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ABSTRACT. In this paper, we introduce the notion of Alexandrov L-
(neighborhood) filters and Alexandrov L-preuniform filters as a topolog-
ical viewpoint of fuzzy rough sets. We investigate the relations among
Alexandrov L-neighborhood filters, L-fuzzy preorders and Alexandrov L-
preuniform filter structures. Moreover, we investigate their topological
properties and give their examples. As an application for a fuzzy infor-
mation system, Alexandrov L-neighborhood filters, L-fuzzy preorders and
Alexandrov L-preuniform filters are studied.
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1. INTRODUCTION

Eiund and Gihter [1] introduced the notion of fuzzy filters as a point-based
approach to fuzzy topology on completely distributive complete lattice. Géhler
[2, 3] investigated the categorical relations among L-neighborhood filters, L-fuzzy
topologies and L-fuzzy topological structures. Hohle [, 5] introduced L-filters and L-
topological structures on algebraic structures (cqm lattices, quantales, MV-algebras)
for many valued logics [4, 5, 6, 7, 8, 9]. Kim [10] studied L-filter bases on commu-
tative quantales.

Jager [11] developed stratified L-convergence structures based on the concepts
of L-filters where L is a complete Heyting algebra. Yao [12] extended stratified
L-convergence structures to complete residuated lattices and investigated between
stratified L-convergence structures and L-fuzzy topological spaces.

Zhang [13, 14, 15] defined a strong L-topology on the concepts of fuzzy com-
plete lattices. As an extension of Yao [12], Fang [16, 17] introduced L-ordered
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convergence structures on L-ordered filters and investigated between L-ordered con-
vergence structures and strong L-topological spaces. Many researchers developed
topological structures using L-filters [18, 19, 20, 21, 22].

Pawlak [23, 24] introduced the rough set theory as a formal tool to deal with
imprecision and uncertainty in the data analysis. For an extension of classical rough
sets, many researchers [25, 26, 27, 28, 29, 30] developed L-lower and L-upper ap-
proximation operators in complete residuated lattices. By using this concepts, infor-
mation systems and decision rules were investigated in complete residuated lattices
[6, 31].

An interesting and natural research topic in rough set theory is the study of
rough set theory and topological structures. Lai [32] and Ma [33] investigated the
Alexandrov L-topology and lattice structures of L-fuzzy rough sets determined by
lower and upper sets.

Kim [2, 12, 13, 14, 15] introduced the notion of Alexandrov L-(neighborhood)
filters as a topological viewpoint of fuzzy rough sets and studied the relations among
fuzzy preorders, Alexandrov L-(neighborhood) filters, Alexandrov topologies and
Alexandrov L-convergence structures in complete residuated lattices.

The aim of this paper is to study Alexandrov L-neighborhood filters, L-fuzzy
preorders and Alexandrov L-preuniform filters in fuzzy information systems.

In this paper, we introduce the notion of Alexandrov L-(neighborhood) filters
and Alexandrov L-preuniform filters as a topological viewpoint of fuzzy rough sets
in a complete residuated lattice. We investigate the relations among Alexandrov L-
neighborhood filters, reflexive L-fuzzy relations, Alexandrov L-toplogies and Alexan-
drov L-preuniform filters. Moreover, we investigate their topological properties and
give their examples. As an application for a fuzzy information system, Alexandrov
L-neighborhood filters, L-fuzzy preorders and Alexandrov L-preuniform filters are
studied in Example 3.7.

2. PRELIMINARIES

Definition 2.1 ([4, 5, 6, 7, 8, 9]). An algebra (L, <,A,V,®,—, L, T) is called a
complete residuated lattice, if it satisfies the following conditions:

(L1) (L, <, V, A, L, T) is a complete lattice with the greatest element T and the
least element L,

(L2) (L,®, T) is a commutative monoid,

(W) zoy<zifz<y— zforuzy,ze€ L.

In this paper, we always assume that (L, <,A,V,®,—,*, 1, T) is complete resid-
uated lattice with a negation * = ¢ — L and (z*)* = z.

For a € L,A € LX, we denote (a — A),(a® A),ax € LX as (o = A)(z) = a —
Az), (@ ®A)(z) =a e A(z), ax(z) = a.

Lemma 2.2 ([4, 5, 6, 7, 8, 9]). For each x,y, z,x;,y;,w € L, we have the following
properties.
M T—oz=z Lox=1.
(2) Ify<z, thenzQy<zOz,z—y<zx—zandz—>zx<y— .
B)e<yifcr >y=T.
(4) & = (A we) = Aule = v2). N
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(5) (Vizi) = y=N\;(zi = y).

(6) 20 (V;9) = V(@0 y).

(N (z0y) mz=2c—>(y—2)=y— (x> 2).
B)z—=y)ozow<(z02)=(yow) andx -y < (x02) = (YO 2).

9 (z—=y)oy—2z)<z—=2

(10) Vier @i = Vier¥i = Nier(@i = 43) and Njer @i = Nier vi = Njer(@i —

() z—oy<(y—=z2z)—m(x—2)andz—-y<(z—12)—> (2 = y).
(12 (zoy ) =x—yandx —y=y* — z*.

Definition 2.3 ([6, 32]). Let X be a set. A function ex : X x X — L is said to be:
(E1) reflexive, if ex(x,2) =T for all x € X,
(E2) transitive, if ex(z,y) © ex(y,2) < ex(x, z), for all z,y,z € X,
(E3) if ex(z,y) = ex(y,z) = T, then x = y.
If e satisfies (E1) and (E2), (X,ex) is an L-fuzzy preordered set. If ex satisfies
(E1), (E2) and (E3), (X, ex) is an L-fuzzy partially ordered set.

Example 2.4. (1) We define a function ey, : L x L — L as e (z,y) = — y. Then
(L,eyr,) is an L-fuzzy partially ordered set.
(2) We define a function ey x : LX x LX — L as

erx(4,B) = )\ (A(x) = B(x)).

zeX

Then (LX,epx) is an L-fuzzy partially ordered set from Lemma 2.2 (9).

Definition 2.5 ([13, 14, 15]). Let (X,ex) be an L-fuzzy partially ordered set and
Ae LX.
(i) A point x¢ is called a join of A, denoted by x¢ = UA, if it satisfies
(J1) A(z) < ex(z,x0),
(32) Asex (A(2) = ex(2,9)) < ex(30,).
(ii) A point z; is called a meet of A, denoted by xz; = MA, if it satisfies
(M1) A(z) < ex(a1,2),
(M2) Ayex (A(2) = ex(3,2)) < ex(y,z1).

Remark 2.6. Let (X, ex) be an L-fuzzy partially ordered set and ® € LX.

(1) If 2 is a join of ®, then it is unique because ex(zo,y) = ex(yo,y) for all
y € X, put y = x9 or y = yp, then ex(zo,y) = ex(vo,y) = T implies o = yo.
Similarly, if a meet of ® exist, then it is unique.

(2) A point x¢ is a join of ® iff A\ (®(z) = ex(z,y)) = ex(zo,y).

(3) A point x; is a meet of ® iff \__(®(x) = ex(y,7)) = ex(y,z1).

Remark 2.7. Let (L,er) be an L-fuzzy partially ordered set and A € L%,
(1) Since x¢ is a join of A iff A ., (A(z) — er(z,y))
= Naer(A(z) = (z =)
= Vaer(#©A(x)) =y
= eL(an y)
=X — Y,
we have g = UA = \/ . (v © A(x)).
(2) Since x¢ is a join of A iff A ., (A(x) — er(z,y)
39
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ver(A(X) = (y = x))
Ly = (Az) = x))

E Mo () 2
T
we get MA = A\, (A(z) — ).

Remark 2.8. Let (LX,e;x) be an L-fuzzy partially ordered set and ® € L™,
(1) WP =V o x(®(4) ® A), from the following

erx (U®, B) = N\ yepx (®(A) = epx (A, B)) = epx (V 4¢x (P(A) © A), B).
(2) N® = A 4o x(®(A) — A), from the following
epx (B,U®) = A\ 4cpx (®(A) = epx (B, A))
= Naerx ex (B, (®(A) — A))
= epx (B, Ayepx (B(A) — A)).

Definition 2.9 ([13, 14, 15]). Let (X, ex) be an L-fuzzy partially ordered set. The
pair (X, ex) is called a fuzzy join (resp. meet) complete lattice, if UP (resp. MNP )
exists for each ® € LX.

The pair (X, ex) is called a fuzzy complete lattice, if LI® and MNP exist for each
o e LX.

Definition 2.10 ([13, 14, 15]). Let (X,ex) and (Y, ey) be fuzzy complete lattices
and ¥ : X — Y a map.

(i) ¥ is a join preserving map, if (LU®) = Uy~ (®) for all ® € LX, where
6 @)(y) = Vo oy ().

(ii) ¢ is a meet preserving map, if ¥(N®) = rp=(®) for all & € LX.

(iil) ¢ is an order preserving map, if ex(x,y) < ey (Y(x),¥(y)) for all x,y € X.

Definition 2.11 ([18, 22]). Let (L%, erx) and (L,er) be L-fuzzy partially ordered
sets. A map F : (L¥X,erx) — (L,er) is called an Alexandrov L-filter on X, if
F(N®) = NF(®) for all ® € LL". Let AF(X) denote the set of all Alexandrov
L-filters on X.

Theorem 2.12 ([18, 22]). A map F : LX — L is an Alezandrov L-filter on X iff it
satisfies the following conditions:

(F1) F(Njer Ai) = Nier F(A3) for all A; € L,

(F2) F(a = A) = a — F(A) for all Ae L* and o € L.

Definition 2.13 ([18, 22]). A family Nx = {N? | z € X} is called an Alezandrov
L-neighborhood system on X, if for x € X, a map N® : LX — L satisfies:

(N1) N® is an Alexandrov L-filter on X,

(N2) N%(A) < A(z) for all A € LX.

The pair (X, Nx) is called an Alezandrov L-neighborhood space.

An Alexandrov L-neighborhood system on X is topological, if (TN) N*(A) <
NZ(N~(A)) for all N~ (A) € L¥ such that N~ (A4)(y) = N¥(A) for all y € X.

Definition 2.14 ([18, 22, 26, 27]). A subset 7 C L% is called an Alerandrov L-
topology on X, if it satisfies the following conditions:
(ATl) ax €T,

40
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(AT2) if A; € 7 for all i € T', then \/,cp Ai, \jer Ai €7,
(AT3)if AcTand o€ L, thena®@ A,a - Ae .
The pair (X, 7) is called an Alezandrov L-topological space.

3. ALEXANDROV PREUNIFORM L-FILTER SPACES

Definition 3.1. (i) An Alexandrov L-filter W : LX*X — L is called an Alezandrov
L-preuniform filter on X x X, if W < A_ ¢ [(x, )], where [(z,2)](u) = u(x, ) for
each u € LX*X,

(ii) An Alexandrov L-preuniform filter W is called an Alezandrov L-quasiuniform

filteron X x X, i\, o x OV*(T(, ) )OW (T, L)) S WH(T(, ,)), where T(, (2, w) =
L if (z,w) = (z,y) and T, otherwise.
The pair (X, W) is called an Alezandrov L-preuniform (resp. L-quasiuniform)

filter space.

Theorem 3.2. (1) A map W : LX*X — L is an Alexzandrov L-preuniform (resp.
L-quasiuniform) filter on X x X iff there exists a reflexive L-fuzzy relation (resp.
L-fuzzy preorder) eyy € LX*X with ew(x,y) = W*(TE‘Ly)) such that W(u) =
/\%Zex(ew(x, 2) = u(w, 2)) for all u € LX*X,

(2) For each x € X, a map N : LX — L is an Alexandrov (resp. topological)
L-neighborhood filter on X iff there exists a reflexive L-fuzzy relation (resp. L-fuzzy
preorder) exr € LX*X such that N*(A) = \,cx(en(z,2) = A(2)) for all A € L*.

(3) Let N* : LX — L be an Alezandrov L-neighborhood filter on X for each
x € X. Define Wy : LX*X = L as

Wi(w) = A\ N (u(z, -).
zeX
Then Whr is an Alexandrov L-preuniform filter on X x X such that
Wr(uw) = N\ (W (Ty)" = ulx,y)).
z,yeX

If {N® | x € X} is topological, then Wy is an Alexandrov L-quasiuniform filter on
X xX.

(4) Let W : LX*X — L be an Alezandrov L-preuniform (resp. L-quasiuniform)
filter on X x X. Define N, : LX — L as

Np(A) = N WV (Ti,) = AWw)).
yeX
Then N3, is an Alexandrov (resp. topological) L-neighborhood filter on X such that
Wi, = W.

(5) If N® : LX — L be an Alezandrov L-neighborhood filter on X for each x € X,
then Ny, = N'*.
Proof. (1) (=) Let W be an Alexandrov L-quasiuniform filter on X x X. For all
u € LX*X since u = NsexW(z,2) = T7, .y), by Theorem 2.12 (F1) and (F2),

(z,2)
we have

W) = WA, cex (u(@,2) = T, )
41
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= Nazex @ (@,2) = W(TT, )
= Naeex (VTG ) = ulz, 2)).
Put ey (x,y) = W* (T*z ). Then we get
ew(x,x) = W*(T’(*I’x))

V,ex (ew(@9) ® ew(y: 2) = Vyex W (Thy ) © WH(TE, )
<W(T5,)
=ew(z,2).

Thus ey is an L-fuzzy preorder. Moreover, W(u) = A\, _c x(ew(x, 2) — u(x, 2)).
(«=) From Theorem 2.12, the result holds ey (z,y) = W*(T7, ) and from:
(F1) For all u; € LX*X]

W(/\iGF u;) = /\z,zGX(eW(x’ z) = /\iGF ui(z, 2))
= Nier Neex (ew(z, 2) = ui(z, 2))
= Nier W(ui).
(F2) For all u € LX*¥ and « € L, by Lemma 2.2 (7),
Wi(a— 1) = A, cx (ew(@,2) — (@ = u(a, 2))
— 05 Ppaex el 2) - ulw, 2)))
=a— W(u).
(2) Let N* be an Alexandrov topological L-neighborhood filter. Then we have:
for A=A, ex(A"(y) = T3),
N*(A) = NI(/\yEX(A*(y) - TZ))
= Nyex (A" (y) = N*(T3)) (N*(T3)

= ex(@,9))

= /\yex(ef\f(fﬂ y) = Ay))-
Thus ex(z,2) > (N*(T2))* > To(z) = T, ie., ey isreflexive. Since N*(N(T%)) =
NA(TE) and N(72) < e () e

NENT(T2) = N2 (Ayex (WU(T2)" = T3))
= Nyex (W(T2))" = N“(T*))
iff Vyex((Ny(Ti))* © (N“”(TZ))*) = WV=(T2)"
So ey is an L-fuzzy preorder, from the following:
Vyex (ex(:2) © exte ) = Ve x (N(TD)" © (V(T3)")
= (W (T2)" = en(a, 2).
(<) It is similarly proved as in (1).
(3) It is obvious that W) satisfies (F1) and (F2). Moreover, for each u € LX*X|
Wi () = Npex N (u(z, -))
< Neex wz, —)(@)
= /\zEX u(m,x)
= Npexl(@; 2))(u).
For all u(z,—) € LX*X since u(z, —) = Nyex W (z,y) = T}), by Theorem 2.12
(F1) and (F2), we have
42
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Wi () = Npex N (u(z, -))
/\a:GXNw(/\yeX( “(z,y) = T3))
= Noyex (W (z,y) = N*(T7))
= Nayex (W (T)))" = w@,y)).
If {N®|x € X} is topological, since WN( ) =N*(T}), by (2),
Vyex (W (TT, )" © War (T, z))) ) Vyex (W (Ty) o W¥(T2))")
= WV(T))
Then Wy is an Alexandrov L-quasiuniform filter on X x X.
(4) Let W be an Alexandrov L-quasiuniform filter on X x X. Then N3}, satisfies
(F1) and (F2). Moreover, for each A € L*,

Ny (4) = /\yeX(W*(TZ‘w n) = AW)

SWH(Tlm)) = Al2)
= A(),
NN (A) = Ayex W (TG, ) = Ny (A))
— Aoex VHTE ) = Aex OV (TE, ) = A(2))
= Neex(Vye ((W*(TZ} ) OW(TE, ) = Al2))
= NoexWV(T(, ) = A(2))
= Ny (4).
Since N}, (T*) W(T )

o (1) = A\, yex((N%(T*)) — u(z,y))
= Nuyex (W(TE, )" = u(w,y))
= Nayex W (@,y) = W(T(, )
= WAy ex () > Tho )

W(u).

Nyex Wir(Ti, ) = AY))
ex (W= (T3 —>A( )

(
x (A" = ( v)
A).

()ForAELX
Wi (4)

Ay
/\
U

Remark 3.3. For A = {(z,2) |z € X} C D, we define W = A\, ,cpl(z,y)] is an
Alexandrov L-preuniform filter on X x X. If Do D = D, then A, e pl(z,y)] is an
Alexandrov L-quasiuniform filter on X x X. Since

eW(yaz) = ( /\ [(xvy)])*(T?y,z)) = \/ T(y,z)(zvy)a

(z,y)€D (z,y)€D
| T, if(z,y) €D,
ew(®,y) = { L, if (z,y) & D.
By Theorem 3.2 (4), we obtain an Alexandrov L-neighborhood filter A3}, on X such

that Ny}, (A) = A(m,y)eD(GW(x7y) — A(y)).
(1) If D = A, then we have

Ny = N\ (ewlz,y) = Aly) = Alz) = [2](4).

(z,y)eN

43
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Since N, (T5) = Ty (),
Wi (1) = Ap yex (MR (TH))" = u@,y) = Apex ule, 2) = Apex (@, 2)](u).
(2) If D =X x X, then we get
N = N (ew(ay) = N\ Al@) = N l2](4).
(z,y)EX XX zeX zeX
Since N3, (T5) = Npex To(2) = L,
Wiy (1) = Ny yex (M (TH)" = u(z,y))

)
(z,y)EX XX u(z,y)

BN (9 1)

Theorem 3.4. (1) Let W : LX*X — L be an Alezandrov L-preuniform filter on
X x X. Define ryy = {A € L | /\yex(W*(T’("_ ) = Ay)) = A} Then 1y is
an Alexandrov L-topology on X. If W is an Alexandrov L-quasiuniform filter on
X x X, mw = {A\yexW(T{_ ) = A(y)) | A€ L*}.

(2) Let T be an Alevandrov L-topology on X. Define W, : LX*X — L as

Wr(w) = N\ (A (A@@) = A(y)) = u(z,y)).
z,yeX A€t

Then Wr is an Alexandrov L-quasiuniform filter on X x X with my_ = T.

(3) Asery, (Al@) = A(y)) = Aoex OV (T, L)) = W(T, ,))). Moreover, if W
is an Alexandrov L-quasiuniform filter on X x X, then

A (A@) = Aw) = N\ OV (T,0) 2 W (Thn) =W (Th):
Aery z€X
(4) If W is an Alexandrov L-quasiuniform filter on X x X, then W,,,, = W.

Proof. (1) (AT1) Since
Aex OV (T2, ) = ax () S WH(T?, ) = ax(x)
< Vaexl@,o)]"(TF, 4)) = ax(z)
and
Apex OV (Tiu ) = ax(®) > o
we have A\ c xOV*(T{_ ) = ax(y)) = ax, Le, ax € Tw.
(AT2) If Aj = A\ yex V(T ) = Ai(y)) for all i € I, we get
Vier A = \/iEF(/\yeX(W*(T?— y)) — Ai(y)))
< AyexWH (T ) = Vier Ai(y))
< Viel‘ Ah
Nier Ai = Nier /\yEX(W*(T?—,y)) — Ai(y))
= NyexW(TT_ ) = Nier Ai(y))

= /\ieF A;.
Thus \/iGF A;, /\iel“ A; € Tyy.
(AT3) If A= A, ex W (T_ ) = A(y)), then we have

a—>A:a—>/\y€X(W*(T* ») = AY))

= /\yeX(W*(T*f}y ) - (a - A)( ))7
44
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a®A=a0 A\, cOWV(T ) = AY)
< AyexWH(T_ ) = 2 © A(y))
<a®A
Thus a ® A, — A € 1. So Ty is an Alexandrov L-topology on X.
Suppose W is an Alexandrov L-quasiuniform filter on X x X. Put

T—{/\ (T A(y)) | Ae LX)
yeX
Let B € myy. Then B € 7. Let B= A\, .x(W*(T{_ ))) = A(y)) € 7. Then we get
NeexWH(TT_ L)) = B(2))
/\zeX(W*(T? %) )) - /\yeX(W*(sz y))) — A(y)))
Nyex Voex W (T L)) © WH(TT, ) = Ay)
Nyex OV (TT_ ) = ( )
=B € my.

(2) For A € L¥, since W, (o — u) = a — Wy (u),

Wr(Njer wi) = Nier Wr(ui)

and
Wr(u) = Ng yex (N ae-(Alx) = Aly)) = u(z,y))
< Naex(Nae,(Alx) = Az)) = u(z, z))
= Neexl(@; 2))(u).
Since W (TT, ) = Aae,(A(z) = A(y)), we have
Vyex OVE(TE o @WE(TE )
= Vye (/\Ae-r( (2) = A)) © Aacr(Aly) > A(2))
< Nae-(A(2) = A(2))
=Wi(Th0)
Vyex W2(TT, ) © WE(TT, ) 2 WE(TE, L)) O W, L))

= W*(Tz} z))
Then W, is an Alexandrov L-quasiuniform filter on X x X.
Let B € 7. Then

A (\ (A@@) = A(y)) = B(y)) < (A(z) = A(x)) = B(z) = B(x).
yeX Aer

Thus we have

B(z) © (Ase,(Alx) = A(y))) < B(z) © (B(z) = B(y)) < B(y),
B(z) < A\ (N (Al2) = A(y)) = B(y)).

yeX A€er
So B=N\,exWr(T{_ ) = B(y)) € T,
Now let B € 1y, . Since V 4, (A" (y)©0A(-))) € Tand A cx (B*(y) = Ve, (A" (y)O
A(-))) € T, we get
B = NyexWI (T ) = B(y))
= /\yeX(/\AGT(A( ) = Aly)) = B(y))
= Nyex(B*(y) = Vae, (A"(y) © A(=))) € 7.
(3) Since A= A,cx (W (T{_ ,)) = A(2)) € Tw,
45
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Naer, (Alx) = Ay))
N W (T: (0.2) = AR) = Noex V(T ) = A2)
Noex VT, L) = WHTTL L))
n Al xandrov L-quasiuniform filter on X x X, then
yeX
Thus W*(T7, ) < Noex (W(TT, ) = W(T{, .))). Moreover, we have
/\zeX(W*(Tzﬂy,z)) - W*(szz))) < W*(szyy)) _>*W* g?‘m) s
< Vaex (@ 2)])(T7, ) = W (T, )
=W (T, )
So /\zex(W*(TZy,z)) — W*(Ta’z))) = W*(TE‘Ly)). Since A(—) = W*(fo,f)) €
Tw, we get
< (Vyex [ ) ) (T 0) = W (T )
=Wy
= Noex (T, L) = WH(TTL L)
(4) If W is an Alexandrov L-quasiuniform filter on X x X, then by (3),
WTW (U) = /\x yeX(/\zeX(W*( ?y,z)) - W*(T?x7z))) — u(l’, y))
= W( ). O

Example 3.5. (1) For A € LX, we define e4(z,y) = A(z) — A(y). Then e, is an
L-fuzzy preordered set on X. By a similar way in Theorem 3.4 (1), we obtain

7x ={ )\ (ea(—,y) = B(y)) | B€ L*}.
yeX
Define e, (x,y) /\Berx( x) = B(y)). Since A € 7x, e, (x,y) < ealz,y),
Crx (x, y) /\BGTX( (33) — B(y))

= Acerx(N.ex(ealz, 2) = C(z)) — /\zex(eA(y,Z) — C(2)))

> Neex(ealy, z) = ealx, 2)) = A(z) — A(y).
Then e, (z,y) = ea(x,y). Thus by Theorem 3.2 (1), W, is an Alexandrov L-
quasiuniform filter on X x X such that

Wiy ()= /\ (ealw,y) = ulz,y)).
r,yeX

Moreover, since Wy <T?ay)) =ea(—y),

wey = {Ayex(ea(—y) = B(y)) | B e LX} = 7x.

(2) Let 7x = L*. Then ey (z,y) = Apge,, (B(z) = B(y)). For T, € 7x
and z # y, er (7,y) = Aper (B(x) = B(y)) < Tu(z) = Tu(y) = L. Thus for

ex = AXXX Wlth
T, lfy =,
AXXX(‘T7y) - { 1, otherwise,

WTX (u) = /\x,yGX(AXXX(x7y) - u(x’ y)) = /\zeX u(x’x)
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By Theorem 3.2 (1), W, is an Alexandrov L-quasiuniform filter on X x X. More-
over, since W (T?ay)) = Axxx(—9),

w,, ={B € L¥ | \yex(Dxux(—y) = B(y) = B} = LX = 7x.
(3) Let 7x = {ax | @ € L}. Then

erx(@y) = /\ (Blx) = B(y) =T,
Betx
W‘Fx (u) = /\m,yeX(TXXX(‘r’ y) — u(l'v y)) = /\m,yeX u(‘rv y)
Thus by Theorem 3.2 (1), W, is an Alexandrov L-quasiuniform filter on X x X.
Moreover, since Wr (T7_ ) = Txxx(—, ),
™w,, ={B€ LX | Nyex(Txxx(—y) = B(y)) = B}

={B e L* | \jex Bly) = B}

={ax |a €L}

=TX.

Example 3.6. Let ex € LX*X be a reflexive L-fuzzy relation.
(1) Define W, : LX*X — L as

Wex (U‘) = /\ (ex(x,y) - u(m>y))

z,yeX

By Theorem 3.2 (1), W, is an Alexandrov L-preuniform filter on X x X. If ex is
an L-fuzzy preorder on X, then we have

VyexWex (Thy) ©We (TG ) = Vyex(ex (@, y) © ex(y, 2))
=ex(z,z)
=W (Tlez))-
Thus W, is an Alexandrov L-quasiuniform filter on X x X.
(2) Define N7 : L* — L as

NE(A) = N (ex(z,y) = Ay)).

yeX

By Theorem 3.2 (2), Ney = {NZ, | # € X} is an Alexandrov L-neighborhood
system on X. If ex is an L-fuzzy preorder on X, then N, is topological.
(3) From (2) and Theorem 3.2 (3),

Wiy (W) = Npex N (ulm, =) = A, yex (ex(@,y) = ulz, y)) = Wey (u).

Then Wy, is an Alexandrov preuniform L-filter on X x X.
(4) Since We (T{, ) = ex (@),

We (A) = Nyex WE (Th ) = AW) = Ayex(ex(@,y) = Aly)) = N (A).
(5) By (3) and (4), Whin, . = Wi = Wex- By (3) and Theorem 3.2 (5),

T _ x — Z
WNQX — Wex — Nex‘
47



Oh and Kim /Ann. Fuzzy Math. Inform. 23 (2022), No. 1, 37-51

(6) By Theorem 3.2, let W : LX*X — [ be an Alexandrov preuniform L-filter
on X x X with a reflexive relation eyy € LX*X such that ey (z,z) = W* (Tle)-
Then

W)= N\ (ew(x,2) = u(@,2)) = Wy, (u).

z,z€X
Since Wey (u) = A, .ex(ex(2,2) = u(z,2)) and We (T(, ) = ex (@, 2),
wey (2,) = WE (Tho) = ex()
(7) By Theorem 3.2, since We, (T(_ ) = ex(—,¥),
we, ={AELY A=\ cx W (T ) = AY))
= Nyex(ex(=y) = Ay))},
Wi, (W) = Ay yeX(/\AeTW (A( ) = Aly)) = ulz,y)

)
exWe (T ) 2 We (TG ) = uwl(@,y)

- AL yEX(/\z T

=N\: ,yex(/\zex(ex(y, z) = ex(z,2)) = u(z,y))
> Npyex((ex(y.y) = ex(z,y)) = u(z,y))
- Wex( )

If ex is an L-fuzzy preorder on X, then WTWEX =We,.

Example 3.7. Let X = {h; | i« = {1,...,3}} with h;=house and Y = {e,b,w,c,i}
with e=expensive,b= beautiful, w=wooden, c= creative, i=in the green surround-
ings. Let ([0,1],®,—,*,0,1) be a complete residuated lattice (See [0, 8, 27]) as

z0y=max{0,z+y—1}, z > y=min{l —z+y,1}, 2" =1-=z.
Let R € [0,1]X*Y be a fuzzy information as follows:

R e b w c i
hiy 0.7 06 0.5 09 0.2
ho 0.6 08 0.4 03 0.5
hs 04 09 08 0.6 0.6

Define an L-fuzzy preorder eX ety e¥ € [0,1]%X%X by

eéf’b}<hi7hj>= A (R(hi,y) = R(hj,y)),

y€{e,b}
ex (hishy) =\ (R(hi,y) = R(hj,y)).
yey
Then we have
1 09 0.7 1 04 0.7
=108 1 08 |ek=|o07 1 08
07 09 1 06 06 1

(1) We obtain Alexandrov L-quasiuniform filters W, () Wey LX*X — [ as

Wi (1) = A jeqr 2y (€5 (his hy) = ulhi, hy)),
We§ (u) = /\z,je{l,z,s}(ex(huhy) = u(hi, hy)).

(2) By Theorem 3.2, since W, (T?f,y)) = e}(—’y) for each ex € {egf’b}7 e}/(},
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x {/\je{l,Q,S}(W:X(T( ) — A(hj)) | Ae L*}
= Njeqi,2,3(ex (=, Ry) —> A( i) | Ae LXY,

. A(h1) A (0.1 + A(hg)) A (0.3 + A(hs))
Njeqi2,3)(€x el (— shj) = A(hy)) = (0.2 + A(h1)) A A(h2) A (0.2 + A(h3))
(0.3+ A(h1)) A (0.1 4+ A(h2)) A A(hs)

A(h1) A (0.6 4+ A(hy)) A (0.3 + A(hs))
Nieqr 23y (X (= hy) = A(hy)) = (0.3 + A(h1)) A A(h2) A (0.2 + A(hs))
(0.4 + A(R1)) A (0.4 + A(ha)) A A(hs)

(3) For each ex € {e{6 b} sext,
Naeny,  (A@) = AW)) = Aoex Ve (TT, ) = W (TG, )
=W (Tl )
= /\zex(ex(ya z) = ex(z, 2))
=W (Tay)
= eX(a: z)
and

=W,,.

TWex

(4) For each ex € {egf’b}, eX}, since N o LY — L as

M (A) = N (ex(h1, ha) = A(ha)),

ex
yex

N o (4) = Ay (€5 (hn, ) = A(ho)
) — A(h1) A (0.1 + A(ha)) A (0.3 + A(hs)),
NG (A) = Ay (X, h2) = A(a)
= A(h1) A (0.6 + A(ha)) A (0.3 + A(hs)).

4. CONCLUSION

In this paper, we investigate the relations among Alexandrov L-neighborhood fil-
ters, Alexandrov L-topologies and Alexandrov L-preuniform filters as a viewpoint for
fuzzy rough sets. The relations among Alexandrov L-neighborhood spaces, Alexan-
drov L-topological spaces and Alexandrov L-preunitorm filter spaces are studied.
As a very important point of view for fuzzy information systems, Alexandrov L-
neighborhood filters, Alexandrov L-topologies and Alexandrov L-preuniform filters
can be fined in Example 3.7.
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