(AI,6∈(xi))
2 + (AF,∈(xi))

2 + (AF,6∈(xi))
2],

(ii) the weighted correlation between A and B, denoted by C
WISV NS

(A,B), is
defined as:

C
WISV NS

(A,B) = Σni=1wi[A
T,∈(xi)B

T,∈(xi) +AT, 6∈(xi)B
T, 6∈(xi)

+AI,∈(xi)B
I,∈(xi) +AI,6∈(xi)B

I,6∈(xi)
+AF,∈(xi)B

F,∈(xi) +AF,6∈(xi)B
F,6∈(xi)],

(iii) the weighted correlation coefficient betweenA andB, denoted by ρ
WISV NS

(A,B),
is defined as:

(4.5) ρ
WISV NS

(A,B) =
C

WISV NS
(A,B)√

E
WISV NS

(A)E
WISV NS

(B)
.

It is obvious that if w = (1/n, 1/n, · · · , 1/n), then ρ
WISV NS

(A,B) = ρ
ISV NS

(A,B).

From Definition 4.5, we have the similar properties of Proposition 4.4.

Proposition 4.6. Let X = {x1, x2, · · · , xn} be the universe set, let A, B ∈ ISV NS(X)
and let w = (w1, w2, · · · , wn) be the weighting vector of xi (i = 1, 2, , · · · , n), where
wi ≥ 0 and Σni=1wi = 1. Then

(1) ρ
WISV NS

(A,A) = E
WISV NS

(A),
(2) ρ

WISV NS
(A,B) = ρ

WISV NS
(B,A),

(3) ρ
WISV NS

(A,B) = 1, if A = B
(4) 0 ≤ ρ

WISV NS
(A,B) ≤ 1.

Next, we define a cosine measure for ISVNSs.

Definition 4.7. Let X = {x1, x2, · · · , xn} be the universe set and let A, B ∈
ISV NS(X). Then the cosine measure betweenA andB, denoted by CM

ISV NS
(A,B),

is defined by:

CM
ISV NS

(A,B)(4.6)

=
1

n
Σni=1

AT (xi)B
T (xi) +AI(xi)B

I(xi) +AF (xi)B
F (xi)√

AT (xi)2 +AI(xi)2 +AF (xi)2
√
BT (xi)2 +BI(xi)2 +BF (xi)2

,
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where

AT (xi)B
T (xi) = AT,∈(xi)B

T,∈(xi) +AT, 6∈(xi)B
T, 6∈(xi),

AI(xi)B
I(xi) = AI,∈(xi)B

I,∈(xi) +AI,6∈(xi)B
I,6∈(xi),

AF (xi)B
F (xi) = AF,∈(xi)B

F,∈(xi) +AF,6∈(xi)B
F,6∈(xi),

AT (xi)
2 = AT,∈(xi)

2 +AT, 6∈(xi)
2, AI(xi)

2 = AI,∈(xi)
2 +AI,6∈(xi)

2,

AF (xi)
2 = AF,∈(xi)

2 +AF,6∈(xi)
2, BT (xi)

2 = BT,∈(xi)
2 +BT, 6∈(xi)

2,

BI(xi)
2 = BI,∈(xi)

2 +BI,6∈(xi)
2, BF (xi)

2 = BF,∈(xi)
2 +BF,6∈(xi)

2.

From Definitions 4.2 and 4.7, it is obvious that if n = 1 in (4.6), then we have

ρ
WSV NS

(A,B) = CM
ISV NS

(A,B).

CM
ISV NS

(A,B) has similar properties to Proposition 4.4.

Proposition 4.8. Let X = {x1, x2, · · · , xn} be the universe set and let A, B ∈
ISV NS(X). Then

(1) CM
ISV NS

(A,B) = C
ISV NS

(B,A),
(2) CM

ISV NS
(A,B) = 1, if A = B

(3) 0 ≤ CM
ISV NS

(A,B) ≤ 1.

Proof. The proof is similar to one of Proposition 4.4. �

Definition 4.9. Let X = {x1, x2, · · · , xn} be the universe set and let A, B ∈
ISV NS(X). Let w = (w1, w2, · · · , wn) be the weight vector of the element A(xi)
and B(xi) (i = 1, 2, · · · , n) with wi ∈ I and Σni=1wi = 1. Then the weighted cosine
measure between A and B, denoted by CM

WISV NS
(A,B), is defined by:

CM
WISV NS

(A,B)(4.7)

=
1

n
Σni=1wi

AT (xi)B
T (xi) +AI(xi)B

I(xi) +AF (xi)B
F (xi)√

AT (xi)2 +AI(xi)2 +AF (xi)2
√
BT (xi)2 +BI(xi)2 +BF (xi)2

.

CM
WISV NS

(A,B) has similar properties of Proposition 4.8.

Proposition 4.10. Let X = {x1, x2, · · · , xn} be the universe set and let A, B ∈
ISV NS(X). Let w = (w1, w2, · · · , wn) be the weight vector of the element A(xi)
and B(xi) (i = 1, 2, · · · , n) with wi ∈ I and Σni=1wi = 1. Then

(1) CM
WISV NS

(A,B) = C
WISV NS

(B,A),
(2) CM

WISV NS
(A,B) = 1, if A = B

(3) 0 ≤ CM
WISV NS

(A,B) ≤ 1.

Proof. The proof is similar to one of Proposition 4.8. �

Finally, we define correlation coefficients between ISVNSs different from Defini-
tions 4.3 and 4.5 and study some of their properties.

Definition 4.11. Let X = {x1, x2, · · · , xn} be a universe set and let A, B ∈
ISV NS(X).

(i) The average of A, denoted by E(A), is defined by:

E(A) =
〈
ĀT , ĀI , ĀF

〉
,
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where, ĀT =
( ¯AT,∈, ¯AT, 6∈

)
=
(

1
nΣni=1A

T,∈(xi),
1
nΣni=1A

T, 6∈(xi)
)
,

ĀI =
( ¯AI,∈, ¯AI,6∈

)
=
(

1
nΣni=1A

I,∈(xi),
1
nΣni=1A

I,6∈(xi)
)
,

ĀF =
( ¯AF,∈, ¯AF,6∈

)
=
(

1
nΣni=1A

F,∈(xi),
1
nΣni=1A

F,6∈(xi)
)
.

(ii) The variance of A, denoted by D(A), is defined by:

D(A) = 1
n−1Σni=1[(AT,∈(xi)− ¯AT,∈)2 + (AT, 6∈(xi)− ¯AT, 6∈)2

+(AI,∈(xi)− ¯AI,∈)2 + (AI,6∈(xi)− ¯AI,6∈)2

+(AF,∈(xi)− ¯AF,∈)2 + (AF,6∈(xi)− ¯AF,6∈)2 + d2
i (A)],

where di(A) = (AT,∈(xi)− ¯AT,∈)− (AT, 6∈(xi)− ¯AT, 6∈)

+(AI,∈(xi)− ¯AI,∈)− (AI,6∈(xi)− ¯AI,6∈)

+(AF,∈(xi)− ¯AF,∈)− (AF,6∈(xi)− ¯AF,6∈) for i = 1, 2, · · · , n.

(iii) The covariance of A and B, denoted by Cov(A,B), is defined by:

Cov(A,B) = 1
n−1Σni=1[(AT,∈(xi)− ¯AT,∈)(BT,∈(xi)− ¯BT,∈)

+(AT, 6∈(xi)− ¯AT, 6∈)(BT, 6∈(xi)− ¯BT, 6∈)

+(AI,∈(xi)− ¯AI,∈)(BI,∈(xi)− ¯BI,∈)

+(AI,6∈(xi)− ¯AI,6∈)(BI,6∈(xi)− ¯BI,6∈)

+(AF,∈(xi)− ¯AF,∈)(BF,∈(xi)− ¯BF,∈)

+(AF,6∈(xi)− ¯AF,6∈)(BF,6∈(xi)− ¯BF,6∈) + di(A)di(B)].

(iv) The correlation coefficient of A and B, denoted by ρ(A,B), is defined by:

(4.8) ρ(A,B) =
Cov(A,B)√
D(A)D(B)

.

Proposition 4.12. Let A, B ∈ ISV NS(X). Then we get
(1) Cov(A,B) = Cov(B,A),
(2) Cov(A,A) = D(A),

(3) | Cov(A,B) |≤
√
D(A)D(B).

Proof. From Definition 4.11, the proofs of (1) and (2) are easy.
(3) From (4.4), we can easily see that the following inequality holds:

Cov(A,B)2 ≤ D(A)D(B).

Then we get | Cov(A,B) |≤
√
D(A)D(B). �

Example 4.13. Let X = {x1, x2, x3} and let A, B ∈ ISV NS(X) given by:
A = 〈(0.6, 0.3), (0.4, 0.2), (0.1, 0.8)〉 /x1 + 〈(0.7, 0.2), (0.8, 0.1), (0.3, 0.6)〉 /x2

+ 〈(0.8, 0.1), (0.3, 0.5), (0.2, 0.7)〉 /x3,
B = 〈(0.3, 0.6), (0.5, 0.2), (0.6, 0.3)〉 /x1 + 〈(0.5, 0.4), (0.7, 0.2), (0.4, 0.3)〉 /x2

+ 〈(0.7, 0.2), (0.4, 0.2), (0.3, 0.5)〉 /x3.
Then we have

ĀT = (0.7, 0.2), ĀI = (0.5, 0.27), ĀF = (0.2, 0.7),

B̄T = (0.5, 0.4), B̄I = (0.4, 0.53), B̄F = (0.43, 0.37).
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Thus we get
E(A) = 〈(0.7, 0.2), (0.5, 0.27), (0.2, 0.7)〉 ,
E(B) = 〈(0.5, 0.4), (0.4, 0.53), (0.43, 0.37)〉 .

On the other hand, we obtain the followings:

d1(A) = −0.43, d2(A) = 0.67, d3(A) = −0.23,

d1(B) = −0.2, d2(B) = 0.2, d3(B) = 0,

D(A) = 0.496666667, D(B) = 0.18.

So Cov(A,B) = 0.18. Hence ρ(A,B) = 0.602010056. Furthermore, we have

ρISV NS(A,B) = 0.872843844, CMIDSV NS(A,B) = 0.998534048.

Proposition 4.14. Let A, B ∈ ISV NS(X) and let us A = kB + b mean that

AT,∈ = kBT,∈ + b, AT, 6∈ = kBT, 6∈ + b,

AI,∈ = kBI,∈ + b, AI,6∈ = kBI,6∈ + b,

AF,∈ = kBF,∈ + b, AF,6∈ = kBF,6∈ + b,

where k, b are any real numbers. Then we get
(1) ρ(A,B) = ρ(B,A),
(2) −1 ≤ ρ(A,B) ≤ 1,
(3) ρ(A,B) = 1 [resp. ρ(A,B) = −1], if k > 0 [resp. k < 0].

Proof. (1) The proof is straightforward.
(2) From Proposition 4.12 (3), the proof is clear.
(3) Suppose A = kB + b. Then by Definition 4.11 ((iii), we have

Cov(A,B) = 1
n−1Σni=1[(AT,∈(xi)− ¯AT,∈)(BT,∈(xi)− ¯BT,∈)

+(AT, 6∈(xi)− ¯AT, 6∈)(BT, 6∈(xi)− ¯BT, 6∈)

+(AI,∈(xi)− ¯AI,∈)(BI,∈(xi)− ¯BI,∈)

+(AI,6∈(xi)− ¯AI,6∈)(BI,6∈(xi)− ¯BI,6∈)

+(AF,∈(xi)− ¯AF,∈)(BF,∈(xi)− ¯BF,∈)

+(AF,6∈(xi)− ¯AF,6∈)(BF,6∈(xi)− ¯BF,6∈) + di(A)di(B)]

= 1
n−1Σni=1[(kBT,∈(xi)− k ¯BT,∈)(BT,∈(xi)− ¯BT,∈)

+(kBT, 6∈(xi)− k ¯BT, 6∈)(BT, 6∈(xi)− ¯BT, 6∈)

+(kBI,∈(xi)− k ¯BI,∈)(BI,∈(xi)− ¯BI,∈)

+(kBI,6∈(xi)− k ¯BI,6∈)(BI,6∈(xi)− ¯BI,6∈)

+(kBF,∈(xi)− k ¯BF,∈)(BF,∈(xi)− ¯BF,∈)

+(kBF,6∈(xi)− k ¯BF,6∈)(BF,6∈(xi)− ¯BF,6∈) + kdi(B)di(B)]

= k
n−1Σni=1[(BT,∈(xi)− ¯BT,∈)2 + (AB,6∈(xi)− ¯BT, 6∈)2

+(BI,∈(xi)− ¯BI,∈)2 + (BI,6∈(xi)− ¯BI,6∈)2

+(BF,∈(xi)− ¯BF,∈)2 + (BF,6∈(xi)− ¯BF,6∈)2 + d2
i (B)]

= kD(B),

D(A) = 1
n−1Σni=1[(AT,∈(xi)− ¯AT,∈)2 + (AT, 6∈(xi)− ¯AT, 6∈)2

+(AI,∈(xi)− ¯AI,∈)2 + (AI,6∈(xi)− ¯AI,6∈)2

+(AF,∈(xi)− ¯AF,∈)2 + (AF,6∈(xi)− ¯AF,6∈)2 + d2
i (A)]
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= 1
n−1Σni=1[(kBT,∈(xi)− k ¯BT,∈)2 + (kBT, 6∈(xi)− k ¯BT, 6∈)2

+(kBI,∈(xi)− k ¯BI,∈)2 + (kBI,6∈(xi)− k ¯BI,6∈)2

+(kBF,∈(xi)− k ¯BF,∈)2 + (kBF,6∈(xi)− k ¯BF,6∈)2 + k2d2
i (B)]

= k2

n−1Σni=1[(BT,∈(xi)− ¯BT,∈)2 + (BT, 6∈(xi)− ¯BT, 6∈)2

+(BI,∈(xi)− ¯BI,∈)2 + (BI,6∈(xi)− ¯BI,6∈)2

+(BF,∈(xi)− ¯BF,∈)2 + (BF,6∈(xi)− ¯BF,6∈)2 + d2
i (B)]

= k2D(B).
Thus we get

ρ(A,B) =
Cov(A,B)√
D(A)D(B)

=
kD(B)√

k2D(B)D(B)
=

kD(B)

| kD(B) |
.

So the result holds. �

Definition 4.15. Let X = {x1, x2, · · · , xn} be a universe set and let A, B ∈
ISV NS(X). Let w = (w1, w2, · · · , wn) be the weight vector of the element A(xi)
and B(xi) (i = 1, 2, · · · , n) with wi ∈ I and Σni=1wi = 1.

(i) The weighted average of A, denoted by Ew(A), is defined by:

Ew(A) =
〈
ĀTw, Ā

I
w, Ā

F
w

〉
,

where, ĀTw =
(

¯
AT,∈w ,

¯
AT, 6∈w

)
=
(

1
nΣni=1wiA

T,∈(xi),
1
nΣni=1wiA

T, 6∈(xi)
)
,

ĀIw =
(

¯
AI,∈w , ¯AI,6∈

)
=
(

1
nΣni=1wiA

I,∈(xi),
1
nΣni=1wiA

I,6∈(xi)
)
,

ĀFw =
(

¯
AF,∈w ,

¯
AF,6∈w

)
=
(

1
nΣni=1wiA

F,∈(xi),
1
nΣni=1wiA

F,6∈(xi)
)
.

(ii) The weighted variance of A, denoted by Dw(A), is defined by:

Dw(A) = 1
n−1Σni=1[(wiA

T,∈(xi)− ¯
AT,∈w )2 + (wiA

T, 6∈(xi)−
¯

AT, 6∈w )2

+(wiA
I,∈(xi)− ¯

AI,∈w )2 + (wiA
I,6∈(xi)−

¯
AI,6∈w )2

+(wiA
F,∈(xi)− ¯

AF,∈w )2 + (wiA
F,6∈(xi)−

¯
AF,6∈w )2 + d2

w,i(A)],

where dw,i(A) = (wiA
T,∈(xi)− ¯

AT,∈w )− (wiA
T, 6∈(xi)−

¯
AT, 6∈w )

+(wiA
I,∈(xi)− ¯

AI,∈w )− (wiA
I,6∈(xi)−

¯
AI,6∈w )

+(wiA
F,∈(xi)− ¯

AF,∈w )− (wiA
F,6∈(xi)−

¯
AF,6∈w ) for i = 1, 2, · · · , n.

(iii) The weighted covariance of A and B, denoted by Covw(A,B), is defined by:

Covw(A,B) = 1
n−1Σni=1[(wiA

T,∈(xi)− ¯
AT,∈w )(wiB

T,∈(xi)− ¯
BT,∈w )

+(wiA
T, 6∈(xi)−

¯
AT, 6∈w )(wiB

T, 6∈(xi)−
¯

BT, 6∈w )

+(wiA
I,∈(xi)− ¯

AI,∈w )(wiB
I,∈(xi)− ¯

BI,∈w )

+(wiA
I,6∈(xi)−

¯
AI,6∈w )(wiB

I,6∈(xi)−
¯

BI,6∈w )

+(wiA
F,∈(xi)− ¯

AF,∈w )(BF,∈(xi)− ¯BF,∈)

+(AF,6∈(xi)− ¯AF,6∈)(wiB
F,6∈(xi)−

¯
BF,6∈w ) + dw,i(A)dw,i(B)].
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(iv) The weighted correlation coefficient of A and B, denoted by ρw(A,B), is
defined by:

(4.9) ρw(A,B) =
Covw(A,B)√
Dw(A)Dw(B)

.

Covw(A,B) has the similar properties of Proposition 4.12.

Proposition 4.16. Let A, B ∈ ISV NS(X), let w = (w1, w2, · · · , wn) be the
weight vector of the element A(xi) and B(xi) (i = 1, 2, · · · , n) with wi ∈ I and
Σni=1wi = 1. Then we have

(1) Covw(A,B) = Covw(B,A),
(2) Covw(A,A) = Dw(A),

(3) | Covw(A,B) |≤
√
Dw(A)Dw(B).

Also, ρw(A,B) has the similar properties of Proposition 4.14.

Proposition 4.17. Let A, B ∈ ISV NS(X) and let A = kB + b for any real
numbers k, b.m. Then we get

(1) ρw(A,B) = ρw(B,A),
(2) −1 ≤ ρw(A,B) ≤ 1,
(3) ρw(A,B) = 1 [resp. ρw(A,B) = −1], if k > 0 [resp. k < 0].

In the next two sections, we propose an MADM method by using the correlation
coefficient and cosine measur between ISVNSs respectively. Since an ISVNS is a
generalization of a classical set, an intuitionistic fuzzy set and single-valued neutro-
sophic set, it is moe general and can handle not only incomplete informations but also
the indeterminate informations and inconsistent informations which are commonly
in real world. Then we expect that the intuitionistic single-valued neutrosophic
decision-making is more suitable for real scientific and engineering applications.

5. Multicriteria decision-making method via the correlation
coefficient and cosine measure between ISVNSs

In this section, we present a handling method for the multicriteria decision-making
problem based on intuitionistic single-valued neutrosophic environment by means of
the weighted correlation coefficient and the cosine measure between ISVNSs respec-
tively.

Let A = {A1, A2, · · · , Am} be a set of alternatives, let C = {C1, C2, · · · , Cn} be a
set of criteria and let the weight of the criterion Cj (j = 1, 2, · · · , n), entered by the
decision-maker, is wj , where wj ∈ I and Σnj=1wj = 1. In this case, the characteristic
of the alternative Ai (i = 1, 2, · · · , m) is given by the following ISVNS:

(5.1) Ai = Σnj=1

〈
(AT,∈i , AT, 6∈i ), (AI,∈i , AI,6∈i ), (AF,∈i , AF,6∈i )

〉
Cj

, Cj ∈ C,

where (AT,∈i , AT, 6∈i ), (AI,∈i , AI,6∈i ), (AF,∈i , AF,6∈i ) ∈ I ⊕ I, i = 1, 2, · · · , m and
j = 1, 2, · · · , n.
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Each member of (I ⊕ I)× (I ⊕ I)× (I ⊕ I) will be called an intuitionistic single-
valued neutrosophic number (briefly, ISVNN) and denoted by

a =
〈
(aT,∈, (aT, 6∈), (aI,∈, (aI,6∈), (aF,∈, (aF,6∈)

〉
.

Here, an ISVNS is usually derived from the evaluation of an alternative Ai with
respect to a criterion Cj by means of a score law and data processing in practice.
Thus we can elicit an intuitionistic single-valued neutrosophic decision matrix D =
(aij)m×n, where aij is an ISVNN.

In MADM problems, we can use the ideal alternative to select the best one in
all alternatives. Although the ideal alternative does not exist in real world, it does
provide a useful theoretical construct against which to evaluate alternatives (See
[22]). The best alternative is selected according to the degree of correlation between
known and ideal solution. The selection process is as follows.

MADM method by the correlation coefficient

Step 1. Construct the intuitionistic single-valued neutrosophic decision matrix
D = (aij)m×n based on decision information.

Step 2. Set up the ideal alternative A∗ = {A∗1, A∗2, · · · , A∗n} with respect to aij
(j = 1, 2, · · · , n) by the following cases: for each j,

A∗j =
〈

(max(aT,∈ij ),min(aT, 6∈ij )), (min(aI,∈ij ),max(aI,6∈ij )), (min(aF,∈ij ),max(aF,6∈ij ))
〉

corresponding benefit type of an criterion,

A∗j =
〈

(min(aT,∈ij ),max(aT, 6∈ij )), (max(aI,∈ij ),min(aI,6∈ij )), (max(aF,∈ij ),min(aF,6∈ij ))
〉

corresponding benefit type of an criterion.

Step 3. Calculate the weighted correlation coefficient between Ai and A∗,

ρ
WISV NS

(Ai, A
∗) and ρw(Ai, A

∗) (i = 1, 2, · · · , m)

by using the equations (4.5) and (4.9) respectively.

Step 4. Rank all of the weighted correlation coefficient between ISVNSs and
select the best one.

MADM method by the cosine measure

Step 1. Construct the intuitionistic single-valued neutrosophic decision matrix
D = (aij)m×n based on decision information.
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Step 2. Set up the ideal alternative A∗ = {A∗1, A∗2, · · · , A∗n} with respect to aij
(j = 1, 2, · · · , n) by the following cases: for each j,

A∗j =
〈

(max(aT,∈ij ),min(aT, 6∈ij )), (min(aI,∈ij ),max(aI,6∈ij )), (min(aF,∈ij ),max(aF,6∈ij ))
〉

corresponding benefit type of an criterion,

A∗j =
〈

(min(aT,∈ij ),max(aT, 6∈ij )), (max(aI,∈ij ),min(aI,6∈ij )), (max(aF,∈ij ),min(aF,6∈ij ))
〉

corresponding benefit type of an criterion.

Step 3. Calculate the weighted cosine measure between Ai and A∗,

CM
WISV NS

(Ai, A
∗) (i = 1, 2, · · · , m)

by using the equation (4.7).

Step 4. Rank all of the the weighted cosine measure between ISVNSs and select
the best one.

Now we give an example to demonstrate the application of the proposed MADM
methods with intuitionistic single-valued neutrosophic information.

Example 5.1. Let us consider the decision-making problem adapted from Lu and
Ye [30]. There is an investment company, which wants to invest a sum of money in
the best option.

There is a panel with four possible alternatives to invest the money:
(1) A1 is a textile company, (2) A2 is an automobile company,
(3) A3 is a computer company, (4) A4 is a software company.

The evaluation requirements of the four alternatives are on the basis of three
criteria:

(1) C1 is the risk, (2) C2 is the growth, (3) C3 is the environmental impact,
where the criteria C1 and C2 are benefit types and the criterion C3 is a cost type.

Let the weight vector of three criteria is given by w = (0.32, 0.38, 0.30).
For the evaluation of an alternative Ai with respect to a criterion Cj (i =

1, 2, 3, 4; j = 1, 2, 3), it is obtained from the questionnaire of a domain expert.
When the four possible alternatives with respect to the above three criteria are eval-
uated by the expert, suppose the characteristic of the alternative Ai (i = 1, 2, 3, 4)
is given by the following ISVNS:
(5.2)
A1 = {a11, a12, a13}, A2 = {a21, a22, a23}, A3 = {a31, a32, a33}, A4 = {a41, a42, a43},

where aij = Ai(Cj) is an ISVNS and aij is given:
a11 = 〈(0.5, 0.4), (0.1, 0.7), (0.2, 0.6)〉, a12 = 〈(0.5, 0.4), (0.1, 0.7), (0.2, 0.6)〉,
a13 = 〈(0.6, 0.2), (0.2, 0.7), (0.1, 0.8)〉, a21 = 〈(0.6, 0.2), (0.1, 0.8), (0.2, 0.7)〉,
a22 = 〈(0.6, 0.3), (0.1, 0.8), (0.2, 0.7)〉, a23 = 〈(0.6, 0.3), (0.3, 0.6), (0.1, 0.8)〉 ,
a31 = 〈(0.4, 0.4), (0.2, 0.7), (0.1, 0.7)〉, a32 = 〈(0.5, 0.4), (0.2, 0.7), (0.3, 0.6)〉 ,
a33 = 〈(0.5, 0.3), (0.2, 0.7), (0.3, 0.6)〉, a41 = 〈(0.7, 0.2), (0.1, 0.8), (0.1, 0.8)〉 ,
a42 = 〈(0.6, 0.3), (0.1, 0.8), (0.1, 0.7)〉 , a43 = 〈(0.6, 0.3), (0.3, 0.6), (0.2, 0.7)〉 .
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Step 1. According to the aforementioned four alternatives, i.e., (5.2), we obtain
the following intuitionistic single-valued neutrosophic decision matrix D:

(5.3) D =


C1 C2 C3

A1 a11 a12 a13

A2 a21 a22 a23

A3 a31 a32 a23

A4 a41 a42 a43


Step 2. Set up the ideal alternative A∗ with respect to aij (j = 1, 2, 3):

(5.4) A∗ = {A∗1, A∗2, A∗3},

where A∗1 = 〈(0.7, 0.2), (0.1, 0.8), (0.1, 0.8)〉, A∗2 = 〈(0.6, 0.3), (0.1, 0.8), (0.1, 0.7)〉 ,
A∗3 = 〈(0.5, 0.3), (0.3, 0.6), (0.3, 0.6)〉.

Step 3. Calculate weight correlation coefficient betweenAi andA∗, ρ
WISV NS

(Ai, A
∗),

CM
WISV NS

(Ai, A
∗) and ρw(Ai, A

∗) (i = 1, 2, 3, 4) by using the equations (4.5),
(4.7) and (4.9) respectively:

ρ
WISV NS

(A1, A
∗) = 0.967934278, ρ

WISV NS
(A2, A

∗) = 0.987226876,

ρ
WISV NS

(A3, A
∗) = 0.971215363, ρ

WISV NS
(A4, A

∗) = 0.997336497,

CM
WISV NS

(A1, A
∗) = 0.324899044, CM

WISV NS
(A2, A

∗) = 0.329670651,

CM
WISV NS

(A3, A
∗) = 0.324899219, CM

WISV NS
(A4, A

∗) = 0.332461043,

ρw(A1, A
∗) = 0.06266888, ρwA2, A

∗) = 0.783755949,

ρw(A3, A
∗) = 0.580284884, ρw(A4, A

∗) = 0.986574767.

Step 4. Rank all of the weighted correlation coefficient and the weighted cosine
measure between ISVNSs: From Step 3, we get the following rank.

ρ
WISV NS

(A4, A
∗) > ρ

WISV NS
(A2, A

∗) > ρ
WISV NS

(A3, A
∗) > ρ

WISV NS
(A1, A

∗),

CM
WISV NS

(A4, A
∗) > CM

WISV NS
(A2, A

∗) > CM
WISV NS

(A3, A
∗) > CM

WISV NS
(A1, A

∗),

ρw(A4, A
∗) > ρw(A2, A

∗) > ρw(A3, A
∗) > ρw(A1, A

∗).

Then in either case, A4 is selected as the best alternative.

6. Pattern recognition based on the correlation coefficient and
cosine measure between ISVNSs

In this section, we propose a recognition method based on the correlation coeffi-
cient [resp. cosine measure] between ISVNSs. According to the maximum correla-
tion principle in mathematical statistics, we assume that if the correlation coefficient
[resp. cosine measure] of ideal pattern with sample pattern is greater than or equal
to 0.6, we consider that the sample model belongs to a group of ideal model. The
algorithm of pattern recognition with respect to the correlation coefficient [resp. co-
sine measure] is as follows.

Step 1. Construct the ideal ISVNS A∗ on a universe set X.
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Step 2. Construct ISVNSs Ai, i = 1, 2, · · · , n as the sample pattern that is
recognized.

Step 3. Calculate the correlation coefficient [resp. the cosine measure] between
Ai and A∗,

ρ
ISV NS

(Ai, A
∗) [resp. C

ISV NS
(Ai, A

∗)] (i = 1, 2, · · · , n)

by using the equation (4.3) [resp. (4.6)].

Step 4. If ρ
ISV NS

(Ai, A
∗) ≥ 0.7 [resp. C

ISV NS
(Ai, A

∗) ≥ 0.7], then Ai belongs
to the ideal pattern A∗ and if ρ

ISV NS
(Ai, A

∗) < 0.7 [resp. C
ISV NS

(Ai, A
∗) < 0.7],

then Ai does not belong to the ideal pattern A∗.

In the following, we give an examples to illustrate the utility of the correlation
coefficient [resp. the cosine measure] between ISVNSs in pattern recognition.

Example 6.1. Let X = {x1, x2, x3} be a universe set, let A∗ ∈ ISV NS(X) be an
ideal pattern and let Ai ∈ ISV NS(X), i = 1, 2, 3, be a sample pattern.

Step 1. Construct the ideal ISVNS A∗ on X as:
A∗ = 〈(0.2, 0.6), (0.3, 0.5), (0.3, 0.5)〉 /x1 + 〈(0.5, 0.3), (0.0, 0.5), (0.2, 0.7)〉 /x2

+ 〈(0.6, 0.2), (0.0, 0.1), (0.3, 0.6)〉 /x3.

Step 2. Construct ISVNSs Ai, i = 1, 2, 3 on X for the sample patterns as:
A1 = 〈(0.2, 0.5), (0.4, 0.5), (0.3, 0.5)〉 /x1 + 〈(0.7, 0.3), (0.1, 0.7), (0.1, 0.7)〉 /x2

+ 〈(0.6, 0.2), (0.5, 0.4), (0.3, 0.6)〉 /x3,

A2 = 〈(0.3, 0.3), (0.3, 0.5), (0.3, 0.1)〉 /x1 + 〈(0.6, 0.3), (0.1, 0.2), (0.2, 0.7)〉 /x2

+ 〈(0.6, 0.1), (0.9, 0.0), (0.3, 0.6)〉 /x3,

A3 = 〈(0.8, 0.1), (0.1, 0.8), (0.8, 0.1)〉 /x1 + 〈(0.1, 0.8), (0.8, 0.1), (0.3, 0.1)〉 /x2

+ 〈(0.5, 0.1), (0.1, 0.0), (0.4, 0.3)〉 /x3.

Step 3. Calculate the correlation coefficient and the cosine measure between Ai
and A∗ by using the equation (4.3) and (4.6) respectively:

ρ
ISV NS

(A1, A
∗) = 0.940304326, ρ

ISV NS
(A2, A

∗) = 0.811214095,

ρ
ISV NS

(A3, A
∗) = 0.589901964, C

ISV NS
(A1, A

∗) = 0.940990597,

C
ISV NS

(A2, A
∗) = 0.843526611, C

ISV NS
(A3, A

∗) = 0.650069089.

Step 4. From Step 3, we can see that A1 and A2 belong to the ideal pattern A∗

but A3 does not belong to A∗.

7. Conclusions

We introduced the concept of intuitionistic neutrosophic sets and dealt with some
of its properties. We defined the correlation coefficient and cosine similarity measure
be between intuitionistic neutrosophic sets. Also, we proposed the algorithms for
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the correlation coefficient and cosine similarity measure in order to apply them to
decision-making problems and gave examples.

In the future, we expect that one can apply the notion of intuitionistic neutro-
sophic sets to group and ring theory, BCK-algebra and category theory, decision-
making problems, etc. Moreover, we expect that one can define an octahedron
neutrosophic set as the generalization of an interval-valued neutrosophic set and an
intuitionistic neutrosophic set.
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