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Abstract. In this paper, we introduce the notion of Alexandrov L-
(neighborhood) filters and Alexandrov L-preuniform filters as a topolog-
ical viewpoint of fuzzy rough sets. We investigate the relations among
Alexandrov L-neighborhood filters, L-fuzzy preorders and Alexandrov L-
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properties and give their examples. As an application for a fuzzy infor-
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1. Introduction

Eklund and Gähler [1] introduced the notion of fuzzy filters as a point-based
approach to fuzzy topology on completely distributive complete lattice. Gähler
[2, 3] investigated the categorical relations among L-neighborhood filters, L-fuzzy
topologies and L-fuzzy topological structures. Höhle [4, 5] introduced L-filters and L-
topological structures on algebraic structures (cqm lattices, quantales, MV-algebras)
for many valued logics [4, 5, 6, 7, 8, 9]. Kim [10] studied L-filter bases on commu-
tative quantales.

Jäger [11] developed stratified L-convergence structures based on the concepts
of L-filters where L is a complete Heyting algebra. Yao [12] extended stratified
L-convergence structures to complete residuated lattices and investigated between
stratified L-convergence structures and L-fuzzy topological spaces.

Zhang [13, 14, 15] defined a strong L-topology on the concepts of fuzzy com-
plete lattices. As an extension of Yao [12], Fang [16, 17] introduced L-ordered
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convergence structures on L-ordered filters and investigated between L-ordered con-
vergence structures and strong L-topological spaces. Many researchers developed
topological structures using L-filters [18, 19, 20, 21, 22].

Pawlak [23, 24] introduced the rough set theory as a formal tool to deal with
imprecision and uncertainty in the data analysis. For an extension of classical rough
sets, many researchers [25, 26, 27, 28, 29, 30] developed L-lower and L-upper ap-
proximation operators in complete residuated lattices. By using this concepts, infor-
mation systems and decision rules were investigated in complete residuated lattices
[6, 31].

An interesting and natural research topic in rough set theory is the study of
rough set theory and topological structures. Lai [32] and Ma [33] investigated the
Alexandrov L-topology and lattice structures of L-fuzzy rough sets determined by
lower and upper sets.

Kim [2, 12, 13, 14, 15] introduced the notion of Alexandrov L-(neighborhood)
filters as a topological viewpoint of fuzzy rough sets and studied the relations among
fuzzy preorders, Alexandrov L-(neighborhood) filters, Alexandrov topologies and
Alexandrov L-convergence structures in complete residuated lattices.

The aim of this paper is to study Alexandrov L-neighborhood filters, L-fuzzy
preorders and Alexandrov L-preuniform filters in fuzzy information systems.

In this paper, we introduce the notion of Alexandrov L-(neighborhood) filters
and Alexandrov L-preuniform filters as a topological viewpoint of fuzzy rough sets
in a complete residuated lattice. We investigate the relations among Alexandrov L-
neighborhood filters, reflexive L-fuzzy relations, Alexandrov L-toplogies and Alexan-
drov L-preuniform filters. Moreover, we investigate their topological properties and
give their examples. As an application for a fuzzy information system, Alexandrov
L-neighborhood filters, L-fuzzy preorders and Alexandrov L-preuniform filters are
studied in Example 3.7.

2. Preliminaries

Definition 2.1 ([4, 5, 6, 7, 8, 9]). An algebra (L,≤,∧,∨,�,→,⊥,>) is called a
complete residuated lattice, if it satisfies the following conditions:

(L1) (L,≤,∨,∧,⊥,>) is a complete lattice with the greatest element > and the
least element ⊥,

(L2) (L,�,>) is a commutative monoid,
(L3) x� y ≤ z iff x ≤ y → z for x, y, z ∈ L.

In this paper, we always assume that (L,≤,∧,∨,�,→,∗ ,⊥,>) is complete resid-
uated lattice with a negation x∗ = x→ ⊥ and (x∗)∗ = x.

For α ∈ L,A ∈ LX , we denote (α→ A), (α�A), αX ∈ LX as (α→ A)(x) = α→
A(x), (α�A)(x) = α�A(x), αX(x) = α.

Lemma 2.2 ([4, 5, 6, 7, 8, 9]). For each x, y, z, xi, yi, w ∈ L, we have the following
properties.

(1) > → x = x, ⊥� x = ⊥.
(2) If y ≤ z, then x� y ≤ x� z, x→ y ≤ x→ z and z → x ≤ y → x.
(3) x ≤ y iff x→ y = >.
(4) x→ (

∧
i yi) =

∧
i(x→ yi).

38
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(5) (
∨
i xi)→ y =

∧
i(xi → y).

(6) x� (
∨
i yi) =

∨
i(x� yi).

(7) (x� y)→ z = x→ (y → z) = y → (x→ z).
(8) (x→ y)� (z → w) ≤ (x� z)→ (y � w) and x→ y ≤ (x� z)→ (y � z).
(9) (x→ y)� (y → z) ≤ x→ z.
(10)

∨
i∈Γ xi →

∨
i∈Γ yi ≥

∧
i∈Γ(xi → yi) and

∧
i∈Γ xi →

∧
i∈Γ yi ≥

∧
i∈Γ(xi →

yi).
(11) x→ y ≤ (y → z)→ (x→ z) and x→ y ≤ (z → x)→ (z → y).
(12 (x� y∗)∗ = x→ y and x→ y = y∗ → x∗.

Definition 2.3 ([6, 32]). Let X be a set. A function eX : X ×X → L is said to be:
(E1) reflexive, if eX(x, x) = > for all x ∈ X,
(E2) transitive, if eX(x, y)� eX(y, z) ≤ eX(x, z), for all x, y, z ∈ X,
(E3) if eX(x, y) = eX(y, x) = >, then x = y.
If e satisfies (E1) and (E2), (X, eX) is an L-fuzzy preordered set. If eX satisfies

(E1), (E2) and (E3), (X, eX) is an L-fuzzy partially ordered set.

Example 2.4. (1) We define a function eL : L×L→ L as eL(x, y) = x→ y. Then
(L, eL) is an L-fuzzy partially ordered set.

(2) We define a function eLX : LX × LX → L as

eLX (A,B) =
∧
x∈X

(A(x)→ B(x)).

Then (LX , eLX ) is an L-fuzzy partially ordered set from Lemma 2.2 (9).

Definition 2.5 ([13, 14, 15]). Let (X, eX) be an L-fuzzy partially ordered set and
A ∈ LX .

(i) A point x0 is called a join of A, denoted by x0 = tA, if it satisfies
(J1) A(x) ≤ eX(x, x0),
(J2)

∧
x∈X(A(x)→ eX(x, y)) ≤ eX(x0, y).

(ii) A point x1 is called a meet of A, denoted by x1 = uA, if it satisfies
(M1) A(x) ≤ eX(x1, x),
(M2)

∧
x∈X(A(x)→ eX(y, x)) ≤ eX(y, x1).

Remark 2.6. Let (X, eX) be an L-fuzzy partially ordered set and Φ ∈ LX .
(1) If x0 is a join of Φ, then it is unique because eX(x0, y) = eX(y0, y) for all

y ∈ X, put y = x0 or y = y0, then eX(x0, y) = eX(y0, y) = > implies x0 = y0.
Similarly, if a meet of Φ exist, then it is unique.

(2) A point x0 is a join of Φ iff
∧
x∈X(Φ(x)→ eX(x, y)) = eX(x0, y).

(3) A point x1 is a meet of Φ iff
∧
x∈X(Φ(x)→ eX(y, x)) = eX(y, x1).

Remark 2.7. Let (L, eL) be an L-fuzzy partially ordered set and A ∈ LL.
(1) Since x0 is a join of A iff

∧
x∈L(A(x)→ eL(x, y))

=
∧
x∈L(A(x)→ (x→ y))

=
∨
x∈L(x�A(x))→ y

= eL(x0, y)
= x0 → y,

we have x0 = tA =
∨
x∈L(x�A(x)).

(2) Since x0 is a join of A iff
∧
x∈L(A(x)→ eL(x, y)
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=
∧
x∈L(A(x)→ (y → x))

=
∧
x∈L(y → (A(x)→ x))

= y →
∧
x∈L(A(x)→ x)

= y → uA,
we get uA =

∧
x∈L(A(x)→ x).

Remark 2.8. Let (LX , eLX ) be an L-fuzzy partially ordered set and Φ ∈ LLX .
(1) tΦ =

∨
A∈LX (Φ(A)�A), from the following

eLX (tΦ, B) =
∧
A∈LX (Φ(A)→ eLX (A,B)) = eLX (

∨
A∈LX (Φ(A)�A), B).

(2) uΦ =
∧
A∈LX (Φ(A)→ A), from the following

eLX (B,tΦ) =
∧
A∈LX (Φ(A)→ eLX (B,A))

=
∧
A∈LX eLX (B, (Φ(A)→ A))

= eLX (B,
∧
A∈LX (Φ(A)→ A)).

Definition 2.9 ([13, 14, 15]). Let (X, eX) be an L-fuzzy partially ordered set. The
pair (X, eX) is called a fuzzy join (resp. meet) complete lattice, if tΦ (resp. uΦ )
exists for each Φ ∈ LX .

The pair (X, eX) is called a fuzzy complete lattice, if tΦ and uΦ exist for each
Φ ∈ LX .

Definition 2.10 ([13, 14, 15]). Let (X, eX) and (Y, eY ) be fuzzy complete lattices
and ψ : X → Y a map.

(i) ψ is a join preserving map, if ψ(tΦ) = tψ→(Φ) for all Φ ∈ LX , where
ψ→(Φ)(y) =

∨
ψ(x)=y Φ(x).

(ii) ψ is a meet preserving map, if ψ(uΦ) = uψ→(Φ) for all Φ ∈ LX .
(iii) ψ is an order preserving map, if eX(x, y) ≤ eY (ψ(x), ψ(y)) for all x, y ∈ X.

Definition 2.11 ([18, 22]). Let (LX , eLX ) and (L, eL) be L-fuzzy partially ordered
sets. A map F : (LX , eLX ) → (L, eL) is called an Alexandrov L-filter on X, if

F(uΦ) = uF→(Φ) for all Φ ∈ LLX . Let AF (X) denote the set of all Alexandrov
L-filters on X.

Theorem 2.12 ([18, 22]). A map F : LX → L is an Alexandrov L-filter on X iff it
satisfies the following conditions:

(F1) F(
∧
i∈ΓAi) =

∧
i∈Γ F(Ai) for all Ai ∈ LX ,

(F2) F(α→ A) = α→ F(A) for all A ∈ LX and α ∈ L.

Definition 2.13 ([18, 22]). A family NX = {N x | x ∈ X} is called an Alexandrov
L-neighborhood system on X, if for x ∈ X, a map N x : LX → L satisfies:

(N1) N x is an Alexandrov L-filter on X,
(N2) N x(A) ≤ A(x) for all A ∈ LX .
The pair (X,NX) is called an Alexandrov L-neighborhood space.
An Alexandrov L-neighborhood system on X is topological, if (TN) N x(A) ≤

N x(N−(A)) for all N−(A) ∈ LX such that N−(A)(y) = N y(A) for all y ∈ X.

Definition 2.14 ([18, 22, 26, 27]). A subset τ ⊂ LX is called an Alexandrov L-
topology on X, if it satisfies the following conditions:

(AT1) αX ∈ τ ,
40
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(AT2) if Ai ∈ τ for all i ∈ Γ, then
∨
i∈ΓAi,

∧
i∈ΓAi ∈ τ ,

(AT3) if A ∈ τ and α ∈ L, then α�A,α→ A ∈ τ .
The pair (X, τ) is called an Alexandrov L-topological space.

3. Alexandrov preuniform L-filter spaces

Definition 3.1. (i) An Alexandrov L-filter W : LX×X → L is called an Alexandrov
L-preuniform filter on X ×X, if W ≤

∧
x∈X [(x, x)], where [(x, x)](u) = u(x, x) for

each u ∈ LX×X .
(ii) An Alexandrov L-preuniform filterW is called an Alexandrov L-quasiuniform

filter onX×X, if
∨
y∈X(W∗(>∗(x,y))�W

∗(>∗(y,z))) ≤ W
∗(>∗(x,z)), where>∗(x,y)(z, w) =

⊥ if (z, w) = (x, y) and >, otherwise.
The pair (X,W) is called an Alexandrov L-preuniform (resp. L-quasiuniform)

filter space.

Theorem 3.2. (1) A map W : LX×X → L is an Alexandrov L-preuniform (resp.
L-quasiuniform) filter on X × X iff there exists a reflexive L-fuzzy relation (resp.
L-fuzzy preorder) eW ∈ LX×X with eW(x, y) = W∗(>∗(x,y)) such that W(u) =∧
x,z∈X(eW(x, z)→ u(x, z)) for all u ∈ LX×X .

(2) For each x ∈ X, a map N x : LX → L is an Alexandrov (resp. topological)
L-neighborhood filter on X iff there exists a reflexive L-fuzzy relation (resp. L-fuzzy
preorder) eN ∈ LX×X such that N x(A) =

∧
z∈X(eN (x, z)→ A(z)) for all A ∈ LX .

(3) Let N x : LX → L be an Alexandrov L-neighborhood filter on X for each
x ∈ X. Define WN : LX×X → L as

WN (u) =
∧
x∈X
N x(u(x,−)).

Then WN is an Alexandrov L-preuniform filter on X ×X such that

WN (u) =
∧

x,y∈X
((N x(>∗y))∗ → u(x, y)).

If {N x | x ∈ X} is topological, then WN is an Alexandrov L-quasiuniform filter on
X ×X.

(4) Let W : LX×X → L be an Alexandrov L-preuniform (resp. L-quasiuniform)
filter on X ×X. Define N x

W : LX → L as

N x
W(A) =

∧
y∈X

(W∗(>∗(x,y)))→ A(y)).

Then N x
W is an Alexandrov (resp. topological) L-neighborhood filter on X such that

WNW =W.

(5) If N x : LX → L be an Alexandrov L-neighborhood filter on X for each x ∈ X,
then N x

WN
= N x.

Proof. (1) (⇒) Let W be an Alexandrov L-quasiuniform filter on X × X. For all
u ∈ LX×X , since u =

∧
x,z∈X(u∗(x, z) → >∗(x,z)), by Theorem 2.12 (F1) and (F2),

we have
W(u) =W(

∧
x,z∈X(u∗(x, z)→ >∗(x,z))
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=
∧
x,z∈X(u∗(x, z)→W(>∗(x,z)))

=
∧
x,z∈X((W∗(>∗(x,z)))→ u(x, z)).

Put eW(x, y) =W∗(>∗(x,y)). Then we get

eW(x, x) =W∗(>∗(x,x))

≥
∨
x∈X [(x, x)]∗(>∗(x,x))

=
∨
x∈X [(x, x)]∗(>∗(x,x))

= >(x,x)(x, x)
= >,∨

y∈X(eW(x, y)� eW(y, z)) =
∨
y∈X(W∗(>∗(x,y))�W

∗(>∗(y,z)))
≤ W∗(>∗(x,z))
= eW(x, z).

Thus eW is an L-fuzzy preorder. Moreover, W(u) =
∧
x,z∈X(eW(x, z)→ u(x, z)).

(⇐) From Theorem 2.12, the result holds eW(x, y) =W∗(>∗(x,y)) and from:

(F1) For all ui ∈ LX×X ,
W(
∧
i∈Γ ui) =

∧
x,z∈X(eW(x, z)→

∧
i∈Γ ui(x, z))

=
∧
i∈Γ

∧
z∈X(eW(x, z)→ ui(x, z))

=
∧
i∈ΓW(ui).

(F2) For all u ∈ LX×X and α ∈ L, by Lemma 2.2 (7),
W(α→ u) =

∧
x,z∈X(eW(x, z)→ (α→ u(x, z)))

= α→
∧
x,z∈X(eW(x, z)→ u(x, z)))

= α→W(u).
(2) Let N x be an Alexandrov topological L-neighborhood filter. Then we have:

for A =
∧
y∈X(A∗(y)→ >∗y),

N x(A) = N x(
∧
y∈X(A∗(y)→ >∗y))

=
∧
y∈X(A∗(y)→ N x(>∗y)) (N x(>∗y)

= e∗N (x, y))
=
∧
y∈X(eN (x, y)→ A(y)).

Thus eN (x, x) ≥ (N x(>∗x))∗ ≥ >x(x) = >, i.e., eN is reflexive. SinceN x(N−(>∗z)) =
N x(>∗z) and N−(>∗z) =

∧
y∈X((N y(>∗z))∗ → >∗y),

N x(N−(>∗z)) = N x(
∧
y∈X((N y(>∗z))∗ → >∗y))

=
∧
y∈X((N y(>∗z))∗ → N x(>∗y))

= N x(>∗z)
iff
∨
y∈X((N y(>∗z))∗ � (N x(>∗y))∗) = (N x(>∗z))∗.

So eN is an L-fuzzy preorder, from the following:∨
y∈X(eN (y, z)� eN (x, y)) =

∨
y∈X((N y(>∗z))∗ � (N x(>∗y))∗)

= (N x(>∗z))∗ = eN (x, z).
(⇐) It is similarly proved as in (1).
(3) It is obvious that WN satisfies (F1) and (F2). Moreover, for each u ∈ LX×X ,

WN (u) =
∧
x∈X N x(u(x,−))

≤
∧
x∈X u(x,−)(x)

=
∧
x∈X u(x, x)

=
∧
x∈X [(x, x)](u).

For all u(x,−) ∈ LX×X , since u(x,−) =
∧
y∈X(u∗(x, y)→ >∗y), by Theorem 2.12

(F1) and (F2), we have
42
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WN (u) =
∧
x∈X N x(u(x,−))

=
∧
x∈X N x(

∧
y∈X(u∗(x, y)→ >∗y))

=
∧
x,y∈X(u∗(x, y)→ N x(>∗y))

=
∧
x,y∈X((N x(>∗y))∗ → u(x, y)).

If {N x | x ∈ X} is topological, since WN (>∗(x,y)) = N x(>∗y), by (2),∨
y∈X((WN (>∗(x,y)))

∗� (WN (>∗(y,z)))
∗) =

∨
y∈X((N x(>∗y))∗� (N y(>∗z))∗)

= (N x(>∗z))∗
= (WN (>∗(x,z)))

∗.

Then WN is an Alexandrov L-quasiuniform filter on X ×X.
(4) Let W be an Alexandrov L-quasiuniform filter on X ×X. Then N x

W satisfies
(F1) and (F2). Moreover, for each A ∈ LX ,

N x
W(A) =

∧
y∈X(W∗(>∗(x,y)))→ A(y))

≤ W∗(>∗(x,x)))→ A(x)

= A(x),
N x
W(N−W(A)) =

∧
y∈X(W∗(>∗(x,y)))→ N

y
W(A))

=
∧
y∈X(W∗(>∗(x,y)))→

∧
z∈X(W∗(>∗(y,z)))→ A(z)))

=
∧
z∈X(

∨
y∈X((W∗(>∗(x,y)))�W

∗(>∗(y,z)))→ A(z))

=
∧
z∈X(W∗(>∗(x,z))→ A(z))

= N x
W(A).

Since N x
W(>∗y) =W(>∗(x,y)),

WNW (u) =
∧
x,y∈X((N x

W(>∗y))∗ → u(x, y))

=
∧
x,y∈X((W(>∗(x,y)))

∗ → u(x, y))

=
∧
x,y∈X(u∗(x, y)→W(>∗(x,y)))

=W(
∧
x,y∈X(u∗(x, y)→ >∗(x,y)))

=W(u).
(5) For A ∈ LX ,

N x
WN

(A) =
∧
y∈X(W∗N (>∗(x,y))→ A(y))

=
∧
y∈X((N x(>∗y))∗ → A(y))

=
∧
y∈X(A∗ → N x(>∗y))

= N x(A). �

Remark 3.3. For 4 = {(x, x) | x ∈ X} ⊂ D, we define W =
∧

(x,y)∈D[(x, y)] is an

Alexandrov L-preuniform filter on X ×X. If D ◦D = D, then
∧

(x,y)∈D[(x, y)] is an

Alexandrov L-quasiuniform filter on X ×X. Since

eW(y, z) = (
∧

(x,y)∈D

[(x, y)])∗(>∗(y,z)) =
∨

(x,y)∈D

>(y,z)(x, y),

eW(x, y) =

{
>, if (x, y) ∈ D,
⊥, if (x, y) 6∈ D.

By Theorem 3.2 (4), we obtain an Alexandrov L-neighborhood filter N x
W on X such

that N x
W(A) =

∧
(x,y)∈D(eW(x, y)→ A(y)).

(1) If D = 4, then we have

N x
W(A) =

∧
(x,y)∈4

(eW(x, y)→ A(y)) = A(x) = [x](A).
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Since N x
W(>∗y) = >∗y(x),

WNW (u) =
∧
x,y∈X((N x

W(>∗y))∗ → u(x, y)) =
∧
x∈X u(x, x) =

∧
x∈X [(x, x)](u).

(2) If D = X ×X, then we get

N x
W(A) =

∧
(x,y)∈X×X

(eW(x, y)→ A(y)) =
∧
x∈X

A(x) =
∧
x∈X

[x](A).

Since N x
W(>∗y) =

∧
x∈X >∗y(x) = ⊥,

WNW (u) =
∧
x,y∈X((N x

W(>∗y))∗ → u(x, y))

=
∧

(x,y)∈X×X u(x, y)

=
∧
x,y∈X [(x, y)](u).

Theorem 3.4. (1) Let W : LX×X → L be an Alexandrov L-preuniform filter on
X × X. Define τW = {A ∈ LX |

∧
y∈X(W∗(>∗(−,y))) → A(y)) = A}. Then τW is

an Alexandrov L-topology on X. If W is an Alexandrov L-quasiuniform filter on
X ×X, τW = {

∧
y∈X(W∗(>∗(−,y)))→ A(y)) | A ∈ LX}.

(2) Let τ be an Alexandrov L-topology on X. Define Wτ : LX×X → L as

Wτ (u) =
∧

x,y∈X
(
∧
A∈τ

(A(x)→ A(y))→ u(x, y)).

Then Wτ is an Alexandrov L-quasiuniform filter on X ×X with τWτ
= τ .

(3)
∧
A∈τW (A(x) → A(y)) ≥

∧
z∈X(W∗(>∗(y,z)) → W

∗(>∗(x,z))). Moreover, if W
is an Alexandrov L-quasiuniform filter on X ×X, then∧

A∈τW

(A(x)→ A(y)) =
∧
z∈X

(W∗(>∗(y,z))→W
∗(>∗(x,z))) =W∗(>∗(x,y)).

(4) If W is an Alexandrov L-quasiuniform filter on X ×X, then WτW =W.

Proof. (1) (AT1) Since∧
y∈X(W∗(>∗(x,y)))→ αX(y)) ≤ W∗(>∗(x,x)))→ αX(x))

≤
∨
x∈X [(x, x)]∗(>∗(x,x))→ αX(x)

= α
and ∧

y∈X(W∗(>∗(x,y)))→ αX(y)) ≥ α,

we have
∧
y∈X(W∗(>∗(−,y)))→ αX(y)) = αX , i.e., αX ∈ τW .

(AT2) If Ai =
∧
y∈X(W∗(>∗(−,y))→ Ai(y)) for all i ∈ Γ, we get∨

i∈ΓAi =
∨
i∈Γ(

∧
y∈X(W∗(>∗(−,y))→ Ai(y)))

≤
∧
y∈X(W∗(>∗(−,y))→

∨
i∈ΓAi(y))

≤
∨
i∈ΓAi,∧

i∈ΓAi =
∧
i∈Γ

∧
y∈X(W∗(>∗(−,y))→ Ai(y))

=
∧
y∈X(W∗(>∗(−,y))→

∧
i∈ΓAi(y))

=
∧
i∈ΓAi.

Thus
∨
i∈ΓAi,

∧
i∈ΓAi ∈ τW .

(AT3) If A =
∧
y∈X(W∗(>∗(−,y))→ A(y)), then we have

α→ A = α→
∧
y∈X(W∗(>∗(−,y))→ A(y))

=
∧
y∈X(W∗(>∗(−,y))→ (α→ A)(y)),
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α�A = α�
∧
y∈X(W∗(>∗(−,y))→ A(y))

≤
∧
y∈X(W∗(>∗(−,y))→ α�A(y))

≤ α�A.
Thus α�A,α→ A ∈ τW . So τW is an Alexandrov L-topology on X.

Suppose W is an Alexandrov L-quasiuniform filter on X ×X. Put

τ = {
∧
y∈X

(W∗(>∗(−,y)))→ A(y)) | A ∈ LX}.

Let B ∈ τW . Then B ∈ τ . Let B =
∧
y∈X(W∗(>∗(−,y)))→ A(y)) ∈ τ . Then we get∧

z∈X(W∗(>∗(−,z)))→ B(z))

=
∧
z∈X(W∗(>∗(−,z)))→

∧
y∈X(W∗(>∗(z,y)))→ A(y)))

=
∧
y∈X(

∨
z∈X(W∗(>∗(−,z)))� (W∗(>∗(z,y)))→ A(y))

=
∧
y∈X(W∗(>∗(−,y))→ A(y))

= B ∈ τW .
(2) For A ∈ LX , since Wτ (α→ u) = α→Wτ (u),

Wτ (
∧
i∈Γ ui) =

∧
i∈ΓWτ (ui)

and
Wτ (u) =

∧
x,y∈X(

∧
A∈τ (A(x)→ A(y))→ u(x, y))

≤
∧
x∈X(

∧
A∈τ (A(x)→ A(x))→ u(x, x))

=
∧
x∈X [(x, x)](u).

Since W∗τ (>∗(x,y)) =
∧
A∈τ (A(x)→ A(y)), we have∨

y∈X(W∗τ (>∗(x,y))�W
∗
τ (>∗(x,y)))

=
∨
y∈X(

∧
A∈τ (A(x)→ A(y))�

∧
A∈τ (A(y)→ A(z)))

≤
∧
A∈τ (A(x)→ A(z))

=W∗τ (>∗(x,z)),∨
y∈X(W∗τ (>∗(x,y))�W

∗
τ (>∗(y,z))) ≥ W

∗
τ (>∗(x,x))�W

∗
τ (>∗(x,z))

=W∗τ (>∗(x,z)).
Then Wτ is an Alexandrov L-quasiuniform filter on X ×X.

Let B ∈ τ . Then∧
y∈X

(
∧
A∈τ

(A(x)→ A(y))→ B(y)) ≤ (A(x)→ A(x))→ B(x) = B(x).

Thus we have

B(x)� (
∧
A∈τ (A(x)→ A(y))) ≤ B(x)� (B(x)→ B(y)) ≤ B(y),

B(x) ≤
∧
y∈X

(
∧
A∈τ

(A(x)→ A(y))→ B(y)).

So B =
∧
y∈X(W∗τ (>∗(−,y))→ B(y)) ∈ τWτ .

Now letB ∈ τWτ
. Since

∨
A∈τ (A∗(y)�A(−))) ∈ τ and

∧
y∈X(B∗(y)→

∨
A∈τ (A∗(y)�

A(−))) ∈ τ , we get
B =

∧
y∈X(W∗τ (>∗(−,y))→ B(y))

=
∧
y∈X(

∧
A∈τ (A(−)→ A(y))→ B(y))

=
∧
y∈X(B∗(y)→

∨
A∈τ (A∗(y)�A(−))) ∈ τ.

(3) Since A =
∧
z∈X(W∗(>∗(−,z))→ A(z)) ∈ τW ,
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∧
A∈τW (A(x)→ A(y))

=
∧
z∈X(W∗(>∗(x,z))→ A(z))→

∧
z∈X(W∗(>∗(y,z))→ A(z))

≥
∧
z∈X(W∗(>∗(y,z))→W

∗(>∗(x,z))).
If W is an Alexandrov L-quasiuniform filter on X ×X, then∨

y∈X
(W∗(>∗(x,y))�W

∗(>∗(y,z))) ≤ W
∗(>∗(x,z)).

Thus W∗(>∗(x,y)) ≤
∧
z∈X((W∗(>∗(y,z))→W

∗(>∗(x,z))). Moreover, we have∧
z∈X(W∗(>∗(y,z))→W

∗(>∗(x,z))) ≤ W
∗(>∗(y,y))→W

∗(>∗(x,y))

≤ (
∨
x∈X [(x, x)]∗)(>∗(y,y))→W

∗(>∗(x,y))

=W∗(>∗(x,y)).

So
∧
z∈X(W∗(>∗(y,z)) → W

∗(>∗(x,z))) = W∗(>∗(x,y)). Since A(−) = W∗(>∗(x,−)) ∈
τW , we get∧

A∈τW (A(x)→ A(y)) ≤
∧
x∈X(W∗(>∗(x,x))→W

∗(>∗(x,y)))

≤ (
∨
y∈X [(y, y)]∗)(>∗(x,x))→W

∗(>∗(x,y))

=W∗(>∗(x,y))

=
∧
z∈X(W∗(>∗(y,z))→W

∗(>∗(x,z))).
(4) If W is an Alexandrov L-quasiuniform filter on X ×X, then by (3),

WτW (u) =
∧
x,y∈X(

∧
z∈X(W∗(>∗(y,z))→W

∗(>∗(x,z)))→ u(x, y))

≤
∧
x,y∈X(W∗(>∗(x,y))→ u(x, y))

=W(u). �

Example 3.5. (1) For A ∈ LX , we define eA(x, y) = A(x)→ A(y). Then eA is an
L-fuzzy preordered set on X. By a similar way in Theorem 3.4 (1), we obtain

τX = {
∧
y∈X

(eA(−, y)→ B(y)) | B ∈ LX}.

Define eτX (x, y) =
∧
B∈τX (B(x)→ B(y)). Since A ∈ τX , eτX (x, y) ≤ eA(x, y),

eτX (x, y) =
∧
B∈τX (B(x)→ B(y))

=
∧
C∈LX (

∧
z∈X(eA(x, z)→ C(z))→

∧
z∈X(eA(y, z)→ C(z)))

≥
∧
z∈X(eA(y, z)→ eA(x, z)) ≥ A(x)→ A(y).

Then eτX (x, y) = eA(x, y). Thus by Theorem 3.2 (1), WτX is an Alexandrov L-
quasiuniform filter on X ×X such that

WτX (u) =
∧

x,y∈X
(eA(x, y)→ u(x, y)).

Moreover, since W∗τX (>∗(−,y)) = eA(−, y),

τWτX
= {
∧
y∈X(eA(−, y)→ B(y)) | B ∈ LX} = τX .

(2) Let τX = LX . Then eτX (x, y) =
∧
B∈τX (B(x) → B(y)). For >x ∈ τX

and x 6= y, eτX (x, y) =
∧
B∈τX (B(x) → B(y)) ≤ >x(x) → >x(y) = ⊥. Thus for

eX = 4X×X with

4X×X(x, y) =

{
>, if y = x,
⊥, otherwise,

WτX (u) =
∧
x,y∈X(4X×X(x, y)→ u(x, y)) =

∧
x∈X u(x, x).
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By Theorem 3.2 (1), WτX is an Alexandrov L-quasiuniform filter on X ×X. More-
over, since W∗τX (>∗(−,y)) = 4X×X(−, y),

τWτX
= {B ∈ LX |

∧
y∈X(4X×X(−, y)→ B(y)) = B} = LX = τX .

(3) Let τX = {αX | α ∈ L}. Then

eτX (x, y) =
∧

B∈τX

(B(x)→ B(y)) = >,

WτX (u) =
∧
x,y∈X(>X×X(x, y)→ u(x, y)) =

∧
x,y∈X u(x, y).

Thus by Theorem 3.2 (1), WτX is an Alexandrov L-quasiuniform filter on X × X.
Moreover, since W∗τX (>∗(−,y)) = >X×X(−, y),

τWτX
= {B ∈ LX |

∧
y∈X(>X×X(−, y)→ B(y)) = B}

= {B ∈ LX |
∧
y∈X B(y) = B}

= {αX | α ∈ L}
= τX .

Example 3.6. Let eX ∈ LX×X be a reflexive L-fuzzy relation.
(1) Define WeX : LX×X → L as

WeX (u) =
∧

x,y∈X
(eX(x, y)→ u(x, y)).

By Theorem 3.2 (1), WeX is an Alexandrov L-preuniform filter on X ×X. If eX is
an L-fuzzy preorder on X, then we have∨

y∈X(W∗eX (>∗(x,y))�W
∗
eX (>∗(y,z))) =

∨
y∈X(eX(x, y)� eX(y, z))

= eX(x, z)
=W∗eX (>∗(x,z)).

Thus WeX is an Alexandrov L-quasiuniform filter on X ×X.
(2) Define N x

eX : LX → L as

N x
eX (A) =

∧
y∈X

(eX(x, y)→ A(y)).

By Theorem 3.2 (2), NeX = {N x
eX | x ∈ X} is an Alexandrov L-neighborhood

system on X. If eX is an L-fuzzy preorder on X, then NeX is topological.
(3) From (2) and Theorem 3.2 (3),

WNeX (u) =
∧
x∈X N x

eX (u(x,−)) =
∧
x,y∈X(eX(x, y)→ u(x, y)) =WeX (u).

Then WNeX is an Alexandrov preuniform L-filter on X ×X.

(4) Since WeX (>∗(x,y)) = e∗X(x, y),

N x
WeX

(A) =
∧
y∈X(W∗eX (>∗(x,y))→ A(y)) =

∧
y∈X(eX(x, y)→ A(y)) = N x

eX (A).

(5) By (3) and (4), WNWeX
=WNeX =WeX . By (3) and Theorem 3.2 (5),

N x
WNeX

= N x
WeX

= N x
eX .

47



Oh and Kim /Ann. Fuzzy Math. Inform. 23 (2022), No. 1, 37–51

(6) By Theorem 3.2, let W : LX×X → L be an Alexandrov preuniform L-filter
on X × X with a reflexive relation eW ∈ LX×X such that eW(x, z) = W∗(>∗(x,y)).

Then
W(u) =

∧
x,z∈X

(eW(x, z)→ u(x, z)) =WeW (u).

Since WeX (u) =
∧
x,z∈X(eX(x, z)→ u(x, z)) and WeX (>∗(x,y)) = e∗X(x, z),

eWeX
(x, y) =W∗eX (>∗(x,y)) = eX(x, y).

(7) By Theorem 3.2, since WeX (>∗(−,y)) = e∗X(−, y),

τWeX
= {A ∈ LX | A =

∧
y∈X(W∗eX (>∗(−,y))→ A(y))

=
∧
y∈X(eX(−, y)→ A(y))},

WτWeX
(u) =

∧
x,y∈X(

∧
A∈τWeX

(A(x)→ A(y))→ u(x, y))

=
∧
x,y∈X(

∧
z∈X(W∗eX (>∗(y,z))→W

∗
eX (>∗(x,z)))→ u(x, y))

=
∧
x,y∈X(

∧
z∈X(eX(y, z)→ eX(x, z))→ u(x, y))

≥
∧
x,y∈X((eX(y, y)→ eX(x, y))→ u(x, y))

=WeX (u).
If eX is an L-fuzzy preorder on X, then WτWeX

=WeX .

Example 3.7. Let X = {hi | i = {1, ..., 3}} with hi=house and Y = {e, b, w, c, i}
with e=expensive,b= beautiful, w=wooden, c= creative, i=in the green surround-
ings. Let ([0, 1],�,→,∗ , 0, 1) be a complete residuated lattice (See [6, 8, 27]) as

x� y = max{0, x+ y − 1}, x→ y = min{1− x+ y, 1}, x∗ = 1− x.
Let R ∈ [0, 1]X×Y be a fuzzy information as follows:

R e b w c i
h1 0.7 0.6 0.5 0.9 0.2
h2 0.6 0.8 0.4 0.3 0.5
h3 0.4 0.9 0.8 0.6 0.6

Define an L-fuzzy preorder e
{e,b}
X , eYX ∈ [0, 1]X×X by

e
{e,b}
X (hi, hj) =

∧
y∈{e,b}

(R(hi, y)→ R(hj , y)),

eYX(hi, hj) =
∧
y∈Y

(R(hi, y)→ R(hj , y)).

Then we have

e
{e,b}
X =

 1 0.9 0.7
0.8 1 0.8
0.7 0.9 1

 eYX =

 1 0.4 0.7
0.7 1 0.8
0.6 0.6 1


(1) We obtain Alexandrov L-quasiuniform filters W

e
{e,b}
X

,WeYX
: LX×X → L as

W
e
{e,b}
X

(u) =
∧
i,j∈{1,2,3}(e

{e,b}
X (hi, hj)→ u(hi, hj)),

WeYX
(u) =

∧
i,j∈{1,2,3}(e

Y
X(hi, hj)→ u(hi, hj)).

(2) By Theorem 3.2, since WeX (>∗(−,y)) = e∗X(−, y) for each eX ∈ {e{e,b}X , eYX},
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τWeX
= {
∧
j∈{1,2,3}(W∗eX (>∗(−,hj))→ A(hj)) | A ∈ LX}

=
∧
j∈{1,2,3}(eX(−, hj)→ A(hj)) | A ∈ LX},

∧
j∈{1,2,3}(e

{e,b}
X (−, hj)→ A(hj)) =

 A(h1) ∧ (0.1 +A(h2)) ∧ (0.3 +A(h3))
(0.2 +A(h1)) ∧A(h2) ∧ (0.2 +A(h3))
(0.3 +A(h1)) ∧ (0.1 +A(h2)) ∧A(h3)



∧
j∈{1,2,3}(e

Y
X(−, hj)→ A(hj)) =

 A(h1) ∧ (0.6 +A(h2)) ∧ (0.3 +A(h3))
(0.3 +A(h1)) ∧A(h2) ∧ (0.2 +A(h3))
(0.4 +A(h1)) ∧ (0.4 +A(h2)) ∧A(h3)


(3) For each eX ∈ {e{e,b}X , eYX},∧

A∈τWeX

(A(x)→ A(y)) =
∧
z∈X(W∗eX (>∗(y,z))→W

∗
eX (>∗(x,z)))

=W∗eX (>∗(x,y))

=
∧
z∈X(eX(y, z)→ eX(x, z))

=W∗eX (>∗(x,y))

= eX(x, z)
and

WτWeX
=WeX .

(4) For each eX ∈ {e{e,b}X , eYX}, since N h1
eX : LX → L as

N h1

WeX
(A) =

∧
y∈X

(eX(h1, h2)→ A(h2)),

N h1

W
e
{e,b}
X

(A) =
∧
y∈X(e

{e,b}
X (h1, h2)→ A(h2))

= A(h1) ∧ (0.1 +A(h2)) ∧ (0.3 +A(h3)),

N h1

W
eY
X

(A) =
∧
y∈X(eYX(h1, h2)→ A(h2))

= A(h1) ∧ (0.6 +A(h2)) ∧ (0.3 +A(h3)).

4. Conclusion

In this paper, we investigate the relations among Alexandrov L-neighborhood fil-
ters, Alexandrov L-topologies and Alexandrov L-preuniform filters as a viewpoint for
fuzzy rough sets. The relations among Alexandrov L-neighborhood spaces, Alexan-
drov L-topological spaces and Alexandrov L-preunitorm filter spaces are studied.
As a very important point of view for fuzzy information systems, Alexandrov L-
neighborhood filters, Alexandrov L-topologies and Alexandrov L-preuniform filters
can be fined in Example 3.7.
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