Annals of Fuzzy Mathematics and Informatics Volume 22, No. 1, (August 2021) pp. 55–63 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr https://doi.org/10.30948/afmi.2021.22.1.55

$@\mathbb{FMI}$

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

On (f, g)-derivations of lattice implication algebras

@FMI QFMI **◎ F** M I @ 0 0 TR Π © **⊮** M I © **⊮** M I @ **⊮** M I © **F** M Ⅰ @ **⊮** M I © **F** M Ⅰ $\odot \mathbb{F} \mathbb{M} \mathbb{I}$ © **F** M Ⅰ © **F** M Ⅰ $@ \mathbb{F} \mathbb{M} \mathbb{I}$ $\textcircled{0} \mathbb{F} \mathbb{M} \mathbb{I}$ $\textcircled{0} \mathbb{F} \mathbb{M} \mathbb{I}$ $@ \mathbb{F} \mathbb{M} \mathbb{I}$ $@ \mathbb{F} \mathbb{M} \mathbb{I}$ $@ \mathbb{F} \mathbb{M}$ $@ \mathbb{F} \mathbb{M}$ T 00 \mathbb{F} 0 \mathbb{F} 0 \mathbb{F} \mathbb{N} \mathbb{F} $(\mathbf{0})$ \mathbb{M} II.

Reprinted from the Annals of Fuzzy Mathematics and Informatics Vol. 22, No. 1, August 2021

Kyung Ho Kim

Annals of Fuzzy Mathematics and Informatics Volume 22, No. 1, (August 2021) pp. 55–63 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr https://doi.org/10.30948/afmi.2021.22.1.55

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

On (f, g)-derivations of lattice implication algebras

Kyung Ho Kim

Received 26 January 2021; Revised 11 April 2021; Accepted 19 April 2021

ABSTRACT. In this paper, we introduce the notion of (f, g)-derivation of lattice implication algebra and investigated some related properties. Also, we prove that if D is an (f,g)-derivation on L and $f(x) \leq g(x)$ for every $x \in L$, then we get $D(x \to y) = f(x) \to D(y)$ for all $x, y \in L$.

2020 AMS Classification: 08A05, 08A30, 20L05, Primary 16Y30

Keywords: Lattice implication algebra, (f, g)-derivation, normal filter, *D*-normal filter, $Fix_D(L)$, KerD.

Corresponding Author: Kyung Ho Kim (mghkim@ut.ac.kr)

1. INTRODUCTION

The concept of lattice implication algebra was proposed by Xu [1], in order to establish an alternative logic knowledge representation. Also, in [2], Xu and Qin discussed the properties lattice H implication algebras, and gave some equivalent conditions about lattice H implication algebras. Xu and Qin [3] introduced the notion of filters in a lattice implication, and investigated their properties. The present author [4, 5] introduced the notion of derivation and f-derivation in lattice implications algebras and obtained some related results. In this paper, we introduce the notion of (f, g)-derivation of lattice implication algebra and investigated some related properties. Also, we prove that if D is an (f, g)-derivation on L and $f(x) \leq$ g(x) for every $x \in L$, then we get $D(x \to y) = f(x) \to D(y)$ for all $x, y \in L$.

2. Preliminary

A lattice implication algebra is an algebra $(L; \land, \lor, \lor, \rightarrow, 0, 1)$ of type (2, 2, 1, 2, 0, 0), where $(L; \land, \lor, 0, 1)$ is a bounded lattice, " \prime " is an order-reversing involution and " \rightarrow " is a binary operation satisfying the following axioms: for all $x, y, z \in L$,

- (L1) $x \to (y \to z) = y \to (x \to z),$
- (L2) $x \to x = 1$,

- (L3) $x \to y = y' \to x'$,
- (L4) $x \to y = y \to x = 1 \Rightarrow x = y$,
- (L5) $(x \to y) \to y = (y \to x) \to x$,
- $({\rm L6}) \ (x \lor y) \to z = (x \to z) \land (y \to z),$
- (L7) $(x \land y) \rightarrow z = (x \rightarrow z) \lor (y \rightarrow z).$

If L satisfies conditions (L1) - (L5), then we say that L is a quasi lattice implication algebra. A lattice implication algebra L is called a *lattice* H implication algebra, if it satisfies $x \vee y \vee ((x \wedge y) \rightarrow z) = 1$ for all $x, y, z \in L$ (See [1]).

In the sequel, the binary operation " \rightarrow " will be denoted by juxtaposition. We can define a partial ordering " \leq " on a lattice implication algebra L by $x \leq y$ if and only if $x \rightarrow y = 1$ for all $x, y \in L$.

Proposition 2.1 ([1]). In a lattice implication algebra L, the following hold for all $x, y, z \in L$.

(1) $0 \rightarrow x = 1, 1 \rightarrow x = x \text{ and } x \rightarrow 1 = 1,$ (2) $x \rightarrow y \leq (y \rightarrow z) \rightarrow (x \rightarrow z),$ (3) $x \leq y \text{ implies } y \rightarrow z \leq x \rightarrow z \text{ and } z \rightarrow x \leq z \rightarrow y,$ (4) $x' = x \rightarrow 0.$ (5) $x \lor y = (x \rightarrow y) \rightarrow y,$ (6) $((y \rightarrow x) \rightarrow y')' = x \land y = ((x \rightarrow y) \rightarrow x')',$ (7) $x \leq (x \rightarrow y) \rightarrow y.$

Definition 2.2 ([1]). In a lattice H implication algebra L, the following hold: for all $x, y, z \in L$,

 $\begin{array}{l} (8) \ x \to (x \to y) = x \to y, \\ (9) \ x \to (y \to z) = (x \to y) \to (x \to z). \end{array}$

Definition 2.3 ([3]). A subset F of a lattice implication algebra L is called a *filter* of L, if it satisfies the following axioms: for all $x, y \in L$,

(F1) $1 \in F$, (F2) $x \in F$ and $x \to y \in F$ imply $y \in F$.

Definition 2.4 ([4]). Let L_1 and L_2 be lattice implication algebras.

(i) A mapping $f: L_1 \to L_2$ is an *implication homomorphism*, if

$$f(x \to y) = f(x) \to f(y)$$
 for all $x, y \in L_1$.

(ii) A mapping $f: L_1 \to L_2$ is an *lattice implication homomorphism*, if

$$f(x \lor y) = f(x) \lor f(y), \ f(x \land y) = f(x) \land f(y), \ f(x') = f(x)' \text{ for all } x, \ y \in L_1.$$

Definition 2.5 ([5]). Let L be a lattice implication algebra and let $f: L \to L$ be an implication homomorphism on L. A mapping $d: L \to L$ is called an *f*-derivation of L, if there exists an implication homomorphism f such that

$$d(x \to y) = (f(x) \to d(y)) \lor (d(x) \to f(y)) \text{ for all } x, y \in L.$$

Proposition 2.6 ([5]). Let d be a f-derivation on L. Then the following conditions hold: for every $x, y \in L$,

- (1) d(1) = 1,
- (2) $d(x) = d(x) \lor f(x),$

(3) $f(x) \le d(x),$ (4) $f(x) \lor f(y) \le d(x) \lor d(y),$ (5) $d(x \to y) = f(x) \to d(y).$

3. (f, g)-derivations of lattice implication algebras

In what follows, let L denote a lattice implication algebra unless otherwise specified.

Definition 3.1. Let *L* be a lattice implication algebra and let f, g be two self maps on *L*. A map $D: L \to L$ is an (f, g)-derivation of *L*, if

$$D(x \to y) = (f(x) \to D(y)) \lor (D(x) \to g(y)),$$

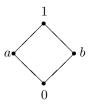
for all $x, y \in L$, where f and g are implication homomorphisms on L.

Let L be a lattice implication algebra and let f and g be implication homomorphisms on L. If f = g, then D is an f-derivation on L.

Example 3.2. Let $X = \{x, y\}$. Then

$$L = \mathcal{P}(X) = \{\emptyset, \{x\}, \{y\}, X\}, \{y\}, X\}$$

Let $0 = \emptyset$, $a = \{x\}$, $b = \{y\}$, 1 = X. Then $L = \{0, a, b, 1\}$ is a bounded lattice with above Hasse diagram.



We can make an implication \rightarrow on L such as

$$a \to b = \{x\}^C \cup \{y\} = \{y\} \cup \{y\} = \{y\} = b.$$

Thus we have the operation table of the implication :

	x'		\rightarrow	0	a	b	1
0	1	-	0	1	1	1	1
a	b		a	b	1	b	1
b	a		b	a	a	1	1
1	$ \begin{array}{c c} 1\\ b\\ a\\ 0 \end{array} $		1	0	a	b	1

Define three maps $D:L \rightarrow L,\, f:L \rightarrow L$ and $g:L \rightarrow L$ by

$$D(x) = \begin{cases} b & \text{if } x = 0, a \\ 1 & \text{if } x = b, 1 \end{cases} \quad f(x) = \begin{cases} 0 & \text{if } x = 0, a \\ 1 & \text{if } x = b, 1 \end{cases} \quad g(x) = \begin{cases} b & \text{if } x = 0, a \\ 1 & \text{if } x = b, 1 \end{cases}$$

Then it is easy to check that D is an (f, g)-derivation on lattice implication algebra L.

Example 3.3. In Example 3.2, Define three maps $D: L \to L$, $f: L \to L$ and $g: L \to L$ by

$$D(x) = \begin{cases} a & \text{if } x = 0\\ 1 & \text{if } x = a, b, 1 \end{cases} \qquad f(x) = \begin{cases} 0 & \text{if } x = 0, b\\ 1 & \text{if } x = a, 1 \end{cases} \qquad g(x) = \begin{cases} b & \text{if } x = 0, a\\ 1 & \text{if } x = 1\\ 0 & \text{if } x = b. \end{cases}$$

Then it is easy to check that D is an (f, g)-derivation on lattice implication algebra L.

Proposition 3.4. Let f and g be implication homomorphisms on L and let D be an (f,g)-derivation on L. Then the following conditions hold: for every $x, y \in L$,

(1) D(1) = 1,(2) $D(x) = D(x) \lor g(x),$ (3) $g(x) \le D(x),$ (4) $g(x) \to y \le D(x) \to y.$

Proof. (1) Let D be an (f, g)-derivation on L. Then

$$D(1) = D(1 \to 1) = (f(1) \to D(1) \lor (D(1) \to g(1)))$$

= $(1 \to D(1)) \lor (D(1) \to 1) = D(1) \lor 1 = 1.$

(2) Let $x \in L$. Then we have

$$D(x) = D(1 \rightarrow x) = (f(1) \rightarrow D(x)) \lor (D(1) \rightarrow g(x))$$
$$= (1 \rightarrow D(x)) \lor (1 \rightarrow g(x)) = D(x) \lor g(x).$$

(3) Let $x \in L$. Then by part (2), we obtain

$$g(x) \rightarrow D(x) = g(x) \rightarrow (D(x) \lor g(x)) = g(x) \rightarrow (D(x) \rightarrow g(x) \rightarrow g(x))$$
$$= (D(x) \rightarrow g(x)) \rightarrow (g(x) \rightarrow g(x)) = (D(x) \rightarrow g(x)) \rightarrow 1$$
$$= 1.$$

Thus $g(x) \leq D(x)$.

(4) Let $x, y \in L$. Then by part (3), we have $g(x) \leq D(x)$. Thus by Proposition 2.1 (3), we get $g(x) \to y \leq D(x) \to y$.

Proposition 3.5. Let f, g be implication homomorphisms on L and let D be an (f,g)-derivation on L. If $f(x) \leq g(x)$ for every $x \in L$, then the following conditions hold: for all $x, y \in L$,

- (1) $D(x) \to D(y) \le D(x \to y),$
- (2) $D(x) \to f(y) \le f(x) \to D(y),$
- (3) $f(x) \to f(y) \le D(x \to y)$.

Proof. (1) Let $x, y \in L$. Then from Definition 3.1 and Proposition 2.1 (7), we have

$$x \to D(y) \le (f(x) \to D(y)) \lor (D(x) \to g(y)) = D(x \to y).$$

Now from $f(x) \leq D(x)$ and Proposition 2.1 (3), we get $D(x) \rightarrow D(y) \leq f(x) \rightarrow D(y)$. Thus $D(x) - D(y) \leq D(x \rightarrow y)$.

- (2) Let $x, y \in L$. Then from $f(x) \leq D(x)$ and $f(y) \leq D(y)$, we get
 - $D(x) \to f(y) \le f(x) \to f(y)$ and $f(x) \to f(y) \le f(x) \to D(y)$

by using by Proposition 2.1 (3). Then we obtain $D(x) \to f(y) \le f(x) \to D(y)$. (3) Let $x, y \in L$ from Definition 3.1 and Proposition 2.1 (7), we have

$$f(x) \to D(y) \le (f(x) \to D(y)) \lor (D(x) \to g(y)) = D(x \to y).$$

Since $f(y) \leq D(y)$, we get $f(x) \rightarrow f(y) \leq f(x) \rightarrow D(y)$. Thus $f(x) \rightarrow f(y) \leq D(x \rightarrow y)$.

Theorem 3.6. Let D be an (f,g)-derivation on L and $f(x) \leq g(x)$ for every $x \in L$. Then we get $D(x \to y) = f(x) \to D(y)$ for all $x, y \in L$.

Proof. Suppose that D is an (f,g)-derivation on L and let $x, y \in L$. since $f(x) \leq D(x), D(x) \to D(y) \leq f(x) \to D(y)$. Since $g(y) \leq D(y), D(x) \to g(y) \leq D(x) \to D(y)$ Then we have $D(x) \to g(y) \leq f(x) \to D(y)$. Thus we get

$$D(x \to y) = (f(x) \to D(y)) \lor (D(x) \to g(y))$$

= $((f(x) \to D(y)) \to (D(x) \to g(y))) \to (D(x) \to g(y))$
= $((D(x) \to g(y)) \to (f(x) \to D(y))) \to (f(x) \to D(y))$
= $1 \to (f(x) \to D(y)) = f(x) \to D(y)$

from (L5) and by Proposition 2.1 (3). This completes the proof.

Theorem 3.7. Let D be an (f,g)-derivation on L and $f(x) \leq g(x)$ for every $x \in L$. If it satisfies $D(x \to y) = D(x) \to f(y)$ for every $x, y \in L$, we have D(x) = f(x).

Proof. Let D be an (f,g)-derivation on L and $f(x) \leq g(x)$ for every $x \in L$. If it satisfies $D(x \to y) = D(x) \to f(y)$ for all $x, y \in L$, then by Theorem 3.6, we have

$$D(x) = D(1 \to x) = D(1) \to f(x)$$
$$= 1 \to f(x) = f(x)$$

for every $x \in L$. This completes the proof.

Theorem 3.8. Let D be an (f,g)-derivation on L and $f(x) \leq g(x)$ for every $x \in L$. If f is a lattice implication homomorphism on L, then we have $D(x \lor y) = D(x) \lor D(y)$ for every $x, y \in L$.

Proof. Let $x, y \in L$. Then by Theorem 3.6, we obtain

$$D(x \lor y) = D(x'' \lor y'') = D((x' \land y') \to 0)$$

= $(f(x') \land f(y')) \to D(0) = (f(x') \to D(0)) \lor (f(y') \to D(0))$
= $D(x' \to 0) \lor D(y' \to 0) = D(x) \lor D(y).$

Theorem 3.9. Let D be an (f,g)-derivation on L and $f(x) \leq g(x)$ for every $x \in L$. Then D is an isotone generalized derivation on L.

Proof. Let $x_1, x_2 \in L$ be such that $x_1 \leq x_2$. Then by Theorem 3.8, we get $D(x_1 \lor x_2) = D(x_1) \lor D(x_2)$. Since $x_1 \leq x_2$, we have $x_1 \lor x_2 = x_2$. Thus $D(x_1) \lor D(x_2) = D(x_2)$. So $D(x_1) \leq D(x_2)$.

Definition 3.10. Let L be a lattice implication algebra L and let D be an (f,g)-derivation on L.

- (i) D is called a monomorphic (f, g)-derivation of L, if D is one-to- one.
- (ii) D is called an *epic* (f, g)-derivation of L, if D is onto.

Theorem 3.11. Let L be a lattice implication algebra L and let D be an (f,g)-derivation on L. Then the following conditions are equivalent:

- (1) D(x) = x for all $x \in L$,
- (2) D is a monomorphic (f,g)-derivation of L,
- (3) D is an epic (f, g)-derivation of L.

Proof. (1) \Rightarrow (2): The proof is clear.

(2) \Rightarrow (1): Let *D* be a monomorphic (f, g)-derivation of *L* and $x \in L$. By hypothesis, we have D(D(x)) = D(x) for every $x \in L$. Since *D* is monomorphic, we get D(x) = x for all $x \in L$.

(1) \Rightarrow (3): The proof is trivial.

(3) \Rightarrow (1): Let *D* be an epic (f, g)-derivation of *L* and $x \in L$. Then there exists $y \in L$ such that D(y) = x. Thus we have $D(x) = D(D(y)) = D^2(y) = D(y) = x$. \Box

Let L be a lattice implication algebra and let D be an (f,g)-derivation on L. Define a set $Fix_D(L)$ by

$$Fix_D(L) := \{x \in L \mid D(x) = f(x)\}$$

for all $x \in L$. Clearly, $1 \in Fix_D(L)$.

Proposition 3.12. Let D be an (f,g)-derivation on L and $f(x) \leq g(x)$ for every $x \in L$. Then the following properties hold.

- (1) If $x \in L$ and $y \in Fix_D(L)$, we have $x \to y \in Fix_D(L)$.
- (2) If $x \in L$ and $y \in Fix_D(L)$, we have $x \lor y \in Fix_D(L)$.

Proof. (1) Let $x \in L$ and $y \in Fix_D(L)$. Then we have D(y) = f(y). Thus by Theorem 3.6, we get

$$D(x \to y) = f(x) \to D(y) = f(x) \to f(y) = f(x \to y).$$

This completes the proof.

(2) Let $x, y \in Fix_D(L)$. Then by Theorem 3.6, we get

$$D(x \lor y) = D((x \to y) \to y) = f(x \to y) \to D(y)$$

= $f(x \to y) \to f(y) = f((x \to y) \to y)$
= $f(x \lor y).$

This completes the proof.

Proposition 3.13. Let f be a lattice implication homomorphism on L and let D be an (f,g)-derivation on L and $f(x) \leq g(x)$ for every $x, y \in L$. L. If $x \leq y$ and $x \in Fix_D(L)$, we have $y \in Fix_D(L)$.

Proof. Let $x \leq y$ and $x \in Fix_D(L)$. The by the hypothesis, D(x) = x for every $x \in L$. Thus from Theorem 3.6, we get

$$D(y) = D((1 \to y) = D((x \to y) \to y)$$

= $D((y \to x) \to x) = f(y \to x) \to D(x)$
= $f(y \to x) \to f(x) = (f(y) \to f(x)) \to f(x)$
= $(f(x) \to f(y)) \to f(y) = f(x) \lor f(y) = f(x \lor y) = f(y),$
 $\exists x_d(L).$

So $y \in Fix_d(L)$.

Definition 3.14. Let L be a lattice implication algebra. A non-empty set F of L is called a *normal filter*, if it satisfies the following conditions:

(i) $1 \in F$, (ii) $x \in L$ and $y \in F$ imply $x \to y \in F$.

Example 3.15. In Example 3.3, let $F = \{1, a\}$. Then F is a normal filter of a lattice implication algebra L.

Proposition 3.16. Let L be a lattice implication algebra L and let D be an (f,g)-derivation on L. Then $Fix_D(L)$ is a normal filter of L.

Proof. Clearly, $1 \in Fix_D(L)$. By Proposition 3.12 (1), we know that $x \in L$ and $y \in F$ imply $x \to y \in F$. This completes the proof.

Let L be a lattice implication algebra and let D be an (f,g)-derivation on L. Define a set KerD by

$$KerD = \{x \in L \mid D(x) = 1\}.$$

Proposition 3.17. Let L be a lattice implication algebra L and let D be an (f,g)-derivation on L and $f(x) \leq g(x)$ for every $x, y \in L$.

- (1) If $y \in KerD$, then we have $x \lor y \in KerD$ for all $x \in L$.
- (2) If $x \leq y$ and $x \in KerD$, then $y \in KerD$.
- (3) If $y \in KerD$, we have $x \to y \in KerD$ for all $x \in L$.

Proof. (1) Let D be an (f, g)-derivation on L and $y \in KerD$. Then we get D(y) = 1. Thus from Theorem 3.6,

$$D(x \lor y) = D((x \to y) \to y) = f(x \to y) \to D(y) = f(x \to y) \to 1 = 1$$

So we have $x \lor y \in KerD$.

(2) Let $x \leq y$ and $x \in KerD$. Then we get $x \to y = 1$ and D(x) = 1. Thus from Theorem 3.6,

$$\begin{split} D(y) &= D(1 \to y) = D((x \to y) \to y) \\ &= D((y \to x) \to x) = f(y \to x) \to D(x) \\ &= f(y \to x) \to 1 = 1. \end{split}$$

So we have $y \in KerD$.

(3) Let $y \in KerD$. Then D(y) = 1. Thus from Theorem 3.6, we have

$$D(x \to y) = f(x) \to D(y) = f(x) \to 1 = 1$$

So we get $x \to y \in KerD$.

Theorem 3.18. Let D be an (f,g)-derivation on L and $f(x) \leq g(x)$ for every $x, y \in L$. Then KerD is a normal filter of L.

Proof. Clearly, $1 \in KerD$. Let $x \in L$ and $y \in KerD$. Then we have d(y) = 1. Thus $D(x \to y) = f(x) \to D(y) = x \to 1 = 1$,

So from Theorem 3.6, $x \to y \in KerD$. Hence KerD is a normal filter of L.

Definition 3.19. Let D be an (f, g)-derivation of lattice implication algebra L. A normal filter F of L is called a *D*-normal filter, if D(F) = F.

Since D(1) = 1, it can be easily observed that the zero normal filter $\{1\}$ is a *D*-normal filter of *L*. If *L* is onto, then D(L) = L, which implies *L* is a *D*-normal filter of *L*.

Example 3.20. In Example 3.3, let $F = \{1, a, b\}$. Then F is a normal filter of D. It can be verified that D(F) = F. Thus F is an D-normal filter of L.

Lemma 3.21. Let D be an (f, g)-derivation on L and let I, J be any two D-normal filters of L. Then we have $I \subseteq J$ implies $D(I) \subseteq D(J)$.

Proof. Let $I \subseteq J$ and $x \in D(I)$. Then we have x = D(y) for some $y \in I \subseteq J$. Thus we get $x = D(y) \in D(J)$. So $D(I) \subseteq D(J)$.

Proposition 3.22. Let D be an (f,g)-derivation on L. Then an intersection of any two D-normal filters is also a D-normal filter of L.

Proof. Let $x \in D(I \cap J)$. Then x = D(a) for some $a \in I$ and $a \in J$. Thus $x = D(a) \in D(I) = I$ and $x = D(a) \in D(J) = J$, which implies $x \in I \cap J$. Now let $x \in I \cap J$. Then $x \in I = D(I)$ and $x \in J = D(J)$. Thus we have $x \in D(I) \cap D(J)$. So $I \cap J$ is a *D*-normal filter of *L*.

Definition 3.23. Let D be an (f, g)-derivation on L. A normal filter F of L is called an *injective normal filter* with respect to D, if for $x, y \in L$, D(x) = D(y) and $x \in F$ implies $y \in F$.

Evidently, KerD is an injective normal filter of L. Though the zero normal filter $\{1\}$ is a D-normal filter, there is no guarantee that it is injective normal filter.

Theorem 3.24. Let D be an (f, g)-derivation on L. Then the following conditions are equivalent:

- (1) $\{1\}$ is injective with respect to D,
- (2) $KerD = \{1\},\$
- (3) D(x) = 1 implies that x = 1 for all $x \in L$.

Proof. (1) \Rightarrow (2): Suppose that {1} is injective with respect to D. Let $x \in KerD$. Then D(x) = D(1). Since {1} is injective, we can get $x \in \{1\}$. Thus $KerD = \{1\}$.

(2) \Rightarrow (3): The proof is trivial.

(3) \Rightarrow (1): Let D(x) = D(y) and $x \in \{1\}$. Then D(y) = D(x) = D(1) = 1. Thus $y = 1 \in \{1\}$.

Theorem 3.25. Let D be an (f,g)-derivation on L and let D be idempotent. Then a D-normal filter F of L is injective with respect to D if and only if for any $x \in$ $L, D(x) \in F$ implies $x \in F$.

Proof. Let F be a D-normal filter of L and let F be injective with respect to D. Suppose that $D(x) \in F = D(F)$ and $x \in L$. Then D(x) = D(a) for some $a \in F$. Since F is injective and $a \in F$, we get that $x \in F$.

Conversely, let $x, y \in L, D(x) = D(y)$ and $x \in F$. Since $x \in D(F)$, we get x = D(a) for some $a \in F$. Then $D(y) = D(x) = D(D(a)) = D(a) \in D(F)$, which implies that $y \in F$. Thus F is an injective normal filter of L with respect to D.

4. CONCLUSION

We investigate the (f,g)-derivation, which is a generalization of f-derivation in lattice implication algebras. Also, we prove that if D is an (f,g)-derivation on lattice implication algebra L and $f(x) \leq g(x)$ for every $x \in L$, then we get $D(x \to y) = f(x) \to D(y)$ for all $x, y \in L$. In the future, we study (f,g)-derivation in other algebraic structure by using results obtained lattice implication algebras.

Acknowledgements. The authors would like to thank the anonymous reviewers

for careful and kind advices and valuable suggestions.

Funding: This was supported by Korea National University of Transportation in 2021.

References

- [1] [2] Y. Xu, Lattice implication algebras, J. Southwest Jiaotong Univ. 1 (1993) 20–27.
- [2] [3] Y. Xu and K. Y. Qin, Lattice H implication algebras and lattice implication algebra classes, J. Hebei Mining and Civil Engineering Institute 3 (1992) 139–143.
- [3] [4] Y. Xu and K. Y. Qin, On filters of lattice implication algebras, J. Fuzzy Math. 1 (2) (1993), 251–260.
- [4] [1] S. D. Lee and K. H. Kim, On derivations of lattice implication algebras, Ars Combinatoria 27 (4) (2019), 1119-1131.
- [5] [5] Y. H. Yon and K. H. Kim, On f-derivations of lattice implication algebras, Ars Combinatoria 110 (2013) 205-215.

<u>KYUNG HO KIM</u> (ghkim@ut.ac.kr)

Department of Mathematics, Korea National University of Transportation Chungju 27469, Korea