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ABSTRACT. Our aim of the research is to study two aspects: First, we
define new concept (called an interval-valued soft set) which combines an
interval-valued set with a soft set, and discuss with its algebraic structures
and give some examples. Second, we investigate basic topological struc-
tures based on interval-valued soft set, for example, subspace, base and
subbase, neighborhood, closure and interior, and give some examples.
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1. INTRODUCTION

In the real world, there are many complicated problems in dealing with eco-
nomics, engineering, medical science, social science, etc., being highly dependent on
the task of modeling uncertain data. To solve successfully undefinable or complex
problems, some researchers had proposed various concepts, for example, probabil-
ities, fuzzy sets [1], interval-valued fuzzy sets [2, 3], rough sets [1], intuitionistic
fuzzy sets [5], interval-valued intuitionistic fuzzy sets [6] and vague sets [7]. How-
ever, to overcome the inherent difficulties of each of these concepts, Molodtsov [3]
introduced the notion of soft sets which has rich potential for practical applications
in several domains as a tool for dealing with uncertainties. After that time, Maji

et al. [9] proposed some basic operations on soft sets and studied some of their
properties (See [10, 11, 12] for the further researches). Aktag and Cagman [13],
Feng et al. [14], U. Acar et al. [15], and Sun et al. [16] applied soft sets to group

theory, semiring theory, ring theory and module theory, respectively. Jun [17] dealt
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with soft BOK/BCI-algebras (Refer to [18, 19] for the more researches). Majum-
dar and Samanta [20] defined similarity measure based on soft sets and found some
of its properties. Cagman and Enginoglu [21] proposed a uni-int decision making
method. Also They [22] dealt with the soft maz-min decision making method. On
the other hand, Many researchers [23, 24, 25, 26, 27, 28, 29, 30, 31] introduced
and studied topological structures via soft sets over a universe set with a fixed set
of parameters. Recently, Debnath and Tripathy [32] introduced the notion of soft
bitopological spaces and dealt with separation axioms in a soft bitopological space.
Also, few researchers [33, 34, 35, 36, 37, 38] investigated soft topological groups,
rings and modules.

Topology is an important area of mathematics with many applications in the
domains of computer and physical science. Recently, Kim et al. [39] studied topo-
logical structures based on interval-valued sets as the generalization of classical sets
and the special case of interval-valued fuzzy sets introduced by Zadeh [2].

We intend to study in the following two aspects: First, as a new tool to solve
complex problems, we define an interval-valued soft set that combines a soft set
and an interval-valued set, and study their algebraic structures. Second, we study
topological structures based on interval-valued soft sets. In order to accomplish our
aim, this paper is composed of five sections. In Section 2, we recall some definitions
of interval-valued sets introduced by Yao [40] and three results obtained by Kim et al.
[39]. Also, we recall some operations on soft sets. In Section 3, we define an interval-
valued soft set and obtain its several properties. In Section 4, we introduce the
concept of interval-valued soft topological spaces and find some of their properties,
and give some examples. In Section 5, we define an interval-valued soft neighborhood
of two types and interval-valued soft closure (interior), and deal with some of their
properties.

2. PRELIMINARIES

In this section, we recall basic concepts and three results related to interval-valued

sets introduced by Yao [40] and Kim et al. [39]. Also, we recall operations for soft
sets in [8, 9]. Throughout this section and the next sections, let X, Y, Z,--- be
non-empty universe sets, let £, E’, E”, ... be non-empty sets of parameters and
let 2% be the power set of X.

Definition 2.1 ([39, 40]). The form

[A=,AT]={BCX:A" CBCA"}

is called an interval-valued set (briefly, IVS) or interval set in X, if A=, At C X
and A~ C AT. In this case, A~ [resp. AT] represents the set of minimum [resp.
maximum| memberships of elements of X to A. In fact, A~ [resp. AT]is a minimum
[resp. maximum| subset of X agreeing or approving for a certain opinion, view,
suggestion or policy. [&, 2] [resp. [X, X]] is called the interval-valued empty [resp.
whole] set in X and denoted by & [resp. X]. We will denote the set of all IVSs in
X as IVS(X).

It is obvious that [A, A] € IV S(X) for a classical subset A of X. Then we can
consider an IVS in X as the generalization of a classical subset of X. Furthermore,
134
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if A=[A",A%] € IVS(X), then

Xa = [XA—7XA+]

is an interval-valued fuzzy set in X introduced by Zadeh [2], where x, denotes the
characteristic function of A. Thus we can consider an interval-valued fuzzy set as
the generalization of an IVS.

Definition 2.2 ([39, 10]). Let A, B € IVS(X). Then
(i) we say that A contained in B, denoted by A C B, if A~ C B~ and AT C BT,
(ii) we say that A equals to B, denoted by A = B, if AC B and B C A,
(iii) the complement of A, denoted A€, is an interval-valued set in X defined by:

A =[(A7)°, (A7),
(iv) the union of A and B, denoted by AUB, is an interval-valued set in X defined
by:
AUB=[A"UB ,AtuB"],
(v) the intersection of A and B, denoted by AN B, is an interval-valued set in X
defined by:
ANB=[A"NnB ,AtnB"].

The followings are (il), (i2), (i3), (k1), (k2) and (k3) in [40].

Result 2.3. Let A, B, C € IVS(X). Then
(1) ZcAcCKX,

Yif AC B and BC C, then ACC,

JACAUB and BC AUB,

)ANB C A and AN B C B,

)AC B ifand only if ANB = A,

) AC B if and only if AUB = B.

The followings are (I1)—(I8) in [40].

(2

(3
(4
(5
(6

Result 2.4. Let A, B, C € IVS(X). Then
(1) (Idempotent laws) AUA=A, ANA=A,
(2) (Commutative laws) AUB =BUA, ANB=BNA,
(3) (Associative laws) AU(BUC)=(AUB)UC, AN(BNC)=(ANB)NC,
(4) (Distributive laws) AU(BNC)=(AUB)N(AUC),
AN(BUC)=(ANnB)U((ANCQO),
(Absorption laws) AU(ANB)=A, AN(AUB)=A4,
(DeMorgan’s laws) (AU B)¢ = A°N B¢, (AN B)¢= A°U B°,

(8) AUX X AmX A
(86) @ o° = X7
(84) AUA®# X, ANA° + & in general (See Example 3.7 in [39]).

Definition 2.5 ([39]). Let (A4;);es be a family of members of IV.S(X). Then
135
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(i) the intersection of (A;);e.s, denoted by (.., Aj, is an IVS in X defined by:

jeJ
V4 =147 147
jeJ jeJ jeJ

(ii) the union of (A;);es, denoted by ;¢ Aj, is an IVS in X defined by:

Ua =104 U
jedJ JjEJ jeJ
Result 2.6 (Proposition 3.9, [39]). Let A € IVS(X) and let (Aj);cs be a family of
members of IVS(X). Then
(1) (mjej Aj)c = Uje] A?, (Uje] Aj)c = ﬂjeJA%
(2) An (UjeJ Aj) = UjGJ(A NA4;), AU (ﬂjeJ Aj) = ﬂjEJ(A U 4;).

Definition 2.7 ([39]). Let a € X and let A € IVS(X). Then the form [{a}, {a}]
[resp. (@, {a}]] is called an interval-valued [resp. vanishing] point in X and denoted
by a,,, [resp. a,,,,]. We denote the set of all interval-valued points in X as
IVp(X).

(i) We say that a,, . belongs to A, denoted by a,,., € A, ifa € A™.

(i) We say that a,,., belongs to A, denoted by a,,,, € A, if a € AT.

Result 2.8 (Proposition 3.11, [39]). Let A € IVS(X). Then
A = AIVP U AIVVP7

where AIVP = UG’IVPEA Arvp and AIVVP = Uazvvp
In fact, A,,, =[A7,A7] and A =[o, At]

IVV P

For a set X, let IVS*(X) = {A € IVS(X): A~ = AT}, Then from the above
Result, A= A4,,, for each A € IVS*(X).

Result 2.9 (Theorem 3.14, [39]). Let (Aj)jes CIVS(X) and leta € X.

(1) a,yp, € NAj [resp. a,,p, € (A;] if and only if a,,, € Aj [resp. a,,,, €
A;], for each j € J.

(2) ayyp € UA; [resp. a,yvp € UA;] if and only if there exists j € J such that
a,vp €Aj [resp. a,,p € A;.

Result 2.10 (Theorem 3.15, [39]). Let A, B € IVS(X). Then

(1) A C B if and only if Gryp € A= apyp € B /resp' aryyvp € A= Gpyyp € B]
for each a € X.

(2) A=Bifand only ifa,,, € A= a,,, € B [resp. a,,,, € A a,,,, € B/
for each a € X.

€A Aryyp:

IV P

Definition 2.11 ([39]). Let 7 be a non-empty family of IVSs on X. Then 7 is called
an interval-valued topology (briefly, IVT) on X, if it satisfies the following axioms:

(IVO,) &, X e,

(IVO3) ANB e 7 forany A, B €,

(IVO3) U, Aj € 7 for any family (A;);es of members of 7.

In this case, the pair (X, 7) is called an interval-valued topological space (briefly,
IVTS) and each member of 7 is called an interval-valued open set (briefly, IVOS)
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in X. AnIVS A is called an interval-valued closed set (briefly, IVCS) in X, if A¢ € 7.

It is obvious that {@ X }is an IVT on X, and is called the interval-valued in-
discrete topology on X and denoted by 7, ,. Also IV.S(X) is an IVT on X, and
is called the interval-valued discrete topology on X and denoted by 7, .. The pair
(X, Trvo) [resp. (X, 7,,,)] is called the interval-valued indiscrete [resp. discrete]

space.

We denote the set of all IVTs on X as IVT(X). For an IVTS X, we denote the
set of all IVOSs [resp. IVCSs| in X as IVO(X) [resp. IVC(X)].

Definition 2.12 ([39]). Let 71, 72 € IVT(X). Then we say that 7, is contained
in To Or Ty is coarser than T or T is finer than 71, if 71 C 7o, i.e., A € 15 for each
A € 7.

It is obvious that 7, ,

C T C Ty, foreach 7€ IVT(X).
Definition 2.13 ([3, 24]). An Fj is called a soft set over X, if Fy : A — 2% is a
mapping such that F4(e) = & for each e ¢ A, where A C X.

In other words, a soft set over X is a parametrized family of subsets of X. For
each e € A, F4(e) may be considered as the set of e-approximate elements of the
soft set F'4. It is clear that a soft set is not a set. We will denote the set of all soft
sets over X as SS(X).

It was well-known [8] that every Zadeh’s fuzzy set A may be considered as the
soft set Flo ).

Definition 2.14 ([9, 24]). Let Fa, Fp) € SS(X). Then we say that:

(i) Fga is a soft subset of Fp, denoted by F4CFp, if A C B and Fu(e) C Fp(e)
for each e € A,

(ii) Fy4 is a soft super set of Fg, denoted by FaDFg, if FgCFj,

(iii) F4 and Fp are soft equal, if FACFp and F4DFp.
Definition 2.15 ([9]). Let E = {ej,ea, - ,e,} be a set of parameters. Then the
NOT set of E, denoted by |E, is defined by:

-|E = {—lela 1625 e a—len}}7

where Te; = not e; for each i.

Result 2.16 (Proposition 2.1, [9]). Let A, B C E. Then

(1) 1(14) = 4,

(2) [(AUB) =]AU| B,

(3) (AN B) =]AN|B.
Definition 2.17 ([9]). Let F4 € SS(X). Then the complement of F4, denoted by
F,, is defined by:

Fy= F]Aa

where F]/A :]A — 2% is a mapping given by F{A(a) =X — Fa("a) for each « €] A.

It is obvious that (F;) = Fa.
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Definition 2.18 ([9, 10]). Let F4 € SS(X). Then Fj4 is called:

(i) a null soft set or a relative null soft set (with respect to A), denoted by @ 4, if
Fy(e) = @ for each e € A,

(ii) an absolute soft set or a relative whole soft set (with respect to A), denoted
by X4, if Fa(e) = X for each e € A.

3. INTERVAL-VALUED SOFT SETS

In this section, we define an interval-valued soft set and some operations between
interval-valued soft sets, and deal with some of their properties. In this section,
unless otherwise stated, A, B, C, --- represent a subset of F.

Definition 3.1. An F, = [F,F}] is called an interval-valued soft set (briefly,
IVSS) over X, if F4 : A — IV.S(X) is a mapping such that F4(e) = & for each
e¢ A ie. , Fy, Ff € SS(X) such that F; (e) C Fi(e) for each e € A.

In other words, an IVSS over X is a parametrized family of IVSs of X. For
each e € A, F4(e) = [F (e), Fi (e)] may be considered as an interval-valued set of
e-approximate elements of the IVSS F 4. We denote the set of all IVSSs over X as
IVSS(X).

it is obvious that if F4 € SS(X), then [Fa, F4] € IVSS(X). Then we can see
that an IVSS is the generalization of a soft set. Moreover, if F4 € IV.SS(X), then
clearly, x; , is an interval-valued fuzzy soft set (briefly, IVFSS) over X introduced
by Yang et al. [11]. Thus an IVSS is the special case of an IVFSS.

Example 3.2. (1) Let X be the set of houses under consideration and let F be the
set of parameters, where each parameter is a word or a sentence. Consider E given
by:
E = {expensive, beautiful, wooden, cheap, in the surroundings,
modern, in good repair, in bad repair}.
In this case, to define an IVSS F 4 over X means to point out the IVSs composed
of the minimal subset and the maximal subsets of expensive houses, beautiful
houses, and so on. Then we can think that the IVSS F 4 describes the IVS of the
“attractiveness of the houses” which a newly married couple would like to buy.
Now consider the universe set X and the set of parameters E given by:

X = {h17h27h37h47h57h6} and E = {61;62763364,65766567768}7

where

e stands for the parameter expensive,

eo stands for the parameter beauti ful,

es stands for the parameter wooden,

e4 stands for the parameter cheap,

es stands for the parameter in the surroundings,

eg stands for the parameter modern,

e7 stands for the parameter in good repair,

eg stands for the parameter in bad repair.

Let A C E such that A = {ej,ea,e3,e4,e5} and let Fyq : A — IV.S(X) be the
mapping given by:

Fa(e1) = [{ha, ha}, {h2, ha, hs}],
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FA(eQ) = [{hlu h3}7 {hlv hs, h4}]v
Fa(es) = [{ha3, ha, hs}, {h3, ha, hs}],
FA(64) = [{hlv h3}7 {hla h3}]7
Fa(es) = [{h}, {h1, ha}].
Then clearly, F4 is an IVSS over X. Moreover, we can see that the IVSS F4
is a parametrized family {Fa(e;), i = 1, 2, 3, 4, 5} of IVSs of X and gives us
a collection of interval-valued approximate description of an object. consider the
mapping F 4 which is “[houses (.),houses (.)]”, where dot (.) is to be filled up by
a parameter e; € A. Thus F4(e;) means “[houses (expensive),houses (expensive)]”
whose functional-value is the IVS [{ha, ha}, {h2, ha,h5}]. So we can consider the
IVSS F 4 as a collection of interval-valued approximations as below:
F 4 = {expensive houses = [{ha, ha}, {h2, hye, hs}],

beautiful houses = [{h1, h3}, {h1, b3, ha}],

wooden houses = [{hg, hq, hs}, {h3, ha, hs5}],

cheap houses = [{h1, h3}, {h1, hs}],

in the surroundings = [{h1}, {h1, ha}]},
where each interval-valued approximation is composed of two parts:

(i) a predicate p and
(ii) an approximate IVS v (or simply, to be called an IVS v).

For example, for the interval-valued approximation

“expensive houses = [{ha, ha}, {h2, ha, h5}]”,

(i) the predicate name is expensive houses and
(ii) an approximate IVS or IVS is [{ha, ha}, {h2, ha, hs5}].

(2) Let (X, 7) be an IVTS proposed by Kim et al. [39]. Then for each z € X, we
have two the families T'(x) and Ty (z) of open neighborhoods and open vanishing
neighborhoods of = (See [39] for the concept of an interval-valued neighborhood)
given by:

Tx)={U=[U",U"er:e2cU Yand Ty(z)={U=[U", U eT:2c U}
Then for a fixed z € X, we may consider T'(z), and Ty (x), as IVSSs over T,
where T'(z),, Ty (x), : 7 = IVS(X).

(3) Let A =[A", A™] be an interval-valued fuzzy set in X (See [2, 3]). Consider
the family Fio 1)x0,11((o, B)) of [a, B]-level sets for A defined as:

F[O,l]X[O,l]([avﬁ]) = {[{IE € X}v {{E € X}] : A_('T) > q, A+(£E) > 5}7
where a, 8 € [0,1] such that o < 3.
Then we can easily check that for each = € X,

A(T) = SUP(a, le(0,1]x(0,1], [{o} {2 HEF 011 xjo0,1) (e8] [ B

Thus every interval-valued fuzzy set can be considered as the IVSS F(g 1)x[0,1]-

Definition 3.3. Let F4, Fp € IVSS(X). Then we say that:
(i) F4 is an interval-valued soft subset of Fg, denoted by F4 C Fg,if A C B
and F4(e) C Fp(e) for each e € A,
(ii) Fa(e) is an interval-valued soft super set of Fp(e), denoted by F4 D Fp, if
Fp C Fyu,
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(iii) F4 and Fp are interval-valued soft equal, if F4 C Fp and F4 D Fp.

Example 3.4. Let A = {ey,e3,e5} C E, B = {e1,e9,e3,e5} C E. Consider two
IVSSs F 4 and Fp over X given by:

Fa(e1) = [{h2, ha}, {h1,ho, ha}], Fales) = [{hs, ha, b5}, {hs, ha, hs5}],
Fa(es) = [{h1}, {h1, ha}],
Fp(e1) = [{ha, ha}, {h1, ho, ha}], Fr(e2) = [{h1, ha}, {h1, h3, hs}],
Fp(es) = [{hs, ha, hs}, {hs, ha, hs}], Fr(es) = [{h1}, {h1, ha}],

where X = {hl,hg,hg,h4,h5,h6}.
Then clearly, Fa(e;) CFp(e;) fori =1, 2, 3, 4, 5, 6. Thus F4 C Fp.

Definition 3.5. Let F4 € IVSS(X). Then the complement of F 4, denoted by
F',, is the mapping F', :]A — IV S(X) defined by: for each o €] A,

Fa(a) =X — F14(Ta) = [X — F{(Ta), X — F; (Ta)].
It is obvious that (F'y)" = F4. In fact, F, = F%A.

Definition 3.6. Let F4 € IV SS(X). Then F 4 is called:

(i) a relative null interval-valued soft set (with respect to A), denoted by @4, if
Fa(e) = & for each e € A,

(i) a relative whole interval-valued soft set (with respect to A), denoted by X 4,
if Fa(e) = X for each e € A.

We denote the set of all IVSSs over X with respect to the fixed parameter set A
as IVSS4(X).

Example 3.7. (1) Consider the IVSS F4 given in Example 3.2. Then
F¢ = {not expensive houses = [{hy, hs, he}, {h1, hs, hs, he}],
not beautiful houses = [{hq, hs, hg}, {ha, ha, hs, he}],
not wooden houses = [{h1, ha, hs}, {h1, h2, he}],
not cheap houses = [{ha, hq, hs, he}, {ha, ha, hs, he}],
not in the surroundings = [{h3, h4, hs, he}, {h2, hs, ha, hs, he}]}
(2) Let X be the universe set and let A be the set of parameters given by:

X ={hq, ha, hs, hg, h5} and A = {brick, muddy, steel, stone},

where X denotes the set of wooden houses under consideration.
Let F4: A — IVS(X) be the mapping defined as follows:

F 4 (brick)=the IVS of the brick built houses,

F 4 (muddy)=the IVS of the muddy built houses,

F 4 (steel)=the IVS of the steel built houses,

F 4 (stone)=the IVS of the stone built houses.
Then we can easily see that

F 4 (brick) = F 4(muddy) = F 4 (steel) = F 4 (stone) = @.

Thus F 4 is a null interval-valued soft set.

(2) Let X and A be the universe set and the set of parameters given in (2),
respectively and let B =] A, ie., B = {not brick, not muddy, not steel, not stone}.
Consider the mapping Fp : B — IVS(X) defined as follows:

140



Lee et al./Ann. Fuzzy Math. Inform. 22 (2021), No. 2, 133-169

Fp(not brick)=the IVS of the houses not built by brick,

Fp(not muddy)=the IVS of the not muddy built houses,

Fp(not steel)=the IVS of the houses not built by steel,

Fp(not stone)=the IVS of the houses not built by stone.
Then we can easily see that

Fp(not brick) = Fp(not muddy) = Fp(not steel) = Fp(stone) = X.
Thus Fp is an absolute interval-valued soft set.

Definition 3.8. Let F4, Fp € IVSS(X). Then
(i) F4 AND F g, denoted by F 4 AF g, is the mapping FyAFp : AxB — IVS(X)
defined as follows: for each (e, f) € A x B,

(FaAFpg)(e, f) =Fale) NFp(f),

(ii) F4 OR Fp, denoted by F 4 VFp, is the mapping FAVFp : AxB — IVS(X)
defined as follows: for each (e, f) € A x B,

(FaVFp)(e, f) = Fale) UFa(f).

Example 3.9. Let X be the universe set and let A, B be the sets of parameters
given by:

X = {h17 h27 h’37 h47 h57 h67 h77 h87 h97 th}a

A = {very costly, costly, cheap}, B = {beautiful, in the surroundings, cheap}.

Let us consider two mappings F4 : A — IVS(X) and Fg : B — IV.S(X) defined
as follows:
FA(VGI‘y COStly) = [{hg, h4, h7}7 {hg, h4, h7, hg}],
FA(COStly) = [{hl, h,g}, {hl, h3, h5}]7
F4(cheap) = [{hq, ho}, {he, ho, h10}],
FB (beautiful) = [{h27 hg}, {hQ, h3, h7}],
Fp(in the surroundings) = [{hs, he}, {hs, he, hs }],
Fp (Cheap) = [{h67 h9}7 {hﬁa ho, th}]'
Then we have
A x B = {(very costly, beautiful), (very costly, in the surroundings),
(very costly, cheap), (costly, beautiful),
(costly, in the surroundings), (costly, cheap),
(cheap, beautiful), (cheap, in the surroundings), (cheap, cheap)}.
Thus we get
FAaANFp =Haxs,
where H 4, g(very costly, beautiful) = [{ha}, {he, h7}],
H 4 p(very costly, in the surroundings) = [&, {hs}],
H 4, p(very costly, cheap) = &,
H 4« p(costly, beautiful) = [{h3}, {hs}],
H 4« p(costly, in the surroundings) = [&, {hs}],
H 4 (costly, cheap) = &,
H 4« g(cheap, beautiful) = 2,
H 4 p(cheap, in the surroundings) = [{hg, {he}],
H 4 p(cheap, cheap) = [{hg, ho}, {hs, ho, h10}]-
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Also, we can check that
FaVFp=Kuaxsp,

where K 4 g(very costly, beautiful) = [{hz, hs, ha, h7}, {ha, h3, ha, b7, hs}],
K axp(very costly,in the surroundings) = [{ha, ha, hs, he, h7}, {h2, ha, hs, he, h7, hs}],
KAXB(VGI‘y COStly, cheap) = [{hg, h,47 h67 h77 hg}, {hg, h4, hﬁ, h7, hs, hg, hlo}],
KAXB(COStly, beautiful) = [{hl, hQ, hg}, {hl, hg, hg, h5, h7}],
K axp(costly, in the surroundings) = [{h1, hs, hs, he }, {h1, hs, hs, he, hs}],
KAxB(COStly, cheap) = [{hl, hg, h6, hg}, {hl, hg, h5, h@, hg, th}]7
KAxg(cheap, beautiful) = [{hg, hg, h6, hg}, {hg, h3, hg, hg, hlo}],
KAxB(cheap, in the Surroundings) = [{h5, hG, hg}, {h5, hﬁ, hg, hg, hlo}],

K xp(cheap, cheap) = [{he, ho}, {hs, ho, h1o}]-

We obtain the similar result to Proposition 2.2 in [9].

Proposition 3.10. Let F 4, Fp € IVSS(X). Then
(1) (FAVFB)I = F;‘l/\Fﬁ’
(2) (FA/\FB) :FA\/FB'

Proof. (1) Let F4 VFp = K4« p. Then clearly, we have

(FaVFp) =K, p=Kjaxp):

On the other hand,
FyAFp=F , AFg
= J4x15, [Where J(z,y) = F 4 (z) N F(y)]

=JyaxB)-
Now let (Ta, 78) €|(A x B). Then we get
K'\(AXB)(—laﬂ—lﬂ) =[X _K+(O‘7ﬂ)vX — K~ (o, 8)]
= [X = (Fi () UFg(8)), X — (Fy(a)U
= (X~ Fi ()N (X - F(B). (X~ F
=F,(Ta)NFp("8)
= Jyaxns) (Mo, '8).
Thus K%(AxB)(—'a, B) = Jyaxp)("a, 'B). So the result holds.
(2) The proof is similar to (1). O

Definition 3.11 (See [9]). Let F4, Fp € IVSS(X). Then
(i) the union of F4 and Fp, denoted by F4 U Fp, is the mapping F4 UFp :
AUB — IVS(X) defined as: for each e € AU B,

Fa(e) ifeec A-B
(FAUFB)(G): FB(e) ifee B—A
FA(G)UFB(E) if@EAﬂB,

(ii) the restricted union of F4 and Fp, denoted by F4 Ug Fp, is the mapping
FAUFp: ANB — IVS(X) defined as: for each e € AN B,

(FaUgr Fp)(e) =Fa(e) UFg(e),
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(iii) the intersection of F 4 and F g, denoted by F 4NF g, is the mapping F4NFp :
AN B — IVS(X) defined as: for each e € AN B,

(FaNFp)(e) =F4(e) or Fp(e) (as both are same set),
(iv) the restricted intersection of F4 and Fpg, denoted by F4 Ng Fp, is the
mapping Fq Ng Fp: AN B — IV S(X) defined as: for each e € AN B,
(FA Ngr FB)(e) = FA(G) N FB(G)7
(v) the extended intersection of F 4 and F g, denoted by F 4 Ng F g, is the mapping
FingFp: AUB — IVS(X) defined as: for each e € C = AU B,
Fal(e) ifeec A-—B
(FA Ng FB)(G): FB(e) ifee B—A
FA(e) n FB(e) ifee AN B.
We write FAUFg = Faup, FAURFp = FAURBH FiNFp =Farnp, FaNgrFp =
Fan.p and F4 Ng Fp = F 4on, B, respectively.
Definition 3.12. Let Fy € IVSS(X) such that AN B # &. Then the relative

complement of F 4, denoted by F7,, is the mapping F7, : A — IV S(X) defined as:
each e € A,

Fly(e) = (Fa(e)* = [Fy(e), F{ (e)]".
The following is the similar result to Proposition 2.3 in [9].

Proposition 3.13. Let F4, Fp € IVSS(X). Then
(1) FAUFA:FA,FADFA:FA,
(2) FAU@:(F,A),FAﬂéA:éA,
(3) FAU)?A:)}A; FAQ)?A:FA.

Proof. The proofs are straightforward. O
The following is the similar result to Theorem 4.1 in [10].

Proposition 3.14. Let F 4, Fp € IVSS(X) such that AN B # @. Then
(1) (FaUr Fp)" =F Ng Fj,
(2) (Fang Fp) = F, Ug F7,.

Proof. (1) Let e € ANB # @. Then clearly, (F4Ur Fp)(e) = Fa(e) UFp(e). Thus
by Definition 3.12 (ii) and Result 2.4 (6), we have

(FaUr Fp)'(e) = (Fa(e) UFp(e)” = (Fa(e)))” N (Fp(e)” = (Fj Nr Fi)(e).
So (FaUr Fg)'(e) = (F, g F)(e). Hence (F4 Ug Fp)" = F’, Ng F.

(2) The proof is similar to (1). O

Also we have the similar results to Propositions 2.5 and 2.6 in [9].

Proposition 3.15. Let F4, Fg, Fo € IVSS(X). Then
(1) F,u (FB UFc) = (FA UFB) UF¢g,

2) Fan(FgNF¢o)=(FanFp)NFc,
(3) F,uU (FB ﬂFc) = (FAUFB) ﬁ(FAUFC'),
(2) Fain (FB UFc) = (FA ﬂFB) U(FAﬁFc).
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Proof. The proofs are straightforward. O

Proposition 3.16. Let Fa, Fg, Fo € IVSS(X). Then
(1) FuV(FgVF¢)=(FaVFp)VFq,
(2) FaiA (FB /\Fc) = (FA /\FB) ANFce.

Proof. The proofs are straightforward. O
The following is the similar result to Theorem 4.2 in [10].

Proposition 3.1/7. L?L‘ Fyu, ,FB € IVSS(X) such that AN B # &. Then
(1) (F4UFp) ,:FA/ﬂg F,B,
(2) (FangFp) =F,UF.
Proof. (1) Let F4 UFp = F4up and e € AU B. Then clearly,
Fa(e) ifec A—B

FAUB(e): FB(G) ifee B—A
Fa(e) UFp(e) ifec ANB.

Thus by Result 2.16 (2) and Definition 3.5, (FAUFp) = F, 5 and F, 5 :|AU]B —
IV S(X) is the mapping defined by: for each Te €] AN|B,
Faup(Te) = (Faup(e))®

= (Fa(e) UFp(e))*

= (Fa(e))°n (Fp(e))® [By Result 2.4 (6)]

=F,(Te)NFy(Te).
So we get

F,(Te) if le €]AU|B
F, 5 = FjB(—‘e) if e €]B-1A

F,(Te)NF%(Te) if e €]AN]B.
On the other hand, by Result 2.16 (2) and Definitions 3.5 and 3.11 (v),
F, Ne F :]AUIB — IVS(X) is the mapping defined by: for each Te €] AU]B,

, / F%(je) if le €]AU|B
(F,Ng Fp)(Te) =< Fy(Te) if le €]|B—1A
F,(Te) NFS(Te) if Te €] AN]B.

Hence Fy 5(7e) = (F4 Ng F)(e). Therefore (F4 UFp) =F, Ng Fp.
(2) The proof id similar to (1). O

Now let IVSSE(X) be the set of all IVSSs over X with respect to E. Then
we will denote the members of IVSSg(X) as A, B, C, ---. In fact, A, B, C:
E — IVS(X). In particular, the interval-valued soft empty [resp. whole] set over
X respect to E, denoted by @ [resp. Xg], is the IVS in X defined by @p(e) = &
[resp. Xp(e) = X] for cach e € E.

Definition 3.18 (See Definitions 3.3 and 3.12 (ii)). Let A, B € IVSSg(X). Then
we say that
(i) A is an interval-valued soft subset of B, denoted by A C B, if A(e) C B(e)
for each e € F,
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(ii) A and B are interval-valued soft equal, denoted by A = B, if A C B and
BCA,

(iil) the interval-valued soft complement of A, denoted by A€, is the mapping
A€ : E — IVS(X) defined as: for each e € E,

Afe) = (A(e))"

From the above definition, we can easily get the similar properties to Results 2.3
and 2.4.

Proposition 3.19. Let A, B, C € IVSSg(X). Then
(1) @ C A C Xg,

(2)

(3)

(4) ANBC A and ANB CB,

(5) ACBifand onlyif ANB = A,
(6) A C B if and only if AUB = B.

Proposition 3.20. Let A, B, C € IVSSg(X). Then
(Idempotent laws) AUA=A, ANA=A,
(Commutative laws) AUB=BUA, ANB=BnA,
(Associative laws) AU(BUC)=(AUB)UC, An(BNC)=(ANB)NC,
(Distributive laws) AU(BNC)=(AUB)N(AUC),

ANnBUC)=(ANB)U(ANC),
(Absorption laws) AU(ANB)=A, AN(AUB)=A,
(DeMorgan’s laws) (A UB)¢ = A°NB° (ANB)°=A°UB®,
(A)*=A,
(8.) AUZE =A, ANDg = Tg,
(8{,) éUXE = Xg, AQXE =A,
(8c) X =9p, 9% = Xg,
(84) AUAC # X, ANA°+# D in general (See Example 3.21).
Example 3.21. Let the universe set X and the set of parameters F be given by:

X ={h1,h2,h3, ha, b5, he} and E = {e1,e2,€3}.
Consider the IVSS A over X given by:
A(ex) = [{h1, ho}t, {h1, ha, hs}], Ale2) = [{ha}, {ha, hs, hell,
Ales) = [{h1, hs, ha}, {h1, hs, ha}].
Then clearly, we have
Ac(er) = [{ha, hs, he}, {h3, ha, hs, he}].
Thus we can easily check that
(AUA)(e1) # Xp(er) and (AN A°)(e1) # Dp(er).

Definition 3.22 (See Definition 3.11)). Let (A;)jes C IVSSg(X), where J is an
arbitrary index set. Then we say that
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(i) the interval-valued soft union of (A;);ec.s, denoted by J
Ujes Aj: B — IV S(X) defined as: for each e € E,

UaAi| =1 A0

JjeJ jeJ

I A, is the mapping

(ii) the interval-valued soft intersection of (Aj)je, denoted by (o ; Ay, is the
mapping (;c; Aj : £ — IVS(X) defined as: for each e € E,

N A| () =[)A)

jeJ jeJ
Example 3.23. (1) Let X = R, E = {0,1} and let N be the set of all positive
integers. For each n € N, consider the mapping A,, : E — IV.S(X) defined by: for
each e € F,
(), 0n+1)]  ife=0
A“@—{[p4—nﬁ%¢mmﬂﬁe:1
Then clearly, A,, € IVSSE(X) for each n € N. Moreover, we can easily check that
Unen An, where U, oy An @ E — IVS(X) is the mapping defined as follows: for

each e € F,
[ (0,00),(0,00)]  ife=0
(nLEJNAn> ()= { [(—00,0),(—00,0)] ife=1.

(2) Let X =R, E ={0,1,2}. For each n € N, consider the mapping A,, : £ —
IV S(X) defined by: for each e € E,

(it a) [att)]  ife=0

A, (e) = [0—72+ Ly-i2+)]ife=1
[(2-13+1) [2-1,3+1)] ife=2.
Then clearly, A,, € IVSSg(X ) for each n € N. Moreover, we can easily check that

Mnen An, where (), .y Ay @ B — IVS(X) is the mapping defined as follows: for
each e € F,
[(0,1),[0,1)] ife=0

<ﬂ An) (6) = [(1,2),[1,2)] ife=1
neN
[(2,3),[2,3)] ife=2.

Proposition 3.24. Let A € IVSSg(X) and let (Aj)jes C IVSSE(X), where J is
an arbitrary index set. Then

(1) AN (U eJA )= UJEJ(A n Aj)v AU (n]eJA )= ﬂjeJ(A U Aj)ﬂ
(2) (Njes A =Ujes AS, (Ujes A =Njes A
Proof. The proofs are straightforward from Definitions 3.18 and 3.22. O
146



Lee et al./Ann. Fuzzy Math. Inform. 22 (2021), No. 2, 133-169

From Propositions 3.20 and 3.23, we can see that (IVSSg(X),U,N,¢, 8k, Xg)
forms a Boolean algebra except the property (8;).

Definition 3.25. Let A € IVSSg(X). Then A is called an:
(i) interval-valued soft point (briefly, IVSP) with the value a = [{a},{a}] €

IV P

IV S(X) and the support e € E | denoted by Carop if for each f € F,

Caryp ()= { %IVP lli Z 7:é ;

(ii) interval-valued soft vanishing point (briefly, IVSVP) with the value a,,, =
[@,{a}] € IVS(X) and the support e € E , denoted by €, . ifforeach f € E,

Orvvp ife=f

eaIVVP (f) - { %) ife 7’5 f
Definition 3.26. Let A € IVSSp(X).
(i) We say that €u belongs to A, denoted by €. . € A ifa,,, € Ale), ie,
a € A (e).
(ii) We say that €., pelongs to A, denoted by e, €A, ifa,,,, € Afe),
ie,a€ At (e).

Proposition 3.27. Let A € IVSSg(X). Then
A=A UA ps

where AIVSP = Uea cA e“zvvp and szsvp = Uea cA e“IVSVP'

VP SV P
In fact, A, . (e) =[A"(e),A(e)] and A,, ., (e) = [2, AT (e)] for each e € E.
Proof. The proof is straightforward. O

Example 3.28. (1) Let X = {a,b,c} and let E = {e, f}. Then we have the
following IVSPs and IVSVPs in X:

and

e o

e
arvve’ Prvve’ TCrvve arvvp’ beVVP ’

(2) Let A be the IVSS over X given in Example 3.21:
A(er) = [{h1, hao}t, {h1, ha, hs}], Ale2) = [{ha}, {ha, b5, hell,
A—(e?)) - [{hla h’3a h4}7 {h‘17 h‘37 h‘4}]

& fcIVVP :

Then clearly, we have

AIVSP (61> = [{hlﬁ h2}7 {hlv hQ}]v szsvp(el) = [Qv {hl’ ha, h3}]7

AIVSP (62) = [{hl}v {hl}]7 AIVSVP (61) = [@7 {h17h57h6}]7

AIVSP (63) = [{hlv hs, h4}7 {hlv hs, h4}}7 AIVSVP (61) = [®7 {h17 hs, h4}]
Thus A = AIVSP U AIVSVP'

Let IVSS*(X) = {A € IVSS(X) : A~ = A%}. Then from Proposition 3.27,
A=A, , foreach A € IVSS*(X).

IV P
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Theorem 3.29. Let (Aj)jes CIVSSE(X) andleta € X, e € E.
(1) . R € Njes Ay [resp. €arvsvn € Njes Aj/
if and only if €u o € A; [resp. €aovp € A,] for each j € J.

arvsp € UJEJ AJ [resp' eaIVSVP € UJEJ A]/
if and only if there exists j € J such that Carpap © A; [resp. €.,

(2)
€A,

vsvpP

Proof. The proof is straightforward. O

Theorem 3.30. Let A, B € IVSSg(X). Then
(1) A C B if and only if e, €cA=e, €B
‘IVSP IVSP
[resp. e, cA=e, €B/Vae X, Yec E.
IVSV P "IVSVP

(2) A =B if and only if €uver EASE, €B

IVSP
[resp. €., €Ase, €eB/Vae X, Vee E.

SVP SV P

Proof. (1) Suppose A C B and let €a,vep € A for each a € X and e € E. Then
a,,sp € Ale), ie., a € A= (e). Since A C B, A(e) C B(e). Thus a € B~ (e), i.e.,

a,,sp € B(e). So Corvsp © B. Also the proof of the second part is similar. The

proof of the converse is true.
(2) The proof is straightforward from Definition 3.3 and (1). O

Theorem 3.31. Let A € IVSSg(X). Then €uvop €A if and only ifealvs ¢ A°.

P
Proof. Suppose e, € A. Then clearly, a € A~ (e). Thus a ¢ A= (e)°. Since
A7 (e) C AT(e), AT(e)° C A7 (e)°. Soa & AT(e)® = (A°)"(e). Hencee, ¢ A°.
The proof of the converse is similar. O

Proposition 3.32. Let (A;)jcs C IVSSg(X) and let A =J

(1) Avse = UjeJAjIVSP’
(2) A

ies A;. Then

IVSVP — Uje] Jrvsve®

Proof. (1) For each j € J, let e € E. Then clearly, A;(e) = [4;(e)~, A;(e)t]. Thus
we have we have
Ale)=(JAanE) =1U 45607, U A7
j€T jeJ jeJ

Nowlete, €A Thene,  €lUjc;A; ThusaelJ;c;A;(e)”. So thereis
jo € J such that a € A (e)”. Hence €arvap € Pdorvser 1€, Apysp C Ujes Aj,var

Conversely, suppose €uvan € Ujes Ay, 5p- Then there is jo € J such that
€u on €Ajorvsp- Thusa € Ajy(e)™. Soa €U;c; Aj(e)”. Hence €uvon €Avse
ie., UjelAjzvsp C A, sp- Therefore A, = UjeJ Aj

(2) The proof is similar to that of (1). O

4. INTERVAL-VALUED SOFT TOPOLOGICAL SPACES

In this section, we define an interval-valued soft topology and obtain some of its
properties, and give some examples.
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Definition 4.1. Let 7 be a family of IVSSs over X with respect to E. Then 7 is
called an interval-valued soft topology (briefly, IVST) on X with respect to E, if it
satisfies the following axioms:

[IVSO,] @p, Xp €T,

[IVSO3] ANB e 7 for any A, B e T,

[IVSOs] Uje s Aj € 7 for each (Aj)jes C 7.

The triple (X, 7, E) is called an interval-valued soft topological space (briefly,
IVSTS). Every member of 7 is called an interval-valued soft open set (briefly, TV-
SOS) and the complement of an IVSOS is called an interval-valued soft closed
set (briefly, IVSCS) in X, and the set of all IVSOSs [resp. IVSCSs| in X is de-
noted by IV.SO(X) [resp. IVSC(X)]. It is obvious that {&g, Xg}, IVSSE(X) €
IVSTg(X), where IV STg(X) denotes the set of all IVSTSs on X with respect to E.
In this case, {@ g, Xg} [resp. IVSSp(X)] is called an interval-valued soft indiscrete
[resp. discrete] topology on X and denoted by 7, [resp. T,].

It is obvious that if 7 € IVSTE(X), then x, = {x : U € 7} is an interval-valued
fuzzy soft topology (briefly, IVFST) on X defined by Ali et al. [42]. Thus an IVFST
is the generalization of an IVST.

Example 4.2. (1) Let X =N, E = {0,1} and let 7 be the collection of IVSSs over
X given by: N
T = {éE,XE}UAn:TLEN},
where A, : E — IV S(X) defined by: for each e € E,
Ane) = rn+1,n+2,---}{n,n+1,n+2---} ife=0
9= e, {n)] if e =1.
Then we can easily see that (X, 7, F) is an IVSTS.
(2) Let (X,T) be a classical topological space and let E be a nonempty set of
parameters. Consider the following family
T={Ay €IVS(X):UeT},
where Ay : E — IV.S(X) defined as follows: for each e € E,
Ay(e) = [U,U].
Then clearly, 7 € IVSTE(X).

(3) Let (X, T) be an interval-valued topological space (briefly, IVTS) proposed by
Kim et al. [39] and let E be a nonempty set of parameters. Consider the following
family

T={Ay €IVS(X):U €T},
where Ay : E — IV S(X) defined as follows: for each e € E,
Ay(e)=U=[U",U"].

Then clearly, 7 € IVSTE(X).
(4) Let X = {hy, ho, ha, hs, he, h7, hs, ho, h19} be the universe set of houses and
let E = {e1,ea,es,e4,€s5,e€6,€7,€8,€9} be the set of parameters, where

e1 stands for the parameter verycostly,
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eo stands for the parameter costly,

e3 stands for the parameter cheap,

e, stands for the parameter beauti ful,

e5 stands for the parameter in the surroundings,

eg stands for the parameter wooden,

ey stands for the parameter modern,

ey stands for the parameter in good repair,

eg stands for the parameter in bad repair.
Consider the IVSSs A, B, C, D given by:

A(er) = [{h2, ha}, {ho, ha, h7, hs}], Ale2) = [{h1, hs}, {h1, hs, hs}],
Af(es) = [{he},{he, ho}], A(e) =@ for each e € E\ {e1,€e2,€3},
B(es) = [{he, ho}, {he, ho, h1o}], Bles) = [{h2, hs}, {h2, hs, hr}],
B(es) = [{hs, he}, {hs5, he, hs}], B(e) = @ for each e € E'\ {e3,e4,e5},
B(es) = [{he, ho}, {he, ho, h1o}], Bles) = [{h2, hs}, {h2, h3, hr}],
Cles) = [{he}, {he, ho}], C(e) = @ for each e € E'\ {es},
D(e1) = [{h2, ha},{h2, ha,h7, hs}], D(e2) = [{h1, h3}, {h1, h3, h5}],
D(es) = [{he, ho}, {he, ho, hio}], D(es) = [{h2, hs}, {h2, hs, hr}],

D(es) = [{hs, he}, {hs, he, hs}], A(e) = @ for each e € E'\ {e1, ea,€3,e4,€5}.

Then we can check that 7 = {@p, A, B, C,D,)N(E} € IVSTE(X).

Remark 4.3. Let 7 € IVSTE(X). Then there are two soft topologies over X with
respect to E given by:

T ={U"€2X:Uecr}, 7t ={UT €2 : Uer}.
Thus we can consider (X, 77,77, F) as soft bi-topological space in the sense of Kelly
[43] (Refer to [23, 24, 27, 30] for soft topological spaces).

From Definition 4.1 and Propositions 3.20 and 3.24, we get the following.the above
comments, we have the following.

Proposition 4.4. Let (X, 7, E) be an IVSTS and let
T¢={U°€IVSS(X):Uce€r}.
Then 7¢ has the following properties:
(1) @E, XE € Tr°
(2) AuBer° for(myA, B e 7
(3) Njes Aj € 7° for each (Aj)jes C 7.
Proposition 4.5. Let (X, 7, E) be an IVSTS and for each e € E, let
7. ={U(e) € IVS(X): U e 7}.
Then T is an interval-valued topology (briefly, IVT) on X introduced by Kim et al.

[39].

Proof. Since @ g, Xg € T, or(e) = 2, )?E(e) = X. Then &, X € 7.. Suppose

A(e), B(e) € 7. Then clearly, (AN B)(e) = A(e) " B)(e) and ANB € 7. Thus

A(e) N B)(e) € 7. Finally, suppose (Aj(e))jes C Te. Then we get [J;c; Aj(e) =

(UjeJ Aj> (e) and ;e ; Aj € 7. Thus U;c; Aj(e) €Te. Soreisan IVT on X [0
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Remark 4.6. (1) From Proposition 4.5 and Remark 4.2 (1) in [39], the following
two families of subsets of X:
o={A" €2 Acryand 1 ={AT c2¥ A e}

are classical topologies on X.
(2) The converse of Proposition 4.5 does not hold in general (See Example 4.7

(2))-

Proposition 4.5 shows that corresponding to each parameter e € F, we get an
IVT 7. on X. Then an IVST on X with respect to E gives a parametrized family
of IVTs on X.

Example 4.7. (1) Let X = {hq, ho, hg} and let E = {e1,e2}. Consider the family
7 of IVSSs over X given by:

r={%p, X5, A,B,C,D},

where A(e1) = [2,{ha}], A(e2) = [&, {h1}],
B(e1) = [{ha}, {h2, h3}], B(e2) = [{h1}, {1, ha}],
C(el) = [{h17h2}7X]7 0(62) = [{hl}uX]7

D(e1) = [{h1}, {h1, ha}], D(ez) = [{ha}, {h1, hs}].
Then clearly, (X, 7, E) is an IVSTS. Thus we can easily see that
Te; = {%7 )}, [@7 {hQ}]v [{h2}7 {h27 h3}]7 [{hh h2}’ X]’ [{h1}7 {hla hQ}]}
and o
Tey = {gva [Q’ {hl}]a [{hl}a {hlv hQ}]a [{hl}a X]a [{hl}a {h17 h3}]}
are IVTs on X. Furthermore, we have four classical topologies on X from Remark
4.5 (1):
Te_l = {@7 X, {hl}’ {h2}7 {h1, hQ}}v Tet = {@) X, {h2}7 {hl, h2}7 {h27 hs}},
Te; = {®7 X, {hl}}7 T:; = {Qa X, {hl}v {h17 hQ}a {hlv h3}}
(2) Let X = {hy,ha,hs} and let E = {e1,e2}. Consider the family 7 of IVSSs

over X given by: N
7={2p. Xp.A,B,C,D},

where A(e1) = [{ha}, {ha}], A(e2) = [{h1}, {h1}],
B(e1) = [{ha, ha}, {h2, ha}], Blez) = [{h1, ha}, {h1, ha}],
C(er) = [{h1, ha}, {h1, ha}], Cle2) = [{h1, ha}, {h1, ha}],
D(e1) = [{h2}, {h2}], D(e2) = [{h1, s}, {h1,h3}].

Then we have (BUC)(e1) = X. Thus BUC ¢ 7. So 7 ¢ IVSTg(X). But we can
easily check that the following two families:

Tey = {57)?7 [{h2}7 {hQ}L [{hlv h2}7 {hla hQHv [{h27 h3}7 {h27 h3}}7
Tey = {év}?v [{hl}v {hl}]a [{h17 h2}a {hla h2}]7 [{h17 h3}7 {hla h3}]

are IVTs on X. Moreover, we get four classical topologies on X:
Te_l = Tet = {@, X7 {h2}7 {hla h2}7 {h27 hS}};
TC; = T;; = {Q’X7 {h‘l}’ {hl, h2}7 ) {h’la hS}}

Proposition 4.8. If 1, 7 € IVSTE(X), then 11 N 1o € IVSTE(X).
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Proof. Since 11, 1o € IVSTgr(X), SE, )Z'E € 71 N 71o. Then 71 N 7o satisfies the
axiom [IVSO;]. Let A, B € 7y N75. Then clearly, A, B € 1, and A, B € 75. Thus
ANBerm and ANB € 1. So ANB € 71 N1y. Hence 7 N 75 satisfies the axiom
[IVSOs]. Finally, let (A;)jes C 71 N72. Then clearly, A; € 7y and A; € 7» for each
j € J. Thus UjeJ A; €1 and UjeJ Aj;em. So UjeJ A; € 11 N1e. Hence 11 N1y
satisfies the axiom [IVSO3]. Therefore 71 N 1o € IVSTE(X). O

Corollary 4.9. (.., 7, € IVSTE(X) for any (7,)jes C IVSTr(X).

Remark 4.10. The interval-valued soft union of two IVVSTs need not be an IVST
(See Example 4.11).

Example 4.11. Let X = {hy, ha, h3} and let E = {e1,e2}. Consider two family 7
and of 7 IVSSs over X given by:

1 = {éE,XE,A,B,C,D},
T2 = {éEa)?EaELFa GaH}v

jeJ

where A(e1) = [{h1}, {h1, ha}], A(e2) = [{ha}, {ha; hs}],
B(e1) = [{ha}, {h2, ha}], Ble2) = [{ha}, {h1, ha}],
C(e1) = [, {h2}], C(e2) = [{ha}, {h2}],
D(e1) = [{h1, ho}, X], D(e2) = [{h2}, X],
E(e1) = [{h1},{M}], E(e2) = [{hs},{h2, h3}],
F(el) = [{hQ}a {hla hQ}]ﬂ F(eQ) = [{h3}7 {h3}]7

G(er) = [@,{h1}], G(e2) = [{hs}, {hs}],
H(e1) = [{h1, ha}, {h1, ho}], H(ea) = [{hs}, {h2, hs}].
Then clearly, 7, Uty = {@p, Xg,A,B,C,D,E,F,G,H}. Thus we have

(BUG)(e1) = [{h2}, X].
So BUG ¢ 11 UTa. Hence 7 Ume ¢ IVSTER(X).

Definition 4.12. Let 71, 72 € IVSTE(X) Then we say that:
(i) 71 is coarser than T2 or 7o is finer than 1, if 74 C 7o,
(ii) 7 is strictly coarser than o or o is strictly finer than 71, if 71 C 7o and

T1 7é T2,
(iii) 71 is comparable with o, if either 71 C 1 or 75 C 71.

It is obvious that 7, C 7 C 7, for each 7 € IVSTE(X) and (IVSTg(X), C) forms
a meet lattice with the smallest element 7, and 7, from Corollary 4.9.

Definition 4.13. Let A, B € IVSSg(X). Then the dif ference of A and B,
denoted by A — B, is the mapping A—B : E — IV.S(X) defined by: for each e € E,

(A -B)(e) = Ae) —B(e) = A(e) NB(e) = [A7(e) N BT (e), AT (e) N B~ (e)].
Lemma 4.14. Let A, B, Cc IVSSg(X). f A—B=ANC, then B=ANC¢.
Proof. Suppose A—B =ANC and let e € E. Then we have

B=A-(A-B)=A-(AnNnQC).

Thus we get
B(e) = A(e) N (ANC)(e)
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= [A7(e), AT (e)] N ([AT(e), A~ (e)] U [CT(e), C (e)]
= [A7(e), A*(e)] N[AT(e) UCT(e), A" (e) UC (e)]
=[A"(e)N (AT (e)UCT(e)), AT (e) N (A~ (e) UC (e))]
— (AN C%(e).
SoB=AnNC-. O

Proposition 4.15. Let A € IVSSg(X) andlet 7 € IVSTg(X). Then the following
family

7, ={ANU:Uer}
is an IVST on A.

Proof. Clearly, @E,)?E € 7. Then by Proposition 3.20 (8,) and (8;), AN@p = Op
and ANXg = A. Thus @p, A € 7,. So 7, satisfies the axiom [I[VSO,]. Let
B, C € 7,. Then there are U, V € 7 such that B=ANU and C = ANV.
Thus by Proposition 3.20 (1) and (2), BNC=AN(UNV)and UNV € 7. So
BNC e 7,. Hence 7, satisfies the axiom [IVSOs]. Now let (A;)jes C 7,. Then
there is U; € 7 such that A; = AN Uj; for each j € J. Thus by Proposition 3.24
(1), we have J;c; Aj = AN (Uje; Uj). SoUjesAj € 7,. Hence 7, satisfies the
axiom [IVSOj]. Therefore 7, is an IVST on A. O

In Proposition 4.15, 7, is called an interval-valued soft relative topology (briefly,
IVSRT) on A and the pair (A,7,,FE) called an interval-valued soft subspace of
(X,7,E). Every member of 7, is called an interval-valued soft open set in A and
an IVSS B is called an interval-valued soft closed set in A, if A — B € 7,, where
B CA.

Example 4.16. (1) Let X = {hy, ho,hs} and let E = {e1,e2}. Consider the IVST
T given by:
T = {éE,XE,Ul,UQ,Ug,U4},

Where Ul(el) = [{hl,hg},X], U1(€2) = [{h1},{h1,h2}],
Usz(e1) = [{ha}, {h2, ha}l, Ualez) = [{h1, hs}, X],
Us(er) = [@, {h2}], Us(e2) = [{h1}, {h1, ha}],
Uy(er) = [{{h1, ha}, X], Us(ea) = [{h1, h3}, X}].

Let A be an IVSS over X with respect to E given by:
A(e1) = [{h1, hs}, {h1, hs}], Alez) = [{h1}, {1, hs}].
Then we have
T, ={%, A,ANU;,ANU,;, ANU;3, ANU,},

where (AN Uy)(e1) = {h1}, {h1, hs}], (ANUi)(e2) = [{hi}, {M}],
(ANUs)(er) = [@,{hs}], (ANUz)(e2) = [{h}, {h1,hs}],
( )(e1) =@, (ANUs)(ez) = [{h1}, {h1}],
(ANUg)(e1) = (ANUy)(e2) = [{h1}, {h, hs}].
(2) Every interval-valued soft subspace of an interval-valued soft discrete space is
an interval-valued soft discrete space.
(3) Every interval-valued soft subspace of an interval-valued soft indiscrete space
is an interval-valued soft indiscrete space.
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Proposition 4.17. Let (X,7,E) be an IVSTS and let A € IVSSg(X). Then
(A(e), 74 (€)) is an interval-valued subspace of (X, 1.) for each e € E proposed by
Lee et al. [141].

Proof. From Propositions 4.5 and 4.15, it is clear that 7, () is an IVT on A(e) for
each e € E. Let e € E. Then we have
To(e) ={(ANU)(e): Uet}={A(e)nNU(e): Uer}
={A(e)NU(e) : Ule) € Te}.
Thus (A(e),7,) is an interval-valued subspace of (X, 7.) for each e € E. O

Corollary 4.18. Let (X,7,E) be an IVSTS and let A € IVSSg(X). Then for
each e € F,

(A7(e),7ale)7), (A¥(e),Tale)™)
are classical subspaces of (X,7.) and (X, 1.}) respectively, where
T.,(e)  ={A (e)nU (e): U (e) € 7, },
T ()T ={AT(e)nNUT(e)" : Ut (e) € 7.1}
Proof. The proof is clear from Propositions 4.5 and 4.17, and Remark 4.6 (1). O

Example 4.19. Let (A, 7, E) be the interval-valued subspace of the IVTS (X, 7, E)
given in Example 4.16. Then we have two interval-valued relative topologies on A (ey)
and A (ep), respectively:

TA(el) - {63 5(:3 [{hl}a {hla h3}]a [®7 {h3}”7
TA(eQ) = {éa 557 [{h1}7 {hl}]v [{hl}v {hlv h3}}}

Moreover, we can check that

(A(el)_?TA(el)_)v (A(el)+’TA(€1)+)’ (A(e2)_77—A(82)_)’ (A(€2)+,TA(€2)+)
are classical subspces of (X, 7..), (X,7}),(X,7.,), (X,7) respectively, where

’ ey )’ e

TA(el)_ = {Q’Xv{hl}}’ TA(61)+ = {Qva{h3>{h1vh3}}7
TA(EQ)i = {Qva{hl}}’ TA(eQ)+ = {®7X7{h17{h15h3}}'

Proposition 4.20. Let (A, 7,,E) be an IVSTS (X, 7,F) and letBe1,. IfA €T,
then B € 1.

Proof. Let B € 7,. Then clearly, there is U € 7 such that B = ANU. Since A € 7,
ANUer. Thus B e O

Theorem 4.21. Let (A,7,,E) be an IVSTS (X, 7, E) and let B € IVSS(X). Then
B is interval-valued soft closed in A if and only if there is an IVSCS C in X such
that B=ANC.

Proof. Suppose B is an interval-valued soft closed in A. Since A —B € 7,, there is
U € 7 such that A —B = AN U. Then by Lemma 4.15, B= A NU*° and U° € 7°.
Thus the necessary condition holds.
Conversely, suppose there is an IVSCS C in X such that B = A N C and let
e € E. Then clearly, C° € 7. Moreover, by Lemma 4.14, we have A — B = A N C°.
Thus A — B € 7,. So B is an interval-valued soft closed in A. O
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Definition 4.22. Let (X, 7, F) be an IVSTS and let 8, ¢ C 7. Then

(i) B is called an interval-valued soft base (briefly, IVSB) for 7, if U = @ or
there is 8 C 8 such that U = J{B: B e '} for any U € 7.

(ii) o is called an interval-valued soft subbase (briefly, IVSSB) for 7, if the family
of all finite intersections of members of ¢ is an IVSB for 7.

Example 4.23. Let X = {a,b,c} and let £ = {e}. Consider the family 8 of IVSSs
over X given by:

B ={Xg,A B},
where A(e) = [{a, b}, X], B(e) = [{b,c}, X].
Assume that 8 is an IVSB for an IVST 7. Then clearly, 5 C 7. Thus A, B € 7. So
ANB e and (ANB)(e) = [{a,b}, X] N [{b, ¢}, X] = [{b}, X]. But for any ' C 3,
[{b}, X] # (U B')(e). Hence f is not an TVSB for 7.

Proposition 4.24. Let 8 be an IVSB for an IVSTS (X, 7, E). Then for eache € E,
Be is an IVB for the IVT 1. defined by Kim et al. [39], where 8. = {B(e) : B € §}.

Proof. The proof is obvious from Proposition 4.5 and Definition 4.22. d

Theorem 4.25. Let 8 be a family of IVSSs over X with respect to EE. Then 3 is
an IVSB for some IVST T on X if and only if it satisfies the following conditions:
(1) Xp =U{B:B € j},
(2) if By, By € 8 and €., €BiNBy [resp. €u . €B1N By, then there is
B € 3 such thate, —€B [resp. €u o € B/ and B C B; N Bs.

Proof. Suppose /3 is an IVSB for an IVST 7 on X. Since Xp € 7, Xp = U{B:Be€
B}. Suppose By, By € 8 and €u,,, € B1 N B,y. Then clearly, B;, By € 7. Thus
B1 NB; € 7. So there is a 8 C 8 such that B; N By = [J{B : B € 8'}. Hence by
Theorem 3.29 (2), there is B € § such that €ayp € B and B ¢ B; N B,. The proof
of the second part is similar.

Conversely, suppose 3 is a family of IVSSs over X with respect to E satisfying
the conditions (1)and (2). Let 7 C IVSSE(X) be given by:

r={zpyJ{U:U= |J {B:Bes}).

p'cp
Then clearly, &g, )?E € 7. From the definition of 7, it is clear that UjeJUj eET
for any (Uj)jes C 7. Suppose Uy, Uy € 7 and €avp € U; NUs [resp. €arvrp €

U; NUy]. Then by the condition (2) and Theorem 3.29 (2), there is B € § such that
€., C B [resp. €arvp € B] and B C B; N B,. Thus U; NU; can be expressed as

the union of members of a subcollection of 8. So U;NUy € 7. Hence 7 € IVSTE(X)
and ( is an IVSB for 7. This completes the proof. O

Example 4.26. (1) Let X = {a,b,c} and let E = {ey,e2}. Consider the family S
of ITVSSs over X given by:
8={95,A,B,C},
where  A(er) = [{a}, {a,b}], A(e12) = [{b},{b,c}],
B(e1) = [{a,c}, X], B(e12) = [{b,c}, {b,c}],
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C(el) = [{a7 b}7 {a7 b}}v 0(612) = [{b}v {b» C}]
Then we can easily check that 3 satisfies the conditions of Theorem 4.25. Thus f is
an TVSB for an IVST 7 on X. In fact, 7 = {Op, A, B,C, Xg}.

The following provides a characterization for an IVST 75 to be finer than an IVST
71 in terms of IVSBs for 7 and 7.

Theorem 4.27. Let (X, 11, E), (X, 72, E) be two IVSTSs and let B, B be IVSBs
for T and 15 respectively. Then 1o is finer than T zf and only if for each B € B
such that e, — € B [resp €a v € BJ, there is B' € 8 such that e, on € B'

[resp. €., €B '] and B’ C B.

Proof. Suppose 73 is finer than 7 and let B € 3 such that Caryp € B [resp. e,

IVV P

B]. Then clearly, B € 7. Since 8 is an IVSB for 5, by Theorem 3.29 (2), there is
B’ € § such that €ayp € B’ [resp. €avup € Bl and B’ C B.

Conversely, suppose the necessary condition holds and let U € 7 such that
e, € U Jresp. e oun € U]. Since g is an IVSB for 7, there is B € 8 such

vPp @

thate, —~€B [resp. €a,un € B| and B C U. Then by the condition (2 ) there is
B’ € § such that €., € B’ [resp. e, vun € Bl and B' ¢ B. Thus B' ¢ U. So

U is the union of members of a collection of B'. Hence U € T9. Therefore 75 is finer
than 7. O

Definition 4.28. Let (X, 71, E), (X, 72, E) be two IVSTSs and let 81, 2 be IVSBs
for 71 and 7y respectively. Then 81 and s are said to be equivalent, if 7 = 7».

The following is an immediate consequence of Theorem 4.27.

Corollary 4.29. Let (X,71,E), (X, 72, E) be two IVSTSs and let By, B2 be IVSBs
for 1 and 1o respectively. Then 81 and Bs are equivalent if and only if the followings
hold:

(1) for each By € B such that €uvp € B, [resp. €apup € B/, there is Bo € B9
such thate, € By [resp. €apup € B;/ and B2 C By,

(1) for each By € By such that €., €B2 [resp. €uvup € B2/, there is By € £
such thate, € By [resp. € € B:/ and B; C Bo.

Note that every IVST has an IVSB since the IVST itself forms an IVSB. The
following gives a condition for one to check to see if a subcollection of an IVST 7 is
an IVSB for 7.

Proposition 4.30. Let (X, 11, E) be an IVSTS. Suppose 8 C T such that for each
U e withe, €U [resp. €arpup © U/, there is B € § such that €y, €B

[resp. €uup € B/ and B C U. Then 8 is an IVSB for .

Proof. Let e, € Xp [resp. €arvvp € Xp). Since Xp € 7, there is B € f such

VP

that e, ~— € B [resp. €uvvn € B] and B C Xp. Then Xz = J{B : B € 8}.
Thus [ satisfies the condition (1) of Theorem 4.25. Suppose By, By €  and
€. . € B; N By [resp. €uvon € B; N By]. Since By, By € 7, By N By € 7. Then

v
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there is B € § such that e, € B [resp. €uvun € B] and B C B; N By. Thus
B satisfies the condition (2) of Theorem 4.25. So by Theorem 4.25, 8 is an IVSB
for some IVST 7 on X. From Theorem 4.27, it is clear that 7' is finer than T, i.e.,
rcr. Furthermore, it can be easily seen that 7" C 7 holds. Hence 7 = tau . This
completes the proof. O

One advantage of the notion of an IVSSB is that we can define an IVST on X by
simply choosing an arbitrary collection IVSSs in X whose union is Xg.

Proposition 4.31. Let 0 C IVSSg(X) such that Xp = \J{S : S € o}. Then there
is a unique IVST T on X such that o is an IVSSB for T.

Proof. Let f ={B € IVSSg(X):B=J{B:B € oy},0; is a finite subset of o}.
Let 7 = {U € IVSSp(X) : U= Ggor 35 C B suchthat U= J{B:Be g}
It is obvious that &g, )N(E € 7. Let (Uj)jes C 7, where J is an index set. Then
there is j € J such that 8; C f and U; = U{B : B € B;}. Thus U, U; =
UjeJ(UBeﬁj B). So U;c;U; € 7. Suppose Uy, Us € 7 such that €., €U1NU;y
[resp. €u o € U; NUy]. Then there are By, By € 8 such that €. . € B; N B,
[resp. Carvup € B; N By], By C U; and By C Us. Since each of By and By is the
intersection of a finite number of members of o, By N By € 3. Thus there is ﬁ, cp
such that U;NU, = UBE,@' B. SoU;NU; € 7. Hence 7 € IVSTE(X). It is obvious
that 7 is the unique IVST having ¢ as an IVSSB. O

Example 4.32. Let X = {a,b,c,d,e} and let E = {e1,ea}. Consider the family o
of TVSSs over X given by:
g = {Slv SQ} S37 S4}a

where Si(e1) = [{a},{a}], Si(e2) = [{b}, {b}],
S (61) = [{a7 b, 0}7 {a7 b, C}L S2(e2) = [{b7 G, d}’ {b’ =) d}]’
Ss(e1) = [{b,¢,d},{b,c,d}], Sz(e2) = [{c,d, e}, {c,d,e}],

S4(€1) = [{C’ 6}7 {Cv 6}], S4(62) = [{a” d}v {a’ d}]
Then from Proposition 4.31, we can easily check that ¢ is an IVSSB for the unique
IVST 7. Let 8 be the collection of all finite intersections of members of o. Then we
have

B =1S1,82,S3,S4,B1,Bs},

where By (e1) = [{b, ¢}, {b,c}], Si(e2) = [{c,d},{c,d}],

Bs(e1) = [{c}, {c}], Ba(e2) = [{d},{d}].
Thus we get

7 ={0p, Uy, Uy, Us, Uy, Us, U, Uy, Us, Ug, Uy, Uyy, Usa, Uy, X5},

where Uy =81, Uy =85, U3 =83, Uy =Sy, U; =B;, Ug =By,

Uz(e1) = [{a,b,¢,d}, {a,b,c,d}], Uz(ea) = [{b,c,d, e}, {b,c,d, e},

Us(er) = [{a, ¢, e}, {a,c,e}], Us(ez) = [{a,b,d},{a,b,d}],
(

Uy 61) = [{CL, b, C}7 {av b, C}]v U9(62) = [{b’ ¢, d}7 {b7 ¢, d}]a

Ulo(el) = [{av b, c, 6}, {aa b, c, 6}], U10(€2) = [{av b, c, d}, {a7 b, c, d}}v
Uii(e1) = [{a,c},{a,c}], Uri(e2) = [{b,d},{b,d}],

Uja(er) = [{b,c,d, e}, {b,c,d,e}], Ug(es) = [{a,c,d, e}, {a,c,d, e},
Ujs(er) = [{b,c,e}, {b,c,e}], Uis(e2) = [{a,c,d},{a,c,d}].
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5. INTERVAL-VALUED SOFT NEIGHBORHOODS, INTERVAL-VALUED SOFT CLOSURES
AND INTERIORS

In this section, we introduce the concept of interval-valued soft neighborhoods
of IVPs of two types and find their various properties and give some examples.
Also, we define interval-valued soft closures and interiors, and deal with some of
their properties. Moreover, we show that there is a unique IVST on X from the
interval-valued soft closure [resp. interior] operator.

Definition 5.1. Let (X, 7, E) be an IVSTS and let N € IVSSg(X). Then
(i) N is called an interval-valued soft neighborhood (briefly, IVSN) of €. . €Xg,
if there exists a U € 7 such that

e €eUCN, ie, aeU (e) C N~ (e),

‘rvp

(ii) N is called an interval-valued soft vanishing neighborhood (briefly, IVSVN) of
€ Xg, if there exists a U € 7 such that

a

IVVP
. €UCN, ie, aeUT(e) C Nt(e).
IVVP
We will denote the set of all IVSNs [resp. IVSVNs| of e,  [resp. e, ] by
N(e, ) [resp. Ne, .
For each e € E, let Njysn,e = N(eawp (e)) [resp. Nrvsvn,e = N(eava (e))]-

Then we can ewasily see that Nyvsy.e = N(a,, ) [resp. Nivsvne = N(a,y )]
with respect to the IVT 7, on X (See Proposition 4.5).

Example 5.2. Let X = {a,b,c,d}, let E = {e, f}. Consider IVST 7 on X given
by:
T = {éE7A17A23A33A47XE}3

where Al(e) ({0}, {b, d}], Ax(f) =[{a},{a,c}],
(e) [{a’ 6}7 {aa b, C}]a A, (f) = [{a’ b}’ {a" b, d}]7
As(e) = [@,{b}], As(f) = [{a}, {a}],
Ay(e) = [{a,b,c}, X], As(f) = [{a,b}, X].

Let N € IVSSg(X) given by:
N(e) = [{b}v {a7 b, d}]’ N(f) = [{aa C}7 {a7 () d}]

Then we can easily see that

NeN(ebIVP), NeN(eblwp), NeN(f, ).

IV P

From Proposition 4.5, we have two IVTs on X:
7o = {9, A1(e), As(e), As(e), Ay(e), X},

7r = {2, As(f), Aa(F), As(f), Aa(F), X}
Then we can see that N(e) € N(b,,,) N N(b,,,,) and N(f) € N(a

IVP)'

Proposition 5.3. Let (X, 7, E) be an IVSTS and let €u . € Xg.
[IVSN,] If N € N(ealvp ), then €,,, €N
[IVSNy] If N e N(e, ) and NCM, then M € N(e, ).
IV P 158 IV P
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[IVSN3] I/ N, M€ N(e, ), then NNMe N(e, ).
[IVSNy] If N € N(ealvp), then there exists M € N(ealvp) such that N €
Ni(e ) for each e, , €M

brvp

Proof. The proofs of [IVSN;] and [IVSNy] are easy.
[IVSN3] Suppose N, M € N(eawp ). Then there are U, V € 7 such that

e € UCN ande, eVCcM
IV P

‘rvp

Let W =UNV. Then clearly, W € 7 and Carpp € WcCcUNV. Thus NNM e
N(ealvp).

[IVSNy| The proof is easy from Definition 5.1 and [I[VSNs]. O

Proposition 5.4. Let (X, 7, E) be an IVSTS and let €aryp € Xg.
[IVSVN;] If N € N(e, . ), then e, arorp €N
[IVSVNy] If N € N(e, VP) andNCM then M € N (e, ).

IVV P

[IVSVNs] If N, M € N(e. o) then NOME N(e, ).

[IVSVNy] If N € N(e azvvp) then there exists M € N(eava) such that N €
N(e ) for each e, . €M.

bIVVP

Proof. The proof is similar to one of Proposition 5.3. 0

Proposition 5.5. Let (X, 7, E) be an IVSTS and let us define two families:
={UelIVSSg(X):UeN(e, )foreache, €U}
IV P IV P

TIVSP

and

TIVSVP = {U S IVSSE(X) :Ue N(eaIVVP) for each e“lv S U}

vP

Then we have
(1) Trvspr Trvsve € IVSTE( )
(2) T CTypsp and T C Tyygyp-

Proof. (1) We only prove that 7, 4, , € IVSTE(X).
[IVSO,] From the definition of 7,4, ., we have @, Xc € 7, 4 p-
[IVSO;] Let U ,V € IVSSg(X) such that U, V € 7,,.,, and let e,

UNV. Then clearly, U, V € N(eawsvp ). Thus by [IVSVN3], UNV € N(e,
SoUNVer, qp-
[IVSOs] Let (Uj)jes be any family of IVSSs in 7,4, let U =J;c; U; and let
e, € U. Then by Theorem 3.29 (2), there is jo € J such that e, e Uy,.
IVV P IVSVP
Since Uj, € 7,y 5vp: Uj, € N(e, vsup ) by the definition of 7, ., . Since U;, C U,
Ue N(e azvsvp) by [IVSVN;]. So by the definition of 7,, ¢, 5, U € T, gy p-
(2) Let U € 7. Then clearly, U € N(e alvsp) and U € N(eawsvp) for each
e €V and e, € V, respectively. Thus U € 7,5, and U € 7,5, . S0
the results hold. O

Remark 5.6. (1) From the definitions of 7,, ., and 7,4, ,, We can easily have:

=7U{[U,S]€IVSSg(X): Ut Cc S, Uer}
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and
Trvevp =TU{S €IVSSE(X):@#S~ c X\U', ST =S uUt, U=[2,U"] € 7}.

In fact, if U~ # @ for each U € 7, then 7,4, , = T.
(2) From Proposition 4.5 and Proposition 5.5 in [39], we can easily see that for
each 7 € IVSTg(X) and e € E,

T where

IVSP,e
Trvsp,e = {U(e) € IVS(X) :Ue TIVP}’
Trvsve.e = {U(E) € IVS(X) U e TIVVP}'

= Tivp> Trvsve.e = Trvves

Furthermore, from Remark 4.6 (1) and Remark 5.6 (1) in [39], we can have four
ordinary topologies on X given by:
T;/spe {U €2X UETIVP}? ]V5p€7{U+E2X:U€TIVP}
and
Trvsvpe =10 € 2X U e, ) thsvp,e ={Ute2X:Uer,,,,.}.

Example 5.7. (1) Let X = {a,b,¢,d}, E = {e} and consider the family 7 of IVSSs
over X given by:

7= {Op, Xp, A1, Ag, A3, Ay, As, Ag, A},

where Ajq(e) = [{av b}v {a, b, C}], As(e) = [{C}v {b, C}L Ajs(e) = [@7 {a7 CH»
A4(€) = [{a7 b, C}’ {a7 b, C}L A (6) = [@, {bv C}’]7 A6(6> = [@, {C}]a
7(6) = [{0}7 {a’ b, C}]
Then we can easily check that (X, 7, E) is an IVSTS. Thus from Remark 5.6 (1), we
have:
Trvsp =T U{Ag, Ag, A10, A11, A1, A13, A14, A5, A, Arr},
Trvsvr =T U{A1g, A1g, Ao, Aa1, Aoz, Aoz, Aoy, Aos, Ags, Aor, Aog, Aog},

where AS( [{a7 b}7 X]? A9(e) = [{0}7 {b7 = d}]’ Alo(e) = [{6}7 X]?

All( ) [Q’ {aabvc}]a Al?(e) = [@,{a,c, d}LAB(e) = [Q’X]v

4(6) [{a7 b, C}’ XL A15(€) = [Q’ {b’ ¢, d}]7

As(e) = [@,{c,d}], Aiz(e) = [{c}, X],

Aus(e) = [{b}.{a,b,c}], Aro(e) = [{d},{a,c,d}], Ago(e) = [{b,d}, X],
Asi(e) = [{a},{a,b,c}], Asz(e) = [{d},{b,c,d}], Aas(e) = [{b,d}, X],
Azs(e) = [{a}, {a, c}], Ass(e) = [{b},{b,c}], Asg(e) = [{d},{c,d}],

Asr(e) = [{a,d},{a,c,d}], Ags(e) = [{b,d},{b,c,d}], Ax(e) =[{a,b,d}, X].
So we can confirm that Proposition 5.5 holds.
Furthermore, we obtain six ordinary topologies on X for the IVT 7:

T, ={2,X,{c},{a,b},{a,b,c}},
+={® X, {c}{a,c},{b,c}, {abc}}
Trvspe = 19, X, {c} {a, b}, {a,b,c}} = 77,
Ivspe ={2, X, {c},{a,c}, {b,c}, {c,d}, {a,b,c}, {a,c,d},{b,c,d}},
Trvsvee = 19, X, {a},{b}, {c}, {d}, {a, b}, {a,d},{b,d}, {a.b,c}, {a,b,d}},

zvsvp,e = {Q’ X, {C}v {a7 C}’ {bv C}v {Ca d}’ {a’ b, C}v {av = d}’ {b’ = d}}
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(2) X ={a,b,c,d}, E ={e, f} and 7 be the IVST on X given by:
T = {éE7jZE7A17A2aA3aA4}a

) [{bv C}a {ba ) d}]v A2(e) = [{aab}a {aa b’ C}]a
(6) [{b}7 {b7 CH? A4(€) = [{a> b, 0}7 XL
E;; [{a’ C}v {a7 G, d}]v A2(f) = [{a7 b}’ {a> b, C}],

where A1 (e

{a}, {a,c}l; Aale) = [{a,b, ¢}, X].

Then we easily check that 7 =T.

IVSVP

The following is an immediate consequence of Propositions 4.4 and 5.5 (2).

Corollary 5.8. Let (X,7,E) be an IVSTS and let 7, [resp. TF, ., . ] be the set
of all IVSCSs w.r.t. T,, s, [resp. T;yvp] Then

T¢ CTIVSP, and 7°¢ CTzvsvp

Example 5.9. Let (X, 7, E) be the IVSTS given in Example 5.7 (1). Then we have:
7 = {Zp, Xp, AT, A5, A5, AG, AG, A, A,
TC = TC U {Ag’ AEC)? AiO? Ail? AiZa A(1:3a A§47 Ai57 A(1:65 Ai’?}v

Trvsve i/ji U{Afg, Afg, ASy, AGy, AZy, Ads, Ay, ASs, ASg, ASy, ASg, A},
where Ac( [{d}v {07 d}]7 Af(e) = [{a, d}7 {CL, b, d}]7 Af(e) = [{b7 d}v X]v
(6 [{d}.{d}], Ag(e) = [{a,d}, X], A§(e) = [{a,b,d}, X],
= [{d},{a,b,d}],
[@ {Cv d}]’ AS(E)C = [{a}’ {(I, b, d}]v

A‘io( ) = [2,{a,b,d}], Af;(e) = [{d}, X] Af,(e) = [{b}, X],
Aia(e) 2, X], Afy(e) = [@,{d}], Afs(e) = [{a}, X],

Af() = [{a,b}. X]. Af:(e) = [2. {a,b.d}]
Ais(e) {d}, {a,c,d}], Aig(e) = [{b},{a,b,c}], Asy(e) = [@,{a,c}],
As5i(e) = {d}, {b,¢,d}], Asy(e) = [{a}, {a,b,c}], Asy(e) = (2, {a,c}],

Asy(e) = [{b,d}, {b, ¢, d}], Ass(e) = [{a,d}, {a,c,d}], ASs(e) = [{a,b},{a,b,c}],
Asr(e) = [{b}{b, ¢}, Asg(e) = [{a}, {a, c}], Ajy(e) = [@,{c}].
Thus we can confirm that Corollary 5.8 holds.
Now let us consider the converses of Propositions 5.3 and 5.4.

Proposition 5.10. Suppose to each e, oy € XE, there corresponds a family
N.(e, VP) of IVSSs over X satisfying the conditions [TVSVNy], [TVSVNy], [[VSVN5]
and [TVSVNy4] in Proposition 5.4. Then there is an IVST on X with respect to E
such that N*(ealvvp) is the set of all IVSVNs of e, in this IVST for each

e e Xg.

rvvpe

Proof. Let
Tvsvp ={U € IVSSE(X):Ue N(eava) for eache, € U},
where N(ealvvp) denotes the set of all IVSVNs in 7.
Then clearly, 7, ¢, € IVSTE(X) by Proposition 5.5. We will prove that N, (e, Cvun )
is the set of all IVSVNs of e, —in 7

IVSVP

161

for each €, € Xgp.

VVvVP



Lee et al./Ann. Fuzzy Math. Inform. 22 (2021), No. 2, 133-169

Let V € IVSSE(X) such that V € N, (ealvvp) and let U be the union of all the
IVSVPs €, X such that U e N*(eaIVVP ). If we can prove that

ceUcVandUEerT,,qp,

YIVVP
then the proof will be complete.
Since V € N*(ealvvp ) €apyp © U Dy the definition of U. Moreover, U C V.
Suppose e, € U. Then by [[VSVNy], there is an IVSS W € N, (ebva) such
that V € N, (e, ) for each e, € W. Thus e, € U. By Proposition 3.30
IVV P IVV P IVV P
(1), W CU. So by [[VSVNy], U € N*(ebva) for eachre, € U. Hence by the

definition of 7,4, U € 7,4, ». This completes the proof. O

Proposition 5.11. Suppose to each €arp € Xp, there corresponds a set N, (ealv )
of IVSSs in X satisfying the conditions [TVSN,], [[VSNy], [TVSNs] and [[VSN,] in
Proposition 5.3. Then there is an IVST over X such that N, (ealvp) is the set of

all IVSNs of e, in this IVST for each e, € Xg.
IV P IV P

Proof. The proof is similar to Proposition 5.10. O
Theorem 5.12. Let (X, 7, E) be an IVTS and let A € IVSSg(X). Then A € 7 if
and only if A€ N(e, ) and A € N(e, ) for eache, e, ~ €A.

IV P IVVP IV P IV P

Proof. Suppose A € N(eaIVP) and A € N(eaIVVP) for each e, e

VP YIVVP
Then there are U, , V. € 7 such that e, e U, CAande,
“Ivp “IVVP, IvpP v p IVVP
Ve, C A. Thus by Proposition 3.27, we get
IVVP
A= (UeaIVP cA eaIVP ) U (Uea Vv cA eaIVVP)
U A%
C (UCQIVP €A eaIVP ) U (Ue“IVVP cA e“IVP )
C A.
So A = U U \% . Si U A%
© (UeaIVP €A T yp ) €arvvp €A "Cyyp ) tmee Caryp’ Carvyp €
Aer.
The proof of the necessary condition is easy. O
Now we provide the relationship among three IVSTs, 7, 7, ., and 7,, 4, p-
Proposition 5.13. 7 =17, ., N T, gvp-

Proof. From Proposition 5.5 (2), it is clear that 7 C 7,,.qp N Tyyayp-

Conversely, let U € 7,, 4, N T, 4. Then clearly, U € 7,,,,, and U € 7,4, »
Thus U is an IVSN of each of its IVSP €arvn and an IVSVN of each of its IVVP

. . Thus there are U, , Ue € 7 such that e, e U, Cc U and
Ivvp YIvP IvVvPe IvFp YIvp
" U, C U. So we have
IVvPp ‘rvve
Uy= |J e c |J U cU
Tve “Ive
€, [S18) €, 518}
IVP IVVP
and
Unv= [J e c U u cu.
IVVP rvve
€, S €, €u
IVP IVvV P
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By Proposition 3.27, we get

U=U,,;, UU, 4, C( U UCQIVP )U( U Ue“zvvp ) C U, ie.,
e €U
ve

e, cu
IVVP

| l U, ).
IVVP
€U

u=( |J U, )u(

Caryp €U Carvvp

It is obvious that (|, cu Ue
YIvp

Therefore 7, ¢,

) U (U, cu Ue ) € 7. Hence U € 7.
P

IvVvP arp IvVvpe

v
NT,,¢vp C 7. This completes the proof. 0

The following is an immediate consequence of Corollary 5.8 and Proposition 5.13.
Corollary 5.14. Let (X, 1, E) be an IVSTS. Then
¢ = TICVSP N TICVSVP'

Example 5.15. In Example 5.9, we can easily check that Corollary 5.14 holds.

Now we define interval-valued soft interiors and closures, and study some of their
properties and give some examples.

Definition 5.16. Let (X, 7, E) be an IVSTS and let A € IVS(X)g.
(i) The interval-valued soft closure of A w.r.t. 7, denoted by IV Scl(A), is an
IVSS over X defined as:

IVScl(A) = {K € : A CK}.

(ii) The interval-valued soft interior of A w.r.t. 7, denoted by IV Sint(A), is an
IVSS over X defined as:

IVint(A) = {U:Uerand UcC A}.

(iii) The interval-valued soft closure of A w.r.t. T,
an IVSS over X defined as:

ClIVSP (A) = ﬂ{K € TICVSP A C K}

vsp, denoted by ¢, o, (A), is

(iv) The interval-valued soft interior of A w.r.t. 7,,,,, denoted by int,, o, (A),
is an IVSS over X defined as:
int,,op(A) = U{U :Uer,,qp and UC A}
(v) The interval-valued soft closure of A w.r.t. 7,, 4,5, denoted by cl,, o, ,(A),
is an IVSS over X defined as:
crysvr(A) = ﬂ{K € TICVSVP : A CK}.
(vi) The interval-valued soft interior of A w.r.t. 7,,4, 5, denoted by int,, o, , (A),

is an IVSS over X defined as:

intr, oy p(A) = U{U :Uer,,qvp and UC A}
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Remark 5.17. (1) From the above definition, it is clear that the followings hold:
IVSint(A) Cint,, ., (A), IVSint(A) Cint,, o, »(A)
and
crysp(A) CIVSC(A), d, o, (A) CIVSCl(A).
(2) We can easily check that for each e € E, the followings hold (See Definition
6.1 in [39]):
IVScl(A)(e) = IVcl(A(e)), IVSint(A)(e) = IVint(A(e)),
(e) =int

) )
IVSP (A)(e) = IVP (A(e))’ ZntIVSP (A‘) IVP (A(e))’
CZIVSVP (A)(e) = CIIVVP (A(e))’ Z.ntIVSVP (A) (e) = intIVVP (A(e))'

Example 5.18. Let (X, 7, E) be the IVTS given in Example 5.7. Consider two
IVSSs A, B over X such that A(e) = [{a,c},{a,b,c}] and B(e) = [{d},{a,d}].
Then

IVSZTLt(A) :U{U € TIUCA} =AsUA3SUA5UA;UAgUA~ :A7,
Z.ntlvsp( ) U{U € Trysp - U C A} =A7UA; = Ay,
Z.ntlvsvp( ) U{U € Tivsvr :UC A} =A7UA3 UAy UAy =C,
where C(e) = [{a,b,c}, {a,b,c}]
and

cl

IVSc(B) = ﬂ{KeT BCK}=ASNASNASNAENAS = AS,

CZIVSP( ) m{K S IVSP :B - K} AC N A‘ll - A??

ClIVSVP( ) ﬂ{K E IVSVP B C K} A'C m A' 18 m A§5 = B
Moreover, we can confirm that Remark 5.17 holds.

Proposition 5.19. Let (X, 7, E) be an IVSTS and let A € IVSSg(X). Then
IV Sint(A°) = (IVScl(A))° and IV Scl(A°) = (IV Sint(A))°.
Proof. Let e € E. Then we have
IV Sint(Ac)(e) = U{U(e) € 7. : U(e) C A‘(e)

=U{U(e) e e : U(e)™ (6)+z7 Ue)* C A(e)~"}
=U{U(e) € e ! ( )T CU(e)™", Ale)” cU(e)™"}
=(HUe) e ¢ : Ale ) Uc(e)}
— IVSd(A).

Thus IV Sint(A€) = IV Scl(A). Similarly, we can show that

IVScl(A°) = (IV Sint(A))°.

Proposition 5.20. Let (X, 7, E) be an IVTTS and let A € IVSSg(X). Then
IVSint(A) = int A)nint A).

IVSP( IVSVP(

Proof. The proof is straightforward from Proposition 5.13 and Definition 5.16. [

The following is an immediate consequence of Definition 5.16, and Propositions
5.19 and 5.20

Corollary 5.21. Let (X, 7, E) be an IVSTS and let A € IVSSg(X). Then

IVSCZ(A) = Cllvsp (A) U Clzvsvp (A)
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Example 5.22. Consider two IVSSs A = [{a, c}, {a,b,c}] and B = [{d}, {a,d}] in
X given in Example 5.18. Then we have : for e € E,

IV Sint(A)(e) = [{c}, {a,b,c}] = int,, . (A)(e), int,, s, »(A)(e) = [{a,b,c}, {a,b,c}]
and

IVS(B)(e) = [{a,d)} {a,b,d} = cl,y o, (B)(c),
rvsvr(B)(e) = [{d}, {a,d}] = B(e).

Thus we get
Nty gp (A)(e) Nint,y gy p (A)(e) - [{C}a {aa b, C}] - IVSmt(B)(e)

and

ciyvsp (B)(e) Uel,ysyp (B)(e) = [{d}7 {CL, b, d} = IVSC[(B)<€)'
So IVSint(B) = int,, ., (A)Nint,, ¢, »(A) and IVScl(B) = cl,, 5, (B)Ucl,,, o » (B).

Theorem 5.23. Let (X, 7, E) be an IVSTS and let A € IVSSg(X). Then
(1) A € 7°if and only if A =1V Scl(A),
(2) A €7 if and only if A = IV Sint(A).

Proof. Straightforward. O

Proposition 5.24 (Kuratowski Closure Axioms). Let (X, 7, E) be an IVSTS and
let A,B € IVSSg(X). Then

[IVSKy] if A C B, then IV Scl(A) C IV Scl(B),

[IVSKs] A C IV Scl(A),

[IVSK3) IV Scl(IVScl(A)) = IV Scl(A),

[IVSKy] IVScl(AUB) = IVScl(A)UIVScl(A).

Proof. Straightforward. O

Let IV Scl* : IVSSE(X) — IVSSE(X) be the mapping satisfying the properties
[IVSK,], [IVSK;],[IVSKj3] and [IVSK4]. Then we call the mapping IV Scl* as the
interval-valued soft closure operator (briefly, IVSCO) on X.

Proposition 5.25. Let IV .Scl* be the IVSCO on X. Then there exists a unique
IVST 7 on X such that IVScl*(A) = IV Scl(A) for each A € IVSSE(X), where
IV Scl(A) denotes the interval-valued soft closure of A in the IVSTS (X, 1, E). In
fact,

T={A°€ IVSSE(X) : IVSd*(A) = A}.

Proof. The proof is almost similar to the case of ordinary topological spaces. O

Proposition 5.26. Let (X, 7, E) be an IVSTS and let A,B € IVSSE(X). Then
[IVSIo] if A C B, then IV Sint(A) C IV Sint(B),

(IVSL] IVSint(X5) = Xz,

[IVSL] IV Sint(A) C A,

[IVSIs] IV Sint(IVSint(A)) = IV Sint(A),

[IVSLy] IV Sint(A N B) = IVSint(A) N IV Sint(B).

Proof. Straightforward. O
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Let IV Sint* : IVSSg(X) — IVSSg(X) be the mapping satisfying the properties
[IVSTy], [IVSI2,],[IVSIs] and [ITVSI44]. Then we call the mapping IV Sint* as the
interval-valued soft interior operator (briefly, IVSIO) on X.

Proposition 5.27. Let IV Sint* be the IVSIO on X. Then there exists a unique
IVST 7 on X such that IV Sint*(A) = IV.Sint(A) for each A € IVSSg(X), where
IV Sint(A) denotes the interval-valued soft interior of A in the IVSTS (X,7,E).
In fact,

T={A € IVSSE(X): IVSint"(A) = A}

Proof. The proof is similar to one of Proposition 5.25. O

The following provides a criterion for an interval-valued soft closed set in an
interval-valued soft subspace to be closed in the IVSTS.

Proposition 5.28. Let (X, 7, E) be an IVSTS, and let A € 7¢. If C is closed in
(A,7,,E), then C € 7°.

Proof. Suppose C is closed in (A,7,,E). Then by Theorem 4.21, there is D € 7¢
such that C = AND. Since A € 7¢and D € 7, AND € 7¢. Thus C € 7°. d

When we deal with interval-valued soft subspaces of an IVSTS, we needs to exer-
cise care in taking closures of n IVSS because the closure in the interval-valued soft
subspace may be quite different from the closure in the IVSTS. The following gives
a criterion for dealing with this situation.

Proposition 5.29. Let (A,7,,E) be an interval-valued soft subspace of an IVSTS
(X,7) and let B C A. Then IV Scl; (B) = IV Scl(B), where IV Scl,, (B) denotes

the interval-valued soft closure in (A,7,,E).

Proof. Since IV Scl(B) € 7¢, by Theorem 4.21, ANIV Scl(B) is closed in (A, 7,, E).
Since B C A and B C IV Scl(B), B C ANIVScl(B). Then by the definition of
IV Scl;, (B), IVScl;, (B) C ANIVScl(B).

Since IV Scl;, (B) is closed in (A, 7,, E), by Theorem 4.21, there is C € 7¢ such
that IV Sel,, (B)=AnC. O

Theorem 5.30. Let (A,7,,E) be an interval-valued soft subspace of an IVSTS
(X,7) and let U C A.

(1) Uisan IVSN ofeaIVP with respect to T, if and only if there is a’V € N(eaIVP )
such that U =ANV.

(2) U is an IVSN of €uin with respect to T, if and only if there is a V €
Nie, ) such that U =ANV.

IVV P

Proof. (1) Suppose U is an IVSN of Carup with respect to 7,. Then there is an
IVSOS B in (A, 7,, E) such that €.,,, € B CU. Thus by Proposition 4.15, there
is V € 7 such that B = ANV. Since Caryp © B, e € V. So by Theorem 5.12,
V € Ne, o ). Hence the necessary condition holds.
The proof of the sufficient condition is easy.
(2) The proof is similar to (1). O
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6. CONCLUSIONS

We introduced the new concept of interval-valued soft sets which are the gen-
eralization of soft sets and the special case of interval-valued fuzzy soft sets, and
obtained its various properties. Next, we defined the notion of interval-valued soft
topological spaces which are considered as a soft bi-topological space introduced
by Kelly [43]. Moreover, we defined an interval-valued soft base and subbase and
found the characterization of an interval-valued soft base. Also, we introduced the
notion of interval-valued soft subspaces and found some of its properties. Finally, we
introduced the concept of interval-valued soft neighborhoods of two types and ob-
tained some similar properties to classical neighborhoods. Furthermore, we defined
an interval-valued soft closure and interior and dealt with their some properties. In
the future, we expect that one can apply the notion of interval-valued soft sets to
group and ring theory, BC' K-algebra, category theory and decision making problem,
etc. Furthermore, we will study relation between interval-valued sets and rough sets
and thus interval-valued soft sets and soft rough sets.
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