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1. Introduction

To solve uncertainties of the real world as it is, Zadeh [1] had introduced the
concept of fuzzy sets as generalization of crisp sets in 1965. After then, the notions
of interval-valued fuzzy sets, rough sets, intuitionistic fuzzy sets, interval-valued
intuitionistic fuzzy sets, vague sets, neutrosophic sets, bipoar fuzzy sets, soft sets
and hesitant fuzzy sets was proposed by Zadeh [2], Pawlak [3] (1982), Atanassov [4]
(1983), Atanassov and Gargov [5] (1989), Gau and Buchrer [6] (1993), Smarandache
[7] (1998), Zhang [8] (1998), Molodtsov [9] (1999) and Torra [10] (2010), in turn in
order to deal with various real-life problems.

Topology forms a general framework for the study of various notions in analysis
(See the Historical Note to Chapter I [11] for the historical background of topology).
It is not only a powerful tool in many branches of mathematics, but it also has
a beauty of itself. So, many researchers have studied topological structures based
on the various concepts mentioned above. For example, Chang [12] investigated
topological structures for fuzzy sets (furthermore, refer to [13, 14, 15, 16, 17]), Lashin
et al. [18] (furthermore, refer to [19, 20]), Çoker [21] for intuitionistic fuzzy sets
(furthermore, refer to [22, 23]), Mondal and Samanta [24, 25] for interval valued
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fuzzy sets and interval-valued intuitionistic fuzzy sets, Salama and Alblowi [26] and
Lupiáñez [27] for neutrosophic sets, Azhagappan and Kamaraj [28] and Kim et al.
[29] for bipolar fuzzy sets, Shabir and Naz [30] for soft sets (furthermore refer to
[31, 32, 33, 34, 35, 36, 37, 38]), and Deepak et al. [39], Lee and Hur [40] for hesitant
fuzzy sets. In particular, Al-shami [41] dealt with decision-making problems by using
soft separation axioms.

Recently, Lee et al. [42] proposed an octahedron set combined with an interval-
valued fuzzy set, intuitionistic fuzzy set and fuzzy set as a tool to solve complex
problems. After that time, Şenel et al. [43] discussed with MCGDM problems by
using similarity measures for octahedron sets.

Our research’s aim is to study topological structures based on octahedron sets.
To accomplish it, this paper organized as follows: In Section 2, we recall basic
notions related to octahedron sets. In Section 3, we define an octahedron topology,
an octahedron base and subbase, and find some their properties. Also we give
some examples to help one understand each concept. In Section 4, we deal with
octahedron subspaces, octahedron closures and interiors. Section 5 is devoted to
investigate octahedron continuities.

2. Preliminaries

In this section, we list some basic definitions needed in the next sections.

Let I ⊕ I = {ā = (a∈, a6∈) ∈ I × I : a∈ + a6∈ ≤ 1}, where I = [0, 1]. Then
each member ā of I ⊕ I is called an intuitionistic point or intuitionistic number. In
particuar, we denote (0, 1) and (1, 0) as 0̄ and 1̄, respectively. Refer to [44] for the
definitions of ≤ and = on I ⊕ I, the complement of an intuitionistic number, and
the infimum and the supremum of any intuitionistic numbers.

Definition 2.1 ([45]). For a nonempty set X, a mapping Ā : X → I ⊕ I is called
an intuitionistic fuzzy set (briefly, IF set) in X, where for each x ∈ X, Ā(x) =
(A∈(x), A6∈(x)), and A∈(x) and A 6∈(x) represent the degree of membership and the
degree of nonmembership of an element x to Ā, respectively. Let (I ⊕ I)X denote
the set of all IF sets in X and for each Ā ∈ (I ⊕ I)X , we write A = (A∈, A6∈). In
particular, 0̄ and 1̄ denote the IF empty set and the IF whole set in X defined by,
respectively: for each x ∈ X,

0̄(x) = 0̄ and 1̄(x) = 1̄.

The set of all closed subintervals of I is denoted by [I], and members of [I] are

called interval numbers and are denoted by ã, b̃, c̃, etc., where ã = [a−, a+] and
0 ≤ a− ≤ a+ ≤ 1. In particular, if a− = a+, then we write as ã = a. Refer to
[24, 42] for the definitions of ≤ and = on I⊕I, the complement of an interval-valued
number, and the infimum and the supremum of any interval-valued numbers.

Definition 2.2 ([2, 46]). For a nonempty set X, a mapping Ã : X → [I] is called
an interval-valued fuzzy set (briefly, an IVF set) in X. Let [I]X denote the set of

all IVF sets in X. For each Ã ∈ [I]X and x ∈ X, Ã(x) = [A−(x), A+(x)] is called

the degree of membership of an element x to Ã, where A−, A+ ∈ IX are called a

lower fuzzy set and an upper fuzzy set in X, respectively. For each Ã ∈ [I]X , we
78
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write Ã = [A−, A+]. In particular, 0̃ and 1̃ denote the interval-valued fuzzy empty
set and the interval-valued fuzzy empty whole set in X defined by, respectively: for
each x ∈ X,

0̃(x) = 0 and 1̃(x) = 1.

Refer to [24, 42] for the definitions of ⊂ and = on [I]X , the complement of an
interval-valued set, and the union and the intersection of any interval-valued sets.

Definition 2.3 ([47]). Let X be a nonempty set. Then a complex mapping A =〈
Ã, A

〉
: X → [I]× I is called a cubic set in X.

A cubic set A =
〈
Ã, A

〉
in which Ã(x) = 0 and A(x) = 1 (resp. Ã(x) = 1 and

A(x) = 0) for each x ∈ X is denoted by 0̇ (resp. 1̇).

A cubic set B =
〈
B̃, B

〉
in which B̃(x) = 0 and B(x) = 0 (resp. B̃(x) = 1 and

B(x) = 1) for each x ∈ X is denoted by 0̂ (resp. 1̂). In this case, 0̂ (resp. 1̂) will be
called a cubic empty (resp. whole) set in X.

We denote the set of all cubic sets in X as C(X).

We denote members of [I]×(I⊕I)×I as ˜̄a =< ã, ā, a >=< [a−, a−], (a∈, a6∈), a >

, ˜̄b =< b̃, b̄, b >=< [b−, b−], (b∈, b6∈), b >, etc. and they are called octahedron num-

bers. Furthermore, we define the following order relations between ˜̄a and ˜̄b (See
[42]):

(i) (Equality) ˜̄a = ˜̄b⇔ ã = b̃, ā = b̄, a = b,

(ii) (Type 1-order) ˜̄a ≤1
˜̄b⇔ a− ≤ b−, a+ ≤ b+, a∈ ≤ b∈, a6∈ ≥ b 6∈, a ≤ b,

(iii) (Type 2-order) ˜̄a ≤2
˜̄b⇔ a− ≤ b−, a+ ≤ b+, a∈ ≤ b∈, a6∈ ≥ b6∈, a ≥ b,

(iv) (Type 3-order) ˜̄a ≤3
˜̄b⇔ a− ≤ b−, a+ ≥ b+, a∈ ≥ b∈, a6∈ ≤ b 6∈, a ≤ b,

(v) (Type 4-order) ˜̄a ≤4
˜̄b⇔ a− ≤ b−, a+ ≤ b+, a∈ ≥ b∈, a6∈ ≤ b6∈, a ≥ b.

Definition 2.4 ([42]). Let X be a nonempty set and let Ã = [A−, A+] ∈ [I]X , Ā =

(A∈, A6∈) ∈ (I⊕I)X , A ∈ IX . Then the triple A =
〈
Ã, Ā, A

〉
is called an octahedron

set in X. In fact, A : X → [I]× (I ⊕ I)× I is a mapping.
We can consider following special octahedron sets in X:〈

0̃, 0̄, 0
〉

= 0̈,〈
0̃, 0̄, 1

〉
,
〈

0̃, 1̄, 0
〉
,
〈

1̃, 0̄, 0
〉
,〈

0̃, 1̄, 1
〉
,
〈

1̃, 0̄, 1
〉
,
〈

1̃, 1̄, 0
〉
,〈

1̃, 1̄, 1
〉

= 1̈.

In this case, 0̈ (resp. 1̈) is called an octahedron empty set (resp. octahedron whole
set) in X. We denote the set of all octahedron sets as O(X).

Definition 2.5 ([42]). Let X be a nonempty set and let A =
〈
Ã, Ā, A

〉
, B =〈

B̃, B̄, B
〉
∈ O(X). Then we can define following order relations between A and B:

(i) (Equality) A = B ⇔ Ã = B̃, Ā = B̄, A = B,
79
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(ii) (Type 1-inclusion) A ⊂1 B ⇔ Ã ⊂ B̃, Ā ⊂ B̄, A ⊂ B,

(iii) (Type 2-inclusion) A ⊂2 B ⇔ Ã ⊂ B̃, Ā ⊂ B̄, A ⊃ B,

(iv) (Type 3-inclusion) A ⊂3 B ⇔ Ã ⊂ B̃, Ā ⊃ B̄, A ⊂ B,

(v) (Type 4-inclusion) A ⊂4 B ⇔ Ã ⊂ B̃, Ā ⊃ B̄, A ⊃ B.

Definition 2.6 ([42]). LetX be a nonempty set and let (Aj)j∈J = (
〈
Ãj , Āj , Aj

〉
)j∈J

be a family of octahedron sets in X. Then the Type i-union ∪i and Type i-
intersection ∩i of (Aj)j∈J , (i = 1, 2, , 3, 4), are defined as follows, respectively:

(i) (Type i-union)
⋃1
j∈J Aj =

〈⋃
j∈J Ãj ,

⋃
j∈J Āj ,

⋃
j∈J Aj

〉
,⋃2

j∈J Aj =
〈⋃

j∈J Ãj ,
⋃
j∈J Āj ,

⋂
j∈J Aj

〉
,⋃3

j∈J Aj =
〈⋃

j∈J Ãj ,
⋂
j∈J Āj ,

⋃
j∈J Aj

〉
,⋃4

j∈J Aj =
〈⋃

j∈J Ãj ,
⋂
j∈J Āj ,

⋂
j∈J Aj

〉
,

(ii) (Type i-intersection)
⋂1
j∈J Aj =

〈⋂
j∈J Ãj ,

⋂
j∈J Āj ,

⋂
j∈J Aj

〉
,⋂2

j∈J Aj =
〈⋂

j∈J Ãj ,
⋂
j∈J Āj ,

⋃
j∈J Aj

〉
,⋂3

j∈J Aj =
〈⋂

j∈J Ãj ,
⋃
j∈J Āj ,

⋂
j∈J Aj

〉
,⋂4

j∈J Aj =
〈⋂

j∈J Ãj ,
⋃
j∈J Āj ,

⋃
j∈J Aj

〉
.

Definition 2.7 ([42]). Let X be a nonempty set and let A =
〈
Ã, Ā, A

〉
be an

octahedron set in X. Then the complement Ac, operators [ ] and � of A are defined
as follows, respectively: for each x ∈ X,

(i) Ac =
〈
Ãc, Āc, Ac

〉
,

(ii) [ ]A =
〈
Ã, [ ]Ā, A

〉
,

(iii) �A =
〈
Ã, �Ā, A

〉
.

Let us denote the set of all fuzzy points (See [15]), intuitionistic fuzzy points (See
[22]) and interval-valued fuzzy points (See [24]) in a set X as FP (X), IFP (X) and
IV FP (X), respectively.

Definition 2.8 ([42]). Let A =
〈
Ã, Ā, A

〉
∈ O(X), and let ˜̄a ∈ [I]×(I⊕I)×I with

a+ > 0, b̄ 6= 0̄ and a 6= 0. Then A is called an octahedron point with the support
x ∈ X and the value ˜̄a, denoted by A = x˜̄a, if for each y ∈ X,

x˜̄a(y) =

{ ˜̄a if y = x
〈0, 0̄, 0〉 otherwise.

The set of all octahedron points in X is denoted by OP (X).

Definition 2.9 ([42]). Let A =
〈
Ã, Ā, A

〉
∈ O(X) and let x˜̄a ∈ OP (X). Then x˜̄a

is said to:
(i) belong to A with respect to Type 1-order, denoted by x˜̄a ∈1 A, if

ã ≤ Ã(x), ā ≤ Ā(x) and a ≤ A(x), i.e., xã ∈ Ã, xā ∈ Ā and xa ∈ A,
80
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(ii) belong to A with respect to Type 2-order, denoted by x˜̄a ∈2 A, if

ã ≤ Ã(x), ā ≤ Ā(x) and a ≥ A(x),
(iii) belong to A with respect to Type 3-order, denoted by x˜̄a ∈3 A, if

ã ≤ Ã(x), ā ≥ Ā(x) and a ≤ A(x),
(iv) belong to A with respect to Type 4-order, denoted by x˜̄a ∈4 A, if

ã ≤ Ã(x), ā ≥ Ā(x) and a ≥ A(x).

It is clear that A =
⋃1
x˜̄a∈1A x˜̄a, for each A ∈ O(X).

3. Octahedron topological spaces

In this section, we define an octahedron topological space and find some of its
properties. Also we introduce the concepts of octahedron bases and subbases and
deal with some of their properties. In particular, we give the conditions for the
family of octahedron sets to become an octahedron base (See Theorem 3.18).

Definition 3.1. Let τ ⊂ O(X). Then τ is called a:
(i) Type 1-octahedron topology (briefly, octahedron topology) on X, if it satisfies

the following axioms:
[1-OO1] 0̈, 1̈ ∈ τ,
[1-OO2] A ∩1 B ∈ τ for any A, B ∈ τ ,

[1-OO3]
⋃1
j∈J Aj ∈ τ for any (Aj)j∈J ⊂ τ ,

(ii) Type 2-octahedron topology on X, if it satisfies the following axioms:

[2-OO1]
〈

0̃, 0̄, 1
〉
,
〈

1̃, 1̄, 0
〉
∈ τ,

[2-OO2] A ∩2 B ∈ τ for any A, B ∈ τ ,

[2-OO3]
⋃2
j∈J Aj ∈ τ for any (Aj)j∈J ⊂ τ ,

(iii) Type 3-octahedron topology on X, if it satisfies the following axioms:

[3-OO1]
〈

0̃, 1̄, 0
〉
,
〈

1̃, 0̄, 1
〉
∈ τ,

[3-OO2] A ∩3 B ∈ τ for any A, B ∈ τ ,

[3-OO3]
⋃3
j∈J Aj ∈ τ for any (Aj)j∈J ⊂ τ ,

(iv) Type 4-octahedron topology on X, if it satisfies the following axioms:

[3-OO1]
〈

0̃, 1̄, 1
〉
,
〈

1̃, 0̄, 0
〉
∈ τ,

[3-OO2] A ∩4 B ∈ τ for any A, B ∈ τ ,

[3-OO3]
⋃4
j∈J Aj ∈ τ for any (Aj)j∈J ⊂ τ .

The pair (X, τ) is called a Type i-octahedron topological space. The members of
τ are called i-octahedron open set (briefly, i-OOS) in X and we denote the set of all
i-OOSs in X as OOSi(X). A ∈ O(X) is called a i-octahedron closed set (briefly, i-
OCS) in X, if Ac ∈ τ . We denote the collection of all Type i- octahedron topologies
on X as OTi(X),

Example 3.2. (1) Let τi be the family of octahedron sets in I respectively given
by:

τ1 = {0̈, 1̈,A1,A2,A3,A4},

τ2 =
{〈

0̃, 0̄, 1
〉
,
〈

1̃, 1̄, 0
〉
,A1,A2,A5,A6

}
,
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τ3 =
{〈

0̃, 1̄, 0
〉
,
〈

1̃, 0̄, 1
〉
,A1,A2,A7,A8

}
,

τ4 =
{〈

0̃, 1̄, 1
〉
,
〈

1̃, 0̄, 0
〉
,A1,A2,A9,A10

}
,

where for each x ∈ I,

A1(x) = 〈[0.5, 0.7], (0.6, 0.3), 0.4〉 , A2(x) = 〈[0.4, 0.8], (0.5, 0.2), 0.6〉 ,
A3(x) = 〈[0.4, 0.7], (0.5, 0.3), 0.4〉 , A4(x) = 〈[0.5, 0.8], (0.6, 0.2), 0.6〉 ,
A5(x) = 〈[0.4, 0.7], (0.5, 0.3), 0.6〉 , A6(x) = 〈[0.5, 0.8], (0.6, 0.2), 0.4〉 ,
A7(x) = 〈[0.4, 0.7], (0.6, 0.2), 0.4〉 , A8(x) = 〈[0.5, 0.8], (0.5, 0.4), 0.6〉 ,
A9(x) = 〈[0.4, 0.7], (0.6, 0.2), 0.6〉 , A10(x) = 〈[0.5, 0.8], (0.5, 0.4), 0.4〉 .

Then we can easily check that τi ∈ OTi(I) for i = 1, 2, 3, 4.
(2) Let X be a nonempty set. Then clearly, O(X) is a Type i-octahedron topology

on X for each i = 1, 2, 3, 4. In this case, O(X) is called the octahedron discrete
topology on X and will be denoted by τ

O,1
. The pair (X, τ

O,1
) is called the octahedron

discrete space.
(3) Let X be a nonempty set. Then we can easily see that

{0̈, 1̈} ∈ OT1(X),
{〈

0̃, 0̄, 1
〉
,
〈

1̃, 1̄, 0
〉}
∈ OT2(X),{〈

0̃, 1̄, 0
〉
,
〈

1̃, 0̄, 1
〉}
∈ OT3(X),

{〈
0̃, 1̄, 1

〉
,
〈

1̃, 0̄, 0
〉}
∈ OT4(X).

In this case, each collection in turn is called a Type 1-, 2-, 3-, 4-octahedron indiscrete
topology on X and will be denoted by τ

1,0
, τ

2,0
, τ

3,0
, τ

4,0
. The pairs

(X, τ1,0), (X, τ2,0), (X, τ3,0), (X, τ4,0)

are called the 1-, 2-, 3-, 4-octahedron indiscrete spaces.
(4) Let (X,T ) be an ordinary topological space. Then we have

τ
1,O

= {〈[χ
U
, χ

U
], (χ

U
, χ

Uc ), χ
U
〉 ∈ O(X) : U ∈ T} ∈ OT1(X),

τ
2,O

= {〈[χ
U
, χ

U
], (χ

U
, χ

Uc ), χ
Uc 〉 ∈ O(X) : U ∈ T} ∈ OT2(X),

τ
3,O

= {〈[χ
U
, χ

U
], (χ

Uc , χU
), χ

U
〉 ∈ O(X) : U ∈ T} ∈ OT3(X),

τ
4,O

= {〈[χ
U
, χ

U
], (χ

Uc , χU
), χ

Uc 〉 ∈ O(X) : U ∈ T} ∈ OT4(X).

(5) Let (X,T ) be an fuzzy topological space proposed by Chang [12]. Consider
the following family of octahedron sets in X:

τ
1,F

=
{〈
Ũ , (U,U c), U

〉
∈ O(X) : U ∈ T

}
,

τ
2,F

=
{〈
Ũ , (U,U c), U c

〉
∈ O(X) : U ∈ T

}
,

τ
3,F

=
{〈
Ũ , (U c, U), U

〉
∈ O(X) : U ∈ T

}
,

τ
4,F

=
{〈
Ũ , (U c, U), U c

〉
∈ O(X) : U ∈ T

}
.

Then clearly, τ
i,F
∈ OTi(X) for each i = 1, 2, 3, 4.

(6) Let (X,T ) be an interval-valued fuzzy topological space introduced by Mondal
and Samanta [24]. Consider the following family of octahedron sets in X:

τ
1,IV

=
{〈
Ũ , (U−, U+c), U−

〉
∈ O(X) : Ũ ∈ T

}
,

82



Lee et al./Ann. Fuzzy Math. Inform. 22 (2021), No. 1, 77–101

τ
2,IV

=
{〈
Ũ , (U−, U+c), U−

c
〉
∈ O(X) : Ũ ∈ T

}
,

τ
3,IV

=
{〈
Ũ , (U+c, U−), U−

〉
∈ O(X) : Ũ ∈ T

}
,

τ
4,IV

=
{〈
Ũ , (U+c, U−), U−

c
〉
∈ O(X) : Ũ ∈ T

}
.

Then clearly, τ
i,IV
∈ OTi(X) for each i = 1, 2, 3, 4.

(7) Let (X,T ) be an intuitionistic fuzzy topological space proposed by Çoker [21].
Consider the following family of octahedron sets in X:

τ
1,IF

=
{〈

[U∈, U /∈c], Ū , U∈
〉
∈ O(X) : Ū ∈ T

}
,

τ
2,IF

=
{〈

[U∈, U /∈c], Ū , U∈
c
〉
∈ O(X) : Ũ ∈ T

}
,

τ
3,IF

=
{〈

[U∈, U /∈c], Ū c, U∈
〉
∈ O(X) : Ũ ∈ T

}
,

τ
4,IF

=
{〈

[U∈, U /∈c], Ū c, U∈
c
〉
∈ O(X) : Ũ ∈ T

}
.

Then clearly, τ
i,IF
∈ OTi(X) for each i = 1, 2, 3, 4.

(8) Let (X,T ) be a P -cubic topological space in the sense of Zeb et al. [48] and
let us consider the following family of octahedron sets in X:

τ
1,PC

=
{〈
Ũ , (U−, U+c), U

〉
∈ O(X) : U =

〈
Ũ , U

〉
∈ T

}
,

τ
2,PC

=
{〈
Ũ , (U−, U+c), U c

〉
∈ O(X) : U =

〈
Ũ , U

〉
∈ T

}
,

τ
3,PC

=
{〈
Ũ , (U+c, U−), U

〉
∈ O(X) : U =

〈
Ũ , U

〉
∈ T

}
,

τ
4,PC

=
{〈
Ũ , (U+c, U−), U c

〉
∈ O(X) : U =

〈
Ũ , U

〉
∈ T

}
.

Then clearly, τ
i,PC
∈ OTi(X) for each i = 1, 2, 3, 4.

(9) Let (X,T ) be an R-cubic topological space in the sense of Zeb et al. [48] and
let us consider the following family of octahedron sets in X:

τ
1,RC

=
{〈
Ũ , (U−, U+c), U c

〉
∈ O(X) : U =

〈
Ũ , U

〉
∈ T \ {0̂, 1̂}

}
,

τ
2,RC

=
{〈
Ũ , (U−, U+c), U

〉
∈ O(X) : U =

〈
Ũ , U

〉
∈ T \ {0̂, 1̂}

}
,

τ
3,RC

=
{〈
Ũ , (U+c, U−), U c

〉
∈ O(X) : U =

〈
Ũ , U

〉
∈ T \ {0̂, 1̂}

}
,

τ
4,RC

=
{〈
Ũ , (U+c, U−), U

〉
∈ O(X) : U =

〈
Ũ , U

〉
∈ T \ {0̂, 1̂}

}
.

Then clearly, τ
i,RC
∈ OTi(X) for each i = 1, 2, 3, 4.

Now let us denote the family of all fuzzy [resp. interval-valued fuzzy, intuitionistic
fuzzy, P -cubic, andR-cubic] topologies onX in the sense of Chang [12] [resp. Mondal
and Samanta [24], Çoker [21] and Zeb et al. [48]] as FT (X) [resp. IV T (X), IFT (X),
PCT (X) and RCT (X)]. Then from Definition 3.1, we can easily get the following.

83



Lee et al./Ann. Fuzzy Math. Inform. 22 (2021), No. 1, 77–101

Remark 3.3. (1) If τ ∈ OT1(X), then τ
IV
∈ IV T (X), τ

IF
∈ IFT (X), τ

F
∈

FT (X), where τ
IV

= {Ũ ∈ IV S(X) : U ∈ τ}, τ
IF

= {Ū ∈ (I ⊕ I)X : U ∈ τ},
τ
F

= {U ∈ IX : U ∈ τ}. Furthermore, we have five fuzzy topologies on X in the
sense of Chang:

τ−
IV
, τ+

IV
, τ∈

IF
, τ /∈

IF
, τ

F
,

where τ−
IV

= {U− ∈ IX : U ∈ τ}, τ+
IV

= {U+ ∈ IX : U ∈ τ},
τ∈
IF

= {U∈ ∈ IX : U ∈ τ}, τ /∈
IF

= {U /∈c ∈ IX : U ∈ τ} (See Remark 3.7 in
[21]).

(2) If τ ∈ OT2(X), then τ
IV
∈ IV T (X), τ

IF
∈ IFT (X), τ c

F
∈ FT (X), where

τ c
F

= {U ∈ IX : U c ∈ τ
F
}.

(3) If τ ∈ OT3(X), then τ
IV
∈ IV T (X), τ c

IF
∈ IFT (X), τ

F
∈ FT (X), where

τ c
IF

= {Ū ∈ (I ⊕ I)X : Ū c ∈ τ
IF
}.

(4) If τ ∈ OT4(X), then τ
IV
∈ IV T (X), τ c

IF
∈ IFT (X), τ c

F
∈ FT (X).

(5) If τ ∈ OT1(X), then τ
PC
∈ PCT (X), τ

IF
∈ IFT (X),

where τ
PC

=
{〈
Ũ , U

〉
∈ C(X) : U ∈ τ

}
.

From Example 3.2 and Remark 3.3, we get the following implications:
An ordinary topology ⇒ an IVT (or IFT)

⇒ a P -cubic topology
⇒ a Type 1-octahedron topology.

Proposition 3.4. Let X be a nonempty set, let x˜̄a ∈ OP (X) and let the family τ
x˜̄a

of octahedron sets in X given by:

τ
x˜̄a = {U ∈ O(X) : U = 0̈ or x˜̄a ∈1 U}

Then τ
x˜̄a ∈ OT1(X).

In this case, τ
x˜̄a is called the included octahedron point x˜̄a topology on X.

Proof. It is clear that x˜̄a ∈1 1̈. Then 0̈, 1̈ ∈ τx˜̄a . Thus the axiom [1-OO1] is satisfied.

Let U , V ∈ τ
x˜̄a . If U = 0̈ or V = 0̈. Then clearly, U ∩1 V = 0̈. Thus U ∩1 V ∈ τ

x˜̄a .

If U 6= 0̈ and V 6= 0̈. Then clearly, x˜̄a ∈1 U and x˜̄a ∈1 V. Thus x˜̄a ∈1 U ∩1 V.
So U ∩1 V ∈ τ

x˜̄a . Hence in either case, the axiom [1-OO2] is satisfied. Now let

(Uj)j∈J ⊂ τ
x˜̄a . If Uj = 0̈ for each j ∈ J , then

⋃1
j∈J Uj = 0̈. Thus

⋃1
j∈J Uj ∈ taux˜̄a .

If there is j ∈ J such that Uj 6= 0̈, then x˜̄a ∈1 Uj . Thus x˜̄a ∈1

⋃1
j∈J Uj . So⋃1

j∈J Uj ∈ taux˜̄a . Hence in either case, the axiom [1-OO3] is satisfied. This completes

the proof. �

Proposition 3.5. Let X be a nonempty set, let A ∈ O(X) and let the family τA of
octahedron sets in X given by:

τA = {U ∈ O(X) : U = 0̈ or A ⊂1 U}

Then τA ∈ OT1(X).
In this case, τA is called the included octahedron set A topology on X.

Proof. The proof is similar to Proposition 3.4. �
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Proposition 3.6. Let X be a nonempty set, let x˜̄a ∈ OP (X) and let the family τx̆˜̄a
of octahedron sets in X given by:

τx̆˜̄a = {U ∈ O(X) : U = 1̈ or x˜̄a ∈1 Uc}
Then τx̆˜̄a ∈ OT1(X).

In this case, τx̆˜̄a is called the excluded octahedron point x˜̄a topology on X.

Proof. It is obvious that τx̆˜̄a satisfies the axiom [1-OO1]. Let U , V ∈ τx̆˜̄a . If U = 1̈

or V = 1̈. Then U ∩1 V = U or U ∩1 V = V. Thus U ∩1 V ∈ τx̆˜̄a . If U 6= 1̈ and

V 6= 1̈. Then x˜̄a ∈1 Uc and x˜̄a ∈1 Vc. Thus x˜̄a ∈1 Uc ∪1 Vc = (U ∩1 V)c. So
U ∩1 V ∈ τx̆˜̄a . Hence in either case, τx̆˜̄a satisfies the axiom [1-OO2]. Finally, let

(Uj)j∈J ⊂ τx̆˜̄a . If Uj 6= 1̈ for each j ∈ J , then x˜̄a ∈1 Ucj for each j ∈ J . Thus

x˜̄a ∈1

⋂1
j∈J Ucj = (

⋃1
j∈J Uj)c. So

⋃1
j∈J Uj ∈ τx̆˜̄a . If there is j ∈ J such that Uj = 1̈,

then
⋃1
j∈J Uj = 1̈. Thus

⋃1
j∈J Uj ∈ τx̆˜̄a . So in either case, τx̆˜̄a satisfies the axiom

[1-OO3]. This completes the proof. �

Proposition 3.7. Let X be a nonempty set, let A ∈ O(X) and let the family τ
Ă

of
octahedron sets in X given by:

τ
Ă

= {U ∈ O(X) : U = 1̈ or A ⊂1 Uc}
Then τ

Ă
∈ OT1(X).

In this case, τ
Ă

is called the excluded octahedron set A topology on X.

Proof. The proof is similar to Proposition 3.6. �

Definition 3.8. Let τ c ⊂ O(X). Then τ is called a:
(i) Type 1-octahedron cotopology on X, if it satisfies the following axioms:

[1-OC1] 0̈, 1̈ ∈ τ c,
[1-OC2] A ∪1 B ∈ τ c for any A, B ∈ τ c,
[1-OO3]

⋂1
j∈J Aj ∈ τ c for any (Aj)j∈J ⊂ τ c,

(ii) Type 2-octahedron cotopology on X, if it satisfies the following axioms:

[2-OC1]
〈

0̃, 0̄, 1
〉
,
〈

1̃, 1̄, 0
〉
∈ τ c,

[2-OC2] A ∪2 B ∈ τ c for any A, B ∈ τ c,
[2-OC3]

⋂2
j∈J Aj ∈ τ for any (Aj)j∈J ⊂ τ c,

(iii) Type 3-octahedron cotopology on X, if it satisfies the following axioms:

[3-OC1]
〈

0̃, 1̄, 0
〉
,
〈

1̃, 0̄, 1
〉
∈ τ c,

[3-OC2] A ∪3 B ∈ τ c for any A, B ∈ τ c,
[3-OC3]

⋂3
j∈J Aj ∈ τ c for any (Aj)j∈J ⊂ τ c,

(iv) Type 4-octahedron cotopology on X, if it satisfies the following axioms:

[3-OC1]
〈

0̃, 1̄, 1
〉
,
〈

1̃, 0̄, 0
〉
∈ τ c,

[3-OC2] A ∪4 B ∈ τ c for any A, B ∈ τ c,
[3-OC3]

⋂4
j∈J Aj ∈ τ c for any (Aj)j∈J ⊂ τ c.

The pair (X, τ c) is called a Type i-octahedron cotopological space. The members
of τ c are called i-octahedron closed set (briefly, i-OCS) in X. We will denote the set
of all Type 1-octahedron cotopologies on X as OCTi(X) for i = 1, 2, 3, 4.
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The following is an immediate result of Definitions 3.1 and 3.8.

Proposition 3.9. Let τ ∈ OTi(X) and let τ c = {Uc ∈ O(X) : U ∈ τ}, where
i = 1, 2, 3, 4. Then τ c ∈ OCTi(X) for i = 1, 2, 3, 4.

It is well-known [12, 24, 21] that for any arbitrary family (τj)j∈J of fuzzy [resp.
interval-valued fuzzy and intuitionistic fuzzy] topologies on X,⋂

j∈J
τj ∈ FT (X) [resp. IV T (X) and IFT (X)].

Then we have the following:⋃
j∈J

τ cj ∈ FCT (X) [resp. IV CT (X) and IFCT (X)],

where FCT (X) [IV CT (X) and IFCT (X)] denotes the collection of all fuzzy [resp.
interval-valued fuzzy and intuitionistic fuzzy] cotopologies on X.

Remark 3.10. From Remark 3.3, Definition 3.8 and Proposition 3.9, it is obvious
that the followings hold.

(1) If (τj)j∈J ⊂ OT1(X), then (τ
IV
,j)j∈J ⊂ IV T (X), (τ

IF
,j)j∈J ⊂ IFT (X),

(τ
F
,j)j∈J ⊂ FT (X). Thus we have:⋂

j∈J
τ
IV
,j ∈ IV T (X),

⋂
j∈J

τ
IF
,j ∈ IFT (X),

⋂
j∈J

τ
F
,j ∈ FT (X).

(2) If (τj)j∈J ⊂ OT2(X), then (τ
IV
,j)j∈J ⊂ IV T (X), (τ

IF
,j)j∈J ⊂ IFT (X),

(τ
F
,j)j∈J ⊂ FCT (X). Thus we have:⋂

j∈J
τ
IV
,j ∈ IV T (X),

⋂
j∈J

τ
IF
,j ∈ IFT (X),

⋃
j∈J

τ
F
,j ∈ FCT (X).

(3) If (τj)j∈J ⊂ OT3(X), then (τ
IV
,j)j∈J ⊂ IV T (X), (τ

IF
,j)j∈J ⊂ IFCT (X),

(τ
F
,j)j∈J ⊂ FT (X). Thus we have:⋂

j∈J
τ
IV
,j ∈ IV T (X),

⋃
j∈J

τ
IF
,j ∈ IFCT (X),

⋂
j∈J

τ
F
,j ∈ FT (X).

(4) If (τj)j∈J ⊂ OT3(X), then (τ
IV
,j)j∈J ⊂ IV T (X), (τ

IF
,j)j∈J ⊂ IFCT (X),

(τ
F
,j)j∈J ⊂ FCT (X). Thus we have:⋂

j∈J
τ
IV
,j ∈ IV T (X),

⋃
j∈J

τ
IF
,j ∈ IFCT (X),

⋃
j∈J

τ
F
,j ∈ FCT (X).

The following is an immediate consequence of Remarks 3.3 and 3.10.

Proposition 3.11. Let (τj)j∈J ⊂ OTi(X). Then
⋂
j∈J τj ∈ OTi(X) for i =

1, 2, 3, 4.

Definition 3.12. Let τ1, τ2 ∈ OTi(X) for i = 1, 2, 3, 4. Then we say that τ1 is
coarser than τ2 or τ2 is finer than τ1, if τ1 ⊂ τ2.
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From Example 3.2 (1) and (2), and Definition 3.12, it is clear that for each
τ ∈ OTi(X), τi,0 ⊂ τ ⊂ τ

O,1
for i = 1, 2, 3, 4. Moreover, from Proposition 3.11,

(OTi(X),⊂) forms a meet complete lattice with the least element τ
i,0

and the largest
τ
O,1

for i = 1, 2, 3, 4.

Remark 3.13. (OTi(X),⊂) does not form a join complete lattice in general (See
Example 3.14).

Example 3.14. Let X = {a, b} and consider two families of octahedron sets in X
given by:

τ1 = {0̈, 1̈,A1,A2,A3,A4},
τ2 = {0̈, 1̈,B1,B2,B3,B4},

where A1(a) = 〈[0.4, 0.8], (0.6, 0.3), 0.7〉 , A1(b) = 〈[0.5, 0.7], (0.5, 0.2), 0.8〉 ,
A2(a) = 〈[0.3, 0.9], (0.4, 0.2), 0.6〉 , A2(b) = 〈[0.6, 0.6], (0.6, 0.3), 0.6〉 ,
A3(a) = 〈[0.3, 0.8], (0.4, 0.3), 0.6〉 , A3(b) = 〈[0.5, 0.6], (0.5, 0.3), 0.6〉 ,
A4(a) = 〈[0.4, 0.9], (0.6, 0.2), 0.7〉 , A4(b) = 〈[0.6, 0.7], (0.6, 0.2), 0.8〉 ,
B1(a) = 〈[0.5, 0.7], (0.5, 0.2), 0.4〉 , B1(b) = 〈[0.4, 0.7], (0.4, 0.3), 0.6〉 ,
B2(a) = 〈[0.4, 0.8], (0.4, 0.3), 0.6〉 , B2(b) = 〈[0.5, 0.6], (0.5, 0.4), 0.3〉 ,
B3(a) = 〈[0.4, 078], (0.4, 0.3), 0.4〉 , A3(b) = 〈[0.4, 0.6], (0.4, 0.4), 0.3〉 ,
B4(a) = 〈[0.5, 0.8], (0.5, 0.3), 0.6〉 , B4(b) = 〈[0.5, 0.7], (0.5, 0.3), 0.6〉 .

Then we can easily check that τ1, τ2 ∈ OT1(X). Furthermore, we have

τ1 ∪ τ2 = {0̈, 1̈,A1,A2,A3,A4,B1,B2,B3,B4}.
Thus (A1 ∪1 B1)(a) = 〈[0.5, 0.8], (0.6, 0.2), 0.7〉. So A1 ∪1 B1 /∈ τ1 ∪ τ2. Hence
τ1 ∪ τ2 /∈ OT1(X).

Now we define a base and a subbase in an octahedron topological space X and
discuss with their some properties.

Definition 3.15. Let (X, τ) be an octahedron topological space and let β, σ ⊂ τ .
Then

(i) β is called an octahedron base for τ , if for each U ∈ τ , U = 0̈ or there is a

β
′ ⊂ β such that U = ∪1β,

(ii) σ is called an octahedron subbase for for τ , if the family β = {∩1σ
′

:

σ
′

a finite subset of σ} is an octahedron base for τ .

From Remark 3.3 and Definition 3.15, we have the followings.

Remark 3.16. Let τ ∈ OT1(X). Then
(1) β is an octahedron base for τ if and only if β

IV
is an interval-valued fuzzy

base for τ
IV

, β
IF

is an intuitionistic fuzzy base for τ
IF

and β
F

is a fuzzy base for

τ
F

, where β
IV

= {B̃ ∈ IV S(X) : B ∈ β}, β
IF

= {B̄ ∈ (I ⊕ I)X : B ∈ β} and
β

F
= {B ∈ IX : B ∈ β},
(2) σ is an octahedron subbase for τ if and only if σ

IV
is an interval-valued fuzzy

subbase for τ
IV

, σ
IF

is an intuitionistic fuzzy subbase for τ
IF

and σ
F

is a fuzzy

subbase for τ
F

, where σ
IV

= {S̃ ∈ IV S(X) : S ∈ σ}, σ
IF

= {S̄ ∈ (I ⊕ I)X : S ∈ σ}
and σ

F
= {S ∈ IX : S ∈ σ}.

There can be a subset of O(X) that is not an octahedron base for an octahedron
topology on a set X (See Example 3.17).
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Example 3.17. Let X a nonempty set and consider the family β of octahedron sets
in X given by:

β = {A,B, 1̈},
where A(x) = 〈[0.6, 0.8], (0.6, 0.1), 0.8〉 , B(x) = 〈[0.5, 0.9], (0.7, 0.2), 0.7〉 for each
x ∈ X. Suppose β is an octahedron base for an octahedron topology τ onX. Then by
Definition 3.15, β ⊂ τ . Thus A∩1B = C ∈ τ,, where C(x) = 〈[0.5, 0.8], (0.6, 0.2), 0.7〉
for each x ∈ X. Clearly, C 6= 0̈. However, there is no subcollection β

′
of β such that

C = ∪1β
′
. So β is not an octahedron base for τ .

The following gives a necessary and sufficient condition for a collection of octa-
hedron sets in X to be an octahedron base for an octahedron topology on X.

Theorem 3.18. Let β ⊂ O(X). Then β is an octahedron base for some octahedron
topology on X if and only if it satisfies the following conditions:

(1) 1̈ = ∪1β,
(2) if B1, B2 ∈ β and x˜̄a ∈1 B1 ∩1 B2, then there is B ∈ β such that

x˜̄a ∈1 B ⊂1 B1 ∩1 B2.

Proof. Let β be an octahedron base for some octahedron topology τ on X. Then
clearly, 1̈ ∈ τ. Thus by Definition 3.15, 1̈ = ∪1β. So the condition (1) is satisfied.
Suppose B1, B2 ∈ β and x˜̄a ∈1 B1∩1B2. Then clearly, B1, B2 ∈ τ . Thus B1∩1B2 ∈ τ .

So there is β
′ ⊂ β such that B1 ∩1 B2 = ∪1β

′
. Since x˜̄a ∈1 B1 ∩1 B2, x˜̄a ∈1 β

′
. By

Proposition 4.6 in [42], there is B ∈ β such that x˜̄a ∈1 B ⊂1 B1 ∩1 B2. Hence he
condition (2) is satisfied.

Conversely, suppose β satisfies the conditions (1) and (2). Let τ be be the collec-
tion of octahedron sets in X given by:

τ = {0̈} ∪ {U : U = ∪1β
′

for some β
′
⊂ β}.

Then clearly, 0̈ , 1̈ ∈ τ . Let (Uj)j∈J ⊂ τ . Then by the definition of τ , we can easily

see that
⋃1
j∈J Uj ∈ τ. Now suppose U1, U2 ∈ τ and x˜̄a ∈1 U1 ∩1 U2. Then there are

B1, B2 ∈ β such that x˜̄a ∈1 B1 ⊂1 U1 and x˜̄a ∈1 B2 ⊂1 U2. Thus x˜̄a ∈1 B1 ∩1 B2. By

the condition (2), there is B ∈ β such that x˜̄a ∈1 B ⊂1 B1 ∩1 B2. So there is β
′ ⊂ β

such that U1 ∩1 U2 =
⋃1

β
′
, where β

′
= {B ∈ β : x˜̄a ∈1 B ⊂1 B1 ∩1 B2}. Hence

U1 ∩1 U2 ∈ τ . This completes the proof. �

Example 3.19. Let X = {a, b, c} consider the family β of octahedron sets in X
given by:

β = {A,B, C},
where for each x ∈ X,

A(x) = 〈[0.6, 0.8], (0.6, 0.3), 0.6〉 ,

B(x) =

{
〈[0.6, 0.8], (0.6, 0.3), 0.6〉 if x = a
〈1, 1̄, 1〉 otherwise,

C(x) =

{
〈1, 1̄, 1〉 if x = a
〈[0.6, 0.8], (0.6, 0.3), 0.6〉 otherwise.

Then we can easily check that β satisfies the conditions of Theorem 3.18. Thus β is
an octahedron base for an octahedron topology τ . In fact, τ = {0̈,A,B, C, 1̈}.
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The following is a characterization for an octahedron topology τ2 to be finer than
an octahedron topology τ1 in terms of octahedron bases for τ1 and τ2.

Theorem 3.20. Let τ1, τ2 ∈ OT1(X), and let β1 and β2 be octahedron bases for τ1
and τ2 respectively. Then the following are equivalent:

(1) τ2 is finer than τ1,
(2) for each x˜̄a ∈1 1̈ and B1 ∈ β1 such that x˜̄a ∈1 B1, there is B2 ∈ β2 such that

x˜̄a ∈1 B2 ⊂1 B1.

Proof. Suppose (1) holds, let x˜̄a ∈1 1̈ and let B1 ∈ β1 such that x˜̄a ∈1 B1. Then
clearly, B1 ∈ τ1. Thus by the hypothesis, B1 ∈ τ2. Since β2 is an octahedron base
for τ2, there is β

′

2 ⊂ β2 such that B1 = ∪1β
′

2. Since x˜̄a ∈1 B1, there is B2 ∈ β2 such
that x˜̄a ∈1 B2 ⊂1 B1.

Conversely, suppose (2) holds. Let U ∈ τ1 and let x˜̄a ∈1 U . Since β1 is an
octahedron base for τ1, there is B1 ∈ β1 such that x˜̄a ∈1 B1 ⊂1 U . Then by
the condition (2), there is B2 ∈ β2 such that x˜̄a ∈1 B2 ⊂1 B1. Since B1 ⊂1 U ,

x˜̄a ∈1 B2 ⊂1 U . Thus there is β
′

2 ⊂ β2 such that U =
⋃1

β
′

2. So U ∈ τ2. Hence τ2 is
finer than τ1. �

We know that every topology has a base since the topology itself forms a base. The
following gives a sufficient condition for a subcollection of an octahedron topology
τ to be an octahedron base for τ .

Proposition 3.21. Let (X, τ) be an octahedron topological space. Suppose β ⊂ τ
such that for each ˜̄a ∈1 1̈ and each U ∈ τ with ˜̄a ∈1 U , there is B ∈ β such that˜̄a ∈1 B ⊂1 U . Then β is an octahedron base for τ .

Proof. Let ˜̄a ∈1 1̈. Since 1̈ ∈ τ , there is B ∈ β such that ˜̄a ∈1 B ⊂1 1̈ by the
hypothesis. Then 1̈ = ∪1β. Thus β satisfies the the condition (1) of Theorem 3.18.
Now suppose B1, B2 ∈ β and ˜̄a ∈1 B1∩1B2. Then clearly, B1∩1B2 ∈ τ. Thus there is
B ∈ β such that ˜̄a ∈1 B ⊂1 B1 ∩1 B2. So β satisfies the the condition (2) of Theorem
3.18. Hence by Theorem 3.18, β is an octahedron base for an octahedron topology
τ2 on X.

On the other hand, from Theorem 3.20, it is obvious that τ2 is finer than τ1, i.e.,
τ1 ⊂ τ2. Let U ∈ τ2. Then there is β

′ ⊂ β such that U = ∪1β
′
. Since β ⊂ τ1, U ∈ τ1.

Thus τ2 ⊂ τ1. So τ1 = τ2. This completes the proof. �

The following provides a sufficient condition for a family of octahedron sets in X
to be an octahedron subbase for a unique octahedron topology τ on X.

Proposition 3.22. Let X be a set and let σ ⊂ O(X) such that 1̈ = ∪1σ. Then
there is a unique octahedron topology τ on X such that σ is an octahedron subbase
for τ .

Proof. Let β = {B ∈ O(X) : B = ∩1σ
′

and σ
′

is a finite subset of σ} and let

τ = {U ∈ O(X) : U = 0̈ or U = ∪1β
′

for some β
′
⊂ β}.

Then from the same proof of the classical case, we can check that τ is a unique
octahedron topology on X such that σ is an octahedron subbase for τ . �
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Example 3.23. Let X = {a, b, c, d, e} and consider the family σ of octahedron sets
in X given by:

σ = {A1,A2,A3,A4},

where for each x ∈ X,

A1(x) =

{
〈[0.6, 0.8], (0.6, 0.3), 0.6〉 if x = a
〈1, 1̄, 1〉 otherwise,

A2(x) =

 〈[0.5, 0.9], (0.7, 0.2), 0.8〉 if x = b or c
〈0, 0̄, 0〉 if x = a
〈1, 1̄, 1〉 if x = d or e,

A3(x) =


〈[0.5, 0.9], (0.7, 0.2), 0.8〉 if x = b or c
〈[0.4, 0.7], (0.5, 0.4), 0.5〉 if x = d
〈0, 0̄, 0〉 if x = a
〈1, 1̄, 1〉 if x = e,

A4(x) =

 〈[0.6, 0.7], (0.8, 0.1), 0.7〉 if x = e
〈1, 1̄, 1〉 if x = a
〈0, 0̄, 0〉 otherwise.

Then clearly, ∪1σ = 1̈. Thus by Proposition 3.21, σ is an octahedron subbase for a
unique octahedron topology τ on X. Let β be the octahedron base for τ . Then we
can easily get

β = {A1,A2,A3,A4,A5,A6},

where for each x ∈ X,

A5(x) =

 〈[0.6, 0.8], (0.6, 0.3), 0.6〉 if x = a
〈[0.6, 0.7], (0.8, 0.1), 0.7〉 if x = e
〈0, 0̄, 0〉 otherwise,

A6(x) =

{
〈[0.6, 0.7], (0.8, 0.1), 0.7〉 if x = e
〈0, 0̄, 0〉 otherwise.

So we get the octahedron topology τ generated by σ:

τ = {0̈,A1,A2,A3,A4,A5,A6,A7,A8, 1̈},

where for each x ∈ X,

A7(x) =

{
〈[0.5, 0.9], (0.7, 0.2), 0.8〉 if x = b or c
〈1, 1̄, 1〉 otherwise,

A8(x) =

 〈[0.5, 0.9], (0.7, 0.2), 0.8〉 if x = b or c
〈[0.4, 0.7], (0.5, 0.4), 0.5〉 if x = d
〈1, 1̄, 1〉 otherwise.
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4. Octahedron subspaces, and Octahedron closures and interiors

In this section, we define an octahedron subspace, an octahedron closures and
interiors, and discus with their some properties.

Proposition 4.1. Let (X, τ) be an octahedron topological space and let A ∈ O(X).
Then the family τA of octahedron sets in X given by:

τA = {A ∩1 U : U ∈ τ}

is an octahedron topology on A.
In this case, τA is called a relative octahedron topology on A determined by τ and

the pair (A, τA) is called an octahedron subspace of (X, τ). The members of τA is
called relatively octahedron open sets or simply octahedron open sets in A. B ∈ O(X)
is said to be octahedron closed in (A, τA), if A − B ∈ τA , where A − B = A ∩1 Bc
and B ⊂1 A.

Proof. Clearly, 0̈, 1̈ ∈ τ and A ∩1 0̈ = 0̈, A ∩1 1̈ = A. Then 0̈, A ∈ τA . Thus τA
satisfies the axiom [1-OO1]. Let B, C ∈ τA . Then there are U , V ∈ τ such that
B = A ∩1 U and C = A ∩1 V. Thus B ∩1 C = A ∩1 (U ∩1 V) and U ∩1 V ∈ τ .
So B ∩1 C ∈ τA . Hence τA satisfies the axiom [1-OO2]. Now let (Bj)j∈J ⊂ τA .
Then clearly, for each j ∈ J , there is Uj ∈ τ such that Bj = A ∩1 Uj . Thus⋃1
j∈J Bj = A ∩1 (

⋃1
j∈J Uj) and

⋃1
j∈J Uj ∈ τ . So

⋃1
j∈J Bj ∈ τA . Hence τA satisfies

the axiom [1-OO3]. This completes the proof. �

Example 4.2. (1) If τ is the octahedron discrete topology on a setX andA ∈ O(X),
then τA is the octahedron discrete topology on A.

(2) If τ is the 1-octahedron indiscrete topology on a set X and A ∈ O(X), then
τA is the 1-octahedron discrete topology on A.

Remark 4.3. Let (X, τ) be an octahedron topological space and let A ∈ O(X).
Then (τ

F
)
A

[resp. (τ
IV

)
Ã

and (τ
IF

)
Ā

] is a relative fuzzy [resp. interval-valued fuzzy

and intuitionistic fuzzy] topology on A [resp. Ã and Ā] in the sense of [17] [resp.
[24] and [23]] (See Remark 3.3).

The following is an immediate consequence of Proposition 4.1.

Proposition 4.4. Let (X, τ) be an octahedron topological space and let A, B ∈
O(X) such that A ⊂1 B. Then τA = (τB)A .

Proposition 4.5. Let (X, τ) be an octahedron topological space, let A ∈ O(X) and
let β be an octahedron base for τ . Then βA = {B ∩1 A : B ∈ β} is an octahedron
base for τA .

Proof. Let U ∈ τA such that ˜̄a ∈1 U . Then there is V ∈ τ such that U = V ∩1 A.
Since ˜̄a ∈1 U , ˜̄a ∈1 V ∩1 A. Thus ˜̄a ∈1 V. Since V ∈ τ and β is an octahedron base
for τ , there is B ∈ β such that ˜̄a ∈1 B ⊂1 V. So ˜̄a ∈1 B ∩1 A ⊂1 V ∩1 A = U . Hence
by Proposition 3.21, βA is an octahedron base for τA . �

The following provides a special situation in which every member of the relative
octahedron topology is also a member of the octahedron topology.
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Proposition 4.6. Let (X, τ) be an octahedron topological space and let A ∈ τ . If
U ∈ τA , then U ∈ τ.

Proof. The proof is straightforward. �

Theorem 4.7. Let (A, τA) be an octahedron subspace of an octahedron topological
space (X, τ) and let B ∈ O(X) such that B ⊂1 A. Then B is closed in (A, τA) if and
only if there is C ∈ τ c such that B = C ∩1 A.

Proof. Suppose B is closed in (A, τA). Then A− B = A ∩1 Bc ∈ τA . Thus there is
U ∈ τ such that A− B = U ∩1 A. So we get B = A ∩1 Uc. It is clear that Uc ∈ τ c.
Hence the result holds.

The converse is easily proved. �

The following is an immediate consequence of Theorem 4.7.

Corollary 4.8. Let (X, τ) be an octahedron topological space and let A ∈ τ c. If B
is closed in (A, τA), then B ∈ τ c.

Definition 4.9. Let (X, τ) be an octahedron topological space and let A ∈ O(X).
(i) The octahedron closure of A with respect to τ , denoted by Oclτ (A) or Ocl(A),

is an octahedron set in X defined as:

Ocl(A) =

1⋂
{F ∈ τ c : A ⊂1 F}.

(ii) The octahedron interior of A with respect to τ , denoted by Ointτ (A) or
Oint(A), is an octahedron set in X defined as:

Oint(A) =

1⋃
{U ∈ τ : U ⊂1 A}.

We can easily see that for each A ∈ O(X), Ocl(A) is the smallest octahedron
closed set in X such that A ⊂1 Ocl(A) and Oint(A) is the largest octahedron open
set in X such that Oint(A) ⊂1 A.

Example 4.10. Let (X, τ) be the octahedron topological space given in Example
3.23. Then we have

τ = {0̈,Ac1,Ac2,Ac3,Ac4,Ac5,Ac6,Ac7,Ac8, 1̈},

where for each x ∈ X,

Ac1(x) =

{
〈[0.2, 0.4], (0.3, 0.6), 0.4〉 if x = a
〈0, 0̄, 0〉 otherwise,

Ac2(x) =

 〈[0.1, 0.5], (0.2, 0.7), 0.2〉 if x = b or c
〈1, 1̄, 1〉 if x = a
〈0, 0̄, 0〉 if x = d or e,

Ac3(x) =


〈[0.1, 0.5], (0.2, 0.7), 0.2〉 if x = b or c
〈[0.3, 0.6], (0.4, 0.5), 0.5〉 if x = d
〈1, 1̄, 1〉 if x = a
〈0, 0̄, 0〉 if x = e,
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Ac4(x) =

 〈[0.3, 0.4], (0.1, 0.8), 0.3〉 if x = e
〈0, 0̄, 0〉 if x = a
〈1, 1̄, 1〉 otherwise,

Ac5(x) =

 〈[0.2, 0.4], (0.3, 0.6), 0.4〉 if x = a
〈[0.3, 0.4], (0.1, 0.8), 0.3〉 if x = e
〈1, 1̄, 1〉 otherwise,

Ac6(x) =

{
〈[0.3, 0.4], (0.1, 0.8), 0.3〉 if x = e
〈1, 1̄, 1〉 otherwise,

Ac7(x) =

{
〈[0.1, 0.5], (0.2, 0.7), 0.2〉 if x = b or c
〈0, 0̄, 0〉 otherwise,

Ac8(x) =

 〈[0.1, 0.5], (0.2, 0.7), 0.2〉 if x = b or c
〈[0.3, 0.6], (0.4, 0.5), 0.5〉 if x = d
〈0, 0̄, 0〉 otherwise.

Consider two octahedron sets A and B in X given by:
A(a) = 〈[0.7, 0.9], (0.7, 0.2), 0.7〉 , A(b) = A(c) = 〈[0.6, 0.9], (0.8, 0.1), 0.9〉 ,
A(d) = 〈[0.3, 0.5], (0.4, 0.5), 0.3〉 , A(e) = 〈[0.7, 0.8], (0.9, 0.1), 0.8〉,
B(a) = 〈[0.1, 0.3], (0.2, 0.7), 0.3〉 , B(b) = A(c) = 〈[0.1, 0.4], (0.3, 0.6), 0.1〉 ,
B(d) = 〈[0.3, 0.5], (0.4, 0.5), 0.3〉 , B(e) = 〈[0.2, 0.3], (0.1, 0.7), 0.2〉.

Then we can easily check that

A5, A6 ⊂1 A and A ⊂1 Ac5, Ac6.
Thus we have Oint(A) = A5 ∪1 A6 and Ocl(B) = Ac5 ∩1 Ac6.

Proposition 4.11. Let (X, τ) be an octahedron topological space and let A ∈ O(X).
Then

Oint(Ac) = (Ocl(A))c and Ocl(Ac) = (Oint(A))c.

Proof. Oint(Ac) =
⋃1{U ∈ τ : U ⊂1 Ac}

=
⋃
{U ∈ τ : Ũ ⊂ Ãc, Ū ⊂ Āc, U ⊂ Ac}

=
⋃
{U ∈ τ : Ã ⊂ Ũ c, Ā ⊂ Ū c, A ⊂ U c}

=
⋂
{Uc ∈ τ c : A ⊂1 Uc}

= Ocl(A).
Similarly, we can show that Ocl(Ac) = (Oint(A))c. �

Proposition 4.12. Let (X, τ) be an octahedron topological space and let A, A ∈
O(X).

(1) A ∈ τ c if and only if A = Ocl(A). (2) Ocl(Ocl(A)) = A.
(3) Ocl(0̈) = 0̈. (4) If A ⊂1 B, then Ocl(A) ⊂1 Ocl(B).
(5) Ocl(A ∪1 B) = Ocl(A) ∪1 Ocl(B). (6) Ocl(A ∩1 B) ⊂1 Ocl(A) ∩1 Ocl(B).

Proof. The proofs of (1)–(4) are obvious from Definition 4.9.
(5) It is clear that A ∪1 B ⊂1 A and A ∪1 B ⊂1 B. Then by (4), we have

Ocl(A ∪1 B) ⊂1 Ocl(A) and Ocl(A ∪1 B) ⊂1 Ocl(B).

Thus Ocl(A ∪1 B) ⊂1 Ocl(A) ∪1 Ocl(B). On the other hand, since A ⊂1 Ocl(A)
and B ⊂1 Ocl(BG), A ∪1 B ⊂1 Ocl(A) ∪1 Ocl(B). Since Ocl(A) ∪1 Ocl(B) ∈ τ c,
Ocl(A ∪1 B) ⊂1 Ocl(A) ∪1 Ocl(B) by Definition 4.9. So (5) holds.
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(6) It is obvious that A ∩1 B ⊂1 A and A ∩1 B ⊂1 B. Then by by (4), we have

Ocl(A ∩1 B) ⊂1 Ocl(A) and Ocl(A ∩1 B) ⊂1 Ocl(B).

Thus Ocl(A ∩1 B) ⊂1 Ocl(A) ∩1 Ocl(B). �

Definition 4.13. Let X be a set. Then a mapping Ocl∗ : O(X)→ O(X) is called
an octahedron closure operator on X, if it satisfies the following axioms (called the
octahedron Kuratowski closure axioms): for any A, B ∈ B(X),

[OK1] Ocl∗(0̈) = 0̈,
[OK2] A ⊂1 Ocl

∗(A),
[OK3] Ocl∗(Ocl∗(A)) = Ocl∗(A),
[OK3] Ocl∗(A ∪1 B) = Ocl∗(A) ∪1 Ocl∗(B).

The following shows that an octahedron closure operator completely determines
an octahedron topology and that the octahedron operator is the octahedron closure
in this octahedron topology.

Proposition 4.14. Let Ocl∗ be an octahedron closure operator on a set X and let
τ be the family of octahedron sets in given by:

τ = {Ac ∈ O(X) : Ocl∗(A) = A}.

Then τ is an octahedron topology on X. Furthermore, if Ocl is the octahedron closure
operator defined by τ , then Ocl∗(A) = Ocl(A) for each A ∈ O(X).

Proof. The proof is almost similar to one of classical topological spaces. �

Proposition 4.15. Let (X, τ) be an octahedron topological space and let A, A ∈
O(X).

(1) A ∈ τ if and only if A = Oint(A). (2) Oint(Oint(A)) = A.
(3) Oint(1̈) = 1̈. (4) If A ⊂1 B, then Oint(A) ⊂1 Oint(B).
(5) Oint(A∩1B) = Oint(A)∩1Oint(B). (6) Oint(A)∪1Oint(B) ⊂1 Ocl(A∪1B).

Proof. The proof can be easily deduced from Propositions 4.11 and 4.12. �

Definition 4.16. Let X be a set. Then a mapping Oint∗ : O(X)→ O(X) is called
an octahedron interior operator on X, if it satisfies the following axioms (called the
octahedron interior axioms): for any A, B ∈ B(X),

[OI1] Oint∗(1̈) = 1̈,
[OI2] Oint∗(A) ⊂1 A,
[OI3] Oint∗(Oint∗(A)) = Oint∗(A),
[OI3] Oint∗(A ∩1 B) = Oint∗(A) ∩1 Oint∗(B).

As one might expect, a property analogous to Proposition 4.14 holds for the oc-
tahedron interior operator. Then an octahedron interior operator completely deter-
mines an octahedron topology. In fact, the following result is the dual of Proposition
4.14.

Proposition 4.17. Let Oint∗ be an octahedron interior operator on a set X and
let τ be the family of octahedron sets in given by:

τ = {A ∈ O(X) : Oint∗(A) = A}.
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Then τ is an octahedron topology on X. Furthermore, if Oint is the octahedron
interior operator defined by τ , then Oint∗(A) = Oint(A) for each A ∈ O(X).

5. Octahedron continuities

In this section, we define an octahedron continuity and obtain its various proper-
ties.

Definition 5.1 ([42]). Let X, Y be two sets, let f : X → Y be a mapping and let
A ∈ O(X), B ∈ O(Y ).

(i) The preimage of B under f , denoted by f−1(B) =
〈
f−1(B̃), f−1(B̄), f−1(B)

〉
,

is the octahedron set in X defined as follows: for each x ∈ X,

f−1(B)(x) =
〈
[(B− ◦ f)(x), (B+ ◦ f)(x))], ((B∈ ◦ f)(x), (B 6∈ ◦ f)(x)), (B ◦ f)(x)

〉
.

(ii) The image of A under f , denoted by f(A) =
〈
f(Ã), f(Ā), f(A)

〉
, is the

octahedron set in Y defined as follows: for each y ∈ Y ,

f(Ã)(y) =

{
[
∨
x∈f−1(y)A

−(x),
∨
x∈f−1(y)A

+(x)] if f−1(y) 6= φ

0 otherwise,

f(Ā)(y) =

{
(
∨
x∈f−1(y)A

∈(x),
∧
x∈f−1(y)A

6∈(x)) if f−1(y) 6= φ

0̄ otherwise,

f(A)(y) =

{ ∨
x∈f−1(y)A(x) if f−1(y) 6= φ

0 otherwise.

It is obvious that f(x˜̄a) = [f(x)]˜̄a, for each x˜̄a ∈ OP (X).

Result 5.2 ([42], Proposition 5.5). Let A, A1, A2 ∈ O(X), (Aj)j∈J ⊂ O(X), let
B, B1, B2 ∈ O(Y ), (Bj)j∈J ⊂ O(Y ) and let f : X → Y be a mapping. Then for
each i = 1, 2, 3, 4,

(1) if A1 ⊂i A2, then f(A1) ⊂i f(A2),
(2) if B1 ⊂i B2, then f−1(B1) ⊂i f−1(B2),
(3) A ⊂1 f

−1(f(A)) and if f is injective, then A = f−1(f(A)),
(4) f(f−1(B)) ⊂1 B and if f is surjective, f(f−1(B)) = B,

(5) f−1(
⋃i
j∈J Bj) =

⋃i
j∈J f

−1(Bj),

(6) f−1(
⋂i
j∈J Bj) =

⋂i
j∈J f

−1(Bj),

(7) f(
⋃1
j∈J Aj) =

⋃1
j∈J f(Aj),

(8) f(
⋂i
j∈J Aj) ⊂i

⋂i
j∈J f(Aj) and if f is injective, then f(

⋂i
j∈J Aj) =

⋂i
j∈J f(Aj),

(9) if f is surjective, then f(A)c ⊂1 f(Ac).
(10) f−1(Bc) = f−1(B)c.

(11) f−1(0̈) = 0̈, f−1(1̈) = 1̈, f−1(
〈

0̃, 0̄, 1
〉

) =
〈

0̃, 0̄, 1
〉

,

f−1(
〈

0̃, 1̄, 0
〉

) =
〈

0̃, 1̄, 0
〉

, f−1(
〈

1̃, 0̄, 0
〉

) =
〈

1̃, 0̄, 0
〉

,

f−1(
〈

0̃, 1̄, 1
〉

) =
〈

0̃, 1̄, 1
〉

, f−1(
〈

1̃, 0̄, 1
〉

) =
〈

1̃, 0̄, 1
〉

,

f−1(
〈

1̃, 1̄, 0
〉

) =
〈

1̃, 1̄, 0
〉

.
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(12) f(0̈) = 0̈ and if f is surjective, then the following hold:

f(
〈

0̃, 0̄, 1
〉

) =
〈

0̃, 0̄, 1
〉
, f(

〈
0̃, 1̄, 0

〉
) =

〈
0̃, 1̄, 0

〉
,

f(
〈

1̃, 0̄, 0
〉

) =
〈

1̃, 0̄, 0
〉
, f(

〈
0̃, 1̄, 1

〉
) =

〈
0̃, 1̄, 1

〉
,

f(
〈

1̃, 0̄, 1
〉

) =
〈

1̃, 0̄, 1
〉
, f(

〈
1̃, 1̄, 0

〉
) =

〈
1̃, 1̄, 0

〉
, f(1̈) = 1̈.

Definition 5.3. Let (X, τ) and (Y, γ) be two octahedron topological spaces. Then
a mapping f : X → Y is called an octahedron continuous, if f−1(V) ∈ τ for each
V ∈ γ.

From Proposition 5.9 in [42] and Definition 5.3, we obtain the following properties.

Proposition 5.4. Let (X, τ), (Y, γ), (Z, ζ) be octahedron topological spaces. The
we have

(1) the identity mapping id : (X, τ)→ (X, τ) is octahedron continuous,
(2) if f : (X, τ)→ (Y, γ) and g : (Y, γ)→ (Z, ζ) are octahedron continuous, then

g ◦ f : (X, τ)→ (Z, ζ) is octahedron continuous.

Remark 5.5. (1) If f : (X, τ)→ (Y, γ) is octahedron continuous, then f : (X, τ
IV

)→
(Y, γ

IV
) [resp. f : (X, τ

IF
) → (Y, γ

IF
) and f : (X, τ

F
) → (Y, γ

F
)] is interval-valued

fuzzy [resp. intuitionistic fuzzy and fuzzy] continuous in the sense of Mondal and
Samanta [24] [resp. Çoker [21] and Chang [12]] (See Remark 3.3 (1)).

(2) Let OTop be the collection of all sets and all octahedron continuous mappings
between them. Then from Proposition 5.4, we can easily see that OTop forms a
concrete category.

The following is an characterization of octahedron continuity.

Theorem 5.6. Let (X, τ), (Y, γ) be two octahedron topological spaces and let f :
X → Y be a mapping. Let β be an octahedron base for γ and let σ be an octahedron
subbase for γ. Then the followings are equivalent:

(1) f is octahedron continuous,
(2) f−1(B) ∈ τ c for each B ∈ γc,
(3) f(Ocl(A)) ⊂1 Ocl(f(A)) for each A ∈ O(X),
(4) Ocl(f−1(B)) ⊂1 f

−1(Ocl(B)) for each B ∈ O(Y ),
(5) f−1(B) ∈ τ for each B ∈ β,
(6) f−1(S) ∈ τ for each S ∈ σ.

The following shows that there is an octahedron topology (usually called the final
octahedron topology) on a set Y which for an octahedron topological space (X, τ),
a mapping f : (X, τ) → Y is an octahedron continuous as in the classical topology
(See Definition 5.9).

Proposition 5.7. Let (X, τ) be an octahedron topological space, let Y be a set and
let f : X → Y be a mapping. Let γ be the family of octahedron sets in Y defined by:

γ = {V ∈ O(Y ) : f−1(V ∈ τ}.
Then we have

(1) γ ∈ OT (Y ),
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(2) f : (X, τ)→ (Y, γ) is octahedron continuous,
(3) if ζ ∈ OT (Y ) such that f : (X, τ) → (Y, ζ) is octahedron continuous, then γ

is finer than ζ.

Proof. (1) From the definition of γ, we can easily check that γ satisfies the axioms
[1-OO1], [1-OO2] and [1-OO3]

(2) The proof is obvious from Definition 5.3 and the definition of γ.
(3) The proof is straightforward from Definition 3.12 and the definition of γ. �

Definition 5.8. Let (X, τ), (Y, γ) be two octahedron topological spaces and let
f : X → Y be a mapping. Then f is said to be octahedron closed [resp. octahedron
open], if f(A) ∈ γc [resp. f(A) ∈ γ] for each A ∈ τ c [resp. A ∈ τ ].

Definition 5.9. Let (X, τ) be an octahedron topological space, let Y be a set and
let f : X → Y be a surjection. Then γ = {V ∈ O(Y ) : f−1(V) ∈ τ} is an octahedron
topology on Y (See Proposition 5.7) and it is called the octahedron quotient topology
on Y induced by f , and will be denoted by τf . The pair (Y, τf ) is called an octahedron
quotient space of X and f is called an octahedron quotient mapping.

From Proposition 5.7, it is obvious that the octahedron quotient mapping f is
not only octahedron continuous, but tauf is the finest octahedron topology on Y
for which f is octahedron continuous. Furthermore, we can easily see that if (Y, γ)
is an octahedron quotient space with quotient mapping f , then C ∈ γc if and only if
f−1(C) ∈ τ c for each C ∈ O(Y ).

The following provides conditions on f that make an octahedron topology on Y
equal to τf .

Proposition 5.10. Let (X, τ), (Y, γ) be two octahedron topological spaces and let
f : (X, τ)→ (Y, γ) be octahedron continuous and surjective. If f is octahedron closed
or octahedron open, then γ = τf .

Proof. Suppose f is octahedron open. Then by Proposition 5.7 and Definition 5.9,
γ ⊂ τf . Let V ∈ τf . Then by the definition of τf , f−1(V) ∈ τ . Thus by the
hypothesis and Result 5.2 (4), V = f(f−1(V) ∈ γ. So τf ⊂ γ. Hence γ = τf . The
remainder’s proof is similar. �

The following is an immediate consequence of Proposition 5.7 and Definition 5.9.

Proposition 5.11. The composition of two octahedron quotient mappings is an
octahedron octahedron quotient mapping.

Theorem 5.12. Let (X, τ) be an octahedron topological space, let f : X → Y be
a surjection, let (Y, τf ) be an octahedron quotient space of X and let (Z, ζ) be an
octahedron topological space. Then g : (Y, τf ) → (Z, ζ) is octahedron continuous if
and only if g ◦ f : (X, τ)→ (Z, ζ) is octahedron continuous.

Proof. Suppose g is octahedron continuous. Then by Proposition 5.4 (2), g ◦ f is
octahedron continuous.

Conversely, suppose g ◦ f is octahedron continuous and let V ∈ ζ. Then (g ◦
f)−1(V) ∈ τ and (g ◦ f)−1(V) = f−1(g−1(V)). Thus by the definition of the octahe-
dron quotient topology, g−1(V) ∈ τf . So g is octahedron continuous. �
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Let us consider the dual cases of Proposition 5.7.

Proposition 5.13. Let X be a set, let (Y, γ) be an octahedron topological space and
let f : X → Y be a mapping. Then there is a coarsest octahedron topology τ on X
such that f : (X, τ)→ (Y, γ) is octahedron continuous.

In this case, τ is called the initial octahedron topology on X.

Proof. Let τ = {f−1((V) ∈ (O(X) : V ∈ γ}. Then clearly, 0̈, 1̈ ∈ γ and f−1(0̈) = 0̈,
f−1(1̈) = 1̈ by Result 5.2 (11). Thus 0̈, 1̈ ∈ τ. So the axiom [1-OO1] is satisfied.
Suppose f−1(U), f−1(V) ∈ τ . Then U∩1V ∈ γ and f−1(U)∩1f−1(V) = f−1(U∩1V)
by Result 5.2 (6). Thus f−1(U) ∩1 f−1(V) ∈ τ . So the axiom [1-OO2] is satisfied.

Now let (f−1(Vj))j∈J ⊂ τ . Then clearly, (Vj)j∈J ⊂ γ. Thus
⋃1
j∈J Vj ∈ γ and⋃1

j∈J f
−1(Vj) = f−1(

⋃1
j∈J Vj) by Result 5.2 (7). So

⋃1
j∈J f

−1(Vj) ∈ τ . Hence the

axiom [1-OO3] is satisfied. This completes the proof. �

Definition 5.14. Let X be a set, (Yj , γj)j∈J be a family of octahedron topological
spaces and let (fj : X → ((Yj , γj)j∈J be a family of mappings (usually called an

initial source in OTop). Let σ = {f−1
j (Vj) ∈ O(X) : Vj ∈ γj , j ∈ J}. Then

the octahedron topology τ on X with an octahedron subbase σ is called the initial
octahedron topology (briefly, octahedron topology) induced by (fj)j∈J .

The following is an generalization of Proposition 5.13.

Proposition 5.15. The octahedron initial topology on X induced by (fj)j∈J is the
coarsest octahedron topology on X for which fj : (X, τ) → (Y, γj) is octahedron
continuous for each j ∈ J .

Proof. The proof is straightforward. �

Now let us find an initial octahedron topology.

Definition 5.16. Let (Xj , τj)j∈J be a family of octahedron topological spaces, let
X = Πj∈JXj and let (πj : X → (Xj , τj))j∈J be a family of mappings, where πj is
the projection mapping. Then the initial octahedron topology τ on X induced by
(πj)j∈J is called the octahedron product topology on X and denoted by τ = Πj∈Jτj .

Proposition 5.17. Let (Xj , τj)j∈J be a family of octahedron topological spaces.
Then πj : (Πj∈JXj ,Πj∈Jτj)→ (Xj , τj) is octahedron continuous for each j ∈ J .

Proof. The proof is straightforward. �

Proposition 5.18. Let (Xj , τj)j∈J be a family of octahedron topological spaces.
Then Πj∈Jτj is the coarsest octahedron topology for which πj : (Πj∈JXj ,Πj∈Jτj)→
(Xj , τj) is octahedron continuous for each j ∈ J .

Proof. The proof is similar to one of classical case. �

Theorem 5.19. Let (X, τ) be an octahedron topological space, let (Yj , γj)j∈J be
a family of octahedron topological spaces and let f : X → Πj∈JYj be a mapping.
Then f : (X, τ)→ (Πj∈JYj ,Πj∈Jγj) is octahedron continuous if and only if πj ◦ f :
(X, τ)→ (Yj , γj) is octahedron continuous for each j ∈ J .
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Proof. Suppose f is octahedron continuous. Then by Proposition 5.17, for each j ∈
J , πj : (Πj∈JYj ,Πj∈Jγj)→ (Yj , γj) is octahedron continuous. Thus by Proposition
5.4 (2), πj ◦ f is octahedron continuous for each j ∈ J .

Conversely, suppose πj ◦ f is octahedron continuous for each j ∈ J . Let σ be
the octahedron subbase for the octahedron product topology Πj∈Jγj on Πj∈JYj and

let π−1
j (U) ∈ σ. Then f−1(π−1

j (U)) = (πj ◦ f)−1(U). Since πj ◦ f is octahedron

continuous, (πj ◦ f)−1(U) ∈ τ . Thus f−1(π−1
j (U)) ∈ τ . So by Theorem 5.6, f is

octahedron continuous. �

The following is an immediate consequence of Theorem 5.19.

Corollary 5.20. Let (X, τ) be an octahedron topological space, let (Yj , γj)j∈J be a
family of octahedron topological spaces and let fj : X → Yj be a mapping for each
j ∈ J . Let f : X → Πj∈JYj be the mapping defined as follows: for each x ∈ X,

f(x) = (fj(x))j∈J ∈ Πj∈JYj .

Then f : (X, τ) → (Πj∈JYj ,Πj∈Jγj) is octahedron continuous if and only if fj :
(X, τ)→ (Yj , γj) is octahedron continuous for each j ∈ J .

6. Conclusions

We defined a Type i-octahedron topology on a set X, i = 1, 2, 3, 4, and ob-
tained some of its properties. Also we introduced the notions of octahedron base
and subbase, octahedron subspace, octahedron closure and interior, and obtained
some properties related to them, and gave some examples. Finally, we define an
octahedron continuity and obtained its various properties. Furthermore, we found a
final topological structure (called an octahedron quotient topology) on the codomain
of a mapping (See Proposition 5.7). Also we obtained an initial topological structure
(called an initial octahedron topology) on the domain of a mapping (See Proposition
5.13). Moreover, we constructed octahedron product topology on the product of any
family of octahedron topologies as in classical topology.

In the future, we expect that one can deal with separation axioms, compactness
and connectedness in an octahedron topological space. Also, we hope that one can
the notion of octahedron sets apply to a semigroup, a group, a ring theory and
decision-making problems. Furthermore, we expect that one can extend octahedron
sets to an octahedron soft sets, octahedron neutrosophic sets, octahedron plithogenic
sets, etc. and can study topological structures based on them respectively.
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