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ABSTRACT. In this paper, we introduce the notion of (f, g)-derivation of
lattice implication algebra and investigated some related properties. Also,
we prove that if D is an (f, g)-derivation on L and f(z) < g(z) for every
x € L, then we get D(z — y) = f(z) — D(y) for all z,y € L.
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1. INTRODUCTION

The concept of lattice implication algebra was proposed by Xu [1], in order to
establish an alternative logic knowledge representation. Also, in [2], Xu and Qin
discussed the properties lattice H implication algebras, and gave some equivalent
conditions about lattice H implication algebras. Xu and Qin [3] introduced the
notion of filters in a lattice implication, and investigated their properties. The
present author [4, 5] introduced the notion of derivation and f-derivation in lattice
implications algebras and obtained some related results. In this paper, we introduce
the notion of (f, g)-derivation of lattice implication algebra and investigated some
related properties. Also, we prove that if D is an (f, g)-derivation on L and f(z) <
g(x) for every x € L, then we get D(z — y) = f(x) = D(y) for all x,y € L.

2. PRELIMINARY

A lattice implication algebra is an algebra (L; A, V, 1, —, 0, 1) of type (2,2,1,2,0,0),
where (L; A, V,0,1) is a bounded lattice, “/” is an order-reversing involution and “
— 7 is a binary operation satisfying the following axioms: for all x,y,z € L,

L) 2= (y—2)=y— (z = 2),

(L2) z -z =1,
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yx—y=y — o,
Jr—oy=y—zcz=1=z=y,

) (x—=y) my=(y—z) >,

) (zVy) = z=(x—=2)A(y = 2),

(L7) (xAy) = z=(x = 2)V(y = 2).

If L satisfies conditions (L1) — (L5), then we say that L is a quasi lattice implication
algebra. A lattice implication algebra L is called a lattice H implication algebra, if it
satisfies zVy V ((z ANy) = z) =1 for all z,y,z € L (See [1]).

In the sequel, the binary operation “ — ” will be denoted by juxtaposition. We
can define a partial ordering “ < ” on a lattice implication algebra L by x < y if
and only if ¢ - y =1 for all z,y € L.

(L3
(L4
(L5
(L6

Proposition 2.1 ([1]). In a lattice implication algebra L, the following hold for all
z,y,z € L.
1) 0—=z=11-z=zandz—1=1,
(2) x%y<(y%z)%(x%z)
(3) x<yzmplzesy—>z<x—>z and z - x < z — vy,
(4) 2’ =2 —0.
(5) xVy=(zx—y) =y,
(6) ((y—w) —y) =zAy=((z—>y) =),
(7) 2< (@2 y) >y
Definition 2.2 ([1]). In a lattice H implication algebra L, the following hold: for
all x,y,z € L,
(B) z—(z—oy)=z—y,
Q) z—=(y—=2)=(x—y = (z—=2).
Definition 2.3 ([3]). A subset F of a lattice implication algebra L is called a filter
of L, if it satisfies the following axioms: for all x,y € L,
(F1) 1€ F,
(F2) r€e Fandx -y € F imply y € F.
Definition 2.4 ([4]). Let L; and Lo be lattice implication algebras.
(i) A mapping f : Ly — Lo is an implication homomorphism, if

f@ = y) = f(z) = f(y) for allz, y e L.

(ii) A mapping f : L1 — Lo is an lattice implication homomorphism, if
flxvy)=flx)V fly), flxAy) = flx)A fy), f(x')=f(z) for all z, y € L.

Definition 2.5 ([5]). Let L be a lattice implication algebra and let f : L — L be
an implication homomorphism on L. A mapping d : L — L is called an f-derivation
of L, if there exists an implication homomorphism f such that

dlx = y) = (f(z) = d(y)) V (d(z) — f(y)) for all z, y € L.

Proposition 2.6 ([5]). Let d be a f-derivation on L. Then the following conditions
hold: for every x, y € L,
(1) d(1) =1,

(2) d(z) = d(x) v f(z),
56
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(3) f(z) <d(x),
4) f(x)V fy) <d(z)Vd(y),
(5) d(z —y) = f(z) = d(y)

3. (f,9)-DERIVATIONS OF LATTICE IMPLICATION ALGEBRAS

In what follows, let L denote a lattice implication algebra unless otherwise spec-
ified.

Definition 3.1. Let L be a lattice implication algebra and let f, g be two self maps
on L. Amap D: L — Lis an (f,g)-derivation of L, if

D(z = y) = (f(z) = D(y)) V (D(z) = g(y)),
for all z,y € L, where f and g are implication homomorphisms on L.

Let L be a lattice implication algebra and let f and g be implication homomor-
phisms on L. If f = g, then D is an f-derivation on L.

Example 3.2. Let X = {z,y}. Then

L= P(X) - {®7 {.Z‘}, {y},X}

Let 0= 9, a = {z}, b={y}, 1 = X. Then L = {0,a,b, 1} is a bounded lattice with
above Hasse diagram.

0

We can make an implication — on L such as

a—b={e}“ Uy} ={y}u{y} = {y} =0
Thus we have the operation table of the implication :

/

T |x —>‘Oab1
0|1 0|1 1 1 1
al| b al|lb 1 b 1
bl a bla a 1 1
110 110 a b 1

Define three maps D: L — L, f: L - L and g: L — L by

b ifz=0,a 0 ifz=0,a b ifx=0,a
D(z) = ’ — ) _ )
(@) {1 if 2 =b,1 /(@) {1 if 2 =b,1 9(x) {1 if z =b,1.

Then it is easy to check that D is an (f, g)-derivation on lattice implication algebra
L.
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Example 3.3. In Example 3.2, Define three maps D : L — L, f : L — L and
g:L— L by

. 0 0 if ob b ifx=0,a

a 1Uxr= Ir=

@) {1 ifrx=a,b,1 /(@) {1 ifr=aq,l 9() 0 ?fx b
ifzx=0.

Then it is easy to check that D is an (f, g)-derivation on lattice implication algebra
L.

Proposition 3.4. Let f and g be implication homomorphisms on L and let D be
an (f, g)-derivation on L. Then the following conditions hold: for every x, y € L,

(1) D(1) =
(2) D(x) = ( )V g(x),
(3) g(x) < D(x),
(4) g(x)
Proof. (1) Let D be an (f, g)-derivation on L. Then
D(1) = D(1 = 1) = (f(1) = D(1) v (D(1) = g(1))
=(1—-D)V(D(1)—=1)=D1)vl=1.
(2) Let « € L. Then we have
D(z) = D(1 = z) = (f(1) = D(z)) v (D(1) — g(z))
=1 = D(x)) V(1 —g(x)) = D) Vg(z).
(3) Let « € L. Then by part (2), we obtain
9(x) = D(x) = g(x) = (D(x) V g(z)) = g(x) = (D(x) = g(z) = g(z))
= (D(x) = g(x)) = (9(z) = g(2)) = (D(z) = g(z)) =1
=1.
Thus g(z) < D(z).
(4) Let z, y € L. Then by part (3), we have g(x) < D(z). Thus by Proposition
2.1 (3), we get g(x) -y < D(x) = v. O

x) =y < D(x)—=y.

Proposition 3.5. Let f,g be implication homomorphisms on L and let D be an
(f, g)-derivation on L. If f(x) < g(x) for every x € L, then the following conditions
hold: for all x, y € L,

(1) D(z) = D(y) < D(z = y),

(2) D(x) = f(y) < f(x) = D(y),

(3) f(@) = f(y) < D(x = y).
Proof. (1) Let z, y € L. Then from Definition 3.1 and Proposition 2.1 (7), we have

z = D(y) < (f(z) = D(y)) vV (D(x) = g(y)) = D(z = y).
Now from f(z) < D(x) and Proposition 2.1 (3), we get D(xz) — D(y) < f(z) —
D(y). Thus D(z) — D(y) < D(z — y).
(2) Let , y € L. Then from f(z) < D(x) and f(y) < D(y), we get

D(x) = fy) < f(x) = fly) aglg f(x) = fly) < f(z) = D(y)
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by using by Proposition 2.1 (3). Then we obtain D(z) — f(y) < f(z) — D(y).
(3) Let «, y € L. from Definition 3.1 and Proposition 2.1 (7), we have
f(x) = D(y) < (f(x) = D(y)) v (D(x) = g(y)) = D(x — y).
Since f(y) < D(y), we get f(z) — f(y) < f(z) = D(y). Thus f(x) = f(y) <
D(z = y). O
L.

Theorem 3.6. Let D be an (f, g)-derivation on L and f(x) < g(x) for every x €
Then we get D(x — y) = f(z) — D(y) for all z, y € L.

Proof. Suppose that D is an (f, g)-derivation on L and let x,y € L. since f(z) <
D(z), D(z) — D(y) < f(z) — D(y). Since g(y) < D(y), D(z) = g(y) < D(z) —
D(y) Then we have D(z) — ¢(y) < f(z) = D(y). Thus we get

D(z = y) = (f(z) = D(y)) vV (D(x) = g(y))
= ((f(x) = D(y)) = (D(z) = g(y))) = (D(x) = 9(y))
= ((D(z) = 9(y)) = (f(z) = D(y))) = (f(z) = D(y))
=1—=(f(z) = D(y)) = f(z) = D(y)

from (L5) and by Proposition 2.1 (3). This completes the proof. O
Theorem 3.7. Let D be an (f, g)-derivation on L and f(z) < g(x) for every x € L.
If it satisfies D(x — y) = D(x) — f(y) for every x, y € L, we have D(z) = f(x).
Proof. Let D be an (f, g)-derivation on L and f(z) < g(zx) for every z € L. If it
satisfies D(xz — y) = D(z) — f(y) for all z, y € L, then by Theorem 3.6, we have
D(z)=D(1 —z)=D1) = f(x)
=1 f(z) = f(x)

for every x € L. This completes the proof.

g

Theorem 3.8. Let D be an (f, g)-derivation on L and f(z) < g(x) for every x € L.
If f is a lattice implication homomorphism on L, then we have D(xVy) = D(z)VD(y)
for every x, y € L.
Proof. Let x, y € L. Then by Theorem 3.6, we obtain
D(xVy)=DE"Vvy")=D((a' Ay') — 0)
= (f(@) A f(y) = D(0) = (f(z) = D(0)) v (f(y') = D(0))
=D(z' = 0)V D(y — 0)=D(z)V D(y).
O

Theorem 3.9. Let D be an (f, g)-derivation on L and f(x) < g(x) for every x € L.
Then D is an isotone generalized derivation on L.

Proof. Let x1, xo € L be such that 1 < x5. Then by Theorem 3.8, we get D(z1 V

x9) = D(x1) V D(x2). Since 1 < x5, we have x1 V 29 = x3. Thus D(z1) V D(23) =

D(l‘g) So D(J}l) S D(.TQ) Il
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Definition 3.10. Let L be a lattice implication algebra L and let D be an (f, g)-
derivation on L.

(i) D is called a monomorphic (f, g)-derivation of L, if D is one-to- one.
(ii) D is called an epic (f, g)-derivation of L, if D is onto.

Theorem 3.11. Let L be a lattice implication algebra L and let D be an (f,g)-
derivation on L. Then the following conditions are equivalent:

(1) D(z) =z forallxz € L,

(2) D is a monomorphic (f, g)-derivation of L,

(3) D is an epic (f, g)-derivation of L.

Proof. (1) =(2): The proof is clear.

(2) =(1): Let D be a monomorphic (f, g)-derivation of L and x € L. By hypoth-
esis, we have D(D(x)) = D(z) for every x € L. Since D is monomorphic, we get
D(x) =« for all x € L.

(1) =(3): The proof is trivial.

(3) =(1): Let D be an epic (f, g)-derivation of L and x € L. Then there exists
y € L such that D(y) = z. Thus we have D(x) = D(D(y)) = D*(y) = D(y) = z. O

Let L be a lattice implication algebra and let D be an (f, g)-derivation on L.
Define a set Fixp(L) by

Fizp(L):={x € L | D(z) = f(z)}
for all x € L. Clearly, 1 € Fizp(L).

Proposition 3.12. Let D be an (f, g)-derivation on L and f(x) < g(x) for every
x € L. Then the following properties hold.

(1) Ifr € L andy € Fizp(L), we have x — y € Fixp(L).

(2) Ifr € L and y € Fizp(L), we have x Vy € Fizp(L).

Proof. (1) Let « € L and y € Fixp(L). Then we have D(y) = f(y). Thus by
Theorem 3.6, we get

D(x —y) = f(z) = D(y) = f(z) = f(y) = f(z = ).
This completes the proof.
(2) Let z,y € Fizp(L). Then by Theorem 3.6, we get
D(zVy)=D((x —y) = y) = flz —y) = D(y)
=fl@—=y) = fly) =fz—=y) —>v)
=f(zVy).

This completes the proof. O

Proposition 3.13. Let f be a lattice implication homomorphism on L and let D
be an (f,g)-derivation on L and f(z) < g(x) for every x, y € L. L. If x <y and
x € Fixp(L), we have y € Fixp(L).
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Proof. Let « < y and © € Fizp(L). The by the hypothesis, D(z) = = for every
x € L. Thus from Theorem 3.6, we get

D(y) =D((1 = y) =D((z = y) = y)
=D((y = z) = ) = fly = z) = D(x)
=fly—=z) = flx) = (fly) = f(2)) = f(z)
=(f(@) = fW) = fly) = f2)V fy) = fzVy) = fy),
So y € Fixq(L). O
Definition 3.14. Let L be a lattice implication algebra. A non-empty set F' of L
is called a normal filter, if it satisfies the following conditions:
(i) 1 e F,
(ii) r€e Land y € F imply © —» y € F.

Example 3.15. In Example 3.3, let ' = {1,a}. Then F is a normal filter of a
lattice implication algebra L.

Proposition 3.16. Let L be a lattice implication algebra L and let D be an (f,g)-
derivation on L. Then Fixp(L) is a normal filter of L.

Proof. Clearly, 1 € Fixzp(L). By Proposition 3.12 (1), we know that x € L and
y € F imply x — y € F. This completes the proof. g

Let L be a lattice implication algebra and let D be an (f, g)-derivation on L.
Define a set KerD by
KerD={x e L|D(z)=1}.
Proposition 3.17. Let L be a lattice implication algebra L and let D be an (f,g)-

derivation on L and f(z) < g(x) for every z, y € L.

(1) If y € KerD, then we have x V y € KerD for all x € L.
(2) Ifx <y and x € KerD, then y € KerD.
(3) Ify € KerD, we have x — y € KerD for all x € L.

Proof. (1) Let D be an (f, g)-derivation on L and y € KerD. Then we get D(y) = 1.
Thus from Theorem 3.6,
D(zvy)=D((z—=y) =y)=flz—=y) =Dy =flz >y »1=1
So we have z Vy € KerD.
(2) Let x <y and z € KerD. Then we get © — y = 1 and D(z) = 1. Thus from

Theorem 3.6,
D(y) =D(1 —»y)=D((x = y) = y)

=D((y = 2) > )= f(y > z) = D)
=fly—z)—>1=1

So we have y € KerD.
(3) Let y € KerD. Then D(y) = 1. Thus from Theorem 3.6, we have

D(x = y) = f(z) = Dy) = f(z) + 1=1

So we get x — y € KerD. O
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Theorem 3.18. Let D be an (f,g)-derivation on L and f(x) < g(z) for every
x, y € L. Then KerD is a normal filter of L.

Proof. Clearly, 1 € KerD. Let x € L and y € KerD. Then we have d(y) = 1. Thus
D(z—y)=f(z) > Dy)=z—1=1,

So from Theorem 3.6, x — y € KerD. Hence KerD is a normal filter of L.
O

Definition 3.19. Let D be an (f, g)-derivation of lattice implication algebra L. A
normal filter F of L is called a D-normal filter, if D(F') = F.

Since D(1) = 1, it can be easily observed that the zero normal filter {1} is a
D-normal filter of L. If L is onto, then D(L) = L, which implies L is a D-normal
filter of L.

Example 3.20. In Example 3.3, let F' = {1,a,b}. Then F' is a normal filter of D.
It can be verified that D(F) = F. Thus F is an D-normal filter of L.

Lemma 3.21. Let D be an (f, g)-derivation on L and let I, J be any two D-normal
filters of L. Then we have I C J implies D(I) C D(J).

Proof. Let I C J and z € D(I). Then we have x = D(y) for some y € I C J. Thus
we get © = D(y) € D(J). So D(I) C D(J).
d

Proposition 3.22. Let D be an (f, g)-derivation on L. Then an intersection of any
two D-normal filters is also a D-normal filter of L.

Proof. Let x € D(INJ). Then = D(a) for some a € I and a € J. Thus = D(a) €
D(I) =1 and « = D(a) € D(J) = J, which implies x € TN J. Now let z € I N J.
Then x € I = D(I) and z € J = D(J). Thus we have x € D(I) N D(J). So INJ is
a D-normal filter of L.

O

Definition 3.23. Let D be an (f, g)-derivation on L. A normal filter F of L is called
an injective normal filter with respect to D, if for x,y € L, D(z) = D(y) and x € F
implies y € F.

Evidently, KerD is an injective normal filter of L. Though the zero normal filter
{1} is a D-normal filter, there is no guarantee that it is injective normal filter.

Theorem 3.24. Let D be an (f, g)-derivation on L. Then the following conditions
are equivalent:

(1) {1} is injective with respect to D,

(2) KerD = {1},

(3) D(x) =1 implies that x =1 for all x € L.

Proof. (1) = (2): Suppose that {1} is injective with respect to D. Let € KerD.
Then D(z) = D(1). Since {1} is injective, we can get « € {1}. Thus KerD = {1}.
(2) = (3): The proof is trivial.
(3) = (1): Let D(x) = D(y) and « € {1}. Then D(y) = D(z) = D(1) = 1. Thus
y=1€e{1}.
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O

Theorem 3.25. Let D be an (f, g)-derivation on L and let D be idempotent. Then
a D-normal filter F' of L is injective with respect to D if and only if for any x €
L,D(x) € F implies x € F.

Proof. Let F be a D-normal filter of L and let F' be injective with respect to D.
Suppose that D(z) € F = D(F) and = € L. Then D(x) = D(a) for some a € F.
Since F is injective and a € F, we get that z € F.
Conversely, let z,y € L,D(x) = D(y) and = € F. Since x € D(F), we get
x = D(a) for some a € F. Then D(y) = D(z) = D(D(a)) = D(a) € D(F), which
implies that y € F. Thus F is an injective normal filter of L with respect to D.
O

4. CONCLUSION

We investigate the (f,g)-derivation, which is a generalization of f-derivation
in lattice implication algebras. Also, we prove that if D is an (f,g)-derivation
on lattice implication algebra L and f(z) < g(x) for every = € L, then we get
D(x — y) = f(z) = D(y) for all z,y € L. In the future, we study (f, g)-derivation
in other algebraic structure by using results obtained lattice implication algebras.
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