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Abstract. In this paper, we introduce the covering L−semi uniform
spaces (briefly CLS-Uniform spaces). Interior operator in the context of
CLS-uniform spaces have been introduced and it is extended to be topolog-
ical interior operator. Semi-uniformly continuous function have also been
studied in the context of CLS-uniform spaces. Lastly we have shown that
every CLS-uniform spaces is L−semi-pseudo-metrizable if it has countable
base.
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1. Introduction

Uniform spaces through the entourage approach in the fuzzy set have been
studied by several authors[1, 2, 3, 4] in the category I-TOP and L-TOP. Uniform
spaces through covering approach was introduced by Soetens and Wuyts [5], Chan-

drika and Meenakshi [6], and Chandrika [7] in the category I−TOP and Garćia
et al [8] in the category L-TOP. Hazarika and Mitra have developed generalised
uniform structures such as semi-uniformity, locally uniformity and quasi-uniformity
through the entourage approach in [9, 10, 11, 12, 13, 14, 15, 16] in the category
I-TOP and L-TOP many interesting result were obtained such as completeness,
compactness, uniform continuity and metrization. It is been always observed that
the uniform spaces generates completely regular topological spaces which is strong
topological spaces and then the finding for the weaker topological spaces to study
uniform properties it is necessary to generalised uniform structures. Recently, we
have introduced localization uniform spaces through the covering approach in [17] in
the category L-TOP and many spectacular results were obtained and it generates
regular L-topological spaces. For this purpose we further generalised to find the
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answer of the question for weaker topological to study the uniform structures. How-
ever non of the authors were consider semi-uniform structure through the covering
approach in the fuzzy setting.

In this paper, we introduce the notion of covering L-semi uniform spaces (in

briefly CLS-uniform spaces) in the sense of Garćia et al [8]. Several results on L-
topoloical spaces, semi uniformly continuous, metrization have been obtained. In
next article, we will study various notion in the context of CLS-uniform spaces such
as completeness and compactness.

2. Preliminaries

Throughout this paper (L, ≤,
∧
,
∨

) denotes a fuzzy lattice with order reversing
involution ′; 0L and 1L are respectively inf and sup in L. X is an arbitrary (ordinary)
set and LX denotes the collection of all mappings A : X → L. Any member of LX

is an L-fuzzy set. The L-fuzzy sets xα : X → L defined by xα(y) = 0L if x 6= y and
xα(y) = α if x = y are the L-fuzzy points. The mappings A : X → L and B : X → L
defined by A(x) = 1L, ∀x ∈ X and B(x) = 0L, ∀x ∈ X are denoted by 1 and 0
respectively. For any A, B ∈ LX , the union and intersection of A and B are defined
as A ∪ B(x) = A(x) ∨ B(x) and A

⋂
B(x) = A(x) ∧ B(x) respectively. Further, we

say that A ⊆ B if and only if A(x) ≤ B(x) and xα ∈ A if and only if α < A(x),
where xα is an L-fuzzy point; complement A′ of A is defined as A′(x) = A(x)′. An
L-topology F on LX is a subset of LX closed under finite intersection and arbitrary
union. In this case, the pair (LX , F) is known as L-topological space. The elements
of F are called open sets and their complements are the closed sets. For any A ∈ LX ,
the interior and closure of A in L-topological space (LX , F), are respectively denoted
by Ao and A. For basic definitions and results of product of L-topological spaces we
refer to [18, 19]. Covering L-valued uniformity referred in this paper is in the sense
of Garćıa et al. [8].

Definition 2.1 ([19]). Let L− be a lattice α ∈ L. α is said to be join-irreducible, if
α < 1L and for all a, b ∈ L,α = a ∨ b⇒ α = a or α = b. A join-irreducible element
of L is called an molecule in L.
The set of all molecules in L is denoted by M(L).

Definition 2.2 ([19]). Let L be a complete lattice. Define a relation � in L as
follows ∀a, b ∈ L, a � b iff ∀S ⊆ L, b ≤ ∨S ⇒ ∃s ∈ S such that a ≤ s, denote
βL(a) = {b ∈ L : b � a}, β∗L(a) = M(βL(a)); or denote them respectively by β(a)
and β∗(a), in short. ∀a ∈ L.D ⊆ β(a) is called a minimal set of a, if ∨D = a.

Definition 2.3. [20] Let int : LX → LX be a mapping on LX . Then int is called
an interior operator on LX , if it fulfills the following conditions:

(io1) int(1) = 1.
(io2) int(A) ⊆ A,∀A ∈ LX .
(io3) int(A

⋂
B) = int(A)

⋂
int(B).

LX together with an interior operator “int” shall be called an interior space.

An interior operator “int” is said to be a topological interior, if in addition it
satisfies the following:
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(io4) int(int(A)) = int(A),∀A ∈ LX .
For any A ∈ LX with (int(A′))′ is closure of A with respect to interior operator int
denoted by cl(A).

Definition 2.4 ([8]). A collection A of LX is called an L-cover of LX , if
⋃

A = 1.
For any A ,B ⊆ LX then A refines B if and only if for each A ∈ A , there exits
B ∈ B such that A ⊆ B. we write A 4 B. The set of all L−covers of LX , defined
as L− Cov(X), is a preordered set with respect to the relation ‘4’.

Proposition 2.5 ([8]). For every L−covers A and B of LX , we have A
⋂

B =
{A

⋂
B : A ∈ A , B ∈ B} is also L-cover of LX .

Definition 2.6 ([8]). For each A ∈ LX and A ⊆ LX , the star of A with respect
to A is defined as st(A,A ) :=

⋃
{B ∈ A : B

⋂
A 6= 0}. The collection st(A ) :=

{st(A,A ) : A ∈ A }, is an L-cover of LX , whenever A is so.

Theorem 2.7 ([8]). Let A ,B ⊆ LX and A, B ∈ LX .

(1) If A is an L-cover of LX , then A ⊆ st(A,A ) and consequently, A 4 st(A ).
(2) If A ⊆ B, then st(A,A ) ⊆ st(B,A ).
(3) If A 4 B, then st(A,A ) ⊆ st(A,B).
(4) st(

⋃
B,A ) =

⋃
B∈B st(B,A ).

(5) If A is an L−cover, then st(st(A,A ),A ) ⊆ st(A, st(A )).
(6) Let f→ : LX → LY be an L−fuzzy mapping and B ⊆ LY . Also, let

f−1(B) = {f←(B) : B ∈ B} and C ∈ LY . Then st(f←(C), f−1(B)) ⊆
f←(st(C,B)).

Remark 2.8. Let A and B be two L-covers of LX such that st(A ) 4 B, then
st(A, st(A ) ⊆ st(A,B) ∀ A ∈ LX .

Definition 2.9 ([17]). A pair (LX ,U), consisting of LX and a non-empty family U
of L-covers of LX , is said to be a covering L-locally uniform space, whenever the
following conditions are satisfied:

(lc1) A 4 B,A ∈ U⇒ B ∈ U.
(lc2) For every A ,B ∈ U,A

⋂
B ∈ U.

(lc3) For each xα ∈ LX and A ∈ U, there exits B ∈ U such that

st(xα, st(B)) ⊆ st(xα,A ).

Theorem 2.10 ([19]). A mapping P : LX × LX → [0,+∞] is an L-pseudo quasi-
metric(L-pseudo metric, respectively) on LX if P satisfies the following conditions
(SEMI1)-(SEM3)((SEM1)-(SEM4) respectively:

(SEM1) B ⊆ A⇒ P (A,B) = 0, B 6= 0⇒ P (0, B) = +∞.
(SEM2) P (A,B) ≤ P (A,C) + P (C,B).
(SEM3) A,B 6= 0⇒ P (A,B) = ∪xα∈β∗(B) ∩yβ∈β∗(A) P (yβ , xα).
(SEM4) “P (A,C) < r ⇒ C ⊆ B”⇔ “P (B′, D) < r ⇒ D ⊆ A′”.

Definition 2.11 ([14]). A mapping P : LX × LX → [0,+∞] is called an L-semi-
pseudo-metric on LX , if P satisfies the axioms (SEM1),(SEM3), (SEM4) and the
following:

(SEM5) A ⊆ B ⇒ P (B,C) ≤ P (A,C).
The pair (LX , P ) is called an L-semi-pseudo-metric space.
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Definition 2.12. Let P be a L-semi-pseudo-metric on LX . The for any xα ∈ LX
and ε > 0, Bε(xα) =

⋃
{yβ : d(xα, yβ) < ε is a fuzzy set, which is called an ε−open

batt of xα.

3. Covering L-Semi-uniform structure

Definition 3.1. A non-empty family S of L−covers of LX is said to be cover-
ing semi-uniform spaces (in short, CLS-uniform space), if it satisfies the following
conditions:

(sc1) A 4 B,A ∈ S⇒ B ∈ S.
(sc2) For every A ,B ∈ S,A

⋂
B ∈ S.

A CLS-uniform space will be denoted by (LX ,S).

Definition 3.2. A non-empty sub-family B of S is called a base for CLS-uniform
space on LX , if for any S ∈ S, there is B ∈ S such that B 4 S .

Theorem 3.3. Every covering L-locally uniform space is a covering CLS-uniform
space.

Proof. It follows from the Definition 2.9. �

Converse of above theorem is not true, for this we cite the following example.

Example 3.4. Let X = {a, b, c} with L = [0, 1]. Consider A = {{a}, {b}, {a, b}{c}}
and B = {{a}, {a, b}, {b, c}, {c}} are L-covers, then B = {A ,B} is a base for CLS-
uniform space. But for a and A , there is no B such that st(a, st(B)) ⊆ st(a,A ).

From theorem 3.3, and example 3.4, we can conclude that every CLS-unform
spaces is generalisation of covering L-locally uniform spaces form our previous paper
[17].

Lemma 3.5. Let (LX ,S) be an CLS-uniform space. The mapping int : LX → LX

defined by

int(A) =
⋃
{xα : st(xα,C ) ⊆ A, for some C ∈ S}

is an interior operator on LX

Proof. (io1) Clearly, int(1) = 1.
(io2) int(A) ⊆ A.
(io3) By (sc2), we have int(A

⋂
B) = int(A)

⋂
int(B). �

Every CLS-uniform spaces generates an interior spaces. Generated interior space
of CLS-Uniform space may not be topological interior for this we cite the following
example.

Example 3.6. Let X = {a, b, c} and L = [0, 1] Then the collection
S = {A = {{a, b}, {b, c}},B = {a, b, c}} is CLS-Uniform space. Here A = {{a, b}}.
Thus int(A) = {a} and int(int(A)) = 0, and clearly, int(A) 6= int(int(A)).

Theorem 3.7. Let (LX ,S) be an CLS-uniform space.Then the required condition
for generated interior space to be topological ∀A ∈ S and ∀xα there exits B ∈ S
such that ∀yβ ∈ st(xα,B) there corresponds C ∈ S with st(yβ ,C ) ⊆ st(xα,A ).
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Proof. Let xα ∈ int(A). Then there exist some A ∈ S such that st(xα,A ) ⊆ A.
Let B ∈ S such that for any yβ ∈ st(xα,B), there is C ∈ S such that st(yβ ,C ) ⊆
st(xα,A ). Since xα ∈ st(xα,B), we may choose C ∈ S such that st(xα,C ) ⊆
st(xα,A ). This implies xα ∈ int(int(A)) and since the other inclusion follows by
(io2) in lemma 3.5, we have int(A) = int(int(A)). �

Theorem 3.8. An CLS- uniform spaces with the condition in Theorem 3.7 generates
an L-topological spaces.

Proof. It follows from Lemma 3.5 and Theorem 3.7. �

The L-topology induced by an CLS-uniform spaces is denoted by F(S). We can
conclude that the topological CLS-uniform spaces lies between CLS-uniform space
and covering L-locally uniform spaces.

Theorem 3.9. Let (LX ,S1) and (LX ,S2) be two CLS-uniform spaces. If S1 ⊆ S2,
then F(S1) ⊆ F(S2).

Proof. Straightforward. �

Theorem 3.10. Let (LX ,S) be an CLS-uniform spaces. Then {st(xα,A ) : A ∈ S}
is a base for nbds(=neighborhoods) of xα in interior spaces

Proof. Suppose G ∈ LX is open and xα ∈ G. Since int(G) = G, there exits A ∈ S
such that st(xα,A ) ⊆ G. Then {st(xα,A ) : A ∈ S} is a base for nbds of xα. �

4. Uniform Continuous

Definition 4.1. Let (LX ,S1) and (LY ,S2) be two CLS-uniform spaces. Then
f→ : LX → LY is said to be semi-uniformly continuous, if f−1(B) ∈ S1 for each
B ∈ S2, where f−1(B) = {f←(B) : B ∈ B}.

Theorem 4.2. Let f→ : (LX ,S1) → (LY ,S2) be semi-uniformly continuous is
continuous. Then f→ : (LX ,F(S1))→ (LY ,F(S2)) is continuous function.

Proof. Let f→ : (LX ,S1)→ (LY ,S2) be a semi-uniformly continuous function. Let
A ∈ LY . Then int(A) =

⋃
{xα : st(xα,A ) ⊆ A} for some A ∈ S2. Since f← is

arbitrary join preserving, then by Theorem 2.1.17 (i) in [19], we have

(4.1) f←(int(A)) =
⋃
{f←(xα) : st(xα,A ) ⊆ A for some A ∈ S2}.

Also since f← is order preserving, we have

(4.2) st(xα,A ) ⊆ A⇒ f←(st(xα,A )) ⊆ f←(A).

By the Theorem 2.7 (6) and (4.2), we have

(4.3) st(f←(xα), f−1(A )) ⊆ f←(st(xα,A )) ⊆ f←(A).

Again from (4.1), we have
(4.4)

f←(int(A)) =
⋃
{f←(xα) : (st(f←(xα), f−1(A )) ⊆ f←(A) for some A ∈ S2}.

Since f→ is semi-uniformly continuous, f−1(A ) ∈ S1. Then by (4.4), f←(int(A)) ⊆
int(f←(int(A))) implies f←(int(A)) ∈ F(S1). Thus the theorem holds. �
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Theorem 4.3. The composition of semi-uniformly continuous function is semi-
uniformly continuous.

Proof. Let f→ : (LX ,S1) → (LY ,S2) and g→ : (LY ,S2) → (LZ ,S3) be two semi-
uniformly continuous functions. Let C ∈ S3. Then by the Theorem 2.1.23 (ii) in
[19], we have (g ◦ f)−1(C ) = f−1(g−1(C )). Since g→ is semi-uniformly continuous
g−1(C ) ∈ S2. Also f−1 is uniformly continuous implies f−1(g−1(C )) ∈ S1. Thus
(g ◦ f)→ is semi-uniformly continuous. �

5. Metrization

The problem of metrization has occupied an important place in the study of
uniform spaces. Having developed the theory of CLS-uniform spaces, we proceed to
discuss the problem of metrization(semi-pseudo-metrization) in the same context.

Theorem 5.1. Every L-semi-pseudo metric generates a CLS-unform space.

Proof. let (LX , P ) be an L-semi-pseudo-metric space and for any s > 0, let Us be
an L-cover of LX such that Us = {Bε(xα) : xα ∈ LX}. Then clearly, U 1

2 s
4 Us and

Us

⋂
Ut 4 Umax[s,t]. Thus ψ(P ) = {Us : s > 0} is a base for CLS-uniformity. �

Definition 5.2. We say that a CLS-uniform pace (LXS) is L-semi-pseudo-metrizable,
if there is an L-semi-pseudo-metric that generates S.

We now proceed the following theorem which is the main result of the section.

Definition 5.3. A CLS-uniform space is said to be L-semi-pseudo-metrizable, if it
is induced by a L-semi-pseudo-metric.

Lemma 5.4. Let (LX ,S) be a CLS-uniform space. For C ∈ S define a map-
ping ψ(C ) : LX → LX such that [ψ(C )](A) = st(A,C ). Then [ψ(C )](

⋃
iAi) =

st(
⋂
iAi,C ) =

⋃
i[ψ(C )](Ai).

Theorem 5.5. A CLS-uniform space is L−semi-pseudo-metrizable, if it has a
countable base.

Proof. Let {Cn : n ∈ N} be a base for CLS-uniform space (LX ,S). Without lost
of generality, we can assume Cn+1 4 Cn for each n ∈ N. For any r > 0, let
ψr : LX → LX be a mapping defined by

∀A ∈ LX , if 1
2n < r ≤ 1

2n−1 , then [ψr(Cn)](A) = st(A,Cn)

and if [ψr(Cn)](A) = 1 or 0 according A 6= 0 or A = 0.
For every r > 0, let Fr : LX → LX be a mapping defined by

Fr = {ψrk :

k∑
i=0

rk = r, ∀i ≤ k, ri > 0, k < ω}.

Then clearly, {Fr : r > 0} is a base for S and also define

Fr(A) =
⋃
xα∈A

st(xα,Fr) for all A ∈ LX .
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Let P : LX × LX → [0,∞] be a mapping defined by:

P (A,B) =
∧
{r : B ⊆ Fr(A)},

where we assume that
∧

Φ = +∞ .
We claim that P is the required L-semi-pseudo-metric that generates S.

(SEM1) By Theorem 2.10, P fulfils (SEM1).
(SEM3) By Theorem 1.3.24 (ii) in [19], we have β∗[Fr] =

⋃
A∈Fr

β∗(A).
Now for any arbitrary A, B 6= 0, by assumption, we get

P (A,B) < r =⇒ B ⊆ Fr(A)
=⇒ ∀xα ∈ β∗(B), xα ∈ β∗(Fr(A))
=⇒ ∀xβ ∈ β∗(B),∃yβ ∈ β∗(A), xα ∈ β∗(Fr(yβ))
=⇒ xα ∈ β∗(B),∃yβ ∈ β∗(A), P (yβ , xα) < r
=⇒

⋃
xα∈β∗(B)

⋂
yβ∈β∗(A) P (yβ , xα) < r.

Again suppose that
⋃
xα∈β∗(B)

⋂
yβ∈β∗(A) P (yβ , xα) < r. Then

∀xα ∈ β∗(B),∃yβ(xα) ∈ β∗(A), P (yβ(xα), xα) < r,

where yβ(xα) is an L-fuzzy point corresponding to the L-fuzzy point xα.
Thus we have

xα ∈ β∗(B),∃yβ(xα) ∈ β∗(A), xα ⊆ Fr(yβ(xα))
=⇒ B =

⋃
β∗(B) ⊆

⋃
xα∈β∗(B) Fr(yβ(xα))

=⇒ Fr(
⋃
xα∈β∗(B) yβ(xα)) ⊆ Fr(

⋃
β∗(A)) = Fr(A).

Which implies P (A,B) < r. So we get

A,B 6= 0⇒ P (A,B) =
⋂

xα∈β∗(B)

⋂
yβ∈β∗(A)

P (yβ , xα).

(SEM4) Suppose Fr(A) ⊆ B ⇐⇒
⋃
{C : P (A,C) < r} ⊆ B

⇐⇒ P (A,C)⇒ C ⊆ B
⇐⇒ P (B′, D) < r ⇒ D ⊆ A′
⇐⇒

⋃
{D : P (B′, D) < r} ⊆ A′

⇐⇒ Fr(B
′) ⊆ A′.

Which implies “P (A,C) < r ⇒ C ⊆ B”⇐⇒ “P (B′, D) < r ⇒ D ⊆ A′”.
For any xα ∈ LX , they have same neigbourhood at xα viz,

{ψr[Cn](xα)r > 0} = {Fr(xα) : r > 0}.
Which implies they induced the same interior operator.

Conversely, suppose S is a CLS-uniform space generated by L-semi-pseudo-metric
P . For any s > 0, let Us be an L-cover of LX such that Us = {Bε(xα) : xα ∈ LX}.
Then clearly, U 1

2 s
4 Us and Us

⋂
Ut 4 Umax[s,t]. Thus ψ(P ) = {Us : s > 0} is a

base for CLS-uniformity. �
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