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ABSTRACT. This paper concerns the study of the discret approximation
for the following semilinear heat equation with a singular boundary outflux

g—?:uzﬁ(l—u)*”, O<z<l1,t>0,

uz(0,8) =0, wuz(1,t) = —u(l,¢)79, t>0,

u(z,0) =uo(z), 0<xz<1,
where p > 0, ¢ > 0.
We find some conditions under which the solution of a discrete form of
above problem quenches in a finite time and estimate its discrete quenching
time. We also establish the convergence of the discrete quenching time to
the theoretical one when the mesh size tends to zero. Finally, we give some

numerical experiments for a best illustration of our analysis.
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1. INTRODUCTION

VV e consider the semilinear heat equation with a singular boundary outflux

(1.1) U =Uge + (1 —u)™P, O<ax<1, t>0,
(1.2) ugy(0,8) =0, wu,(1,t)=—u(l,t)79, t>0,
(1.3) u(x,0) = up(x), 0< <1,

where p > 0, ¢ > 0. The initial value ug : [0,1] — (0,1) is nonincreasing and
satisfies the compatibility conditions:
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up(0) =0, ug(1) = —up(1)~7.

Selcuk and Ozalp [1] show that its solution u quenches in finite time Ty, and = 0
is the unique quenching point. They also show that the time derivative u; blows
up at the quenching point and they get a quenching rate and a lower bound of the
quenching time.

Definition 1.1. We say that the classical solution u of the problem (1.1)—(1.3)
quenches in a finite time if there exists a finite time 7T}, such that ||u(.,t)||s < 1 for
t €[0,7,), but

l Bl =1,
Jm ful, 1l

where ||u(.,t)|oo = Jmax |u(z,t)]. The time T, is called the quenching time of the
71‘7
solution .

The theoretical study of solutions for semilinear parabolic equations with quench

in a finite time has been the subject of investigations of many authors (See [2, 3, 4,

, 6,7, 8,9, 1, 10] and the references cited therein). Local in time existence and

uniqueness of the solution have been proved (See [10]). In [6], the authors considered
semilinear parabolic problem

Ut = Ugg + f(2)(1—u)7P, O<z<l, 0<t<T,
ug(0,8) =0, ug(l,t) =—u(l,t)",0<t <T,

u(z,0) = up(x), 0<z<1,

where p and ¢ are positive constants and T' < oo.

Under some conditions, they prove three main results namely the quenching of
the solution in finite time, the existence of a single quenching point x = 0 and the
blow-up of the time derivative at the quenching point.

In recent years, more and more researchers are interested in numerical study of
parabolic problems. This is the case of [11] in which the authors are interested in the
numerical study of a heat equation with nonlinear boundary flux conditions using
a semidiscrete form obtained by finite difference method. Under some conditions,
they show that the solution of the numerical approximation for this heat equation
quenches in a finite, they also establish the convergence of the semidiscrete quenching
time and obtain a numerical quenching rate. Using the explicit and implicit Euler
methods, they present some numerical results through tables and figures. We can
also cite [12] in which The authors consider the following initial-boundary value
problem:

U = Uge +UP, O0<2 <1, 0<t<o00,
ug(0,8) =0, wux(l,t)=—u(l,t)79, 0<t<oo,

u(z,0) =ug(z), 0<x <1,

where p > 0, ¢ > 0.
They work about the numerical quenching and numerical blow-up using the
semidiscrete form obtained by finite difference method. Under some conditions,
188
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they prove that the solution of the semidiscrete form blows up in a finite time, and
they study the convergence of semidiscrete blow-up time and estimate a semidis-
crete blow up rate. They also under some conditions prove that the solution of the
semidiscrete form quenches in a finite time, study the convergence of semidiscrete
quenching time and estimate a semidiscrete quenching rate. The convergence of the
semidiscrete scheme has also been proved. Using Hirota and Ozawa method [13],
they present some numerical results which contain tables and figures for adequate
values p and ¢ which illustrate well their theoretical study. From these results,
they emerged interesting results concerning the influence of the parameters p and ¢
on the numerical quenching time. Concerning problem (1.1)—(1.3), The authors of
[14] investigate about the numerical quenching phenomenon. Using the semidiscrete
scheme, they show some properties of semidiscrete solution. Under some conditions,
they prove that the semidiscrete solution quenches in finite time and they get a upper
bound of the semidiscrete quenching time. They also prove the convergence of the
semidiscrete scheme and the numerical time. Using the explicit and implicit Euler
methods, they illustrate their analyses by tables where they get some finite values of
the numerical quenching time according to the values taken by I. They finish their
study by presentation of figures with adequate values of p and ¢. For other previous
studies on numerical approximations of parabolic system with non-linear boundary
conditions, we refer to [15, 16, 17, 18].

In this paper, we will deepen the work of [14] using discrete form of problem (1.1)-
(1.3). We present our work in this way: In section 2, we present some properties of
the discrete solution. In sections 3 and 4, we prove some main results related to the
discrete quenching time and the discrete scheme. In section 5, we give numerical
results for new values of the parameters p and gq.

2. PROPERTIES OF THE DISCRETE SCHEME

Let I > 3 be a positive integer and let h = 1/I. Define the grid z; = ih,
0 < i < I. We approximate the solution u of problem (1.1)—(1.3) by the solution
Ul = i U™, ... UM™)T and the initial condition ug by the initial condition
on = (Yo, ¢1,-..,01)" of the following discrete equations

(2.1) s U™ =82U™ 4+ (1-UM™M)™P, 0<i<I-1

n n 2 n)\— n)\ —
(2.2) 601" = 8Up — S(UF) + (1-U)
(2.3) U =, 0<i<I,

where
n>0, p>0, ¢g>0,

U'(TH_I) I U(n)
=i i 0<i<],

5;U™
tY; Atn )

s2U™ — Ui(ﬁ — 20" + U
7 - h2 )

189

1<i<I-—1,
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2u™ — 2y{™ 520 _ 2u"™) — 2™
h2 ’ I h2 ’

0; >0, 0<i<I,

32U =

5-1-%:%7 0<i<I-—1,
dtp; <0, 0<i<I—1.

In order to permit the discrete solution to reproduce the properties of the continuous
one when the time ¢ approaches to the quenching time 7y, we need to adapt the size
of the time step. We choose

h2
At, = min {2,7(1 - ||U,§")||Oo)p+1} with 7 € (0,1).

Definition 2.1. We say that the solution U,S"), n > 0 of the discrete problem (2.1)—
(2.3) quenches in finite time, if ||U,§n)||oo < 1forn > 0 but lirf ||U}(L”)HOo =1
n—-+oo

and
n—1

TAY = lim At; < 4o00.
n—-+4oo
7=0
We call ThAt the numerical quenching time of U}(Ln).
Now we give some Lemmas which will be used in this work.

Lemma 2.2. Let bgln) and Vh(n) be two sequences, with n > 0 and bgln) < 0, such
that for 0 <: <1

5,V — 52y 4 pmy ) > o,
v >o.
Then we have

h2
Vi(")ZO,OﬁiSLnZOU’}LC”Atngi'

Proof. A straightforward computation shows that for

(n+1) g Bl 1,m) | Aln (n) () 4 <
% >(1 - >V — (Vi + Vi) = AtV 1< i< 11

. Aty ) | 28t n)y(n
P 5 (1_ L >V0< g 2By A v,

. oDt ), 2Bt n)
v > (1 >V< R R AL TR

h? h?
If Vh(") > 0, then using an argument of recursion, we easily see that Vh(nﬂ) >0,

— ;ln) > 0. This end the proof. O
190
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Lemma 2.3. Let b;ln), V}f") and W}(Ln) be three sequences, with n > 0 and b;ln) <0,
such that for 0 <i <1,

5,V — g2y Ly < s g2y ),

VO <0
Then we have

h2
viM<w™ 0<i<I, n>0, when At, < 5

Proof. Define the vector Z,(Ln) = W,En) — Vh(n). For 0 < i < I, a straightforward
calculation gives

5,2 — 622" 4 oMz > 0.
Knowing that Z,(LO) > 0, from Lemma 2.2, we have Z}(L") >0,n>0. g
Lemma 2.4. Let bgln), Vé") and Wf(bn) be three sequences, with n > 0 and b;") <0,
such that for 0 <i <1,

5tVi(n) _ 52Vi(n) =+ bl(”)‘/;(”) < 5tW¢(n) _ (SQWi(n) 4 bgn)Wi(")’

v © < w(®
Then we have

v «w™ 0<i<I, n>o0, when Aty < .

Proof. Define the vector Z}(L”) = W}(L") - Vh(”). For 0 < ¢ < I, a straightforward
calculation gives

52 — 62z 1oz > 0,

Knowing that Z,(lo) > 0, from Lemma 2.2, we have Z,(l") >0,n2>0. O

Lemma 2.5. Let U,(Zn), n > 0 be a sequence such that ||Uhn)||oO < 1. Then we have
51— U™y > p1—u™)yrl5u™, 0<i<I
Proof. Using Taylor’s expansion, we get

n — n s p— n 1 n R p— n
5t(1_Ui( )) p:p(l—Ui( )) P 15tUi( )+p(p;‘ )Atn(1—0§ )) P 2(5tUZ‘( ))27

where 01(") is an intermediate value between Ui(") and Ui(”+1), 0 < i< I.We use the
fact that ||U}(Ln) lo <1, n >0 to complete the proof. O

Lemma 2.6. Let U,(Ln)7 n > 0, be the solution of the discrete problem (2.1)—(2.3).
Then

sU™ >0, 0<i<I.
191
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Proof. Consider the vector Z,(Ln) such that Zi(n) = 5tUl-(n), 0 <i¢< 1. Using
Lemma 2.5, a straightforward calculation gives

02" = 82" —p(L = U) T ZM 20, 0<i<I-,
2 n n n —_p— n
— a5 () 2y —p(1 - U 2 0.

Since Z,(LO) > 0, from Lemma 2.2, we have Z}(L") > 0, which implies that 5tUi(") >0,
0<i< 1. O

52 — 627"

Lemma 2.7. Let U,S"), n > 0 be the solution of the discrete problem (2.1)—(2.3).
Then we have
2
Uvz(n >0,0<i<I, n>0 when Aty <%

Proof. A straightforward computation shows that

. oAt ), At ) .

n+1 At n 2Atn n n)\—
U(§+):<1 h2>U0 U+ At (1= Ug) 7,

- SO | 28ty 2D, .
ot = (1= 255 Yo+ 20l - 2 ) e 4 s - Uf)

If U(n) > 0, then using an argument of recursion, we easily see that Uf(LnH) > 0,
At -

Lemma 2.8. Let U,(L"), n > 0 be the solution of the discrete problem (2.1)—(2.3).
Then we have

(2.4) U <ut™, 0<i<I-1.

Proof. Define the vector Z(") such that Z(") U(n) Ul(_ﬁi, 0<i<I-1. Wehave

ZM=u™ U, 0<i<I-2,

n n) n
Z§—)1 = UI(—l - UI( g
By a straightforward computations, we have

5:2™ — 522 —p1 — ¢y Pz =0, 0<i<I-2,
n n 2 n — n —_pn— n
82" = 82y - S (UF) = p(1 - () 2 =

Where @(n) is an intermediate value between Ui(") and Ui(ﬂ, 0<i<I-1.
Knowing that Z,(ZO) > 0, from Lemma 2.2, we have Z,(Ln) > 0, which implies that

Ul(f)l < Ui(n), 0 <7 <TI—1, and we obtain the desired result. O
192
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3. DISCRETE QUENCHING SOLUTIONS

In this section, under some assumptions, we show that the solution U}(Ln) of the
discrete problem (2.1)—(2.3) quenches in a finite time and estimate its numerical
quenching time. Now let us set V(") =1- Uf(bn). The problem (2.1)-(2.3) is equiva-
lent to

(3.1) sV =s2v™ vy 0<i<I -1,

n n 2 n _ n —
(3.2) oV = 8V (= V)T (v
where

n>0, p>0, ¢g>0.
Lemma 3.1. Let Vh(n), n > 0 be a sequence such that ||Vh(")||inf > 0. Then we have
S,V > _p(V Y1y << T
Proof. Using Taylor’s expansion, we get

5, (V) = _p(v 15,y @Atnwg”’)ﬂ”(ém(”})2,0 <i<I.

where 05") is an intermediate value between V;(") and Vi(nH), 0 <1t < 1I.We use the
fact that ||Vh(”) lling >0, n >0 to complete the proof. O

Lemma 3.2. Let V}f"), n > 0 be a sequence such that HVh(") llint > 0 . Then we have
52(‘/;(70)*17 > 7p(‘/i("))*17*152‘/i(")’ 0 < i < I.

Proof. Applying Taylor’s expansion, we obtain

1
S2(VMY P = _p(v)=p-152y ) 4 () _ 2P E D) gimyy -

g 2h?
) meP@+ L) )y,
(‘/'H»l ‘/1 )2 2h2 (Ei ) P 27 1 S { S I- 17
n)\ — n)\—p— n n n p(p+1) n
52(‘/0( )) P _ _p(vo( )) P 152‘/0( )+(V1( ) V( ))2 > (9( )) :

S(VM)P = _p(v )12y o () _ >)2M(9§ )y-p-2

where 98") is an intermediate value between VO(") and Vl(n)7 Hgn) is an intermediate

value between Vl(_nl) and Vi("), 1<i<T-1, 9%") is an intermediate value between

V™ and V™, ™ is an intermediate value between V™ and Vl(fl), 1<i<I-1

The result follows taking into account the fact that ||Vh(") |ling > 0. O
193
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Theorem 3.3. Let U}(Ln) be the solution of (2.1)~(2.3). Suppose that there exists a
constant A € (0,1] such that the initial data at (3.3) satisfies

(3.4) 8% — &P < AP 0<i<T—1,
2 _ _ _
(3'5) 52€I+E(1_£I) q_fIPS_A£[p~
+oo
Then U,Sn) quenches in a finite time ThAt = Z At,, which satisfies the estimate
n=0
ar o 71— [lonlloo)™t
T < 1—(1—7)ptt”’

h? n n n
1MW%Mn=mm{2,ﬂV()V“}uﬁhTemJLVU = (1= U™ |s) and

hmin hmin

2 . \—p—1
7= Amin{—h (ghm;n) ,Th

Proof. Introduce the vector J,(ln) defined as follows
JM =5, (VM) + AV 0<i<I, n>0.
A straightforward computation yields for 0 <i < I and n > 0,
5tJi(n) _ 52Ji(n) _ 5t(5tV¢(n) _ 52‘/2@)) + A5t(Vi(n))_p _ A52(Vi(n))—p.
Using (3.1)—(3.2) we arrive at
5T ™ — 527 = —(1— A5, (V™) P — A2 (V)P o<i<T—1,

n n n —_ 2 n —q— n n —
6tJI( )_52‘]1( ): _(1_14)5#,(‘/1( )) p+ﬁq(1_‘/l( )) q 1675‘/[( )—A(SQ(VI( )) P

It follows from Lemma 3.1 and Lemma 3.2 that for n > 0,

8™ — 627

<p(1 = AV, 15V ap(v) ey 0 < i< 1 -1,
gy — 2g™
n n 2 n i n n —_p— n
< (1= (V) 6V 4+ S V) T v ap(v) ey,
We deduce that
5 g™ — 527 — pviMhyr1gM <o) 0<i<I—1,
n n n —p— n 2 n —q— n
5y = 6201 = p(v) T = S - v ey <o
By inequalities (3.4) and (3.5), we have J}(lo) < 0. Applying Lemma 2.2, we get
J}(Ln) < 0 for n > 0, which implies that
V(n+1) _ V(")

A S —AWVI"™yP 0<i<I, n>0.
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We get:
(3.6) V}"*”gvf")( — AAL, (V)P 1), 0<i<I, n>0.

These estimates reveal that the sequence Vh(") is nonincreasing. By induction, we
obtain V™ < V%) = ¢, Thus, the following holds

2 C\—p—1
AAtn(Vh(gl)in)*pfl > Amin{%,r} —

Let i be such that Vh(n)- = V("). Replacing ¢ by ip in (3.6), we obtain

main

(3.7) vt <y (1) >0,

hmin — Y hmin

and by iteration, we arrive at

(38) thln Vif?rnn( - 7_/)71 = ghmzn(l - T/)n7 n 2 O

Since the term on the right hand side of the above equality goes to zero as n ap-

proaches infinity, we conclude that Vh(m)m

U, (n)Hoo tends to one as n approaches infinity. Now, let us estimate the numerical

quenching time. Due to (3.8) and the restriction At,, < T(V(n) )PHL it is not hard
to see that

tends to zero as n approaches infinity and

mn

z At, < Z Tfﬁ;in T’)p+1]”.

Use the fact that the series on the rlght hand side of the above inequality converges
towards
+1

ng—min

1—(1—7")ptl
and Epmin = (1 — ||¢nlleo), we obtain

rar o TA = llenlle)”
- 1-(1—7)ptt

Remark 3.4. Using Taylor’s expansion, we get
L= (1 =7 = (p+ 17" +o(7),
which implies that

T _ T 1 < T 2
I—(1—7)ptl 7 (p+1)+o(l) — 7 (p+1)
If we take 7 = h?, we have
1 +1
=3 min{2&)7. 1}
Then
T 2T 2 1

A=t S o) A+ 1) s L

195
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T

We conclude that W is bounded.
Remark 3.5. From (3.8) we deduce by induction that
V}fz)m < Vh(:fbm(l — 7=k for n >k,

and we see that
Z Aty < Z (Vi) (L= )70,

which implies that
(V(k) )p+1

hmin

—t —
R g G
Since V%) = (1= |UF||o0), We get

hmin

T

At (L — [URlloo)"**
Ty =tk < 1—(1—7/)ptt

In the sequel, we take 7 = h2.

4. CONVERGENCE OF THE DISCRETE QUENCHING TIME

In this section, under some assumptions, we show that the numerical quenching
time of the discrete solution converges to the real one when the mesh size goes to
zero. We denote by

un(tn) = (w0, tn), w(@1, tn), ooy ular, t,))T and US| = max ™.

In order to obtain the convergence of the numerical quenching tlme, we ﬁrstly prove
the following theorem about the convergence of the discrete scheme.

Theorem 4.1. Assume that the continuous problem (1.1)—(1.3) has a solution u €
C*2([0,1] x [0,T]) such that sup |u(.,t)||eoc = ¢, (0 < ¢ < 1). Suppose the initial
te[0,7]

condition at (2.3) satisfies
(4.1) len —un(0)]|oo = 0(1) as h—0.

Then, for h sufficiently small, the discrete problem (2.1)—(2.3) has a solution Uf(Ln),
0 <n < J, and we have the following relation

max (U™ = un(tn)lloo) = O(llpn = un(0)l|oo +h) as h—0.

0<n<J
J—1 n—1
Where J is such that Z At; <T and t, = Z At;.
j=0 j=0

Proof. For each h, the discrete problem (2.1)—(2.3) has a solution U}(Ln). Let N < J,
the greatest value of n such that there exists a positive constant § (with { < 8 < 1)
such that

(4.2) U™ = (t0) oo < % n<N.
196
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We know that N > 1 because of (4.1). Using the triangular inequality for n < N,
we have

n n Jr
@3) U oo < lenltlloo + 1T — wn(tn)loo < ¢+ 555 = 226 <1
Let egln) U(") up(tn) be the error of discretization for n < N. Using Taylor’s

expansion, we have

Oy 6(()") — 62 eé")

=p(1 —U(()n))_p_le(()n) +h (h

2 At,, -
12uwwwz(£0atn) + umwz(mOatn)> - Tutt(l‘O; tn)a

3
5t6(-") — 52
n n , W At,
= p(l - Uz( ))—p—leg ) + Eumxzr(jutn) - 2 (.’L’Z, n) 1 < { < I— 1

5te§n) — 5265~n)

_ (p(l_gg ) 1,2 (m))—g-1)

h ( €r
tn -
7uza::r(x17tn) - Tutt(mbtn)7

3
is intermediate value between U (n)

and u(x;,t,), 0 < i < I and ugn)
is intermediate value between U } and u(xy,t,). Since Ugypy (T,1), Urpes (2, t) and
ug(w,t) are bounded and At,, = O(h?), there exist a positive constant K > 0 such

that

h
+h ( uwzza:(xlat )

where Jg n)

61‘/66”) _ 5268'”) < C(gn)e(()n) + Kh,
el — 52 < CMel™ L K2, 1<i<I—1,

Fuel™ — 26 < O 4 i,
where
C(gn) — p(l _ U((J”))—p—17
o =p(l—o™) Pt 1<i<I -1,

2
h
Set M = Orgaécl{C'i(")} and introduce the vector Z\™ defined as follows

Cf =p - o) )T

Z™ = M (o — up(0)]|oo + Kh), 0<i<I, n<AN.
By a straightforward computations we have
5,2 — 52z > ¢Sz 4 K,
5:2" — 527" > C}”)ZW + KR, 1<i<I-1,

5,2\ — 527" - 907§">Z}"> + Kh,
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ZO >0 0<i<I

It follows from Lemma 2.4 that

ZMseMo<i<I
By the same way, we also prove that

7™M s M o<i<l,
which implies that

ZM > e 0<i< I
we deduce that
(@4) (U = un(tn) oo < €MV (o = un(0)]|oo + KR), n < N.

Now, let us show that N = J. Suppose that N < J. If we replace n by N in (4.4),
and taking into account the inequality (4.2), we obtain

B-¢

2
Since eM+DT (||, — up(0)]|oo + Kh) — 0 as h — 0, we deduce from (4.5) that

(4.5) < UMY = w () oo < eMHIT (|l op — 1 (0)]| oo + Kh)

% < 0, which is impossible. Consequently N = J, and we conclude the proof.
O

Theorem 4.2. Suppose that the solution u of problem (1.1)—(1.3) quenches in a
finite time T, such that u € C*%([0,1] x[0,T,)) and the iniatial data at (2.3) satisfies

llon — un(0)||oo = 0(1) as h — 0.
Under the hypothesis of Theorem 3.3, the problem (2.1)—(2.3) has a discrete solution
U,Sn) which quenches in a finite time ThAt and we have

lim T2t = T,.
h—0 h q

Proof. We know from Remark 3.4 that 1_(1i—71)p+1 is bounded.
T
Let 0 <e < 7(1, there exists a constant n = 8 — ¢ (0 < { < 8 < 1) such that
T(1—o)*!

(4.6) S

&
= 1—-mn,1).
1— (1_T/)p+1 25 QG[ m, )

Since u quenches in finite time T}, there exists T} € (T, — g,Tq) and ho(e) > 0

such that 1 — g < u(.,tn)]loo < 1 for t, € [T1,T,). Let k be a positive integer such
k-1

that t, = ZAtn € [Th,Ty) for h < hg(e). It follows from Theorem 4.1 that the
n=0

problem (2.1)—(2.3) has a solution U,S") which verifies HUlsn) —up(tn)]oo < g for

n <k, h < ho(e). This fact implies that

k k n
1T oo = Nl tidlloe — U = un(ti) oo 21— 2 —
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From Theorem 3.3, U ,5”) quenches at the time ThAt. It follows from Remark 3.5

(1= U3 )P
and (4.6) that T2t — ;] < = i POy <3 We deduce that for h < hy(e),

)

Ty = T < |Ty = tal + [ts = T < 5 + 5 <e.

N ™
| ™

Which leads us to the result. O

5. NUMERICAL EXPERIMENTS

In this section, we present some numerical approximations to the quenching time

1
of the problem (1.1)—(1.3) in the case where ug(xz) = 0.7 — 5.%4. We consider the
following explicit scheme

U,L-(n+1) _ Ui(n) Ui(n) _ 2Ui(n) + Ui(il) e '
Ate == h? 1+(1_Ui()) Pol<i<T—1,

Uyttt —ud 2uf — 208
At h2

gt —um oo —aufM 2, "
: = e ) - U
At h h

U =, 0<i <1,

+(1=UM)~»,

h2
where n > 0, At¢ = min {2, h2(1 — ||U,(L")||Oo)p+1} . We also consider the implicit

scheme

gt g gt gppndl) | (et .
R T (R AR ET RS s
n

Uén—&-l) - Uén) B 2U1(n+1) B 2Uén+1)
At, N h2
Ut gttt —aufttt o

At 2 — (U (=T

Ui(O) :@170SZSI7
where n > 0, At, = h*(1 — ||U,S")||Oo)p+1. In the following tables, in rows, we

present the numerical quenching times, the numbers of iterations and the orders of
the approximations corresponding to meshes 16, 32, 64,128,256, 512. The numerical

n—1

+(1-Uy),

quenching time 7™ = Z At; is computed at the first time when
§=0
|Tn+1 o T’n| S 10716.
The order s of the method is computed from

s = Log((Tan = Ton)/(Ton — Tn))

log(2)
199
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1
For the discrete initial data we take ¢; = 0.7 — = (ih)%.

TABLE 1.

2

Numerical quenching times obtained with the explicit

Euler method p =4 and ¢ = —log(2)/log(0.2)

I A n s
16 | 0.00048983809 | 1292 -
32 | 0.00048696537 | 4891 -
64 | 0.00048624977 | 18434 | 2.00

128 | 0.00048607104 | 69198 | 2.00
256 | 0.00048602636 | 258629 | 2.00
512 | 0.00048601519 | 961840 | 2.00

TABLE 2.

Numerical quenching times obtained with the implicit

Euler method p =4 and g = —log(2)/log(0.2)

1 m n s
16 | 0.00049012477 | 1292 -
32 | 0.00048703076 | 4891 -
64 | 0.00048626995 | 18434 | 2.02
128 | 0.00048607886 | 69199 | 1.99
256 | 0.00048602982 | 258631 | 1.96
512 | 0.00048601682 | 961844 | 1.91

Next, we give some plots to illustrate our analysis. We take the case where I = 64,
p=4and ¢ = —log(2)/log(0.2) .

o
®

0.6
0.4

Numerical approximation Uif"

05
Number of space steps i

Number of time steps n

FIGURE 1. Evolution
of the numerical solu-
tion (explicit scheme).

200

o
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MNumerical approximation Ui
o ©o o

o v & o

M

@
&8
@
3
~

a0 15

20 05 x10*

Number of space steps i
Number of time steps n

FIGURE 2. Evolution
of the numerical solu-
tion (implicit scheme).
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Numerical approximation Ui (n1

Numerical approximation Ui (n1
s © © o o o
A & = 3 > w =
7

)
©

°
Y]

03 04 05 06

Space xi

07 08 09

FiGUure 3. The pro-
fil of the approxima-
tion of u(x,T) where, T
is the quenching time
(explicit scheme).
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©

o
@
&

0.75
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Time tn

FIGURE 5. The pro-
fil of the approxima-
tion of [|U™ e (ex-
plicit scheme).
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Numerical approximation Uht"

CONCLUSION

Numerical approximation Ui (n1
o & 5 © & o o
P S - N T

o
[N

o

°

o
@
&

o
©

o
@
&

0.75

01 02 03 04 05 06

Space xi

07 08 09 1

FIGURE 4. The pro-
fil of the approxima-
tion of u(x,T) where, T
is the quenching time
(implicit scheme).

o
= I;E;) 1 15 2 25 3 35 4 45 5
Time tn 10"

FiGURE 6. The pro-

fil of the approxima-
tion of U™ e (im-
plicit scheme).

Remark 5.1. We can observe from figures 1-4 that the discrete solution quenches
in a finite time at the fisrt node, which is well known in a theoretical point of view.

For figures 5-6 we see that the discrete solution quenches in a finite time close to
4.9

In this paper, we have studied the numerical quenching of the solution of the
semi-linear heat equation (1.1)—(1.3) and we have obtained good approximations of

its quenching time.
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We have constructed, by the finite difference method, the discrete problem (2.1)—
(2.3) associated to the continuous problem (1.1)—(1.3). We have shown that under
some conditions, the solution of the discrete problem (2.1)—(2.3) quenches in finite
time and we have estimated its discrete quenching time. We have also established
the convergence of the discrete time towards the theoretical time when the spatial
and temporal discretionary steps tend towards zero. Finally, we have given some
numerical experiments to illustrate our analysis.
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