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ABSTRACT. In this paper, we study the discrete approximation for the
following nonlinear diffusion equation with nonlinear source and singular
boundary flux

OA(u)

3 =Uzz+(1—u)™% O0<z<l1,t>0,

ul(ovt) :07 uz(lvt) = 7B(u(17t))7 t> 07

u(z,0) =uo(z), 0<x<1,
with a > 0.
We find some conditions under which the solution of a discrete form of
above problem quenches in a finite time and estimate its discrete quenching
time. We also establish the convergence of the discrete quenching time to
the theoretical one when the mesh size tends to zero. Finally, we give some
numerical experiments for a best illustration of our analysis.
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1. INTRODUCTION

In this paper, we consider the nonlinear diffusion equation with nonlinear source
and singular boundary flux

A
(1.1) aTEtu):uer(lfu)fa, 0<z<l, t>0,

(1.2) ug(0,t) =0, up(1,t) = —B(u(1,t)), t>0,

(1.3) u(z,0) =up(x), 0<z<1,
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where A(s) is an appropriately smooth function which satisfies
A(0) =0, A(1) =1, A'(s) >0, A"(s) <0 Vs >0,
B(s) satisfies
B(s) >0, B'(s) <0, B"(s) >0, for s > 0, lim,_,o+ B(s) = 400

and ug : [0,1] — (0,1) is nonincreasing and satisfies some compatibility conditions
and « is a nonnegative constant.

Definition 1.1. We say that the solution u of (1.1)—(1.3) quenches in a finite time
if there exists a finite time T}, such that ||u(.,t)||s < 1 for ¢ € [0,T), but

li D)l = 1,
Jim [0

where ||u(.,t)]|co = Jmax |u(z,t)]. The time Ty, is called quenching time of the solu-
T

tion u.

When A(u) = u™, the problem (1.1)—(1.3) is known as the classical porous
medium equation which shows a number of physical phenomenon in the nature
such as the flow of an isentropic gas through a porous medium [1] and heat transfer
or diffusion [2] .

The problem (1.1)—(1.3) may be rewritten in the following model

(1.4) ur = Y(W gy +y(w)(1 —u)™%, 0<z<l, t>0,
(1.5) ur(0,8) =0, wuy,(l,t) =—B(u(l,t)), t>0,
(1.6) u(z,0) = up(x), 0<z<1,
here 5(u) = -
where y(u) = .
T )

In recent years, the theoretical study of quenching phenomenon for semilinear

parabolic equations has been carried out by many researchers (See [2, 3, 4, 5] and

references therein). Local in time existence and uniqueness of the solution have been
proved (See [3, 1]). Concerning problem (1.1)—(1.3), the author in [5] shows that the
solution w of (1.1)—(1.3) quenches in finite time T and = 0 is the unique quenching
point. He also shows that the time derivative u; blow-up at the quenching point and
he gives a lower bound of the quenching time.

In this paper, we deal with a numerical study using a discrete form obtained by
the finite difference method. For previous study on numerical approximations of
parabolic system we refer to [6, 7, g].

In the next section, we present a discrete scheme of (1.4)—(1.6) and give some
properties of the discrete solution. In the third section, we prove that the solution
of the discrete form of (1.4)—(1.6) quenches in a finite time and we give a estimation
of the discrete quenching time. In the fourth section, we study the convergence of
the discrete quenching time. In last section, we give some numerical results.

20
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2. PROPERTIES OF THE DISCRETE SCHEME

In this section, we give some lemmas which will be used later. We start by the
construction of the discrete scheme. Let I > 3 be a nonnegative integer and let

1
h = T Define the grid x; = ih , 0 < i < I and approximate the solution u of

(1.4)—(1.6) by the solution U,(Ln) =( én), Ul(n), o Uj(n))T and the initial condition wug
by the initial condition ¢;, = (¢o, @1, ..., o1)7 of the following discrete equations

1) 6UM =1UMPUN 14U A -UM) e, 0<i<T -1,

(2.2) §tUI(n):,y(UI(n))52UI(n)7 ol I )B( I )JF,Y(UI( ))(liUI(n))fa’
h

(2.3) U =, 0<i<I,

where

n>0, a>0,

U(n+1) . U(n)

(n)
ol At,, ’

0<i< I,

Ul —2u™ 4 U
E ’

52U = 1<i<I-—1,

201" — 208"
2o

20", — 20"

277(n) _
0°Uy 7 = [ ,

Uy =

5*%=W7 §Tpi <0, 0<i<I—1.

In order to permit the discrete solution to reproduce the properties of the con-
tinuous one when the time ¢ approaches to the quenching time T,, we need to adapt
the size of the time step. We choose

h? ,
At, = min {2,7(1 - U,§”>||oo)a+1} with 7 € (0,1) and U™ ||lse = max |U™)].

0<i<I

Lemma 2.1. Let b}ln), V}f") and f,(L") be three sequences with n > 0, fh") > 0 and
bgln) < 0 such that for0 <i<1T

(24) oV — fM a2V 4 bV > o,
Then we have
2
V™M >0,0<i<I, n>0 when At, < —
207
h oo

21
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Proof. A straightforward computation shows that

ynt 1 2At ||f(n)H v 24t H] (n)ll v v
n+1 n o0 n n oo n n n
( ) = ( hh2 " h2h 1( ) Atnb((l ) ()( )7

) (n)
(n+1) Atallfalloo \ o Atallfa Nl v 4o (n)/(n)
Vi > <1 - QT Li + 2 ( i1 T 1‘—1) - Atnbi i

1<i<I-—1,

;§+n2<1_2 Hg I v 4 |g1”‘4l—ﬂ%é)w)-

If Vh(n) > 0, then using an argument of recursion, we easily see that

Vh(n+1) >0,

2

because —b;ln) >0 and At, < W
2011 1] s

. This end the proof. O

Lemma 2.2. Let gé"), Vh(n) and W,g") be three sequences, with n > 0 and gé") <0,
such that for 0 <i<1T

5V — (VG V L gy < 5 g2y )y gy,

v <,
Then we have

vim<w™ 0<i<I, n>o.

Proof. Define the vector Z}(ln) = W}(ln) — Vh(n). For 0 < ¢ < I, a straightforward
calculation gives

02" =4 (V22 4 (o = (08w ) 2 > 0.

Where 05") is an intermediate value between Vi(n) and Wi(n), 0 <i<I. Knowing
that Z\” >0, from Lemma (2.1), we have Z\™ > 0. O

Lemma 2.3. Let g,&"), Vh(”) and Wén) be three sequences, with n > 0 and 9}(1”) <0,

such that for 0 <i <1,

5t‘/;(") _ ,y(‘/z("))é'?v;(”) + gz(")v;(") < 6tWi(n) _ ,Y(Wz("))52WZ(") + ggn)Wi("),

v <wiV.
Then we have

v <wiM 0<i<I, n>0.
99
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Proof. Define the vector Z,(ln) = W,En) — Vh(n). For 0 < ¢ < I, a straightforward
calculation gives

02" =4 (V22 4 (o — (08w ™) 2 > 0.

Where 05") is an intermediate value between Vi(n) and Wi("), 0 < i < I. Knowing
that Z\*) > 0, from Lemma (2.1), we have Z\" > 0. 0

Lemma 2.4. Let U,(ln), n >0 be a sequence such that ||U,(ln)||<>o < 1. Then we have
51— U™y > a1 — U™y 15u™, 0<i<I.
Proof. Using Taylor’s expansion, we get
6¢(1 — Ui(n))_a
n n 1 n —_— n .

= a(1 - UM)=e=15,0(™ 4+ Lo‘; ) At (1 0)o=2(5,U)2 0 < i < 1,
where 91(") is an intermediate value between Ui(n) and Ui("+1), 0 < i< 1I.We use the
fact that ||U}(L") loo <1, 7 >0 to complete the proof. O

Lemma 2.5. Let U}(ln), n > 0, be the solution of the discrete problem (2.1)—(2.3)
Then
U™ >0, 0<i<I

Proof. Consider the vector Z,(Ln) such that Zi(n) = (5tUi(n)7 0 < i < I. Then by using
Lemma (2.4), a straightforward calculation gives

6. 2" —y(U)3? 2" — ary(U)(1 = U)oz — 5 (U 27 52U
—' (UM —vuMyez™ >0,0<i< -1,

02" —(Ui)PZ]) —ay(U) (1 = U2 =y ) 0P
+H1 = U2+ S OB + (U ) B2 > .

Since Z,(LO) > 0, from Lemma (2.1), we have Z,Sn) > 0. Thus we get 6;U™ > 0,
0<i< 1. g
Lemma 2.6. Let U,(Ln), n > 0 be the solution of the discrete problem (2.1)—(2.3).
Then

(2.6) UM <u™, o<i<i-1

Proof. Define the vector Z\™ such that 2\ = U™ — U}, 0 <i < I—1. Then we
have

ZM=u™ U, 0<i<I-2,

20, = U2, -
By a straightforward computations, we have
02" = A(UDS 2 ++' () 282U + o (@) (1 - U)o

+ay (U =Myt z™M 0 <i <1 -2,
23
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621" = AU 2]+ () 218U 4+ (@) (- U 24
2/(U;")BU;")

oy (UMY (1 = M) —e-1 M) +

Where ¢ and w(™ are an intermediate values between U™ and Ui(fi, 0<i<I-1.
(0)

Knowing that Z, > 0, from Lemma (2.1), we have Z,S") > 0, which implies that
UM <u™o<i<i-1 0

7

3. QUENCHING IN THE DISCRETE PROBLEM

In this section, under some assumptions, we show that the solution U, }(L") of the
discrete problem (2.1)—(2.3) quenches in a finite time and estimate its numerical

quenching time. Now let us set Vh(n) =1- U,En). The problem (2.1)—(2.3) is equiva-
lent to

(31) 6V =1 = VM2V — (1 - V)W) o<i<T -1,

n n n 2 n n n n)\—o
(32) 8V =1 (1=V{)PV 4 (1= V) BA= V) A=V (V)7

(3.3) VO =g =1-¢, 0<i<I,
where
n>0, a>0.
Lemma 3.1. Let Vh("), n > 0 be a sequence such that ||V}fn)||inf > 0. Then we have
(VN = —a(vi) gy 0<i< T
Proof. Using Taylor’s expansion, we get

ala+1)

V) = oV D A )R 0 < <

where 95") is an intermediate value between Vi(") and Vi(nﬂ)7 0 <i < I. We use the
fact that ||V}§n) lint > 0, n > 0 to complete the proof. O

Lemma 3.2. Let Vh(n)7 n > 0 be a sequence such that HVh(n) |linf > 0 . Then we have
PV > —avi) T2V, 0<i< L

Proof. Applying Taylor’s expansion, we obtain

)\ —a n)\ —o— n n n ala+1 )\ —o—
VI o = _ (V) —am1g2y(0) 4 () )y (2h2 )(95 ))—a-z
" g o(a+1) () .
V) VRS ) 1 <i < T -,
n)\ —o n)\ —o— n n n a(a+1) n)\ —a—
52(VO( )) _ —a(VO( )) 1(52V0( )+ (Vl( )_VO( ))2 = (9(() )) 27
V) = (V) o2v 4 (vf - v 2t gy ame

24
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where 98") is an intermediate value between VO(") and Vl(n)7 Hgn) is an intermediate
value between Vl(_nl) and Vi("), 1<i<TI-1, 9%") is an intermediate value between
V™ and V™, ™ is an intermediate value between V™ and Vl(fl), 1<i<I-1
Using the fact that ||Vh(n) llins > 0, we complete the proof. O

Theorem 3.3. Let U,(Ln) be the solution of (2.1)—(2.3) Suppose that there exists a
constant A € (0,1] such that the initial data at (3.3) satisfies

(34) V(1= ¢:)8%¢; — (1 = ¢i)d; < =A%, 0<i<T-—1,
2 —a —«
(3.5) (1 —¢r)é%¢s + E’Y(l —¢1)B(1 —¢1) —v(1 = ¢1)d;* < =A™,
“+o0
Then U,Sn) quenches in a finite time TSt = Z At,,, which satisfies the estimate
n=0
1 — Jlenlloc)**!
TAt < T(
b= (=)t
D R : () (m)
where At,, = mln{Q,T(thm)a“} with 7 € (0,1), V. = (1 = ||U," ||oo) and
2 Cy\—a—1
7= /\min{—h (d)hm;n) T}

Proof. Introduce the vector J ,(l") defined as follows

I =5, (VMY + Ay 0<i<I, n>o0.
A straightforward computation yields for 0 < i < I and n > 0,
6tt]¢(n) — (1 — ‘/i(n))(;QJi(") _ 5t(5tVi(n) — (1 — Vi(n))(SQVi(n)) + )\515(‘/7;(”))_&
“Xy(1 = Ve e
From (3.1)—(3.2), we arrive at
001" = (1= Va2 = —6y(1 = V) V) e 4 e, (V)
M (1= VeV e 0 <i<T—1,

571" =41 = Va2 = —67(1 = V) V) me 4 ae, (V)
_/;7(1 _ Vl(ﬂ))(;Q(VI(”))—a
+=0 (vt = V"B - V™)),
8" = (1= VIR = —((1 = V) — Na(v) e
=Ay(1 =V (V)
~(V)y (- vi), 0<i <11,

51" = (1= V{M)e2I(" = —(v(1 = V™) = Nsu (Vi) e
“Xy(1 = ViRV e
—(vV") 81 = V™)
25
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+26, (41 - V) B~ V™))
It follows from Lemma (3.1) and Lemma (3.2) that for n > 0,
5tJ1'(n) _ ’7(1 _ V‘@("))éZJf") S Ck’)/(]. _ V;(”))(v;(”))faflat‘/z(")
—aA(%(n))7a71[5t‘/;(n) — (1 — ‘/;("))52‘/;(")}
~(Vi)ym (1= Vi), 0<i <1 -1,

571" = (1 = V)82 < an(1 = V) (V) et v
—aA(V") o 5, v
,g(l _ VI(TL))(;QVI(n)] _ (Vl(n))ia(;t’)/(l _ VI("))
z _ym _ym
50 (0= VB - VM),

0l =71 = VI < an(1 = V)V G+ AW )
~(V) sy (1= V), 0 <i < T -1,

51" = (1= Vi™)e g < an(1 = VI (V)T @ v A7)
() a1 - V)
+=0 (1= V") BOL- V™).
Finally, we obtain
50 J" =y (1=V )52 7 —ay (1=V, ) (V") ma L (V) gy (1= V)
<0,0<i<I-—1,
BTy (Vi) ey (=) V) T (V) e (V)
b (v =v)BO - VM) <0,
Using inequalities (3.4) and (3.5), we have J}(LO) < 0. Applying Lemma (2.1), we get
Jf(bn) < 0 for n > 0, which implies that
V;(nJrl) _ V;(”)

A MMM 0<i< nzo,

Then we get
(3.6) vt <y (1 - )\Atn(V;("))_"‘1> , 0<i<I, n>0.

These estimates reveal that the sequence Vh(") is nonincreasing. By induction, we
obtain V™ < V%) = ¢,,. Thus the following holds
hz(q&hmin)iail

AAL, (VI )=~ > A min : Ty =1,
Let 7 be such that V,f::gm = VZ-E)"). Replacing ¢ by ig in (3.6), we obtain
(3'7) Vif?nj;) < Vh(:z)in(l - 7—/)7 n >0,
and by iteration, we arrive at
(3.8) Vi <O (1) = Gpmin(1 =), 1> 0.

26
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Since the term on the right hand side of the above equality goes to zero as n ap-
proaches infinity, we conclude that Vh(;?m tends to zero as n approaches infinity. So
U, (n)||oo tends to one as n approaches infinity. Now, let us estimate the numerical

quenching time. Due to (3.8) and the restriction At,, < 7'(V(”)n)°‘+17 it is not hard
to see that

ZN <ZT¢?Z% L=,

Use the fact that the series on the right hand side of the above inequality converges
towards
+1
(ZS(})Lémin
1—(1—7)etl
and Opmin = (1 — ||enllso), we get

— llenlloc)
<
ZAt = 1_(1_ Mot

Remark 3.4. Using Taylor’s expansion, we get
1—(1=7)" = (a+1)7" +o(r),
which implies that

T _ T 1 < l 2
I—(1—7)tl 7 (a+1)+o(1) = 7 (a+1)

If we take 7 = h?, we have

T 1 . atl

5=y mln{2¢h;m, 1}.
Then

T 2T 2
< = in{2¢¢*: 1}
1— (1 _ T/)aJrl — T’(a + 1) )\(a + 1) mln{ ¢hmzn7 }

We conclude that W is bounded.

Remark 3.5. From (3.8), we deduce by induction that
v <y R ek for > k,

hmin hmin

and we see that
ZAt < Z (Vo )21 = 7)ot jnh,

which implies that
par o Vi)t
h k—l_(l_T/)a-i-l'
27
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Since V%) = (1= |UF]lo0), we get

hmin
(1= [0 ]loo)**
1— (1 - r)o+t

At g < T
In the sequel, we take 7 = h2.

4. CONVERGENCE OF THE DISCRETE QUENNCHING TIME

In this section, under some assumptions, we show that the numerical quenching
time of the discrete solution converges to the real one when the mesh size goes to
zero. We denote by

wn(tn) = (u(@o, ta), ul@r, ), o u(ar, t)" and U oo = max (U],

In order to obtain the convergence of the numerical quenching time, we firstly prove
the following theorem about the convergence of the discrete scheme.

Theorem 4.1. Assume that the continuous problem (1.4)—(1.6) has a solution u €
C*2(0,1] x [0,T]) such that sup ||u(.,t)]|ecc =¢, (0 < ¢ < 1). Suppose the initial
¢

)

condition at (2.3) satisfies
(4.1) len —un(0)]|oo = 0(1) as h—0.

Then, for h sufficiently small, the discrete problem (2.1)~(2.3) has a solution U,(Ln),
0 <n < J, and we have the following relation

max (|0 = un(tn)]loo) = Oln — un(0)l|o +h) as h— 0.

0<n<J
J—1 n—1
Where J is such that Z At; <T and t, = Z At;.
j=0 j=0

Proof. For each h, the discrete problem (2.1)—(2.3) has a solution U}(L"). Let N < J,
the greatest value of n such that there exists a positive constant 3
( with ¢ < 8 < 1) such that

n -
(4.2) |mjf%mmm<ﬁr,n<N

We know that N > 1 because of (4.1). Using the triangular inequality, for n < N,
we have

n n B—1 B+t
A3) U™ oo < NJun(t)lloo + U™ = un(tn)lloo < ¢+ =

<1
- 2 2

Let e = U™ — w(t,) be the error of discretization, for n < N. Using Taylor’s
expansion, we have

Sees” — y(ulwo, tn))8%e5") = [ar(u(zo, t,))(1 — 6) =
+ (") (1 — Ué:ra + o (™) 82U ey
2
+’Y(’U/($07 tn)) Euwwzz (i'Oa tn) + gua:mz (3307 tn) h
28
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At,
—"/(’LL((Eo, tn)) Tutt (.’E07 tn)a

(ulrs b)) - 6")) o1
7 0) (1 = U)o )80 ey

(
W0 1)) 0t (B 1)
(u(

§eel™ — y(u(wi, t))8%e") = [a

At,
—Y\ulZ;, n)) 2 utt(xutn)a

Bie) — Aulr, )% = lay(uler, t))(1 - 68)=
+y (M1 - Uiy
+y' (ny)o2Uf — %v’(n§”))B(U}”>)
*%W“(%tn>>B’<o§")>}e§"’

+y(u(zr,ty)) <1h2umm(x1,t ) — §umm(x1,tn)> h

At,
*’Y(U(xl,tn))TUtt(ﬁatn)v
where Q(n) n) are intermediate values between U(") and u(z;, t,), 0 <i < I, and

0§ ™ is an 1ntermed1ate value between U( ™ and u(xy, ty). Since Uypy (T, ), Uppr (T, )
and ug(z,t) are bounded and At,, = O(h2) there exist a positive constant L > 0

such that
5te(()") — 5268n) < C(gn)eén) + Lh,

gl — 8% < CMel™ + Lh?, 1<i<I-1,

Siel™) — 5% < cMelm 4 L,

where
Gy = ary(ulo, tn))(1 = 057) 707 /(g™ (1 = U)o (™00,

") = on(ulei,ta)) (L = 607) 700 o/ (™)L = U)o/ ()60 ",
1<i<I—-1,
cm _ EN(] — 9y —a=1 A7y U(n) s2u™
I 0472( w(@r,tn))(1 - 0; )2 +7' () )=+ (nf")62U]
—=y/ (") BU[™) = Zr(ular, 1) B (o]").
Set M = Orgagl{ci( } and introduce the vector Z,(Ln) defined as follows
Z = MV (o — up (0)]|so + Lh), 0<i<I, n<AN.
By a straightforward computations, we have

5,2 — 622" > Mz 4 Lh,

52" — 52720 > c™Mz™ L Lk, 1<i<I-1,
29
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5,2 — 527" > ™z 4 L,
7050 o<i<r

It follows from Lemma (2.3) that

ZM > e 0<i<I.
By the same way, we also prove that

7™M s M o<i<l,
which implies that

7™M > e™) 0<i<I.
we deduce that

44) O = unta)lloo < eV (|l op — up(0)]| oo + Lh), n < N.

Now, let us show that N = J. Suppose that N < J. If we replace n by N in
(4.4), and taking into account the inequality (4.2), we obtain

— L
@5) Tt < U™ i)l < MV (lgn — un ()]l + LB).

Since eM+DT(||pp, — up(0)|oo + Lh) — 0 as h — 0, we deduce from (4.5) that

% < 0, which is impossible. Consequently, N = J, and we conclude the proof.
O

Theorem 4.2. Suppose that the solution u of problem (1.4)—(1.6) quenches in a
finite time T, such that u € C*2([0,1]x[0,T,)) and the iniatial data at (2.3) satisfies
[lon — un(0)||oo = 0(1) as h — 0.

Under the hypothesis of Theorem (3.3), the problem (2.1)—(2.3) has a discrete solu-

tion U,(Zn) which quenches in a finite time ThAt and we have

lim T2t =T,.
h—0 h g

Proof. We know from Remark (3.4) that ﬁ is bounded.

T
Let 0 <e < 7'1, there exists a constant n = 8 — ¢ (0 < ¢ < 8 < 1) such that

(4.6) -9 e

—, o€E[l—n1
1_(1_7./)a+1 2 % [ n )

Since u quenches, there exists Ty € (T, — %,Tq) and ho(e) > 0 such that 1 — g <
k-1
[lu(., tn)lloo < 1fort, € [T1,T,). Let k be a positive integer such that ¢ = Z At, €
n=0
[T1,T,) for h < ho(e). It follows from Theorem (4.1) that the problem (2.1)—(2.3)
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has a solution U,(L”) which verifies ||U}(Ln) —Up(tn)|loo < g for n <k, h < ho(e). This
fact implies that
(k) (k) non_
10 oo 2 Nl ti)lloe = U™ —un(t)lloo 21 =5 =5 =1=mn, h<hoe).
From Theorem (3.3), U ,(L”) quenches at the time T2t Tt follows from Remark (3.5)
(1= U [loo)+!

and (4.6) that |[T2t —t| < T (1= 7)o < g We deduce that for h < hg(e),

Ty = T < |Ty =t + [ty = T < 5 + 5 < e

N ™
| ™

Which leads us to the result. O

5. NUMERICAL EXPERIMENTS

In this section, we present some numerical approximations of the quenching time

1
of the problem (1.4)—(1.6) in the case where ug(z) = 0.7 — 5:104,

N U™My(-p) N N
v(Ui( )) = %, B(Ui( )) = (Ui( ))’q,() < i< I where 0 <p<1andgqg>0.

We consider the following explicit scheme

v ol Ui 20+ US| )0

— (U™M)(-p) Zitl 1—Uy™y-a

A ") e (=T,

1<i<T -1,
(n+1) (n) (n) (n) (n)y(1—

Uy —Ug _ (U(’ﬂ))(l—p) 20U, — 20, + (Up )(1 ?) (1— U(”))—a

Ate 0 ph? P 0 ’
UI(nJrl) B UIn) _ (UI(n))(l—;D) 2UI(1L)1 - 2U1(n) _ 2(UI(n))(1_p) (U[(n))_q

Ate ph? ph

! Uimya-») (n)
Q0 -U")""

h? .
where n > 0, At = min {2, h2(1 — HU,(L ) |Oo)°‘+1} . We also consider the implicit
scheme

n n n+1 n+1 n+1
Ui( ) Ui( : _ (Uﬁn))(lfp) Uv:(+;r ) — 2Ui( oy Ui(—;r )
At, ¢ ph?

(AR

+ (1-U™)e 1<i<I—1,
p
n+1 n n+1 n+1
U™ =0y _ iy 2017 — 205"
At,, 0 ph?
™y (1-p) N
+( 0 ) (1 _ Ué ))—oc7

b
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Uit — 2™ g (um)y-w)
ph? ph

(1 - UI(H))ﬂl’

n+1 n
vt ot
Aty,

- (UI("))(l—p) (UI("))—q

LWt

Ui(o) :SD’LaOSZS]?

where n > 0, At,, = h?(1 — ||U}5n)Hoo)a+1~
In the following tables, in rows, we present the numerical quenching times 7,
109((T4h - TZh)/(TQh — Th)) of

the numbers of iterations n and the orders s =

log(2)
the approximations corresponding to meshes 16, 32, 64,128, 256,512. The numeri-
n—1
cal quenching time T™ = Z At; is computed at the first time when
§=0

|T’n+1 _ Tn| S 10—16.

TABLE 1. Numerical quenching times, the numbers of iterations
and the orders obtained with the explicit Euler method a = 4,
p=0.,5and ¢=0.1

1 T n S
16 | 0,0002849086616 667 -
32 | 0,0002819104743 | 2531 -
64 | 0,0002811654024 | 9562 | 2.01
128 | 0,0002809794133 | 35977 | 2.00

256 | 0,0002809329330 | 134803 | 2.00
512 | 0,0002809213121 | 502755 | 1.99

TABLE 2. Numerical quenching times, the numbers of iterations
and the orders obtained with the implicit Euler method a = 4,
p=0.5and ¢g=0.1

I T n S
16 | 0,0002849095211 667 -
32 | 0,0002819106436 | 2531 -
64 | 0,0002811654418 | 9562 | 2.01
128 | 0,0002809794230 | 35977 | 2.00
256 | 0,0002809329354 | 134803 | 2.00
512 | 0.0002809213128 | 502755 | 1.99

We also give some plots to illustrate our analysis. For the different plots, we
used both explicit and implicit schemes in the case where I = 64 and (a;p;q) =
(4;0.5;0.1). Figures 1, 2 show that the discrete solution quenches. In figures 3, 4,
we can appreciate that the discrete solution is nonincreasing and quenches at the
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first node. For figures 5, 6, we see that the discrete solution is increasing with respect
to time and quenches at finite time 2.8 x 1074,

o o
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10000

Ficure 1. Evolution
of the numerical solu-
tion (explicit scheme).

°

FIGURE 3. The pro-
fil of the approxima-
tion of u(x,T) where, T
is the quenching time
(explicit scheme).
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FIGURE 5. The pro- FIGURE 6. The pro-
fil of the approxima- fil of the approxima-
tion of [|U™ e (ex- tion of U™ |le (im-
plicit scheme). plicit scheme).

6. CONCLUSION

In this paper, we have studied the numerical quenching of the solution of the
nonlinear diffusion equation with nonlinear source and singular boundary flux (1.1)—
(1.3) and we have obtained good approximations of its quenching time.

We have constructed, by the finite difference method, the discrete problem (2.1)—
(2.3) associated to the continuous problem (1.4)—(1.6). We have shown that under
some conditions, the solution of the discrete problem (2.1)—(2.3) quenches in finite
time and we have estimated its discrete quenching time. We have also established
the convergence of the discrete time towards the theoretical time when the spatial
and temporal discretionary steps tend towards zero. Finally, we have given some
numerical experiments to illustrate our analysis.
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