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Abstract. This paper concerns the study of the numerical approxima-
tion for the following initial-boundary value problem . ut =

(
|ux|p−2ux

)
x

+ (1− u)−h , 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = −u−q(1, t), t > 0,
u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,

where p ≥ 2, h > 0, q > 0. u0 : [0, 1] → (0, 1) and satisfies compatiblity
conditions. We find some conditions under which the solution of a discrete
form of above problem quenches in a finite time and estimate its discrete
quenching time. We also establish the convergence of the discrete quench-
ing time to the theoretical one when the mesh size tends to zero. Finally,
we give some numerical experiments for a best illustration of our analysis.
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1. Introduction

In this paper, we consider the following boundary value problem

ut = (|ux|p−2ux)x + (1− u)−h, 0 < x < 1, t > 0,(1.1)

ux(0, t) = 0, ux(1, t) = −u−q(1, t), t > 0,(1.2)

u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,(1.3)
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where, p ≥ 2, h > 0, q > 0. u0 : [0, 1] → (0, 1) and satisfies some compatibility

conditions such that u
′

0(0) = 0, u
′

0(1) = −u−q0 (1), u
′

0(x) ≤ 0

and (|u′

0(x)|p−2u
′

0(x))
′

+ (1 − u0(x))−h ≥ 0, 0 ≤ x ≤ 1. The quenching behavior
describes the phenomenon that there exists a finite time Tq such that the solution
of the problem (1.1)–(1.3) satisfied the following definition

Definition 1.1. We say that the classical solution u of the problem (1.1)–(1.3)
quenches in a finite time if there exists a finite time Tq such that ‖u(., t)‖∞ < 1 for
t ∈ [0, Tq) but

lim
t→Tq

‖u(., t)‖∞ = 1,

where ‖u(., t)‖∞ = max
0≤x≤1

|u(x, t)|. The time Tq is called the quenching time of the

solution u.

The problem (1.1)–(1.3) may be rewritten in the following form

ut = (p− 1)|ux|p−2uxx + (1− u)−h, 0 < x < 1, t > 0,(1.4)

ux(0, t) = 0, ux(1, t) = −u−q(1, t), t > 0,(1.5)

u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,(1.6)

where, p ≥ 2, h > 0, q > 0. u0 : [0, 1] → (0, 1) and satisfies some compatibility

conditions such that u
′

0(0) = 0, u
′

0(1) = −u−q0 (1), u
′

0(x) ≤ 0

and (p − 1)|u′

0(x)|p−2u
′′

0 (x) + (1 − u0(x))−h ≥ 0, 0 ≤ x ≤ 1. Equation (1.4) is
known as the classical non-Newtonian filtration equation that incorporates the ef-
fects of nonlinear reaction source and nonlinear boundary outflux. The variable u
representes the speed of the fluid flow. Kawarada first studied the quenching phe-
nomenon for semilinear heart equation ut = uxx+(1−u)−1. He obtained the results
that, when the solution reaches level u = 1, the reaction term and the time derivative
blow up. Since then, the theoretical study of quenching phenomena for semilinear
parabolic equations have been the subject of investigations of many researchers(See
for examples [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and the references therein).

In the problem (1.4)–(1.6), the authors prove under certain conditions that quench-
ing occurs in finite time and they show that the only quenching point is x = 0. They
have also established the bounds for quenching rate and the lower bound for the
quenching time (See [7, 8]).

In this paper, we are interesting in the numerical study of the phenomenon of
quenching using a discrete form of the problem (1.4)–(1.6). This method of study
has been used by many researchers (See [11, 12, 13, 14, 15, 16, 17, 18]). We give some
conditions under which the solution of the discrete form of the problem (1.4)–(1.6)
quenches in finite time and estimate its discrete quinching time. We also prove that
the discrete quenching time converges to the real one when the mesh size goes to
zero.

This paper is organised as follows. In the next section, we give some properties
concerning our discrete sheme. In section 3, under some conditions, we prove that
the solution of a discrete form of the problem (1.4)–(1.6) quenches in a finite time
and estimate its discrete quenching time. In section 4, we show that the quenching

240



Modeste et al. /Ann. Fuzzy Math. Inform. 22 (2021), No. 3, 239–256

time converges to the theoretical one when the mesh size goes to zero. Finally, in
the last section, we give some numerical results to illustrate our analysis.

2. Properties of the discrete scheme

In this section, we give some lemmas which will be used later. We start by the
construction of the semidiscrete scheme. Let I ≥ 3 be a positive integer and let
s = 1/I. Define the grid xi = is, 0 ≤ i ≤ I. Approximate the solution u of problem

(1.4)–(1.6) by the solution U
(n)
s = (U

(n)
0 , U

(n)
1 , . . . , U

(n)
I )T and the initial condition

u0 by the initial condition ϕs = (ϕ0, ϕ1, . . . , ϕI)
T the following discrete equations

δtU
(n)
i = (p− 1)|δ0U

(n)
i |

p−2δ2U
(n)
i + (1− U (n)

i )−h, 0 ≤ i ≤ I − 1,(2.1)

δtU
(n)
I = (p− 1)|(U−q)(n)

I |
p−2δ2

∗U
(n)
I + (1− U (n)

I )−h,(2.2)

U
(0)
i = ϕi > 0, 0 ≤ i ≤ I,(2.3)

where n ≥ 0, p ≥ 2, q > 0, h > 0,

δtU
(n)
i =

U
(n+1)
i − U (n)

i

∆tn
, 0 ≤ i ≤ I,

δ2U
(n)
i =

U
(n)
i+1 − 2U

(n)
i + U

(n)
i−1

s2
, 1 ≤ i ≤ I − 1,

δ2U
(n)
0 =

2U
(n)
1 − 2U

(n)
0

s2
, δ2

∗U
(n)
I = δ2U

(n)
I − 2

s
(U−q)

(n)
I , δ2U

(n)
I =

2U
(n)
I−1 − 2U

(n)
I

s2
,

δ0U
(n)
0 = 0, δ0U

(n)
i =

U
(n)
i+1 − U

(n)
i−1

2s
, 1 ≤ i ≤ I − 1,

0 < ϕs < 1, ϕi+1 < ϕi, 0 ≤ i ≤ I − 1.

In order to permit the discrete solution to reproduce the properties of the con-
tinuous one when the time t approaches the quenching time Tq , we need to adapt
the size of the time step. We choose

∆tn = min

(
s2

2(p− 1) max {a(j − 1, 1)}
, τ(1− ‖U (n)

s ‖∞)h+1

)
,

with 0 < τ < 1 and a(j − 1, 1) =

(
|U (n)
j+1 − U

(n)
j−1|

2s

)p−2

for 2 ≤ j ≤ I.

Let us notice that the restriction on the time step ensures the nonnegativity of
the discrete solution when this one is decreasing.

Lemma 2.1. Let α
(n)
s , a

(n)
s , γ

(n)
s and let V

(n)
s be the three sequences with n ≥ 0;

α
(n)
s ≥ 0; a

(n)
s ≤ 0; γ

(n)
s ≤ 0 such that

δtV
(n)
i − α(n)

i δ2V
(n)
i + a

(n)
i V

(n)
i ≥ 0, 0 ≤ i ≤ I(2.4)

V
(0)
i ≥ 0, 0 ≤ i ≤ I.(2.5)
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Then we have

V
(n)
i ≥ 0, 0 ≤ i ≤ I, n ≥ 0, when ∆tn ≤

s2

2‖α(n)
s ‖∞

, 1 ≤ i ≤ I.(2.6)

Proof. A straightforward computation shows that for 1 ≤ i ≤ I − 1,

V
(n+1)
i

≥

(
1− 2∆tn‖α(n)

s ‖∞
s2

)
V

(n)
i +

∆tn‖α(n)
s ‖∞
s2

(
V

(n)
i+1 + V

(n)
i−1

)
−∆tna

(n)
i V

(n)
i ,

V
(n+1)
0 ≥

(
1− 2∆tn‖α(n)

s ‖∞
s2

)
V

(n)
0 +

2∆tn‖α(n)
s ‖∞

s2
V

(n)
1 −∆tna

(n)
0 V

(n)
0 ,

V
(n+1)
I

≥

(
1− 2∆tn‖α(n)

s ‖∞
s2

)
V

(n)
I +

2∆tn‖α(n)
s ‖∞

s2
V

(n)
I−1−

2a
(n)
I γ

(n)
I

s
V

(n)
I −∆tna

(n)
I V

(n)
I .

If V
(n)
s ≥ 0, then using an argument of recursion, we easily see that V

(n+1)
s ≥ 0,

because 1 − 2∆tn‖α(n)
s ‖∞

s2
≥ 0, a

(n)
s ≤ 0, γ

(n)
s ≤ 0, α

(n)
s ≥ 0. This ends the

proof. �

A direct consequence of the above result is the following comparison Lemma.

Lemma 2.2. Let a
(n)
s , α

(n)
s , V

(n)
s and W

(n)
s be four sequences, with n ≥ 0,

a
(n)
s ≤ 0, α

(n)
s ≥ 0, such that

δtV
(n)
i − α(n)

i δ2V
(n)
i + a

(n)
i V

(n)
i <(2.7)

δtW
(n)
i − α(n)

i δ2W
(n)
i + a

(n)
i W

(n)
i , 0 ≤ i ≤ I,

V
(0)
i < W

(0)
i , 0 ≤ i ≤ I.(2.8)

Then we have

V
(n)
i < W

(n)
i , 0 ≤ i ≤ I, n ≥ 0, when ∆tn ≤

s2

2‖α(n)
s ‖∞

, 1 ≤ i ≤ I.

Proof. Define the sequence Z
(n)
s = W

(n)
s −V (n)

s . A straightforward calculation gives

δtW
(n)
i − δtV (n)

i − α(n)
i δ2(W

(n)
i − V (n)

i ) + a
(n)
i (W

(n)
i − V (n)

i ) > 0, 0 ≤ i ≤ I,
which is equivalent to

δtZ
(n)
i − α(n)

i δ2Z
(n)
i + a

(n)
i Z

(n)
i > 0, 0 ≤ i ≤ I.

Knowing that Z
(0)
s > 0, from Lemma (2.1), we have Z

(n)
s > 0, which implies that

V
(n)
i < W

(n)
i , 0 ≤ i ≤ I, and the proof is complete. �

Lemma 2.3. Let a
(n)
s , α

(n)
s , V

(n)
s and W

(n)
s be four sequences, with n ≥ 0,

a
(n)
s ≤ 0, α

(n)
s ≥ 0, such that

δtV
(n)
i − α(n)

i δ2V
(n)
i + a

(n)
i V

(n)
i ≤(2.9)
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δtW
(n)
i − α(n)

i δ2W
(n)
i + a

(n)
i W

(n)
i , 0 ≤ i ≤ I,

V
(0)
i ≤W (0)

i , 0 ≤ i ≤ I.(2.10)

Then we have

V
(n)
i ≤W (n)

i , 0 ≤ i ≤ I, n ≥ 0, when ∆tn ≤
s2

2‖α(n)
s ‖∞

, 1 ≤ i ≤ I.

The lemma below reveals the positivity of the discrete solution.

Lemma 2.4. Let U
(n)
s , n ≥ 0, be the solution of the discrete problem (2.1)–(2.3).

Then we have

U
(n)
i > 0, 0 ≤ i ≤ I, when ∆tn =

s2

2‖α(n)
s ‖∞

, 1 ≤ i ≤ I.(2.11)

Proof. A routine calculation reveals that for 1 ≤ i ≤ I − 1,

U
(n+1)
i

≥

(
1− 2∆tn‖α(n)

s ‖∞
s2

)
U

(n)
i +

∆tn‖α(n)
s ‖∞
s2

(
U

(n)
i+1 + U

(n)
i−1

)
−∆tna

(n)
i U

(n)
i ,

U
(n+1)
0 ≥

(
1− 2∆tn‖α(n)

s ‖∞
s2

)
U

(n)
0 +

2∆tn‖α(n)
s ‖∞

s2
U

(n)
1 −∆tna

(n)
0 U

(n)
0 ,

U
(n+1)
I

≥

(
1− 2∆tn‖α(n)

s ‖∞
s2

)
U

(n)
I +

2∆tn‖α(n)
s ‖∞

s2
U

(n)
I−1−

2a
(n)
I γ

(n)
I

s
U

(n)
I −∆tna

(n)
I U

(n)
I .

If U
(n)
s > 0, then using an argument of recursion, we easily see that U

(n+1)
s > 0,

because 1 − 2∆tn‖α(n)
s ‖∞

s2
≥ 0, a

(n)
s < 0, γ

(n)
s < 0, α

(n)
s > 0. This ends the

proof. �

Lemma 2.5. Let U
(n)
s , n ≥ 0, be the solution of the discrete problem (2.1)–(2.3).

Then we have

U
(n)
i+1 < U

(n)
i , 0 ≤ i ≤ I − 1.(2.12)

Proof. Difine the vector Z
(n)
s such that Z

(n)
i = U

(n)
i+1−U

(n)
i , 0 ≤ i ≤ I− 1. We have

Z
(n)
i = U

(n)
i+1 − U

(n)
i , 1 ≤ i ≤ I − 2, Z

(n)
0 = U

(n)
1 − U (n)

0 , Z
(n)
I−1 = U

(n)
I − U (n)

I−1.

A straightforward computations reveals that

δtZ
(n)
i − (p− 1)|δ0U

(n)
i |

p−2δ2Z
(n)
i + (p− 1)(p− 2)|δ0U

(n)
i |

p−3δ2U
(n)
i+1δ

0Z
(n)
i

−h(1− θ(n)
i )−h−1Z

(n)
i = 0, 0 ≤ i ≤ I − 2,

δtZ
(n)
I−1 − (p− 1)|U (n)

I |
−q(p−2)δ2

∗Z
(n)
I−1 + q(p− 1)(p− 2)(U

(n)
I )−q(p−2)−1δ0(U

(n)
I )−q(p−2)

−h(1− ξ(n)
I )−h−1Z

(n)
I−1 = 0,
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where θ
(n)
i ∈ (U

(n)
i+1, U

(n)
i ) and ξ

(n)
I ∈ (U

(n)
I , U

(n)
I−1).

Knowing that Z
(n)
s < 0, from Lemma (2.1), we have Z

(n)
s < 0, which implies that

U
(n)
i+1 < U

(n)
i , 0 ≤ i ≤ I − 1, and we obtain the desired result. �

Lemma 2.6. Let U
(n)
s , n ≥ 0, be the solution of the problem (2.1)–(2.3) and the

initial data at (2.3) verifies some compatibility conditions. Then δtU
(n)
i ≥ 0 for

0 ≤ i ≤ I.

Proof. Consider the vector Z
(n)
s such that Z

(n)
i = δtU

(n)
i for 0 ≤ i ≤ I

A straightforward calculation gives

δtZ
(n)
i = (p− 1)(p− 2)δ0U

(n)
i |δ

0U
(n)
i |

p−2δ0Z
(n)
i δ2U

(n)
i + (p− 1)|δ0U

(n)
i |

p−2δ2Z
(n)
i

+h(1− U (n)
i )−h−1Z

(n)
i , 0 ≤ i ≤ I − 1,

δtZ
(n)
I = −q(p− 1)(p− 2)(U−q(p−2)−1)

(n)
I Z

(n)
I δ2U

(n)
I + (p− 1)(U−q(p−2))

(n)
I δ2Z

(n)
I

+
2q(p− 1)2

s
(U−q(p−1)−1)

(n)
I Z

(n)
I + h(1− U (n)

I )−h−1Z
(n)
I .

We finally have

δtZ
(n)
i − (p− 1)(p− 2)δ0U

(n)
i |δ

0U
(n)
i |

p−2δ0Z
(n)
i δ2U

(n)
i − (p− 1)|δ0U

(n)
i |

p−2δ2Z
(n)
i

−h(1− U (n)
i )−h−1Z

(n)
i = 0, 0 ≤ i ≤ I − 1,

δtZ
(n)
I + q(p− 1)(p− 2)(U−q(p−2)−1)

(n)
I Z

(n)
I δ2U

(n)
I − (p− 1)(U−q(p−2))

(n)
I δ2Z

(n)
I

−2q(p− 1)2

s
(U−q(p−1)−1)

(n)
I Z

(n)
I − h(1− U (n)

I )−h−1Z
(n)
I = 0.

Knowing that Z
(0)
i = (p−1)|δ0ϕi|p−2δ2ϕi+(1−ϕi)−h ≥ 0, 0 ≤ i ≤ I, from Lemma

(2.1), we have Z
(n)
s ≥ 0, which implies that δtU

(n)
i ≥ 0, 0 ≤ i ≤ I, we have the

wished result. �

3. Quenching in the discrete problem

In this section, under some assumptions, we show that the solution U
(n)
s of the

problem (2.1)–(2.3) quenches in a finite time and estimate its discrete quenching
time. To facilitate our discussion, we need to define the notion of numerical quench-
ing.

Definition 3.1. We say that the solution U
(n)
s of the problem (2.1)–(2.3) quenches

in a finite time, if ‖U (n)
s ‖∞ < 1 for n ≥ 0 but lim

n→+∞
‖U (n)

s ‖∞ = 1 and

T∆t
s = lim

n→+∞

n−1∑
i=0

∆ti < +∞.

We call T∆t
s the numerical quenching time of U

(n)
s .
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Now let us set W
(n)
s = 1−U (n)

s , n ≥ 0. The problem (1.4)–(1.6) may be rewritten
in the following form

δtW
(n)
i = (p− 1)|δ0W

(n)
i |

p−2δ2W
(n)
i(3.1)

−(W
(n)
i )−h, 0 ≤ i ≤ I − 1, n ≥ 0,

δtW
(n)
I = (p− 1)|(1−W (n)

I )|−q(p−1)δ2W
(n)
I(3.2)

+
2(p− 1)

s
(1−W (n)

I )−q(p−1) − (W
(n)
I )−h, n ≥ 0,

W
(0)
i = νi = 1− ϕi > 0, 0 ≤ i ≤ I,(3.3)

where n ≥ 0, p ≥ 2, q > 0, h > 0.

Lemma 3.2. Let W
(n)
s , n ≥ 0, be a sequence such that W

(n)
s > 0. Then we have

for 0 ≤ i ≤ I,

δ2(W
(n)
i )−h ≥ −h(W

(n)
i )−h−1δ2W

(n)
i , n ≥ 0.

Proof. Applying Taylor’s expansion, we obtain

δ2(W
(n)
i )−h = −h(W

(n)
i )−h−1δ2W

(n)
i + (W

(n)
i−1 −W

(n)
i )2 2h(h+ 1)

2s2
(θ

(n)
i )−h−2

+(W
(n)
i+1 −W

(n)
i )2 2h(h+ 1)

2s2
(ξ

(n)
i )−h−2, 1 ≤ i ≤ I − 1, n ≥ 0,

δ2(W
(n)
0 )−h = −h(W

(n)
0 )−h−1δ2W

(n)
0 + (W

(n)
1 −W (n)

0 )2 2h(h+ 1)

2s2
(θ

(n)
0 )−h−2, n ≥ 0,

δ2(W
(n)
I )−h = −h(W

(n)
I )−h−1δ2W

(n)
I + (W

(n)
I−1 −W

(n)
I )2 2h(h+ 1)

2s2
(θ

(n)
I )−h−2, n ≥ 0,

where θ
(n)
0 is an intermediate value between W

(n)
1 and W

(n)
0 , θ

(n)
i is an intermediate

value between W
(n)
i−1 and W

(n)
i , for 1 ≤ i ≤ I − 1, θ

(n)
I is an intermediate value

between W
(n)
I−1 and W

(n)
I , ξ

(n)
i is an intermediate value between W

(n)
i and W

(n)
i+1,

1 ≤ i ≤ I − 1. The result follows taking into account the fact that W
(n)
s > 0 �

Theorem 3.3. Let U
(n)
s be the solution of the problem (2.1)–(2.3) and assume that

there exists a constant A ∈ (0, 1] such that the initial data at (3.3) verifies the
hypothesis

(p− 1)|δ0νi|p−2δ2νi − (νi)
−h ≤ −A(νi)

−h, 0 ≤ i ≤ I − 1,(3.4)

(p− 1)|(1− νI)|−q(p−2)δ2νI +
2(p− 1)

s
(1− νI)−q(p−1)(3.5)

−(νI)
−h ≤ −A(νI)

−h.
245
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Then there exists a finite time T∆t
s such that U

(n)
s quenches in this time and we have

the following estimate

T∆t
s ≤ (1− ‖ϕs‖∞)h+1

1− (1− τ ′)h+1
,

where ∆tn = min

 s2

2(p− 1) max
2≤j≤I

{a(j − 1, 1)}
, τ‖W (n)

s ‖h+1
inf

, with 0 < τ < 1,

‖W (n)
s ‖inf = 1− ‖U (n)

s ‖∞, ‖νs‖inf = 1− ‖ϕs‖∞ and

τ
′

= Amin

 s2‖νs‖−h−1
inf

2(p− 1) max
2≤j≤I

{a(j − 1, 1)}
, τ

 .

Proof. Consider the vector J
(n)
s , n ≥ 0 such that

J
(n)
i = δtW

(n)
i +A(W

(n)
i )−h, 0 ≤ i ≤ I.

A straightforward computation gives

δtJ
(n)
i − (p− 1)|δ0W

(n)
i |p−2δ2J

(n)
i

= δ2
tW

(n)
i − hA(W

(n)
i )−h−1δtW

(n)
i − (p− 1)|δ0W

(n)
i |p−2δ2(δtW

(n)
i )

+A(p− 1)|δ0W
(n)
i |p−2δ2(W

(n)
i )−h.

From Lemma (3.2), we can show that δ2(W
(n)
i )−h ≥ −h(W

(n)
i )−h−1δ2W

(n)
i , which

implies that

δtJ
(n)
i − (p− 1)|δ0W

(n)
i |p−2δ2J

(n)
i

≤ δ2
tW

(n)
i − hA(W

(n)
i )−h−1δtW

(n)
i − (p− 1)|δ0W

(n)
i |p−2δ2(δtW

(n)
i )

+hA(p− 1)|δ0W
(n)
i |p−2(W

(n)
i )−h−1δ2W

(n)
i .

Using(3.1) and (3.2), we arrive at

δtJ
(n)
i − (p− 1)|δ0W

(n)
i |p−2δ2J

(n)
i ≤ h(W

(n)
i )−h−1J

(n)
i , 0 ≤ i ≤ I − 1,

δtJ
(n)
I − (p− 1)|(1−W (n)

I )|−q(p−2)δ2J
(n)
I − h(W

(n)
I )−h−1J

(n)
I

≤ −2q(p− 1)2

s
(W

(n)
I )−q(p−1)−1g(W

(n)
I ),

where g(W
(n)
I ) = −δtW (n)

I +
Ah

q(p− 1)
(1−W (n)

I )(W
(n)
I )−h−1 ≥ 0. It is not hard to

see that

δtJ
(n)
i − (p− 1)|δ0W

(n)
i |

p−2δ2J
(n)
i − h(W

(n)
i )−h−1J

(n)
i ≤ 0, 0 ≤ i ≤ I − 1,

δtJ
(n)
I − (p− 1)|1−W (n)

I |
−q(p−2)δ2J

(n)
I − h(W

(n)
I )−h−1J

(n)
I ≤ 0,

From (3.4) and (3.5), we see that J
(0)
s ≤ 0. We deduce from Lemma (2.1) that

J
(n)
s ≤ 0, for n ≥ 0, which implies that

δtW
(n)
i ≤ −A(W

(n)
i )−h, 0 ≤ i ≤ I,(3.6)
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These estimate may be rewritten in the following form

W
(n+1)
i ≤W (n)

i −A∆tn(W
(n)
i )−h.

Therefore

W
(n+1)
i ≤W (n)

i (1−A∆tn(W
(n)
i )−h−1),(3.7)

which implies that

‖W (n+1)
s ‖inf ≤ ‖W (n)

s ‖inf (1−A∆tn‖W (n)
s ‖−h−1

inf ), n ≥ 0.

From Lemma (2.6), ‖W (n+1)
s ‖inf ≤ ‖W (n)

s ‖inf . By induction, we obtain

‖W (n)
s ‖inf ≤ ‖W (0)

s ‖inf = ‖νs‖inf ,

Then we have

‖W (n)
s ‖−h−1

inf ≥ ‖νs‖−h−1
inf

and with A∆tn‖W (n)
s ‖−h−1

inf ≥ τ ′
, we arrive at

‖W (n+1)
s ‖inf ≤ ‖W (n)

s ‖inf (1− τ
′
).

By induction, we get

‖W (n)
s ‖inf ≤ ‖W (0)

s ‖inf (1− τ
′
)n, n ≥ 0,

which leads us to

‖W (n)
s ‖inf ≤ ‖νs‖inf (1− τ

′
)n, n ≥ 0.

Since the term on the right hand side of the above inequality tends to zero as n

approaches infinity, we conclude that ‖W (n)
s ‖inf tends to zero, therefore, ‖U (n)

s ‖∞
tends to 1. Now, let us estimate the numerical quenching time. It is not hard to see
that

+∞∑
n=0

∆tn ≤
+∞∑
n=0

τ‖W (n)
s ‖h+1

inf ≤ τ‖νs‖
h+1
inf

+∞∑
n=0

(
(1− τ

′
)h+1

)n
.

Using the fact that the series

+∞∑
n=0

(
(1− τ

′
)h+1

)n
converges towards

τ‖νs‖h+1
inf

1− (1− τ ′)h+1
.

We deduce that

T∆t
s =

+∞∑
n=0

∆tn ≤
τ‖νs‖h+1

inf

1− (1− τ ′)h+1
.

Since ‖νs‖inf = 1− ‖ϕs‖∞, we have

T∆t
s =

+∞∑
n=0

∆tn ≤
τ(1− ‖ϕs‖∞)h+1

1− (1− τ ′)h+1
.

We conclude the proof. �
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Remark 3.4. Using Taylor’s expansion, we get

(1− τ
′
)h+1 = 1− (h+ 1)τ

′
+O(τ

′
),

which implies that

τ

1− (1− τ ′)h+1
=

τ

τ ′

1

(h+ 1)
≤ C

(h+ 1)
.

If we take τ =
s2

2(p− 1)
, we have

τ
′

τ
= Amin

 ‖νs‖−h−1
inf

max
2≤j≤I

{a(j − 1; 1)}
, 1

,
and therefore

τ

τ ′ =
1

A
min

(
max

2≤j≤I
{a(j − 1, 1)}‖νs‖h+1

inf , 1

)
,

then

τ

1− (1− τ ′)h+1
≤ C

(h+ 1)
=

C

A (h+ 1)
min

(
max

2≤j≤I
{a(j − 1, 1)}‖νs‖h+1

inf , 1

)
.

We conclude that
τ

1− (1− τ ′)h+1
is bounded.

Remark 3.5.

‖W (n+1)
s ‖inf ≤ ‖W (n)

s ‖inf (1− τ
′
),

we get

‖W (n)
s ‖inf ≤ ‖W (q)

s ‖inf (1− τ
′
)n−q, for n ≥ q,

which implies that

+∞∑
n=q

∆tn ≤ τ‖νs‖h+1
inf

+∞∑
n=q

(
(1− τ

′
)h+1

)n−q
,

we deduce that

T∆t
s − tq ≤

τ‖W (n)
s ‖h+1

inf

1− (1− τ ′)h+1
with ∆tq =

q−1∑
j=0

∆tj ,

and since ‖W (n)
s ‖inf = 1− ‖U (n)

s ‖∞, we have

T∆t
s − tq ≤

τ(1− ‖U (n)
s ‖∞)h+1

1− (1− τ ′)h+1
with ∆tq =

q−1∑
j=0

∆tj .

In the sequel, we take τ =
s2

2(p− 1)
.
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4. Convergence of the discrete quennching time

In this section, under some assumptions, we show that the discrete quenching
time converges to the real one when the mesh size goes to zero. We denote by :

us(tn) = (u(x0, tn), u(x1, tn), . . . , u(xI , tn))T and ‖U (n)
s ‖∞ = max

0≤i≤I
|U (n)
i .

In order to obtain the convergence of discrete quenching time, we firstly prove
the following theorem about the convergence of the discrete scheme.

Theorem 4.1. Assume that the problem (1.4)–(1.6) has a solution u ∈ C4,2([0, 1]×
[0, T ]) such that supt∈[0,T ] ‖u(., t)‖inf = λ < 1. Suppose that the initial data at (2.3)
satisfies

‖ϕs − us(0)‖∞ = o(1) as s→ 0,(4.1)

Then for s sufficiently small, the problem (2.1)–(2.3) has a unique solution

U
(n)
s , 0 ≤ n ≤ J such that

max
0≤n≤J

‖U (n)
s − us(tn)‖∞ = O(‖ϕs − us(0)‖∞ + s+ ∆tn) as s→ 0.(4.2)

Where J is such that

J−1∑
j=1

∆tj ≤ T and tn =

n−1∑
j=0

∆tj .

Proof. For each s, the discrete problem (2.1)–(2.3) has a unique solution U
(n)
s . Let

N ≤ J , the greatest value of n. There exists a positive real ρ (with λ < ρ < 1) such
that

‖U (n)
s − us(tn)‖∞ <

ρ− λ
2

, for n < N.(4.3)

We know that N ≥ 1 because of (4.1). Due to the fact u ∈ C4,2([0, 1]× [0, T ]). By
the triangular inequality, we obtain

‖U (n)
s ‖∞ ≤ ‖us(tn)‖∞ + ‖U (n)

s − us(tn)‖∞, n < N,

which implies that

‖U (n)
s ‖∞ ≤ λ+

ρ− λ
2

=
ρ+ λ

2
< 1, n < N.(4.4)

Since u ∈ C4,2([0, 1]× [0, T ]). Applying Taylor’s expansion, we obtain

δtu(xi, tn)− (p− 1)|δ0u(xi, tn)|p−2δ2u(xi, tn)

= (1− u(xi, tn))−h +
h2(p− 1)|δ0u(xi, tn)|p−2

12
uxxxx(x̃i, tn)

+
∆tn

2
δttu(xi, t̃n), 0 ≤ i ≤ I − 1,

δtu(xI , tn)− (p− 1)|u−q(xi, tn)|p−2δ2u(xI , tn)

= (1− u(xI , tn))−h +
2(p− 1)

h
|u−q(xi, tn)|p−2u−q(xI , tn)

+
h(p− 1)

3
|u−q(xi, tn)|p−2uxxx(x̃I , tn)
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−h
2(p− 1)

12
|u−q(xi, tn)|p−2uxxxx(x̃I , tn)

+
∆tn

2
δttu(xi, t̃n).

Let e
(n)
s = U

(n)
s − us(tn) be the error of discretization. Using Taylor’s expansion,

we have for n < N ,

δte
(n)
i − α(n)

i δ2e
(n)
i

= h(1− θ(n)
i )−h−1e

(n)
i +

h2

12
α

(n)
i uxxxx(x̃i, tn)− ∆tn

2
δttu(xi, t̃n), 0 ≤ i ≤ I − 1,

δte
(n)
I − α(n)

I δ2e
(n)
I

= h(1− ξ(n)
I )−h−1e

(n)
I +

2

h
qα

(n)
I (ξ

(n)
I )−q−1e

(n)
I − h

3α
(n)
I uxxx(x̃I , t)

+h2

12α
(n)
I uxxxx(x̃I , t)−

∆tn
2
δttu(xi, t̃n),

where θ
(n)
i an intermediate value between u(xi, tn) and U

(n)
i for i ∈ {0, · · · , I − 1}

and ξ
(n)
I is an intermediate value between u(xI , tn) and U

(n)
I . Since α(x, t)uxxx(x, t),

α(x, t)uxxxx(x, t), utt(x, t) are bounded, there existes a positive constant K > 0 such
that

δte
(n)
i − α(n)

i δ2e
(n)
i ≤ (1− θ(n)

i )|e(n)
i |+(4.5)

Ks2 +K∆tn, 0 ≤ i ≤ I − 1, n < N,

δte
(n)
I − α(n)

I δ2e
(n)
I ≤

(
(1− ξ(n)

I ) +
2

h
qα

(n)
I (ξ

(n)
I )−q−1

)
e

(n)
I(4.6)

+Ks+K∆tn, n < N.

Set L = (1 − ρ+λ
2 ) + 2

hqα
(n)
I (ρ+λ2 )−q−1; and introduce the vector W

(n)
s defined as

follows

W
(n)
i = e(L+1)tn(‖ϕs − us(0)‖∞ +Ks+K∆tn), 0 ≤ i ≤ I, n < N.

A direct calculation yields

δtW
(n)
i − α(n)

i δ2W
(n)
i > (1− θ(n)

i )W
(n)
i +(4.7)

Ks2 +K∆tn, 0 ≤ i ≤ I − 1, n < N,

δtW
(n)
I − α(n)

I δ2W
(n)
I >

(
(1− ξ(n)

I ) +
2

h
qα

(n)
I (ξ

(n)
I )−q−1

)
W

(n)
I(4.8)

+Ks+K∆tn,

W
(n)
0 > e

(n)
0 , W

(n)
I > e

(n)
I , n < N(4.9)

W
(0)
i > e

(0)
i , 0 ≤ i ≤ I.(4.10)

Applying comparison Lemma (2.2), we arrive at

W
(n)
i > e

(n)
i , 0 ≤ i ≤ I.
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In the same way, we also prove that

W
(n)
i > −e(n)

i , 0 ≤ i ≤ I,
which implies that

W
(n)
i > |e(n)

i |, 0 ≤ i ≤ I.
We deduce that

‖U (n)
s − us(tn)‖∞ ≤ e(L+1)tn(‖ϕs − us(0)‖∞ +Ks+K∆tn), n < N.(4.11)

Now, let us show that N = J . Suppose that N < J . If we replace n by N in (4.11),
and taking into account the inequality (4.3), we obtain

ρ− λ
2
≤ ‖U (N)

s − us(tN )‖∞ ≤(4.12)

e(L+1)T (‖ϕs − us(0)‖∞ +Ks+K∆tn).

Since the term on the right hand side of the above inequality goes to zero as s tends
to zero, we deduce that ρ−λ

2 ≤ 0, which is impossible. Consequently N = J , and we
conclude the proof. �

Theorem 4.2. Suppose that the solution u of the problem (1.4)–(1.6) quenches in
a finite time Tq such that u ∈ C4,2([0, 1]× [0, Tq)) and the initial condition at (2.3)
satisfies

‖ϕs − us(0)‖∞ = ◦(1) s→ 0.

Under the assumptions of the Theorem (3.3), the discrete problem (2.1)–(2.3) has a

solution U
(n)
s which quenches in a finite time T∆t

s and the following relation holds

lim
s→0

T∆t
s = Tq.

Proof. The Remark (3.4) allows us to say that
τ

1− (1− τ ′)h+1
is bounded. Letting

0 < ε <
Tq
2

. Then exists a positive real γ = ρ− λ (with λ < ρ < 1) such that

τ(1− z)h+1

1− (1− τ ′)h+1
≤ ε

2
, for z ∈ [1− γ, 1).(4.13)

Since u quenches in a finite time Tq, there exists a time T1 ∈ (Tq −
ε

2
, Tq) and

s0(ε) > 0 such that 1 − γ

2
≤ ‖u(., tn)‖∞ < 1 with tn ∈ [T1, Tq[, s ≤ s0(ε). Let

T2 =
T1 + Tq

2
and q be a positive integer such that tq =

q−1∑
n=0

∆tn ∈ [T1, T2], for

s ≤ s0(ε). We have

1− γ

2
≤ ‖us(tn)‖∞ < 1, for n ≤ q, s ≤ s0(ε).

It follows from Theorem (4.1) that the discrete problem (2.1)–(2.3) has a solution

U
(n)
s which verifies

‖U (n)
s − us(tn)‖∞ <

γ

2
, for n ≤ q, s ≤ s0(ε).
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Using the triangle inequality, we get

‖U (q)
s ‖∞ ≥ ‖us(tn)‖∞ − ‖U (q)

s − us(tq)‖∞ ≥ 1− γ

2
− γ

2
, s ≤ s0(ε),

which implies that

‖U (q)
s ‖∞ ≥ 1− γ, s ≤ s0(ε).

From Theorem (3.3), U
(n)
s quenches at the time T∆t

s . It follows from Remark (3.5)
and (4.13) that

|T∆t
s − tq| ≤

τ(1− ‖U (q)
s ‖∞)h+1

1− (1− τ ′)h+1
<
ε

2
,

because, we have ‖U (q)
s ‖∞ ≥ 1− γ

2
, for s ≤ s0(ε). We deduce that for s ≤ s0(ε),

|T∆t
s − T q| ≤ |T∆t

s − tq|+ |tq − T q| ≤
ε

2
+
ε

2
= ε,

which leads us to the desired result. �

5. Numerical experiments

In this section, we present some numerical approximations to the quenching time
of the problem (1.4)–(1.6). We use the following explicit scheme

U
(n+1)
i −U(n)

i

∆ten

= (p− 1)|δ0U
(n)
i |p−2δ2U

(n)
i + (1− U (n)

i )−h, 0 ≤ i ≤ I − 1,

U
(n+1)
I −U(n)

I

∆ten

= (p−1)|(U−q)(n)
I |p−2δ2U

(n)
I +(p−1)|(U−q)(n)

I |p−2(
−(U−q)

(n)
I

s
)+(1−U (n)

I )−h,

U
(0)
i = ϕi > 0, 0 ≤ i ≤ I,

where n ≥ 0, p ≥ 2, h > 0, q > 0, δ0U
(n)
i =

U
(n)
i+1 − U

(n)
i−1

2s
, δ2U

(n)
i =

U
(n)
i+1 − 2U

(n)
i + U

(n)
i−1

s2
,

for 1 ≤ i ≤ I − 1,

δ2U
(n)
I =

2

s2

(
U

(n)
I−1 − U

(n)
I

)
,

∆ten = min

(
s2

2(p− 1) max {a(j − 1, 1)}
, τ(1− ‖U (n)

s ‖∞)h+1

)

with 0 < τ < 1 and a(j − 1, 1) =

(
|U (n)
j+1 − U

(n)
j−1|

2s

)p−2

for 2 ≤ j ≤ I.

Now, approximate the solution u of the problem (1.4)–(1.6) by the solution

U
(n)
s =

(
U

(n)
0 , U

(n)
1 , · · · , U (n)

I

)T
of the following implicit scheme

U
(n+1)
i −U(n)

i

∆tn
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= (p− 1)|δ0U
(n)
i |p−2δ2U

(n+1)
i + (1− U (n)

i )−h, 0 ≤ i ≤ I − 1,

U
(n+1)
I −U(n)

I

∆tn

= (p− 1)|(U−q)(n)
I |p−2δ2U

(n+1)
I + (p− 1)|(U−q)(n)

I |p−2(
−(U−q)

(n)
I

s
)

+(1− U (n)
I )−h,

U
(0)
i = ϕi > 0, 0 ≤ i ≤ I,

where n ≥ 0, p ≥ 2, h > 0, q > 0, δ0U
(n)
i =

U
(n)
i+1 − U

(n)
i−1

2s
,

δ2U
(n+1)
i =

U
(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

s2
,

δ2U
(n+1)
I =

2

s2

(
U

(n+1)
I−1 − U (n+1)

I

)
, ∆tn = τ(1− ‖U (n)

s ‖∞)h+1

with 0 < τ < 1. In the following tables, in rows, we present the numerical quenching
times, numbers of iterations, the CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128, 256, 512, 1024. The numerical time
Tn =

∑n−1
j=0 ∆tj is computed at the first time when ∆tn = |Tn+1 − Tn| ≤ 10−16.

The order(s) of the method is computed from

s
′

0 =
log((T4s − T2s)/(T2s − Ts))

log(2)
.

For the numerical value, we take: ϕi = 0.5 +
1

6π
cos

(
π(is)

2

)
− 1

3
(is)

4.5
,

for i = 0, · · · , I.

Table 1: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method for q = 0, 1, p = 2 , h = 3

I Tn n CPU time s
′

0

16 0.010005572074890 3502 0.07 -
32 0.009983606857072 13308 0.26 -
64 0.009978123925230 50402 1.71 2.00
128 0.009976753714490 190260 14.21 2.00
256 0.009976411192172 715623 138.75 2.00
512 0.009976325554442 2680794 692.37 2.00
1024 0.009976304108366 9996366 3910.76 2.00

Table 2 : Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler
method for q = 0, 1, p = 2, h = 3
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I Tn n CPU time s
′

0

16 0.010005572074890 3502 0.29 -
32 0.009983606857072 13308 1.65 -
64 0.009978123925230 50402 63.75 2.00
128 0.009976753714490 190260 539.15 2.00
256 0.009976411192172 715623 6848.92 2.00
512 0.009976325554442 2680794 72578.25 2.00
1024 0.009976304108366 9996366 954792.15 2.00

Remark 5.1. The two tables show that the solution of the problem quenches in a
finite time. We estimate this time at 10−2.

In the following, we also give some plots to illustrate our analysis. For the different
plots, we used both explicit and implicit schemes in the case where I = 32 and
(q, p, h) = (0.1, 2, 3).
In the figures 1 and 2, we can appreciate the quenching of the discrete solution and
in the figures 3 and 4, we observe that the discrete solution quenches at the finite
time T∆t

s = 10−2.

Figure
1. Evolution of
the discrete so-
lution (explicit
scheme).

Figure
2. Evolution of
the discrete so-
lution (implicit
scheme).
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Figure
3. Evolution of
the norm of the
discrete solution
according to the
time (explicit
scheme).

Figure
4. Evolution of
the norm of the
discrete solution
according to the
time (implicit
scheme).

6. Conclusion

In this paper, we have studied the numerical quenching of the solution of the
non-Newtonian filtration equation with singular boundary flux (1.1)–(1.3) and we
have obtained good approximations of its quenching time.

We have constructed, by the finite difference method, the discrete problem (2.1)–
(2.3) associated to the continuous problem (1.1)–(1.3). We have shown that under
some conditions, the solution of the discrete problem (2.1)–(2.3) quenches in finite
time and we have estimated its discrete quenching time. We have also established
the convergence of the discrete time towards the theoretical time when the spatial
and temporal discretization steps tend towards zero. Finally, we have given some
numerical experiments to illustrate our analysis.
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