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1. INTRODUCTION

Ward et al. [1] introduced a complete residuated lattice which is an algebraic
structure for many valued logic. Bélohldvek [2, 3] investigated the properties of
fuzzy Galois connections and fuzzy closure operators on a residuated lattice which
supports part of foundation of theoretic computer science. By using the concepts of
lower and upper approximation operators, information systems and decision rules
are investigated in complete residuated lattices [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

As a dual sense of complete residuated lattice, Zheng et al. [11] introduced a
complete co-residuated lattice as the generalization of t-conorm. Junsheng et al.
[12] investigated (©®,&)-generalized fuzzy rough set on (L,®,&) where (L,&) is
a complete residuated lattice and (L,®) is a complete co-residuated lattice. Kim
and Ko [13] introduced the concepts of fuzzy join and meet complete lattices using
distance spaces instead of fuzzy partially ordered spaces in complete co-residuated
lattices. Moreover, Oh and Kim [I4, 15] investigated the properties of Alexandrov
fuzzy topologies, distance functions, join preserving maps, join approximation maps
fuzzy complete lattices using distance functions instead of fuzzy partially orders in
complete co-residuated lattices.
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Bélohlavek [2, 3] introduced the notion of formal concepts with R € L¥*Y on
a complete residuated lattice (L, ®,—). A formal fuzzy concept is a pair (A4, B) €
LX x LY such that F(A) = B,G(B) = A where F : LX — LY G : LY — L¥ are

defined as
F(A)(Y) = Npex (A(z) = R(z,y))
G(B)(x) = Nyey (B(y) = R(z,y))
Moreover, (F,G) is a Galois connection, i.e., ery (B, F(A)) = erx (A, G(B)), where
erv is a partially order defined as epv (B, F(A)) = A\ ¢y (B(y) = F(A)(y)).
Georgescu and Popescu [16] proposed attribute-oriented fuzzy concept lattices.
A attribute-oriented fuzzy concept is a pair (4, B) € LX x LY such that F(A) =
B,G(B) = A, where F : LX — LY G : LY — LY are defined as

F(A)(y) = Vyex (A(z) © R(z, 1)),
G(B)(z) = Nyey (R(z,y) = B(y)).
Moreover, (F, Q) is a adjunction, i.e., ery (F(A), B) = erx (A, G(B)).

Our aim of this paper, using the distance functions dyx instead of fuzzy partially
ordered sets erx based on complete co-residuated lattices, we investigate adjunc-
tions, Galois connections and join (meet) preserving maps on Alexandrov topologies.
As applications of this paper, using adjunctions and Galois connections, we define a
formal fuzzy concept and an attribute-oriented fuzzy concept in Remark 3.5.

Rodabough [5] introduced the adjoint function theorem using the adjunctions.

He showed that (7, f¢) is an adjunction, where Zadeh’s powersets operators f :
LX — LY, f<: LY — LX are defined as

7AW =\ Al), f7(B)() = B(f(x)).

)

f(@)=y
As extensions of Zadeh’s powersets operators from fuzzy sets to fuzzy sets, four
types of operations [17, 18] are investigated. Using adjunctions, Galois connections

and distance functions, we study various operators from Alexandrov topologies to
Alexandrov topologies in co-residuated lattices.

2. PRELIMINARIES

Definition 2.1 ([11, 12, 13, 14, 15]). An algebra (L,A,V,®, L, T) is called a com-
plete co-residuated lattice, if it satisfies the following conditions:
(C1) L=(L,V,A,L,T)is a complete lattice, where L is the bottom element and
T is the top element,
(C2Qla=adLl,adb=bPaand a® (bdc)=(aPb)®cforall a,b,c € L,
(C3) (Nier @i) ®b = Ajcr(ai ©0).
Let (L, <,®) be a complete co-residuated lattice. For each x,y € L, we define
x@y:/\{zeL\yGBZZm}.
Then (x@y) > ziff z > (z0y).

For a € L,A € L¥, we denote (a © A),(a ® A),ax € LX as (a © A)(z) =
aO A(z), (ad A)(z) =ad Ax), ax(z) =a.
Put n(z) = T © x. The condition n(n(z)) = = for each x € L is called a double
negative law.
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Lemma 2.2 ([13, 14, 15]). Let (L,A,V,®,©, L, T) be a complete co-residuated lat-
tice. For each x,vy,z,x;,y; € L, we have the following properties.
D) Ify<z,zdy<zdz,yor<zozxadzoz<zoy.
) Vierzi) ©y = Vier(@i ©y) and 2 & (\;cr vi) = Vier(@ S yi).
) (/\zer i) ©y < Njer(zi ©9)
)T (\/zEF yi) < /\zEF(‘T SEDE
)
)
) x
) x

rorx=1L,z6 L=z and Lox= 1. Moreover, o y= 1 iff t <uy.
y@(x@y)>x yzzo(@oy) and(z0y) @Yoz 2162
Syez)=(@oyoz=(x0z2)0y.

CYy>(@®2)0(ydz),x0y>(x02)0((yoz),ycr>(202)0(20Y)

and (z@Y) 0 (z0w) < (x02)d (yow).

z@y=Liffr=1Landy= 1

(roy)oz<z@(yoz) and (r0y)©z2=>20 (YO 2).

(Vier i) © (Vier i) < Vier(zi © i)

(Aier i) © (Nier i) < Vier (@i © i)

If L satisfies a double negative law and n(x) = T © z, then n(x y) =

x)oy=n(y) oz and x Oy =n(y) ©n(z).

Definition 2.3 ([13, 14, 15]). Let (L,A,V,®,8, L, T) be a complete co-residuated
lattice. Let X be a set. A function dx : X x X — L is called a distance function if
it satisfies the following conditions:

(M1) dx(xz,z) = L for all z € X,

(MQ) dx(il', y) S5 dX(ya Z) > dX(xa Z) for all T,Y,2 € Xa

(M3) if dx(z,y) =dx(y,x) = L, then x = y.

The pair (X, dx) is called a distance space.

Remark 2.4 ([13, 14, 15]). Let (L,A,V,®,8,L,T) be a complete co-residuated
lattice. Define a function dy, : Lx L — L as dp(x,y) = ©©y. By Lemma 2.2 (5) and
(6), (L,dz) is a distance space. For 7 C LX, we define a function d, : 7 x 7 — L as
d;(A,B) =V, cx(A(z) © B(x)). Then (7,d;) is a distance space.

In this paper, we assume (L, A, V,®,0, L, T) is a complete co-residuated lattice.

Definition 2.5 ([17]). Let (X,dx) be a distance space and A € L.
(1) A point zq is called a fuzzy join of A, denoted by xo = Ux A, if it satisfies
(J1) A(z) > dx (=, 0),
(J2) V,ex(dx (z,y) © A(z)) = dx (w0, y).
The pair (X, dx) is called fuzzy join complete, if Lix A exists for each A € LX.
A point x7 is called a fuzzy meet of A, denoted by x1 = Mx A, if it satisfies
(Ml) A(m) > dX($1,$),
(MQ) \/a:EX(dX(yv l‘) S A(l‘)) > dx (ya 1‘1).
The pair (X, dx) is called fuzzy meet complete, if My A exists for each A € LX.
The pair (X, dx) is called fuzzy complete, if Mx A and Lix A exists for each A € LX.

Theorem 2.6 ([15]). Let (X,dx) be a distance space and ® € LX.
(1) A point xo is a fuzzy join of ® iff \/ ,c x(dx(x,y) © ®(x)) = dx (20, ¥)-
(2) A point z1 is a fuzzy meet of ® iff \/ o x(dx(y,x) © ®(2)) = dx (y,z1).
(3) If Ux® is a fuzzy join of ® € LX, then it is unique. Moreover, if Nx® is a
fuzzy meet of ® € LX, then it is unique.
299
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Definition 2.7 ([15]). (1) A subset 7 C L¥ is called an Alexandrov topology on X,
provided that it satisfies the following conditions:

(A1) if A; € 7 for all i € I, then \/,.; Ai, \;cp Ai € 7,

(A2)if Ae T and o € L, then ax,ASa, Ada € T.

The pair (X, 7) is called an Alezandrov topological space on X.

Theorem 2.8 ([15]). Let (X,dx) be a distance space. We define

Tay = {A € L¥ | A(z) ® dx(z,y) = A(y)}
T = {A €LY | A(x) ®dx(y,2) > A(y)}-
Then the properties hold.
(1) 74y and Ty are Alezandrov topologies.
(2) (Tax,dyr, ) and (Td;(17d7-d71) are complete lattices.

(3) Tax = {Viex Al@)@dx(z,—) [ A€ LX} and 7)1 = {V e x A(@)@dx (-, ) |
Ae LX)
Definition 2.9 ([15]). Let (X,dx) and (Y, dy) be distance spaces and f: X — Y
be a map. Define f*: LX — LY as
T if f~1({y}) =2
* A — ) i 7 b
PO ={ Naw, e P
(1) f is called a join (resp. meet) preserving map if f(UxA) = Urx f*(A) (resp.
f(NxA) =Npx f*(A)) for each A € LX with Lix A (resp.MNMxA) exists.
(2) fis called a join-meet (resp. meet-join) preserving mapif f(Ux A) = Npx f*(A)
(resp. f(MxA) =Upx f*(A)) for each A € LX with UxA (resp.lxA) exists.
(3) f is called an (resp. dual) embedding map if f is injective an dx(x,y) =
dx (f(x), f(y)) (vesp. dx (z,y) = dx(f(y), f(x))) for each z,y € X.
Theorem 2.10 ([15]). Let (X,dx) be a distance space.
(1) Define f: (X,dx) = (Tay,dr,, ) as f(z) = (dx)s. Then f is an embedding
map. Moreover, if Lix A exists, then
Urg o [7(A) = Vyex (dx (z,-)) © A(z)) = f(Ux A),
Mry f7(A) = Noex (A(2) © dx (2, ).
If A€y, then Ty, f*(A) = A.
(2) Define g: (X,dx) — (Td}—(17d7d71) as g(x) = (dx)*. Then g is a dual embed-
ding map. Moreover, if Mx A exists, t);zen
Ur,_197(4) = Viex (dx (=, 2)) © A2)) = g(Mx A),
e 0 (4) = Ao (AG:) © dx (-, 2).

IfAe Taot, then My g” (A) = A.

Theorem 2.11 ([15]). Let (X,dx) and (Y,dy) be distance spaces. Define f&, f5@ :
LX —» LY and f5, 57 : L - LY as

FEA)Y) = Npex (Alx) & dy (f(2),9)),
2 (A)y) = /\’”e)ééé(x) @ dy (y, f(x))),
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f& B)(x) = N\.ex (B(f(2)) & dx (2, 7)),
f&7(B)(x) = N.ex (B(f(2)) & dx(x, 2)).
Then the following properties hold.

(1) If [+ (X, dx) = (Y,dy) is a map with dx(z,y) = dy(f(z), f(y)) for each
x,y € X, then dy (Uy f*®(A), f(UxA)) = L and dy (f(NxA),MNy fE(A)) = L, for
each A € LX.

(2) dpx(B,A) = dpy (f9(B), f9(A)) and dpx (B, A) = dpy (f*9(B), f*¢(A4)).
(3) dLY(C D) > dpx (5 (C), f& (E)) and dpy (C, D) = dpx (f37(C), f&7 (E)).
(4) f®(A) € 14y and f*P(A) € Tazt-

(5) f& (A) € 14y and fE(A) € Tagt

3. ADJUNCTIONS, GALOIS CONNECTIONS AND VARIOUS OPERATIONS

Definition 3.1. Let (X,dx) and (Y,dy) be distance spaces. Let f: X — Y and
g:Y — X be maps.

(i) The pair (f, g) is called an adjunction, if for z,y € X, dy (y, f(z)) = dx(9(y), x)
foreachz € X,y €Y.

(ii) The pair (f,g) is called a Galois connection, if for z,y € X, dy(f(z),y) =
dx(g(y),y) foreach x € X,y €Y.

Theorem 3.2. Let (X,dx) and (Y, dy) be distance spaces and f : (X,dx) — (Y, dy)
be a map with dx (x,z) > dy (f(z), f(2)) for each x,z € X. Let f®, ¢ . LX — LY
and f5, fa - LX — LY be defined as Theorem 2.11. Then the following properties
hold.

(1) f59 . Tyt = Ty and f5 - Tyot = Tgor are well-defined, de}l (A Ar) >
dr o (f*(A), *9(A) and d; _, (B, B1) 2 dr _, (£ (B), 5™ (B1)).

(2) The pair (f°, f57) is an adjunction, i.e., d 1( ,f59(A) = dr _, (f&~(B),
for each A € Td;(l,B S *

(3) f® : 1ax — Tay and f§ i Tay — Tay are well-defined, d., (A, A1) >
dry, (f9(A), f®(A1)) and dr, (B, B1) > d-, (f5(B), f& (B1)).-

(4) The pair (f®, f5) is an adjunction, i.e., dr, (B, f®(A)) = d., (f§ (B),A)
for each A€ 14, ,B € 14, .

(5) Let f® : 74y — Tay be a map in (4). Define g: 1q,, — Tay as g(B) = N{A €
Tax | fP(A) > B}. Then g = f§ .

(6) Let fS : Tay — Tax be a map in (4). Define h: 74, — 7qy as h(A) = \/{B €
Tay | & (B) < A}. Then h = f©.

(7) Let f9 : Tggt = Tyor be a map in (1). Define g : Tyot = Ty 08 9(B) =
NA € a5t | f*9(A) > B}. Then g = f5°.

(8) Let f3 - Tgot = Ty be a map in (1). Define h : Tyt = Tyo1 GS h(A) =
V{B € Tyt | fi5(B) < A}. Then h = f59.

Proof. (1) For each A, Ay € Td)—(17B, B e Tazts by Theorem 2.11, we have

de)—(l (AvAl) < de;l (fS@(A)7fS€B(A1)) and d‘rd)—/l (BvBl) < de)—(l (f%%(B%fGSB{_(Bl))

(2) For each A € Tt B € 741, we get
301
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dr 1 (B, f*2(4) = Vyex (B(y) © f*2(A) )
—V,yex (B®) © Ayex (A@) @ dy (y, £(2))))
[By Lemma 2.2 (2,7)]
= Vaex Vyex ((By) ©dy (y, f(z))) © A(x))
Vaex (B(f(z)) © A(x))
Vyex (N.ex (B(f(2)) & dx(x, 2)) © A(x))
d- . (f&7(B), A).

v Iv

Let a > d. _, (f&7(B), A) be given. Then we get
Y

a® Ae) 2 57 (B)(2) = \ (B(f(2) @ dx(a,2)).

zeX
Thus we have
a® f*P(A)(Y) = Npex(a® A(z) @ dy (y, f(2)))

2 Noex(N\.ex(B(f(2)) @ dx (z, 2)) ® dy (y, f(z)))
2 Noex(B(f(2)) @ \pex (dy (f(2), f(2)) ® dy (y, f(2))))
= N.ex(B(f(2)) @ dy (y, f(2)))
> B(y). [Because B € Tao 1]

So a > B(y) © f*®(A)(y). It implies d, l(f T(B),A) = d-. l(B f#@(4)).

(3) and (4) are similarly proved as (1 ) and (2) spectwely
(5) Since dx, (B, f®(f& (B))) = dr,, (f5 (B), [ (B)) = L, by (4), we get
fO(f& (B)) > B and [ (B) € 7ay.
@ (B) Since de (B f@(/\ZGIA )) de (fé_(B),/\zej Al) =
) 4) = Viey ey, (B. f2(A) = dry (B, Nicy (A1), we have
FENA) = N\ £2(49)
iel iel

Thus f®(g(B)) > B. So we get

T= deY (vi®(g(B))) = d'rdy (faa_(B)ag(B))v faa_(B) < g(B)

Hence the result holds.
(6) Since dr, (f& (f9(A)),A) = dr, (f®(A), f®(A)) = L, by (4), we have

f&(f9(A4)) < Aand f(A) € 74,
Then h(A) = f®(B). Since dr, (f§ (Vie; Bi), A) = dry (Vie; Bi, f(A))
= \/ieI deY (Bhf@(A)) = Vie[ deX (fﬂ?(Bl)vA) = deX (\/ie[ fe?(B7)7A)7 we get

f5(\ By =\/ 15 (B)

el i€l

Then ¢(B) < f,
Vier ey, (f5 (B

Thus f§ (h(A)) < A. So
T =dr, (f& (h(A)), A) = dr,, (M(A), fa(A)), h(A) < f§ (B).

Hence the result holds.
(7) and (8) are similarly proved as (5) and (6) respectively.
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Theorem 3.3. Let (X,dx) and (Y, dy) be distance spaces and f : (X,dx) — (Y, dy)
be a map with dx(z,z) > dy(f(x), f(2)) for each z,z € X. Then the following
properties hold.

(1) If fs@ : (Td;(l’de)—(l) — (Td;l,de)_/l) and fg_ : (Td;17d7d;1) — (Td;{l,d-,—d)_(l),

then for alld € L'x" and W € L%,
fSGB(ﬂrd}lU) =M (£*9)*(U) and Ur o (F7)" W) = fg& (Ur W)

d

(2) If fEB : (TdX7deX) - (Tdyad‘rdy) and feg : (Tdyad‘f'dy) - (devdeX)y then
foralld € L™x and W € L,

FEMr U) =Ney (F2)"U) and Ur, (f5)*" W) = fg (Ur,, W).
Proof. (1) Let U € L"*". Then We have
oy (CoTl (£ U) = Ve,
= Ve, 1(dv '
= Ve, 1(dr i (
—\/DET (d-, . (f§7(C), D) o U(D))

[By Theorem 3.2 (2)]
o JE (0.1, W)
=drd; (C.L*2 (0, U)).
Thus we get f*%(N _,U) =M _, (f*#)"(U).
Now let W € er;)f_ Then Weyget
dr 2 (Ur 1 (f3g)" W), C) = \/Defd,l(dr (D, C)e (f&7) W) (D))
= Vper, l(dr (D, C) & Njae (m)=p(W(E))
(dr _, (/3
(E

C,B) & (f*®)"(U)(B))
C,B) & Njeo(py—pUD))
C, f*#(D)) eU(D))

‘<\ =

‘< |

>

= Ve, ld‘r “(E),C) s W(E))
f\/Eer_ (d- _, (E, f*®(C)) e W(E))
By Theorem 3.2 )]
=dr_y (Ur, W, f2(0)
L (f8 (771 W), C).
Thus we have L, _, (f37)"W) = f& (Tdy W).

(2) Tt is sumlarly proved as (1). O

1

>< |

Remark 3.4. Let ([0,1],<,V,A,®,6,0,1) be a complete co-residuated lattice de-
fined as n(z) =1 — z,

z@y=(x+y)Al, zoy=(zx—y)VO0.
Let X,Y be sets and f: X — Y a function. Define dx € LX*X dy € LY*Y as
0, ifz=ux, 0, ify=w,
dX(x’Z)_{ 1, ifz#ax, dy(y,w)—{ 1, ify#w.
303
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Then we easily show that dx and dy are distance functions. Since f is a function,
dx(z,2z) > dy(f(z), f(2)). Thus we have

iy = {A € LY | A(x) @ dx(z,y) 2 A(y)} = LY =7,1.
Moreover, 74, = LY = Tgt- For f* in Definition 2.9, we obtain

FEA)Y) = Naex(Alx) & dy (f(2),y)) = *2(A)(y) = [ (A)(y),
f& (B)(@) = N.ex (B(f(2)) @ dx(z,2)) = B(f(2)) = f&7 (B)(x).

For each A € 74, = LX,B € 74, = LY, we get

dpy (B, f(A)) = dpy (B, f*(A)) = dpx (f5 (B), A) = dpx (f7(B), A).
o (f*, f%) is an adjunction. It is the concept of Zadeh’s powerset operations (See

[5)-

From Theorem 3.3, it is clear that for all i € LY and W e LLY,
FEMLxU) =My (f€)"(U) and Upx (f5)*(W) = f§ (UyW).

Remark 3.5. Let (L,A,V,®,8, 1, T) be a complete co-residuated lattice. Using
adjunctions and Galois connections, we will define a formal fuzzy concept and an
attribute-oriented fuzzy concept as follows:

Let F : LX — LY, G : LY — L* be maps where X is a set of objects and
Y is a set of attributes. If (F,G) is a Galois connection, i.e., dyv(F(A),B) =
dpx(G(B), A), then a formal fuzzy concept is a pair (4, B) € L* x LY such that
F(A) = B,G(B) = A as a Bélohlavek’s sense (See [2, 3]).

If (F,G) is an adjunction, i.e., dpv (B, F(A)) = dpx (G(B), A), then an attribute-
oriented fuzzy concept is a pair (A4, B) € LX x LY such that F(A) = B,G(B) =
as a Georgescu and Popescu’s sense (See [10]).

Theorem 3.6. Let (X,dx) and (Y,dy) be distance spaces and f : X — Y be a
map. Define f©, 59 : LX — LY and f5, f&~ : LY — L~ as

FE(A) W) = Vaex(dy (f(2),y) © Alz)),
fse( )(Y) = Vaex(dy (y, f(z)) © A(x)),

JE(B)(x) =V, ex(dx(z,2) © B(f(2)))
f T (B)(@) = V,ex(dx(z,2) © B(f(2))
For each A,C € LX and B,D € LY, the followings hold.
(1) dpx (A, C) > dpy (f9(C), f(A)) and dpx(A,C) > dpy (f*C(0), f*O(A)).
(2) dLY(B D) > dpx(f§ (D), 1§ (B)) and dy (B, D) > dpx (f&7 (D), f&~(B)).
(3) f9(A) € 7a, and f*°(A) € 7y-s.

(4) f&(B) € Tay and fE(B) € 741

Proof. (1) For A,C € LX,
dpy (f°(C), f ( )
= Viex(dy(f(2),y)
< Vaex((dy (f(2),y)
< Viex(A(z) © C(x)).
Similarly, drx (A,C) > dpv (f*®
(2) For B,C € LY,

).

(z),y) © A(x))

)
©C(x)) © Vyex(dy
o & A(x))) [By Lemma 2.2 (8,11)]

(
Clx)) o (dy (f(x)y
f22(C), £22(4)).
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Viex(dx(z2)©C

]
<Viex(B(f(z)) 0 C(f(2))) <dg
Similarly, dpv (B,C) > dpx (f&7(C), f&~(A)
(3) For A € LX,
A(z) ® fE(A)(y) ® dy
= A() & (V,ex (dy (f(z
> dy (f(z),y)) ® dy (y,w
Then f(A)(y) & dy (y,w) = f
Other case is similarly proved.
(4) For B € LY,

= B(f(2) ® (V.c

X
>dx(z,2)) @ dx(w

O
=
IS
V)
=
Q.
&h
O
=
m
N
B

(dx(z, Z)( S B)(f(z))) @ dx(w,x)
(B (w).and f&5(B) € Tyt O

Theorem 3.7. Let (X,dx) and (Y, dy) be distance spaces and f : (X,dx) — (Y,dy)
be a map with dx (x,y) < dy (f(z), f(y)) for all v,y € X. Let f©, f5° : LX — LY
and f5, fE5 - LY — LX be defined as Theorem 3.6. Then the following properties
hold.

(1) Two operations f< : Tagr = Tay, JET 1 Tay = Ty satisfy dor, (f°(4),B) <
d"'dfl( 5 (B), A) and f(f&(B)) < B. Moreover, if [ is surjective and dx (z,y) =

X
dy (f(z), f(y)) for all x,y € X, then the pair (f©, f&7) is a Galois connection, i.e.,
dmy (f@(A)7 B) = d'rd;(1 ( g_(B)a A)

(2) Two operations f*© : 74, — Tacts J& 1 Tyo1 = Tay satisfyd- (f$9(A),B) <

Y

dry (f5(B), A). Moreover, if f is surjective and dx(z,y) = dy (f(x), f(y)) for all
x,y € X, then the pair (f5, f5) is a Galois connection, i.e., defl (f5©(A),B) =
Y

dry, (f5(B), A).
Proof. (1) For A € Td)—(17B € Tdy
dry, (9 (A), B) = V, ey (f€(A)(y) © B(y))

= \/yGY(\/:EGX(
= \/xEX(vyGY(

[By Lemma 2.2

Moreover, we get
L =dry, (F7(A), f2(A) 2 dr (£ (F7(4)), 4) = L.
Then f5~(f°(4))) < A.

If f is surjective and dx (z,y) = dy (f(z), f(y)) for all z,y € X, then we have
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dry, (fF(A), B) = V ey (F7(A)(y) © B(y))

= Vyey (Veoex [y (f(2),y) © A(2)) © B(y))

= Veex(Vyey (dv (f(2),y) © B(y)) © A(x))

= Vaex (V.ex(dy (f(2), f(2)) © B(f(2))) © A(x))
= Vaex(V.ex(dx(z,2) © B(f(2))) © A(z))

= Vaex (fE7(B) () © A(z)) = d- _, (J&7(B), 4)

Thus d,, (f°(A),B) = dr _, (f57(B), A).
(2) It is similarly provedxas (1). O

Theorem 3.8. Let (X,dx) and (Y, dy) be distance spaces and f : (X,dx) — (Y,dy)
be a surjective map with dx(x,z) = dy (f(z), f(2)) for each z,z € X. Let f©, f*© :
LX — LY and f& 18 LY — LX be defined as Theorem 3.6. Then the following
properties hold.

(1) If f© : (Td)—(l,de;l) = (Tay ,dr, ) and &5 1 (Tay,dry ) — (Td)—(17d7d;(1), then

for alld € L'*x" and W € LTov,
fe(ﬂrd;(lu) = U, (f9)"(U) and Ur o (£87)° W) = f&© (Nry, W).
(2) If £°° ¢ (rax,dryy ) = (rgo1,dr ) and f§ 2 (Tyon,dr ) = (Tax,dry, ),
then for allU € L7x and W € L'4v", i i
oM, U) = s _1(f59)*(u) and Ur,, (f&)"W) =[5 (07, W)

(3) Let f© : (1~ dr 1) — (Tay,dr, ) be a map. Define g : (Tay,dr, ) —
(Td 17dT 1) ( ) /\{Aer_l |f@( )<B} Th’eng: é&
(4) Let fSe C(Tax s dry ) — (Tdy1,de;l) be a map. Define h : (Td;1,de;l) —

(Tax s dry ) as h(B) = N{A € 14 | f*9(A) < B}. Then h = f5.
Proof. (1) Let U € L"*x" . Then we have
dryy, (Ury, (f9)*WU), C) = Ve, (dr,, (B,C) & (f°)*U)(B))
= Viery, [ruy, (B,C) © Ao (py—pU(D))
=Vper, , (dry, (F7(D), C) SUD))
_VDGT l(dr 1( 57(C), D)eU(D))

[By Theorem 3.7 (1)]
:dT 1( ék(c) I_lexlu))

= e (P07, U).0).
Thus we gt £(71;,_,2) = Ui, (°)° @)
Now let W € L'%". The we have
s (U sV OVLC) = Ve, (D.C)© ()" W)(D)
\/DeT 1( (D C) e Ay 5 (B)= _p(W(E))

= Veer, (r 1(f (E),C) e W(E))
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= Vier,, (dr,, (f7(C), E) ©W(E))
[By Theorem 3.7 (1)]
= dr,, (f9(C),Mr,, W)
=d, T L é‘_(ﬂmyW),C).
Thus we get L 1( )W) = f“_( W).
(3) Since d,, (fe(fs‘_(B) ,B)=d,, ( £ (B), f&(B)) = L, by (1), we have
FEE(B)) < B and 2 (B) € 7,0,

Then g(B) < f2(B). Since dr, (f9(Aies A B) = dry (F5(B), Ases A7) =
Vier dry (F87(B), Ai) = Vigpdry, (f°(Ai), B) = dmy(\/zezf (4), B), we have
Py 4 = Vier £2(40). Thus 12(9(B)) < B. 80 T = do, (7°(a(B)).B) =
dry, (f&7(B),9(B)), f&~(B) < g(B). Hence the result holds.

(2) and (4) are similarly proved as (1) and (3) respectively. O

<
S<—

Example 3.9. Let ([0,1], <, V, A, 8,S,0,1) be a complete co-residuated lattice de-
fined as n(z) =1 — z,
r@y=(@+yAl, zoy=(r—y)VO0.
Let X = {a,b,c} be a set and A4, B € [0,1]% with
A(zr) =0.3,A(y) = 0.2, A(2) = 0.5, B(z) = 0.6, B(y) = 0.3, B(2) = 0.5.

Define dx € LX*X as
0 05 08
dx =1 07 0 06
04 06 0
Then we easily show that dx is a distance function. Moreover,
A= Nyex(Alx) @ dx(z,—)) = \yex (A(z) & dx (-, 7))
B = Npex(B(x) ®dx(z,-)) = Npex (B(z) & dx (=, 1))
Thus by Theorem 2.8 (3), A,B € 74,,A,B € Tat
(1) Define f : (X,dx) — (Tay,dr,, ) as f(x) = (dx)z, where (dx).(z) = dx(z,2)
in Theorem 2.10 (1). Moreover, dX(a: y) = dry. (f(z), f(y)). By Theorem 3.2,
we obtain f% : 74, — T4, [§ ¢ Ta,,
a(A) & dy, (A, B) > a(B)}. For A, B € 74y,

fEA)B) = Nex (dr, ((dx)e, B) @ A(x)
=(0.3®0.3) A (0.1 0.2) A (0.3® 0.5)

X
— Tax ,where 74 = {a € LY |
X
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= (0.3,0.2,0.5) = A.

Then dr, (U, f9(A)) = dr, (f& (©), A), ie., (f®, f&) is an adjunction.
X

(2) Define g : (X,dy") — (Td;,de_l) as g(x) =

X

dx(z,z) in Theorem 2.10 (2). Moreover, d

(@) =d- _

- (g9(2),9(y)). By Theorem
3.2, we obtain ¢g°® : Ty = Tt 95 Ty o Tyt “Then
X Tay!
Asex(dr (B, (dx)") ® A(x))
(06690 3) A (0.3@0.2)

(dx)*, where (dx)*(z) =

g*?(A)(B) =

A (0.5 @ 0.5)

O

g*?(A)(9(=)) = Npex(dr_, (9(=), (dx)") & A(x)
A

ex(dX)Emv —)DAr)=A

)

zeX

(dx(z,2) & ¥ (f(2))),
= N.ex(dx(—,2) ® A(2)) = A.
d (g@ (), A), i.e., (g°¥

(3) Sincef H(X,dx) — (dev Tdx )as f(z) = (dX)ItheredX(x’y> :d‘rdx (f(x)vf(y))
for each x,y € X, by Theorem 3.7 and (1), we obtain

1

Thus d, (\I/ g*®(A ))

,957) is an adjunction.

[SIN S .
f PTat T Tde, s R dry T T

oy (PO, D) < dr  (f&7 (D), C) and fE(fE(D)) <

But f is not surjective and d,
D. For A,B € Taots

FEA)B) = Ve (de((dx)z,B)@A(fv))
=(0.320.3) Vv (0.150.2) v (0.3 0.5)
=0

b

A (2) = Vaex(dry ((dx)a, (dx)-) © A())
:\/zeX(dX)(x’_)@A( )) ( 5 0. 70'5)7

fE(W)(@) = V. ex(dx (2, 2) ©U(f(2))),

5N = Vaex (dx(—2) & FAF)
(0.3,0.2,0.4)

A.

(e, 1) 28 gla) =

= (dx)*, where dy'(z,y)
dr _, (9(x),g(y)) for each x,y € X, by Theorem 3. 7, we obtain
X

LA

(4) Since g : (X,dy") —

S — .
gs : Td;(l — Td:’l71 » 9 - Td:dl;(l — Td;(l'
But g is not surjective and dr. _, (¢°°(C),D) <d :

= (95 (D), C) and g°© (95 (D)) <
o
D. For A,B € Tt *

308



Oh and Kim /Ann. Fuzzy Math. Inform. 22 (2021), No. 3, 297-310

9" (ANB) = Viex (d ;1 (B, (dx)") © A2))
=(0.6©0.3) Vv (0.350.2) V(0.5 0.5)

=0.3,
9 (A)9()) = Viex (d 1 ((dx) 7, (dx)7) © Al2))
=V, ex(dx)(@, —) © A(2))
= (0.5,0.2,0.5),

95 (9°°(A)) (=) = V.ex(dx (2, —) © 9°°(A)(9(2)))
— (0.5,0.1,0.4).
Then 0 =d- _, (9°9(A),9°°(A)) < dq, (95 (9°°(A)),A) = 0.2.

T
Let Y = {:cj(y,z} and f : X = Y be a function as f(a) = f(b) = z, f(c) = y.
Define dy € LY *Y as

0 04 09
dy=1|( 03 0 05
0.7 04 O

Then dx(a,b) > dy(f(a), f(b)) for all a,b € X. The properties of Theorems 3.2 and
3.3 hold.

4. CONCLUSION

Using distance functions, we have investigated adjunctions, Galois connections
and join (meet) preserving maps between various operations based on co-residuated
lattices. As applications for adjunctions and Galois connections, we can define a
formal fuzzy concept and an attribute-oriented fuzzy concept in Remark 3.5. As
extensions of Rodabough’s the adjoint function theorem using the adjunctions, we
have studied various operators from Alexandrov topologies to Alexandrov topologies
in co-residuated lattices.

In the future, by using the concepts of adjunctions, Galois connections and join
(meet) preserving maps between various operations, information systems and deci-
sion rules are investigated in co-residuated lattices.

Funding: This work was supported by the Research Institute of Natural Science
of Gangneung-Wonju National University.
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