Annals of Fuzzy Mathematics and Informatics
Volume 22, No. 3, (December 2021) pp. 283-295
ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2021.22.3.283

@FMII

(c) Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Crossing intuitionistic $K U$-ideals on $K U$-algebras as an extension of bipolar fuzzy sets

Samy M. Mostafa, Ehab f. Adb-elfattah, Mostafa A. Hassan, Y. B. Jun, K. Hur

Reprinted from the
Annals of Fuzzy Mathematics and Informatics Vol. 22, No. 3, December 2021

ISSN: 2093-9310 (print version)
ISSN: 2287-6235 (electronic version)
© Research Institute for Basic
Science, Wonkwang University
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2021.22.3.283

Crossing intuitionistic $K U$-ideals on $K U$-algebras as an extension of bipolar fuzzy sets

Samy M. Mostafa, Ehab f. Adb-elfattah, Mostafa A. Hassan, Y. B. Jun, K. Hur

Received 25 August 2021; Revised 16 September 2021; Accepted 19 September 2021

Abstract

The concept crossing intuitionistic structures set is combination of intuitionistic fuzzy set and N - function. In this paper, the concept crossing intuitionistic $K U$-ideals are introduced and several properties are investigated. Also, the relations between crossing intuitionistic $K U$-ideals and crossing intuitionistic ideals are given. The image and the pre-image of crossing intuitionistic $K U$-ideals under homomorphism of $K U$-algebras are defined and how the image and the pre-image of crossing intuitionistic KU-ideals under homomorphism of KU-algebras become crossing intuitionistic $K U$-ideals are studied. Moreover, the Cartesian product of crossing intuitionistic $K U$-ideals in Cartesian product $K U$-algebras is established.

2020 AMS Classification: 06F35, 03G25, 08A72
Keywords: $K U$-algebra, Fuzzy $K U$-ideals, Crossing intuitionistic $K U$-ideals, The pre-image of crossing intuitionistic $K U$-ideals in $K U$-algebras, Cartesian product of crossing intuitionistic $K U$-ideals.

Corresponding Author: Samy M. Mostafa (samymostafa@yahoo.com)

1. Introduction

$B_{C K}$-algebras form an important class of logical algebras introduced by Iseki [1], and Iseki and Tanaka [2] and was extensively investigated by several researchers. It is an important way to research the algebras by its ideals. The notions of ideals and positive implicative ideals in $B C K$-algebras (i.e., Iseki's implicative ideals) were introduced by Iseki and Tanaka [1, 2]. Zadeh [3] coined the term "degree of membership" and defined the concept of a fuzzy set in order to deal with uncertainty. Atanassov [4, 5] incorporated the "degree of non-membership" in the concept of a fuzzy set as an independent component and proposed an intuitionistic fuzzy set. At present, this concept has been applied to many mathematical branches such
as group, functional analysis, probability theory, topology and so on. In 1991, Xi [6] applied applied the concept of fuzzy sets to $B C I, B C K, M V$-algebras, and he introduced the notion of fuzzy subalgebras (ideals) of $B C K$-algebras with respect to minimum. After then, Jun [7] studied fuzzy ideals of $B C K / B C I$-algebras, and Ahmed and Amhed [8] discussed with various properties of fuzzy $B C K$-algebras. Prabpayak and Leerawat $[9,10]$ introduced a new algebraic structure which is called a $K U$-algebra. They defined a homomorphism of $K U$-algebras and studied some its properties. Mostafa et al. [11] introduced the concept of fuzzy $K U$-ideals of $K U$ algebras and dealt with several basic properties which are related to fuzzy $K U$-ideals. Also, Mostafa et al. [12] investigated intuitionistic fuzzy $K U$-ideals in $K U$-algebras. Senapati [13, 14] introduced the notion of fuzzy $K U$-subalgebras and $K U$-ideals of $K U$-algebras with respect to a given t-norm. Recently, by using triangular norm and co-norm, Senapati and Shum [15, 16] proposed Atanassov's intuitionistic fuzzy bi-normed $K U$ - subalgebras/ideals of a $K U$-algebra, and obtained some of their properties.

Lee [17] introduced an extension of fuzzy sets named "bipolar-valued fuzzy sets". Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval $[0,1]$ to $[-1,1]$. Moreover, Lee [18] obtained some of bipolar fuzzy subalgebras and ideals of $B C K / B C I$-algebras. Recently, Jun et al. [19, 20] introduced a new function which is called a negative-valued function and constructed N-structures. They applied N-structures to $B C K / B C I$-algebras, and discussed with N-subalgebras and N-ideals in $B C K / B C I$-algebras. Also, Jun et al. [21, 22] established an extension of a bipolar-valued fuzzy set, which is introduced by Lee [17], they called it a crossing cubic structure and investigated several properties.

In this paper, the concept of crossing intuitionistic $K U$-ideals is introduced as an extension of bipolar fuzzy sets and several properties are investigated. Also, the relations between crossing $K U$-ideals and crossing intuitionistic ideals are given. The image and the pre-image of crossing intuitionistic $K U$-ideals under homomorphism of $K U$-algebras are defined and how the image and the pre-image of crossing intuitionistic ku-ideals under homomorphism of $K U$-algebras become crossing intuitionistic $K U$-ideals are studied. Moreover, the Cartesian product of crossing intuitionistic $K U$-ideals in Cartesian product $K U$-algebras is established.

2. Preliminaries

Now we review some definitions and properties that will be useful in our results.
Definition 2.1 ($[9,10]$). A $K U$-algebra is a triple $(X, *, 0)$, where X is a nonempty set, $*$ is a binary operation on X and 0 is a fixed element of X such that the following axioms are satisfied: for all $x, y, z \in X$,

```
\(\left(\mathrm{KU}_{1}\right)(x * y) *[(y * z) *(x * z)]=0\),
\(\left(\mathrm{KU}_{2}\right) x * 0=0\),
\(\left(\mathrm{KU}_{3}\right) 0 * x=x\),
\(\left(\mathrm{KU}_{4}\right) x * y=0\) and \(y * x=0\) implies \(x=y\),
\(\left(\mathrm{KU}_{5}\right) x * x=0\).
```

On a $K U$-algebra $(X, *, 0)$, we can define a binary relation \leq on X by: for any $x, y \in X$,

$$
x \leq y \Leftrightarrow y * x=0 .
$$

Theorem 2.2 ([11]). Let $(X, *, 0)$ be a $K U$-algebra. Then for all $x, y, z \in X$,
(1) $x *(y * x)=0$.
(2) if $x \leq y$, then $y * z \leq x * z$,
(3) $x *(y * z)=y *(x * z)$,
(4) $[y *(y * x)] * x=0$.

Example 2.3. Let $X=\{0, a, b, c, d\}$ be the set with Cayley Table 2.1:

$*$	0	a	b	c	d
0	0	a	b	c	d
a	0	0	d	c	d
b	0	a	0	c	d
c	0	0	0	0	d
d	0	0	0	0	0
Table 2.1					

Then $(X, *, 0)$ is a $K U$-algebra.
Definition 2.4 ([11]). Let I be a non-empty subset of a $K U$-algebra $(X, *, 0)$. Then I is called an ideal of X, if for all $x, y \in X$,
(i) $0 \in I$,
(ii) $y * x \in I$ and $y \in I$ imply $x \in I$.

Throughout this paper, let I denote the unit closed interval $[0,1]$ in the set of real numbers \mathbb{R}. For a non-empty set X, a mapping $A: X \rightarrow I$ is called a fuzzy set in X (See [3]). The set of all fuzzy sets in X is denoted by I^{X}.

Let $I \oplus I=\left\{\bar{a}=\left(a^{\epsilon}, a^{\notin}\right) \in I \times I: a^{\epsilon}+a^{\notin} \leq 1\right\}$. Then each member \bar{a} of $I \oplus I$ is called an intuitionistic point or intuitionistic number(See [23]).
Definition 2.5 ([11]). Let X be a $K U$-algebra and let $A \in I^{X}$. Then A is called a fuzzy $K U$-ideal of X, if it satisfies the following conditions:
$\left(\mathrm{FI}_{1}\right) A(0) \geq A(x)$ for each $x \in X$,
$\left(\mathrm{FI}_{2}\right) A(z * x) \geq A(z *(y * x)) \wedge A(y)$ for all $x, y, z \in X$.
Definition 2.6 ([4]). For a non-empty set X, a mapping $\bar{A}: X \rightarrow I \oplus I$ is called an intuitionistic fuzzy set (briefly, IF set) in X, where for each $x \in X, \bar{A}(x)=$ $\left(A^{\epsilon}(x), A^{\notin}(x)\right)$, and $A^{\epsilon}(x)$ and $A^{\notin}(x)$ represent the degree of membership and the degree of nonmembership of an element x to \bar{A}, respectively. Let $(I \oplus I)^{X}$ or $\operatorname{IFS}(X)$ denote the set of all IF sets in X and for each $\bar{A} \in I F S(X)$, we write $A=\left(A^{\in}, A^{\notin}\right)$. In particular, $\overline{\mathbf{0}}$ and $\overline{\mathbf{1}}$ denote the IF empty set and the IF whole set in X defined by, respectively: for each $x \in X$,

$$
\overline{\mathbf{0}}(x)=\overline{0} \text { and } \overline{\mathbf{1}}(x)=\overline{1}
$$

Definition 2.7 ([19, 20]). Let X be a non-empty set. Then a mapping $A^{N}: X \rightarrow$ $[-1,0]$ is called a negative-valued function (briefly, N-function) on X. The pair $\left(X, A^{N}\right)$ is called an N-structure. The set of all N-functions on X is denoted by $N F(X)$.

Definition 2.8 ([19, 20]). Let X be a non-empty set and let $A^{N}, B^{N} \in N F(X)$.
(i) We say that A^{N} is a subset of B^{N}, denoted by $A^{N} \subset B^{N}$, if $A^{N}(x) \geq B^{N}(x)$ for each $x \in X$.
(ii) The complement of A^{N}, denoted by $c\left(A^{N}\right)$, is an N-function on X defined as: for each $x \in X$,

$$
c\left(A^{N}\right)(x)=-1-A^{N}(x)
$$

(iii) The intersection of A^{N} and B^{N}, denoted by $A^{N} \cap B^{N}$, is an N-function on X defined as: for each $x \in X$,

$$
\left(A^{N} \cap B^{N}\right)(x)=A^{N}(x) \vee B^{N}(x)(x)
$$

(iv) The union of A^{N} and B^{N}, denoted by $A^{N} \cup B^{N}$, is an N-function on X defined as: for each $x \in X$,

$$
\left(A^{N} \cup B^{N}\right)(x)=A^{N}(x) \wedge B^{N}(x)(x)
$$

3. Crossing intuitionistic $K U$-ideal

Each member of $(I \oplus I) \times[-1,0]$ is called a crossing intuionistic number and write $\widetilde{a}=\left\langle\left(a^{\in}, a^{\nexists}\right), a^{N}\right\rangle$.
Definition 3.1. Let X be a non-empty set. Then a mapping $\widetilde{A}=\left\langle\bar{A}, A^{N}\right\rangle$: $X \rightarrow(I \oplus I) \times[-1,0]$ is called a crossing intuitionistic set (briefly, CIS) in X. In particular, the crossing intuitionistic empty set and the crossing intuitionistic whole set are denoted by $\hat{0}$ and $\hat{1}$ respectively and are defined as respectively: for each $x \in X$,

$$
\hat{0}(x)=\langle(0,1),-1\rangle, \hat{1}(x)=\langle(1,0), 0\rangle .
$$

The set of all CISs in X is denoted by $C I S(X)$.
Example 3.2. (1) Let $X=\{0, a, b\}$ and let \widetilde{A} be given by:

$$
\widetilde{A}(0)=\langle(0.8,0.2),-0.7\rangle, \widetilde{A}(a)=\langle(0.7,0.3),-0.3\rangle, \widetilde{A}(b)=\langle(0.4,0.2),-0.2\rangle
$$

Then clearly, $\widetilde{A} \in C I S(X)$.
(2) Let \bar{A} be an intuitionistic fuzzy set in a set X. Then we can easily check that $\left\langle\bar{A}, \neg A^{\in}\right\rangle \in C I S(X)$, where $\neg A^{\in}(x)=-A^{\in}(x)$ for each $x \in X$. In fact, $\neg A^{\epsilon}: X \rightarrow[-1,0]$ is a mapping.
(3) Let $A=\left(A^{P}, A^{N}\right)$ be a bipolar fuzzy set in a set X. Then we can easily see that $\left\langle\left(A^{P}, 1-A^{P}\right), A^{N}\right\rangle \in C I S(X)$.

From (2) and (3) in Example 3.2, it is obvious that a crossing intuitionistic set is a generalization of an intuitionistic fuzzy set and a bipolar fuzzy set.
Definition 3.3. Let X be a non-empty set and let $\widetilde{\sim} \widetilde{A}, \widetilde{\sim} \underset{B}{\widetilde{B}} \in C I S(X)$.
(i) We say that \widetilde{A} is a subset of \widetilde{B}, denoted by $\widetilde{A} \subset \widetilde{B}$, if $\bar{A} \subset \bar{B}$ and $A^{N} \subset A^{N}$, i.e., $A^{\in}(x) \leq B^{\in}(x), A^{\notin}(x) \geq B^{\notin}(x), A^{N}(x) \geq B^{N}(x)$ for each $x \in X$.
(ii) We say that \widetilde{A} is equal to \widetilde{B}, denoted by $\widetilde{A}=\widetilde{B}$, if $\widetilde{A} \subset \widetilde{B}$ and $\widetilde{B} \subset \widetilde{A}$.
(iii) The complement of \widetilde{A}, denoted by \widetilde{A}^{c}, is an CIS in X defined as: for each $x \in X$,

$$
\begin{gathered}
\widetilde{A}^{c}(x)=\left\langle\left(A^{\notin}(x), A^{\in}(x)\right), c\left(A^{N}\right)(x)\right\rangle . \\
286
\end{gathered}
$$

(iv) The intersection of \widetilde{A} and \widetilde{B}, denoted by $\widetilde{A} \cap \widetilde{B}$ is a CIS in X, defined as: for each $x \in X$,

$$
(\widetilde{A} \cap \widetilde{B})=\left\langle\left(A^{\in}(x) \wedge B^{\in}(x), A^{\notin}(x) \vee B^{\notin}(x)\right), A^{N}(x) \vee B^{N}(x)\right\rangle
$$

(v) The union of \widetilde{A} and \widetilde{B}, denoted by $\widetilde{A} \cup \widetilde{B}$ is a CIS in X, defined as: for each $x \in X$,

$$
(\widetilde{A} \cup \widetilde{B})=\left\langle\left(A^{\in}(x) \vee B^{\in}(x), A^{\notin}(x) \wedge B^{\notin}(x)\right), A^{N}(x) \wedge B^{N}(x)\right\rangle
$$

From Definitions 3.1 and 3.3 (i), it is obvious that $\hat{0} \subset \widetilde{A} \subset \hat{1}$ for each $\widetilde{A} \in$ $C I S(X)$.

Example 3.4. Let X be a non-empt set and Consider two CISs \widetilde{A} and \widetilde{B} given by respectively: for each $x \in X$,

$$
\widetilde{A}(x)=\langle(0.4,0.5),-0.2\rangle, \widetilde{B}(x)=\langle(0.7,0.3),-0.7\rangle
$$

Then we can easily check that the followings hold: (1) $\widetilde{A} \subset \widetilde{B}$,
(2) $\widetilde{A}^{c}(x)=\langle(0.5,0.4),-0.8\rangle$,
(3) $(\underset{\sim}{A} \cap \widetilde{B})(x)=\langle(0.4,0.5),-0.2\rangle$,
(4) $(\widetilde{A} \cup \widetilde{B})(x)=\langle(0.7,0.3),-0.7\rangle$.

From Definitions 3.1 and 3.3, we obtain easily the following consequences.
Proposition 3.5. Let X be a non-empty set, let $\widetilde{\sim} \tilde{\sim}^{A}, \widetilde{B}, \widetilde{C} \in C I S(X)$. Then
(1) (Idempotent laws) $\widetilde{A} \cap \widetilde{\sim}=\widetilde{A}, \widetilde{A} \cup \widetilde{A}=\widetilde{A}$,
(2) (Commutative laws) $\widetilde{A} \cap \widetilde{B}=\widetilde{B} \cap \widetilde{A}, \widetilde{A} \cup \widetilde{B}=\widetilde{B} \cup \widetilde{A}$,
(3) (Associative laws) $\widetilde{A} \cap(\widetilde{B} \cap \widetilde{C})=(\widetilde{A} \cap \widetilde{B}) \cap C$,

$$
\widetilde{A} \cup(\underset{\sim}{B} \cup \underset{\sim}{\widetilde{B}} \cup \widetilde{\sim})=(\underset{\sim}{\widetilde{A}} \cup \widetilde{B}) \cup \mathcal{C},
$$

(4) (Distributive laws) $\widetilde{A} \cup(\widetilde{B} \cap \widetilde{C})=(\widetilde{A} \cup \widetilde{B}) \cap(\widetilde{A} \cup \widetilde{C})$,

$$
\widetilde{A} \cap(\widetilde{B} \cup \widetilde{C})=(\widetilde{A} \cap \widetilde{B}) \cup(\widetilde{A} \cap \widetilde{C})
$$

(5) (Absorption laws) $\widetilde{A} \cup(\widetilde{A} \cap \widetilde{B})=\widetilde{A}, \widetilde{A} \cap(\widetilde{A} \cup \widetilde{B})=\widetilde{A}$,
(6) (DeMorgan's laws) $(\widetilde{A} \cap \widetilde{B})^{c}=\widetilde{A}^{c} \cup \widetilde{B}^{c},(\widetilde{A} \cup \widetilde{B})^{c}=\widetilde{A}^{c} \cap \widetilde{B}^{c}$,
(7) $\left(\widetilde{A}^{c}\right)^{c}=\widetilde{A}$,
(8) $\widetilde{A} \cap \widetilde{B} \subset \widetilde{\sim}, \widetilde{\sim}, \underset{\sim}{\widetilde{A}} \cap \widetilde{B} \subset \widetilde{B}$,
(9) $\widetilde{A} \subset \widetilde{A} \cup \widetilde{B}, \widetilde{B} \subset \widetilde{A} \cup \widetilde{B}$,
(10) if $\widetilde{A} \subset \widetilde{B}$ and $\widetilde{B} \subset \widetilde{C}$, then $\widetilde{A} \subset \widetilde{C}$,
(11) if $\widetilde{A} \subset \widetilde{B}$, then $\widetilde{A} \cap \widetilde{C} \subset \widetilde{B} \cap \widetilde{C}, \widetilde{A} \cup \widetilde{C} \subset \widetilde{B} \cup \widetilde{C}$,
(12) $\left(12_{a}\right) \widetilde{A} \cup \hat{0}=\widetilde{A}, \widetilde{A} \cap \hat{0}=\hat{0}$,
$(12 b) \widetilde{A} \cup \hat{1}=\hat{1}, \widetilde{A} \cap \hat{1}=\widetilde{A}$,
$\left(12{ }_{c}\right) \hat{1}^{c}=\hat{0}, \hat{0}^{c}=\hat{1}$,
$\left(12_{d}\right) \widetilde{A} \cup \widetilde{A^{c}} \neq \hat{1}, \widetilde{A} \cap \widetilde{A}^{c} \neq \hat{0}$ in general (See Example 3.6).
Example 3.6. Let X be a non-empt set and Consider the CIS \widetilde{A} given by respectively: for each $x \in X$,

$$
\widetilde{A}(x)=\langle(0.5,0.5),-0.5\rangle
$$

Then clearly, $\widetilde{A} \cup \widetilde{A}^{c} \neq \hat{1}$ and $\widetilde{A} \cap \widetilde{A}^{c} \neq \hat{0}$.

From now on, let us X be a $K U$-algebra, unless otherwise is stated.
Definition 3.7. Let $\widetilde{A} \in C I S(X)$. Then \widetilde{I} is called a crossing intuitionistic ideal (briefly, CII) of X, it satisfies the following conditions: for all $x, y \in X$,
$\left(\mathrm{CII}_{1}\right) I^{€}(0) \geq I^{€}(x), I^{\notin}(0) \leq I^{\nexists}(x), I^{N}(0) \leq I^{N}(x)$,
$\left(\mathrm{CII}_{2}\right) I^{\in}(x) \geq I^{\in}(y * x) \wedge I^{\in}(y), I^{\notin}(x) \leq I^{\notin}(y * x) \vee I^{\notin}(y), I^{N}(x) \leq I^{N}(y * x) \vee$ $I^{N}(y)$.
Definition 3.8. Let $\widetilde{A} \in C I S(X)$. Then \widetilde{A} is called a crossing intuitionistic $K U$ subalgebra of X, it satisfies the following conditions: for all $x, y, z \in X$,
$\left(\mathrm{CISA}_{1}\right) A^{\in}(y * x) \geq A^{\in}(x) \wedge A^{\in}(y), A^{\nexists}(y * x) \leq A^{\nexists}(x) \vee A^{\nexists}(y)$,
$\left(\mathrm{CISA}_{2}\right) A^{N}(y * x) \leq A^{N}(x) \vee A^{N}(y)$.
Lemma 3.9. If \widetilde{A} is a crossing intuitionistic $K U$-subalgebra of X, then we have

$$
A^{\in}(0) \geq A^{\in}(x), A^{\notin}(0) \leq A^{\notin}(x), A^{N}(0) \leq A^{N}(x) \text { for each } x \in X
$$

Proof. Put $\mathrm{x}=\mathrm{y}$ in the Definition 3.8. Then from $\left(\mathrm{KU}_{5}\right)$ and Definition 3.8, we have

$$
\begin{aligned}
& A^{\in}(x * x)=A^{\in}(0) \geq A^{\in}(x) \wedge A^{\in}(x)=A^{\in}(x) \\
& A^{\nexists}(x * x)=A^{\notin}(0) \leq A^{\notin}(x) \vee A^{\notin}(x)=A^{\notin}(x)
\end{aligned}
$$

Similarly, we have $A^{\notin}(0) \leq A^{\notin}(x)$.
Definition 3.10. Let $\widetilde{I} \in C I S(X)$. Then \widetilde{I} is called a crossing intuitionistic $K U$ ideal of X, it satisfies the following conditions: for all $x, y, z \in X$,
$\left(\mathrm{CIKUI}_{1}\right) I^{\in}(0) \geq I^{€}(x), I^{\in}(z * x) \geq I^{\in}(z *(y * x)) \wedge I^{€}(y)$,
$\left(\mathrm{CIKUI}_{2}\right) I^{\nexists}(0) \leq I^{\nexists}(x), I^{\nexists}(z * x) \leq I^{\nexists}(z *(y * x)) \vee I^{\nexists}(y)$,
$\left(\mathrm{CIKUI}_{3}\right) I^{N}(0) \leq I^{N}(x), I^{N}(z * x) \leq I^{N}(z *(y * x)) \vee I^{N}(y)$.
Example 3.11. Let $X=\{0,1,2,3\}$ be the $K U$-algebra with Cayley Table 3.1:

$*$	0	1	2	3
0	0	1	2	2
1	0	0	0	c
2	0	2	0	1
3	0	0	0	0
Table 3.1				

Consider the CIS \widetilde{I} given by:

$$
\begin{aligned}
& \widetilde{I}(0)=\langle(0.6,0.1),-0.7\rangle, \widetilde{I}(1)=\langle(0.5,0.2),-0.7\rangle \\
& \widetilde{I}(2)=\langle(0.3,0.3),-0.6\rangle, \widetilde{I}(4)=\langle(0.3,0.4),-0.4\rangle
\end{aligned}
$$

Then we can easily check that \widetilde{I} is a crossing intuitionistic $K U$-ideal of X.
Proposition 3.12. Every crossing intuitionistic $K U$-ideal of X is a crossing intuitionistic ideal of X.
Proof. The proof is clear.
Proposition 3.13. Let \widetilde{I} be a crossing intuitionistic $K U$-ideal of X and let $x, y \in X$ such that $x \leq y$. Then $I^{\in}(x) \geq I^{\in}(y), I^{\notin}(x) \leq I^{\notin}(y)$ and $I^{N}(x) \leq I^{N}(y)$.

Proof. Suppose $x \leq y$. Then by Definition 2.1, $y * x=0$. Let $z=0$ in Definition 3.10. Then we get

$$
\begin{aligned}
I^{\in}(0 * x) & =I^{\in}(x)\left[\mathrm{By}\left(\mathrm{KU}_{3}\right)\right] \\
& \geq I^{\in}(0 *(y * x)) \wedge I^{\in}(y) \\
& {[\text { Since } \widetilde{I} \text { is a crossing intuitionistic } K U \text {-ideal of } X] } \\
& =I^{\in}(0 * 0) \wedge I^{\in}(y)[\text { Since } y * x=0] \\
& =I^{€}(0) \wedge I^{\in}(y) \\
& =I^{€}(y), \\
I^{\notin}(0 * x) & =I^{\nexists}(x) \\
& \leq I^{\notin}(0 *(y * x)) \vee I^{\in}(y) \\
& =I^{\notin}(0 * 0) \vee I^{\nexists}(y) \\
& =I^{\nexists}(0) \vee I^{\notin}(y) \\
& =I^{\notin}(y) .
\end{aligned}
$$

Similarly, we have $I^{N}(x) \leq I^{N}(y)$.
Proposition 3.14. Every crossing intuitionistic $K U$-ideal of is a crossing intuitionistic subalgebra of X.

Proof. Let \widetilde{I} be a crossing intuitionistic $K U$-ideal of X and let $x, y, z \in X$. Then by Theorem $2.2(4),[y *(y * x)] * x=0$, i.e., $y *(y * x) \leq x$. Thus by Proposition $3.13, I^{\in}(y *(y * x)) \geq I^{\in}(x), I^{\nexists}(y *(y * x)) \leq I^{\nexists}(x)$ and $I^{N}(y *(y * x)) \leq I^{N}(x)$. Let $z=y$ in Definition 3.10. Then we get

$$
\begin{aligned}
I^{\in}(y * x) & \geq I^{\in}(y *(y * x)) \wedge I^{\in}(y)[\text { By Definition 3.10] } \\
& \left.\geq I^{\in}(x) \wedge I^{\in}(y), \text { Since } I^{\in}(y *(y * x)) \geq I^{\in}(x)\right] \\
I^{\notin}(y * x) & \leq I^{\notin}(y *(y * x)) \vee I^{\notin}(y) \leq I^{\nexists}(x) \vee I^{\notin}(y), \\
I^{N}(y * x) & \leq I^{N}(y *(y * x)) \vee I^{N}(y) \leq I^{N}(x) \vee I^{N}(y) .
\end{aligned}
$$

Thus \widetilde{I} is a crossing intuitionistic subalgebra of X.
Proposition 3.15. Let \widetilde{I} be a crossing intuitionistic $K U$-ideal of X. For any $x, y, z \in X$, suppose $x * y \leq z$. Then we have

$$
I^{€}(x) \geq I^{\in}(y) \wedge I^{\in}(z), I^{\notin}(x) \leq I^{\notin}(y) \wedge I^{\notin}(z) I^{N}(x) \leq I^{N}(y) \wedge I^{N}(z)
$$

Proof. Let $x, y, z \in X$ such that $x * y \leq z$. Put $z=0$ in Definition 3.10. Then we get

$$
\begin{aligned}
I^{\in}(0 * x) & =I^{\in}(x)\left[\mathrm{By}\left(\mathrm{KU}_{3}\right)\right] \\
& \geq I^{\in}(0 *(y * x)) \wedge I^{\in}(y)[\text { By Definition 3.10] } \\
& =I^{\in}(y * x) \wedge I^{\in}(y)\left[\mathrm{By}\left(\mathrm{KU}_{3}\right)\right] \\
& \geq I^{\in}(z) \wedge I^{\in}(y),
\end{aligned}
$$

[Since $I^{\in}(0 *(y * x)) \geq I^{\in}(z)$ by Proposition 3.13]
$I^{N}(0 * x)=I^{N}(x)$
$\leq I^{N}(0 *(y * x)) \vee I^{N}(y)$
$=I^{N}(y * x) \vee I^{N}(y)$
$\leq I^{N}(z) \vee I^{N}(y)$.
Similarly, we have $I^{\notin}(x) \leq I^{\notin}(y) \vee I^{\notin}(z)$.
The following is the converse of Proposition 3.15.

Proposition 3.16. Let \widetilde{A} be a crossing intuitionistic subalgebra of X. Suppose for any $x, y, z \in X$ such that $x * y \leq z$, the following inequalities hold:

$$
I^{€}(x) \geq I^{\in}(y) \wedge I^{\in}(z), I^{\notin}(x) \leq I^{\notin}(y) \wedge I^{\nexists}(z) I^{N}(x) \leq I^{N}(y) \wedge I^{N}(z)
$$

Then \widetilde{A} is a crossing intuitionistic $K U$-ideal of X.
Proof. Let \widetilde{A} be a crossing intuitionistic subalgebra of X. Recall that

$$
A^{\in}(0) \geq A^{\in}(x), A^{\notin}(0) \leq A^{\notin}(x), A^{N}(0) \leq A^{N}(x) \text { for each } x \in X
$$

Let $x, y, z \in X$ such that $x * y \leq z$. From Theorem 2.2 (1), it is obvious that $y * x \leq x$. Then by Proposition 3.13, we have

$$
A^{\in}(y * x) \geq A^{\in}(x), A^{\nexists}(y * x) \leq A^{\notin}(x), A^{N}(y * x) \leq A^{N}(x)
$$

It follows from the hypothesis that

$$
\begin{equation*}
A^{\in}(x) \geq A^{\in}(y) \wedge A^{\in}(z) \geq A^{\in}(y) \wedge A^{\in}(y * x) \tag{3.1}
\end{equation*}
$$

Substituting $z * x$ for x and $z *(y * x)$ for y in (3.1), we have

$$
\begin{aligned}
A^{\in}(z * x) & \geq A^{\in}(z *(y * x)) \wedge A^{\in}((z *(y * x)) *(z * x)) \\
& \left.\geq A^{\in}(z *(y * x)) \wedge A^{\in}((y * x) * x)\right) \wedge A^{\in}(y)
\end{aligned}
$$

Since $y *((y * x) * x)=0$, i.e., $(y * x) * x \leq y, A^{\in}((y * x) * x) \geq A^{\in}(y)$. Thus

$$
A^{\in}(z * x) \geq A^{\in}(z *(y * x)) \wedge A^{\in}(y)
$$

Similarly, we can prove that the following inequalities hold:

$$
A^{\nexists}(z * x) \leq A^{\notin}(z *(y * x)) \vee A^{\nexists}(y), A^{N}(z * x) \leq A^{N}(z *(y * x)) \vee A^{N}(y)
$$

So \widetilde{A} is a crossing intuitionistic $K U$-ideal of X.
Let $\widetilde{a}=\left\langle\left(a^{\in}, a^{\nexists}\right), a^{N}\right\rangle$ be a crossing intuitionistic number and let $\widetilde{A} \in C I S(X)$. Then the \widetilde{a}-level set of \widetilde{A}, denoted by $[\widetilde{A}]^{\widetilde{a}}$, is a subset of X defined by:

$$
[\widetilde{A}]^{\widetilde{a}}=\left\{x \in X: A^{\in}(x) \geq a^{\in}, A^{\notin}(x) \leq a^{\nexists}, A^{N}(x) \leq a^{N}\right\}
$$

Theorem 3.17. \widetilde{I} is a crossing intuitionistic $K U$-ideal of X if and only if $[\widetilde{I}]^{\widetilde{a}} \neq \varnothing$ is a $K U$-ideal of X, where \widetilde{a} is a crossing intuitionistic number.
Proof. Suppose \widetilde{I} is a crossing intuitionistic $K U$-ideal of X and for each crossing intuitionistic number \widetilde{a}, let $[\widetilde{I}]^{\widetilde{a}} \neq \varnothing$. Then there is $x \in X$ such that

$$
I^{€}(x) \geq a^{\in}, I^{\nexists}(x) \leq a^{\nexists}, I^{N}(x) \leq a^{N}
$$

From Definition 3.10, it is clear that

$$
I^{\in}(0) \geq I^{\in}(x), I^{\notin}(0) \leq I^{\notin}(x), I^{N}(0) \leq I^{N}(x)
$$

Thus $I^{\in}(0) \geq a^{\in}, I^{\nexists}(0) \leq a^{\notin}, I^{N}(0) \leq a^{N}$. So $0 \in[\widetilde{I}]^{\widetilde{a}}$.
Let $x, y, z \in X$ such that $z *(y * x), y \in[\widetilde{I}]^{\widetilde{a}}$. Then by Definition 3.10 and the definition of $[\widetilde{I}]^{\widetilde{a}}$, we get

$$
\begin{gathered}
I^{\in}(z * x) \geq I^{\in}\left((z *(y * x)) \wedge I^{\in}(y) \geq a^{\in} \wedge a^{\epsilon}=a^{\epsilon}\right. \\
I^{\notin}(z * x) \leq I^{\notin}\left((z *(y * x)) \vee I^{\notin}(y) \leq a^{\notin} \vee a^{\notin}=a^{\notin}\right. \\
I^{N}(z * x) \leq I^{N}\left((z *(y * x)) \vee I^{N}(y) \leq a^{N} \vee a^{N}=a^{N} .\right.
\end{gathered}
$$

Thus $z * x \in[\widetilde{I}]^{\widetilde{a}}$. So $[\widetilde{I}]^{\widetilde{a}}$ is a $K U$-ideal of X.

Conversely, suppose $[\widetilde{I}]^{\widetilde{a}}$ is a $K U$-ideal of X for any crossing intuitionistic number \widetilde{a} and for each $x \in X$, let $I^{€}(x)=a^{\in}, I^{\notin}(x)=a^{\nexists}, I^{N}(x)=a^{N}$. Then clearly, $x \in[\widetilde{I}]^{\tilde{a}}$. Since $0 \in[\widetilde{I}]^{\tilde{a}}$, it follows that

$$
I^{\in}(0) \geq I^{€}(x), I^{\notin}(0) \leq I^{\notin}(x), I^{N}(0) \leq I^{N}(x) \text { for each } x \in X
$$

Now we need to show that \widetilde{I} satisfies the conditions in Definition 3.10. Assume that \widetilde{I} does not satisfy the conditions in Definition 3.10. Then there are $a, b, c \in X$ such that the following inequalities:

$$
\begin{align*}
& I^{\in}(c * a)<I^{€}(c *(b * a)) \wedge I^{\in}(b) \tag{3.2}\\
& I^{\notin}(c * a)>I^{\notin}(c *(b * a)) \vee I^{\notin}(b) \tag{3.3}\\
& I^{N}(c * a)>I^{N}(c *(b * a)) \vee I^{N}(b) \tag{3.4}
\end{align*}
$$

Let $\widetilde{a}_{0}=\left\langle\left(a_{0}^{\in}, a_{0}^{\notin}\right), a_{0}^{N}\right\rangle$ be the crossing intuitionistic number given by:

$$
\begin{align*}
a_{0}^{\in} & =\frac{1}{2}\left[I^{\in}(c * a)+I^{\in}(c *(b * a)) \wedge I^{\in}(b)\right], \tag{3.5}\\
a_{0}^{\notin} & =\frac{1}{2}\left[I^{\notin}(c * a)+I^{\notin}(c *(b * a)) \vee I^{\notin}(b)\right], \tag{3.6}\\
a_{0}^{N} & =\frac{1}{2}\left[I^{N}(c * a)+I^{N}(c *(b * a)) \vee I^{N}(b)\right] . \tag{3.7}
\end{align*}
$$

Then we get the following inequalities:

$$
\begin{align*}
& I^{\in}(c * a)<a_{0}^{\in}<I^{\in}(c *(b * a)) \wedge I^{\in}(b), \tag{3.8}\\
& I^{\notin}(c * a)>a_{0}^{\in}<I^{\notin}(c *(b * a)) \vee I^{\notin}(b), \tag{3.9}\\
& I^{N}(c * a)>a_{0}^{N}>I^{N}(c *(b * a)) \vee I^{N}(b) . \tag{3.10}
\end{align*}
$$

Thus in all cases, $c *(b * a), b \in[\widetilde{I}]^{a_{0}}$ but $c * a \notin[\widetilde{I}]^{\tilde{a}_{0}}$. So $[\widetilde{I}]^{\widetilde{a}_{0}}$ is not a $K U$-ideal of X. This is a contradiction. Hence $[\widetilde{I}]^{\widetilde{a}}$ is a crossing intuitionistic $K L U$-ideal of X. This completes the proof.

4. The pre-image of a crossing intuitionistic $K U$-ideal

Definition 4.1. Let $(X, *, 0)$ and $\left(Y, *^{\prime}, 0^{\prime}\right)$ be two $K U$-algebras. Then a mapping $f: X \rightarrow Y$ is called a homomorphism, if $f(x * y)=f(x) *^{\prime} f(y)$ for any $x, y \in X$.

Note that if $f: X \rightarrow Y$ is a homomorphism of $K U$-algebras, then $f(0)=0^{\prime}$.
Definition 4.2. Let $(X, * 0)$ and $\left(Y, *^{\prime}, 0^{\prime}\right)$ be two non-empty sets, let $\widetilde{B} \in C I S(Y)$ and let $f: X \rightarrow Y$ be a mapping. Then the pre-image of \widetilde{B} under f, denoted by $f^{-1}(\widetilde{B})=\left\langle\left(f^{-1}\left(B^{\in}\right), f^{-1}\left(B^{\notin}\right), f^{-1}\left(B^{N}\right)\right\rangle\right.$, is a crossing intuitionistic set in X defined as: for each $x \in X$,

$$
f^{-1}\left(B^{\in}\right)(x)=B^{\in}(f(x)), f^{-1}\left(B^{\notin}\right)(x)=B^{\notin}(f(x)), f^{-1}\left(B^{N}\right)(x)=B^{N}(f(x))
$$

Proposition 4.3. $f: X \rightarrow Y$ be a homomorphism of $K U$-algebras. If \widetilde{I} is a crossing intuitionistic $K U$-ideal of Y, then $f^{-1}(\widetilde{I})$ is a crossing intuitionistic $K U$ ideal of X.

Proof. Suppose \widetilde{I} is a crossing intuitionistic $K U$-ideal of Y and let $x \in X$. Then

$$
f^{-1}\left(I^{\in}\right)(x)=I^{\in}(f(x)) \leq I^{€}\left(0^{\prime}\right)=I^{€}(f(0))=f^{-1}\left(I^{€}\right)(0)
$$

Similarly, we have $f^{-1}\left(I^{\in}\right)(x) \geq f^{-1}\left(I^{\in}\right)(0), f^{-1}\left(I^{N}\right)(x) \geq f^{-1}\left(I^{N}\right)(0)$.
Now let $x, y, z \in X$. Then

$$
\begin{aligned}
f^{-1}\left(I^{\in}\right)(z * x) & =I^{\in}(f(z * x)) \text { [By Definition 4.2] } \\
& =I^{\in}\left(f(x) *^{\prime} f(y)\right)
\end{aligned}
$$

[Since f is a homomorphism of $K U$-algebras] $\geq I^{\in}\left(f(z) *^{\prime}\left(f(y) *^{\prime} f(x)\right)\right) \wedge I^{\in}(f(y))$ [By the hypothesis] $=I^{\in}(f(z *(y * x))) \wedge I^{\in}(f(y))$
[Since f is a homomorphism of $K U$-algebras]

$$
=f^{-1}\left(I^{\epsilon}\right)(z *(y * x)) \wedge f^{-1}\left(I^{€}\right)(y)
$$

$$
f^{-1}\left(I^{\nexists}\right)(z * x)=I^{\nexists}(f(z * x))
$$

$$
=I^{\nexists}\left(f(x) *^{\prime} f(y)\right)
$$

$$
\leq I^{\nexists}\left(f(z) *^{\prime}\left(f(y) *^{\prime} f(x)\right)\right) \vee I^{\nexists}(f(y))
$$

$$
=I^{\nexists}(f(z *(y * x))) \vee I^{\notin}(f(y))
$$

$$
=f^{-1}\left(I^{\nexists}\right)(z *(y * x)) \vee f^{-1}\left(I^{\nexists}\right)(y)
$$

Similarly, we can show that the following inequality holds:

$$
f^{-1}\left(I^{N}\right)(z * x) \leq f^{-1}\left(I^{N}\right)(z *(y * x)) \vee f^{-1}\left(I^{N}\right)(y)
$$

Thus $f^{-1}(\widetilde{I})$ is a crossing intuitionistic $K U$-ideal of X.
The following provides a sufficient condition which the converse of Proposition 4.3 holds.

Proposition 4.4. $f: X \rightarrow Y$ be an epimorphism of $K U$-algebras and let $\widetilde{I} \in$ $C I S(Y)$. If $f^{-1}(\widetilde{I})$ is a crossing intuitionistic $K U$-ideal of X, then \widetilde{I} is a crossing intuitionistic $K U$-ideal of Y.

Proof. Suppose $f^{-1}(\widetilde{I})$ is a crossing intuitionistic $K U$-ideal of X and let $a \in Y$. Since f is surjective, there is $x \in X$ such that $a=f(x)$. Then

$$
\begin{aligned}
I^{\in}(a)= & I^{\in}(f(x)) \\
& =f^{-1}\left(I^{\in}\right)(x)[\text { By Definition } 4.2] \\
& \leq f^{-1}\left(I^{\in}\right)(0)[\text { By the hypothesis }] \\
& =I^{\in}(f(0)) \\
& =I^{\in}\left(0^{\prime}\right) .[\text { Since } f \text { is a homomorphism }]
\end{aligned}
$$

Similarly, we have

$$
I^{\notin}(a) \geq I^{\nexists}\left(0^{\prime}\right), I^{N}(a) \geq I^{N}\left(0^{\prime}\right)
$$

Now let $a, b, c \in Y$. Then there are $x, y, z \in X$ such that

$$
a=f(x), b=f(y), c=f(z)
$$

Thus we get

$$
\begin{aligned}
I^{\in}\left(c *^{\prime} a\right) & =I^{\in}\left(f(z) *^{\prime} f(x)\right) \\
& \left.=I^{\epsilon}(f(z * x)) \text { [Since } f \text { is a homomorphism }\right]
\end{aligned}
$$

$$
\begin{aligned}
& =f^{-1}\left(I^{\epsilon}\right)(z * x)[\text { By Definition 4.2] } \\
& \geq f^{-1}\left(I^{\epsilon}\right)(z *(y * x)) \wedge f^{-1}\left(I^{\epsilon}\right)(y)[\text { By the hypothesis }] \\
& =I^{\epsilon}(f(z *(y * x))) \wedge I^{\epsilon}(f(y)) \\
& =I^{\epsilon}\left(f(z) *^{\prime}\left(f(y) *^{\prime} f(x)\right)\right) \wedge I^{\epsilon}(f(y)) \\
& =I^{\in}\left(c *^{\prime}\left(b *^{\prime} a\right)\right) \wedge I^{\epsilon}(b), \\
I^{N}\left(c *^{\prime} a\right) & =I^{N}\left(f(z) *^{\prime} f(x)\right) \\
& =I^{N}(f(z * x)) \\
& =f^{-1}\left(I^{N}\right)(z * x) \\
& \leq f^{-1}\left(I^{N}\right)(z *(y * x)) \vee f^{-1}\left(I^{N}\right)(y) \\
& =I^{N}(f(z *(y * x))) \vee I^{N}(f(y)) \\
& =I^{N}\left(f(z) *^{\prime}\left(f(y) *^{\prime} f(x)\right)\right) \vee I^{N}(f(y)) \\
& =I^{N}\left(c *^{\prime}\left(b *^{*} a\right)\right) \vee I^{N}(b) .
\end{aligned}
$$

Similarly, we can prove that the following inequality holds:

$$
I^{\nexists}\left(c *^{\prime} a\right) \leq I^{\nexists}\left(c *^{\prime}\left(b *^{\prime} a\right)\right) \vee I^{\nexists}(b) .
$$

So \widetilde{I} is a crossing intuitionistic $K U$-ideal of Y.

5. The product of crossing intuitionistic $K U$-ideals

Definition 5.1. Let $\widetilde{A}, \widetilde{B} \in C I S(X)$. Then the Cartesian product of \widetilde{A} and \widetilde{B}, denoted by $\widetilde{A} \times \widetilde{B}=\left\langle\left(A^{\epsilon} \times B^{€}, A^{\notin} \times B^{\notin}\right), A^{N} \times B^{N}\right\rangle$, is a CIS in $X \times X$ defined as: for each $(x, y) \in X \times X$,

$$
\begin{gathered}
A^{\epsilon} \times B^{\epsilon}(x, y)=A^{€}(x) \wedge B^{\epsilon}(x), A^{\notin} \times B^{\nexists}(x, y)=A^{\nexists}(x) \vee B^{\nexists}(x), \\
\\
A^{N} \times B^{N}(x, y)=A^{N}(x) \vee B^{N}(x) .
\end{gathered}
$$

Remark 5.2. Let X and Y be two $K U$-algebras. We define an binary operation * on $X \times Y$ as follows: for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$,

$$
\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left(x_{1} * x_{2}, y_{1} * y_{2}\right) .
$$

Then we can easily see that $(X \times Y, *,(0,0))$ is a $K U$-algebra.
Proposition 5.3. Let \widetilde{I}_{1} and \widetilde{I}_{2} be two crossing intuitionistic $K U$-ideals of X. Then $\widetilde{I}_{1} \times \widetilde{I}_{2}$ is a crossing intuitionistic $K U$-ideal of $X \times X$.
Proof. Let $(x, y) \in X \times X$. Then we get

$$
I_{1}^{\epsilon} \times I_{2}^{\epsilon}(0,0)=I_{1}^{\epsilon}(0) \wedge I_{2}^{\epsilon}(0) \geq I_{1}^{\epsilon}(x) \wedge I_{1}^{\epsilon}(y)=I_{1}^{\epsilon} \times I_{2}^{€}(x, y)
$$

Similarly, we get the following inequalities:

$$
I_{1}^{\notin} \times I_{2}^{\notin}(0,0) \leq I_{1}^{\notin} \times I_{2}^{\notin}(x, y), I_{1}^{N} \times I_{2}^{N}(0,0) \leq I_{1}^{N} \times I_{2}^{N}(x, y) .
$$

Now let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right) \in X \times X$. Then

$$
\begin{aligned}
& I_{1}^{\in} \times I_{2}^{\in}\left[\left(z_{1}, z_{2}\right) *\left(\left(y_{1}, y_{2}\right) *\left(x_{1}, x_{2}\right)\right)\right] \wedge I_{1}^{\in} \times I_{2}^{\in}\left(y_{1}, y_{2}\right) \\
& =I_{1}^{\in} \times I_{2}^{\in}\left[\left(z_{1}, z_{2}\right) *\left(y_{1} * x_{1}, y_{2} * x_{2}\right)\right] \wedge I_{1}^{\in} \times I_{2}^{\in}\left(y_{1}, y_{2}\right) \\
& =I_{1}^{\in} \times I_{2}^{\epsilon}\left[\left(z_{1} *\left(y_{1} * x_{1}\right), z_{2} *\left(y_{2} * x_{2}\right)\right)\right] \wedge I_{1}^{\in} \times I_{2}^{\epsilon}\left(y_{1}, y_{2}\right) \\
& =\left[I_{1}^{\epsilon}\left(z_{1} *\left(y_{1} * x_{1}\right) \wedge I_{2}^{\epsilon}\left(z_{2} *\left(y_{2} * x_{2}\right)\right)\right] \wedge\left[I_{1}^{\in}\left(y_{1}\right) \wedge I_{2}^{\epsilon}\left(y_{2}\right)\right]\right. \\
& =\left[I_{1}^{\epsilon}\left(z_{1} *\left(y_{1} * x_{1}\right) \wedge I_{1}^{\epsilon}\left(y_{1}\right)\right] \wedge\left[I_{2}^{\in}\left(z_{2} *\left(y_{2} * x_{2}\right)\right) \wedge I_{2}^{\epsilon}\left(y_{2}\right)\right]\right. \\
& \leq I_{1}^{\in}\left(z_{1} * x_{1}\right) \wedge \leq I_{2}^{\in}\left(z_{2} * x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & I_{1}^{\in} \times I_{2}^{\in}\left(z_{1} * x_{1}, z_{2} * x_{2}\right), \\
& I_{1}^{\notin} \times I_{2}^{\notin}\left[\left(z_{1}, z_{2}\right) *\left(\left(y_{1}, y_{2}\right) *\left(x_{1}, x_{2}\right)\right)\right] \vee I_{1}^{\notin} \times I_{2}^{\notin}\left(y_{1}, y_{2}\right) \\
= & I_{1}^{\notin} \times I_{2}^{\notin}\left[\left(z_{1}, z_{2}\right) *\left(y_{1} * x_{1}, y_{2} * x_{2}\right)\right] \vee I_{1}^{\notin} \times I_{2}^{\notin}\left(y_{1}, y_{2}\right) \\
= & I_{1}^{\notin} \times I_{2}^{\notin}\left[\left(z_{1} *\left(y_{1} * x_{1}\right), z_{2} *\left(y_{2} * x_{2}\right)\right)\right] \vee I_{1}^{\notin} \times I_{2}^{\notin}\left(y_{1}, y_{2}\right) \\
= & {\left[I_{1}^{\notin}\left(z_{1} *\left(y_{1} * x_{1}\right) \vee I_{2}^{\notin}\left(z_{2} *\left(y_{2} * x_{2}\right)\right)\right] \vee\left[I_{1}^{\notin}\left(y_{1}\right) \vee I_{2}^{\notin}\left(y_{2}\right)\right]\right.} \\
= & {\left[I_{1}^{\not}\left(z_{1} *\left(y_{1} * x_{1}\right) \vee I_{1}^{\notin}\left(y_{1}\right)\right] \vee\left[I_{2}^{\notin}\left(z_{2} *\left(y_{2} * x_{2}\right)\right) \vee I_{2}^{\notin}\left(y_{2}\right)\right]\right.} \\
\leq & I_{1}^{\nexists}\left(z_{1} * x_{1}\right) \vee \leq I_{2}^{\notin}\left(z_{2} * x_{2}\right) \\
= & I_{1}^{\notin} \times I_{2}^{\notin}\left(z_{1} * x_{1}, z_{2} * x_{2}\right) .
\end{aligned}
$$

Similarly, we can show that the following inequality holds:
$I_{1}^{N} \times I_{2}^{N}\left[\left(z_{1}, z_{2}\right) *\left(\left(y_{1}, y_{2}\right) *\left(x_{1}, x_{2}\right)\right)\right] \wedge I_{1}^{N} \times I_{2}^{N}\left(y_{1}, y_{2}\right) \geq I_{1}^{N} \times I_{2}^{N}\left(z_{1} * x_{1}, z_{2} * x_{2}\right)$.
Thus $\widetilde{I}_{1} \times \widetilde{I}_{2}$ is a crossing intuitionistic $K U$-ideal of $X \times X$.

6. Conclusions

We studied some properties of crossing intuitionistic of $K U$-ideals in a $K U$ algebras as an extension of bipolar fuzzy sets. Also, how the pre-image of a crossing intuitionistic $K U$-ideal under a homomorphism of $K U$-algebras become a crossing intuitionistic $K U$-ideal. Moreover, the Cartesian product of crossing intuitionistic $K U$-ideals in Cartesian product $K U$-algebras was established.

References

[1] K. Iseki, On BCI-algebras, Math.Sem. Notes 8 (1980) 125-130.
[2] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon 23 (1978) 1-26.
[3] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.
[4] K. Atanassov, intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
[5] K. Atanassov, New operations defined over the intuitionistic fuzzy sets, fuzzy sets and systems 61 (1994) 137-142.
[6] O. G. Xi, Fuzzy BCK-Agebras, Math. Japon. 36 (5) (1991) 935-942.
[7] Y. B. Jun, On (α, β)-fuzzy ideals of $B C K / B C I$-algebras, Sci. Math. Jpn. 60 (2004) 613-617.
[8] Mahastin A. Ahmed and Esmat A. Amhed, Fuzzy BCK-Agebras, Journal of Applied Mathematics and Physics 8 (2020) 927-932.
[9] C. Prabpayak and U. Leerawat, On ideals and congruence in $K U$-algebras, Scientia Magna Journal 5 (1) (2009) 54-57.
[10] C. Prabpayak and U. Leerawat, On isomorphisms of $K U$-algebras, Scientia Magna journal 5 (3) (2009) 25-31.
[11] Samy M. Mostafa, Mokhtar A. Abd-Elnaby and Moustafa M. M. Yousef, Fuzzy Ideals of $K U$-Algebras, Int. Math. Forum 6 (63) (2011) 3139-3149.
[12] Samy M. Mostafa, Mokhtar A. Abdel Naby and Osama R. Elgendy, Intuitionistic fuzzy KUideals in $K U$ algebras, Int. J. of Mathematical Sciences and Applications 1 (3) (2011) 13791384.
[13] T. Senapati, T-fuzzy $K U$-subalgebras of $K U$-algebras. Ann. Fuzzy Math. Inform. 10 (2) (2015) 261-2702.
[14] T. Senapati, T-fuzzy $K U$-ideals of $K U$-algebras. Afr. Mat. 29 (3-4) (2018) 591-600.
[15] T. Senapati and K. P. Shum, AtanassovÔÇÖs intuitionistic fuzzy bi-normed $K U$-subalgebras of a $K U$-algebra, Missouri J. Math. Sci. 29 (2017) 92-112.
[16] T. Senapati and K. P. Shum, AtanassovÔÇÖs intuitionistic fuzzy bi-normed $K U$-ideals of a $K U$-algebra. J. Intell.Fuzzy Syst. 30 (2016) 1169-1180.
[17] K. M. Lee, Bipolar-valued fuzzy sets and their operations, Proc. Int. Conf. on IntelligentTechnologies, Bangkok, Thailand (2000) 307-312.
[18] K. J. Lee, Bipolar fuzzy subalgerbas and bipolar fuzzy ideals of $B C K / B C I$ - algerbas, Bull. Malays. Math. Sci. Soc. (2) 32 (3) (2009) 361-373.
[19] Y. B. Jun, K. J. Lee and S. Z. Song, N-ideals of $B C K / B C I$-algebras, J. Chungcheong Math. Soc. 22 (2009) 417-437.
[20] Y. B. Jun, M. A. Ozturk and E. H. Roh, N-structures applied to closed ideals in BCH -algebras, Int. J. Math. Math. Sci. 2010 (2010) Article ID 9435659 pages.
[21] Y. B. Jun, K. Hur, J.G. Lee and J. Kim, Crossing cubic structures as an extension of bipolar fuzzy sets, Ann. Fuzzy Math. and Inform. 22 (1) (2021) 1-15.
[22] Y. B. Jun and S. Z. Song, Crossing cubic ideals of $B C K / B C I$-algebras, Journal of Algebraic Hyperstructures and Logical AlgebrasVolume 2 (1) (2021) 17-31.
[23] Minseok Cheong and K. Hur, Intuitionistic interval-valued fuzzy sets, J. Korean Institute of Intelligent Systems 20 (5) (2010) 864-874.

SAMY M. MOSTAFA (samymostafa@yahoo.com)
Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt
EHAB F.ADB-ELFATTAH (Ehab_abdelfatah@edu.asu.edu.eg)
Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt

Mostafa A. Hassan (mostafamath88@gmail.com)
Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt
Y. B. JUN ((skywine@gmailcom)

Department of Mathematics Education, Gyeongsang National University, Korea
K. HUR (kulhur@wku.ac.kr)

Division of Applied Mathematics, Wonkwang University, Korea

