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1. Introduction

The definition of fuzzy sets introduced by Zadeh [1]. Foster [2] introduced the
concept of a fuzzy topological group using the Lowen’s definition of a fuzzy topolog-
ical space (See [3]). Ma and Yu [4, 5] changed the definition of a fuzzy topological
group in order to make sure that an ordinary topological group is a special case of
a fuzzy topological group. Soft sets is a more detailed study of uncertainty on fuzzy
sets. Nazmul and Samanta [6] introduced fuzzy soft topological groups.

Atanassov [7] intraduced the notion of intuitionistic fuzzy sets. In many appli-
cations, the intuitionist fuzzy sets are important and useful fuzzy sets. Atanassov
[8, 9] in 1994 and 1999 proved that the intuitionistic fuzzy sets contain the de-
gree of affiliation and the degree of non-affiliation, and therefore, the intuitionistic
fuzzy sets have become more relevant and applicable. In 2001 and 2004, Szmidt
and Kacprzyk [10, 11] showed that intuitionist fuzzy sets are so useful in situations
where it seems extremely difficult to define a problem through a membership func-
tion. Çoker and Demirci [12, 13] introduced the notion of intuitionistic fuzzy point
and Çoker [14] defined an intuitionistic fuzzy topology and some of its properties.
Kuratowski first proposed the concept of an ideal topological space [15]. Intuition-
istic fuzzy ideal topological space was introduced by Salama and Alblowi [16]. Hur
et al. [17, 18, 19, 20] studied various properties of intuitionistic fuzzy subgroupoids,
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intuitionistic fuzzy subgroups, intu-itionistic fuzzy sub-rings and intuitionistic fuzzy
topological groups.

In this paper, we will introduce a new class of topological groups called intuition-
istic fuzzy ideal topological groups by depended on an intuitionistic fuzzy topological
groups (X, τ).

2. Preliminaries

Definition 2.1 ([7]). LetX 6= ∅. Then a function E = (µE , νE) : X −→ [0, 1]×[0, 1]
is said to be intuitionistic fuzzy set in X (ifs, for short). If 0 6 µE(x) + νE(x) ≤ 1
for every x ∈ X, where the function µE : X −→ [0, 1] is the degree of membership
(µE(x)) and νE : X −→ [0, 1] is the degree of nonmembership (νE(x)) for every
x ∈ X. We will denoted the set of all ifs in X by IF (X).

Definition 2.2 ([7]). Let B, E ∈ IFX be an ifs. Then
(i) B ⊆ E iff µB 6 µE and νB ≥ νE ,
(ii) B = E iff B ⊆ E and E ⊆ B,
(iii) Bc = (νB , µB),
(iv) B ∩ E = (µB ∧ µE , νB ∨ νE),
(v) B ∪ E = (µB ∨ µE , νB ∧ νE),
(vi) 0∼ = (0, 1) and 1∼ = (1, 0).

Definition 2.3 ([12, 13]). Let X 6= ∅ and let x ∈ X. If t ∈ (0, 1] and r ∈ [0, 1) are
two fixed real numbers such that t+ r 6 1, then

x(t,r) = {< x, x(t), 1− x(r) >: x ∈ X}
is said to be an intuitionistic fuzzy point (ifp, for short) in X.

Definition 2.4 ([14]). A subclass τ is said to be an intuitionistic fuzzy topology on
X, if

(i) 0∼, 1∼ ∈ τ,
(ii) B1 ∩B2 ∈ τ for every B1, B2 ∈ τ,
(iii)

⋃
i∈ΓBi ∈ τ for every Bi ∈ τ.

The pair (X, τ) is said to be an intuitionistic fuzzy topological space (ifts, for
short). Any ifs B in τ is said to be an intuitionistic fuzzy open set, and the
complement Bc of an intuitionistic fuzzy open set B is said to be an intuitionis-
tic fuzzy closed set.

Definition 2.5 ([14]). Let (X, τ) be an ifts and let B ∈ IF (X). Then the intu-
itionistic fuzzy interior and the intuitionistic fuzzy closure of B in (X, τ) defined
as

int(B) =
⋃
{U : U ⊆ B,U ∈ τ}

and
cl(B) =

⋂
{F : B ⊆ F, F c ∈ τ},

respectively.

Definition 2.6 ([14]). Let B, E ∈ IF (X). Then B is said to be quasi-coincident
with E (written BqE), if there is x ∈ X such that µB(x) > νE(x) or νB(x) < µE(x).
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Definition 2.7 ([14]). Let (X, τ) be an ifts and let B ∈ IF (X). Then B is called
an intuitionistic fuzzy neighbourhood of an intuitionistic fuzzy point x(t,r), if there is
V ∈ τ with x(t,r) ∈ V ⊆ B. The collection N(x(t,r)) of all neighbourhood of x(t,r) is
said to be the intuitionistic fuzzy neighbourhood system of x(t,r).

Definition 2.8 ([21]). Let X be a group and let G ∈ IF (X). Then G is said to
be an intuitionistic fuzzy subgroup (ifsg, for short) in X, if it satisfies the following
conditions: for every x, y ∈ X,

(i) µG(xy) ≥ min{µG(x), µG(y)},
(ii) µG(x−1) ≥ µG(x),
(iii) νG(xy) 6 max{νG(x), νG(y)},
(iv) νG(x−1) 6 νG(x).

Proposition 2.9. G is an ifsg in X iff for all x, y ∈ X,

µG(xy−1) ≥ min{µG(x), µG(y)} and νG(xy−1) 6 max{νG(x), νG(y)}.
Proof. See [21]. �

Definition 2.10 ([22]). Let X be a group and let G ∈ IF (X) an ifs in X. Then G
is said to be an intuitionistic fuzzy normal subgroup (ifnsg, for short) in X, if

(i) µG(xy) = µG(yx),
(ii) νG(xy) = νG(yx) for every x, y ∈ X.

Proposition 2.11. G is an ifnsg in X iff for every x ∈ G and g ∈ X,
(1) µG(g−1xg) = µG(x),
(2) νG(g−1xg) = νG(x).

Proof. See [22]. �

Definition 2.12 ([23]). Let (X, τ) an ifts, let G be an ifsg in X and let G be given
with due ift τ . Then G is an intuitionistic fuzzy topological group (iftg, for short) in
X, if it satisfies the following conditions:

(i) the operation γ : (x, y) −→ xy of (G, τ) × (G, τ) −→ (G, τ) is intuitionistic
fuzzy continuous.

(ii) the operation ξ : x −→ x−1 of (G, τ) −→ (G, τ) is intuitionistic fuzzy contin-
uous.

Proposition 2.13. Let (X, τ) an ifts. An ifsg G in X is an iftg iff the operation
δ : (x, y) −→ xy−1 of (G, τ)× (G, τ) −→ (G, τ) is intuitionistic fuzzy continuous.

Proof. See [23]. �

Definition 2.14 ([16]). Let I 6= ∅ be a family of intuitionistic fuzzy sets of X.
Then I is said to be an intuitionistic fuzzy ideal on X, if it satisfies the following
conditions:

(i) if B ∈ I and E ∈ IF (X) such that E ⊆ B, then E ∈ I,
(ii) if B, E ∈ I, then B ∪ E ∈ I.
Let (X, τ) be an intuitionistic fuzzy topological space. Then an intuitionistic

fuzzy ideal I on X is called an intuitionistic fuzzy ideal topological space (shortly,
ifits) is defined by (X, τ, I). The elements of (X, τ, I) are said to be intuitionistic
fuzzy-I-open sets and the complement of intuitionistic fuzzy open sets are said to
be fuzzy-I-closed sets.
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Definition 2.15 ([16]). Let (X, τ, I) be an ifits and let B ∈ IF (X). Then the
intuitionistic fuzzy local function B∗(I, τ) of B is the union of all intuitionistic fuzzy
points x(t,r), i.e.,

B∗(I, τ) =
⋃
{x(t,r) ∈ X : B ∩ V /∈ I, for every V ∈ N(x(t,r))}.

Definition 2.16 ([16]). Let B be an intuitionistic fuzzy set in an ifits (X, τ, I).
Then the closure operator for B define as Cl∗(B) = B ∪ B∗. Also the operator
Cl∗ for a topology τ∗(I) finer than τ and a basis β(I, τ) for τ∗(I) describe as
β(I, τ) = {V − E : V ∈ τ, E ∈ I}.

Definition 2.17 ([16]). Let (X, τ, I) be an ifits. Then I is called compatible with
τ, and denoted by I ∼ τ , if for each B ∈ IF (X) and each x(t,r) ∈ B, there is
V ∈ N(x(t,r)) such that V ∩B ∈ I, then B ∈ I. Also I is said to be τ−boundary, if
I ∩ τ = 0∼.

Definition 2.18 ([16]). Let (X, τ, I) be an ifits. An operator Ψ : IF (X) −→ τ is
defined as follows: for each B ∈ IX ,

Ψ(B) = {x(t,r) : there is V ∈ N(x(t,r)) such that V −B ∈ I}.
Observe that Ψ(B) = X − (X −B)∗.

3. Intuitionistic fuzzy ideal topological groups

Definition 3.1. An ifs B in an ifits (X, τ, I) is called an I-neighbourhood of xt, if
there is an intuitionistic fuzzy-I-open set V such that xt ∈ V ⊆ B.

Definition 3.2. Let (X, τ, ·) be an iftg and let I be an intuitionistic fuzzy ideal on
X. Then (X, τ, I, .) is said to be an intuitionistic fuzzy ideal topological group (ifitg,
for short), if for every ifp x(t,r), y(t,r) in X and every M ∈ N(x(t,r)y

−1
(t,r)) in X, there

is intuitionistic fuzzy-I-open sets U and V, U ∈ N(x(t,r)), V ∈ N(y(t,r)) such that

UV −1 ⊆M.

Definition 3.3. Let (X, τ, I, .) be an ifitg. Then I is said to be
(i) left translation, if for every ifp x(t,r) in X, x(t,r)I ⊆ I,
(ii) right translation, if for every ifp x(t,r) in X, Ix(t,r) ⊆ I,

where x(t,r)I = {x(t,r)E : E ∈ I} and Ix(t,r) = {Ex(t,r) : E ∈ I}.
It is obvious that if I is left ]resp. right] translation, then x(t,r)I = I [resp.

Ix(t,r) = I] for every ifp x(t,r) in X.

Corollary 3.4. Let (X, τ, I, .) be an ifitg. If I is left or right translation, I 6= IF (X)
and I ∼ τ , then I is τ−boundary.

Proposition 3.5. Let (X, τ, I, .) be an ifitgp, let A, B be an ifs and let x(t,r) be an
ifp in X.

(1) If A is intuitionistic fuzzy-I-open, then Ax(t,r) and x(t,r)A are intuitionistic
uzzy-I-open.

(2) If A is intuitionistic fuzzy-I-open, then AB and BA are intuitionistic fuzzy-I-
open.

(3) If A is intuitionistic fuzzy-I-closed, then Ax(t,r) and x(t,r)A are intuitionistic
fuzzy-I-closed.
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(4) If A is intuitionisticfuzzy-I-closed, then AB and BA are intuitionistic fuzzy-
I-closed.

(5) A is intuitionistic fuzzy-I-open iff A−1 is intuitionistic fuzzy-I-open.
(6) A is intuitionistic fuzzy-I-closed iff A−1 is intuitionistic fuzzy-I-closed.

Proof. It is clear from Definition 2.2. �

Theorem 3.6. Let (X, τ, I, .) be an ifitg with I ∼ τ . Let Q ∈ U(X) = {A ∈ IX :
there is a B ∈ β(I, τ)such that B ⊆ A} and letS ∈ IF (X) − I. Let U and V are
fuzzy-I-open sets such that U ∩ S∗ 6= 0∼ 6= V ∩ int(Q∗)∩Ψ(Q). Let A = U ∩ S ∩ S∗
and B = V ∩Q ∩ int(Q∗) ∩Ψ(Q).

(1) If I is right translation, then A−1B is a nonempty intuitionistic fuzzy-I-open
subset of S−1Q.

(2) If I is left translation, then BA−1 is a nonempty intuitionistic fuzzy-I-open
subset of QS−1.

Proof. (1) Let fx(a1,a2)
: IF (X) −→ IF (X) define as fx(a1,a2)

(x(t,r)) = x−1
(a1,a2)x(t,r)

for any x(a1,a2) ∈ A and let F = {fx(a1,a2)
: x(a1,a2) ∈ A}. From [?], we have

U ∩ S∗ ⊆ (U ∩ S)∗ = (U ∩ S ∩ S∗)∗.
Since I ∼ τ and U ∩ S∗ = 0∼, A 6= 0∼ and F 6= 0∼. Then A ⊆ A∗ and each
fxa(a1,a2)

is an intuitionistic fuzzy homomorphism. Let D = V ∩ int(Q∗) ∩ Ψ(Q).

If D ∩ F−1(y(t,r)) /∈ I for each y(t,r) ∈ F(D), then F(D ∩ Q) = F(B) = A−1B is

nonempty intuitionistic fuzzy-I-open subset of S−1Q.
Now let y(t,r) ∈ F(D). Then y(t,r) = x−1

(a1,a2)x(t,r) for some x(a1,a2) ∈ A and

x(t,r) ∈ D −→ F−1(y(t,r)) = Ax−1
(a1,a2)x(t,r). Thus we have

x(t,r) ∈ Ax−1
(a1,a2)x(t,r) ⊆ A∗x−1

(a1,a2)x(t,r) ⊆ (Ax−1
(a1,a2)x(t,r))

∗

= (F−1(y(t,r)))
∗ −→ G ∩ F−1(y(t,r)) /∈ I for each G ∈ N(x(t,r)).

Especially, D ∈ N(x(t,r)) −→ D ∩ F−1(y(t,r)) /∈ I. So A−1B is nonempty intuition-

istic fuzzy-I-open subset of S−1Q.
(2) The proof is similar to (1). �

Theorem 3.7. Let (X, τ, I, .) be an ifitg with I ∼ τ . Let Q ∈ U(X) and let S ∈
IF (X)− I.

(1) If I is right translation, then (S ∩ S∗)−1(Q ∩ int(Q∗) ∩Ψ(Q)) is a nonempty
intuitionistic fuzzy-I-open subset of S−1Q.

(2) If I is left translation, then (Q ∩ int(Q∗) ∩ Ψ(Q))(S ∩ S∗)−1 is a nonempty
intuitionistic fuzzy-I-open subset of QS−1.

Proof. Let U = V = X and apply Theorem 3.6. �

Theorem 3.8. Let (X, τ, I, .) be an ifitg with identity e, I ∼ τ and let Q ∈ U(X).
(1) If I is right translation, then e ∈ int(Q−1Q).
(2) If I is left translation, then e ∈ int(QQ−1).
(3) If I is translation, then e ∈ int(Q−1Q) ∩ int(QQ−1).

Proof. (1) We have Q∩ int(Q∗)∩Ψ(Q) ⊆ Q∩Q∗, such that from Theorem 3.7 (1),
implies e ∈ (Q ∩ int(Q∗) ∩Ψ(Q))(Q ∩Q∗)−1.

The proofs of (2) and (3) are similar to (1). �
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Proposition 3.9. If f : (X, τ, I1) −→ (Y, ϕ, I2) is an intuitionistic fuzzy-I-homomorphism
with f(I1) = I2. Then f(Ψ(A)) = Ψ(f(A)) for each A ∈ IX .

Theorem 3.10. Let (X, τ, I, .) be an ifitg with identity e, I ∩ τ = 0∼ and let Q ∈
U(X).

(1) If I is right translation, then e ∈ int(Q−1Q).
(2) If I is left translation, then e ∈ int(QQ−1).
(3) If I is translation, then e ∈ int(Q−1Q) ∩ int(QQ−1).

Proof. (2) Let Q ∈ U(X). Then there is A ⊆ Q such that A ∈ β(I, τ). Since left
translation by any element is an intuitionistic fuzzy-I-homomorphism, we have by
Proposition 3.9, for an ifp x(t,r) in X, x(t,r)Ψ(A) = Ψ(x(t,r)A). Then x(t,r)Ψ(A) ∩
Ψ(A) = Ψ(x(t,r)A ∩ A). Thus if x(t,r)Ψ(A) ∩ Ψ(A) 6= 0∼, then x(t,r)A ∩ A 6= 0∼,
since Ψ(0∼) = 0∼. Now we have

(Ψ(A))(Ψ(A))−1 = {x(t,r) : x(t,r)Ψ(A) ∩Ψ(A) 6= 0∼}
⊆ {x(t,r) : x(t,r)A ∩A 6= 0∼}
= AA−1 ⊆ QQ−1.

So Ψ(A) 6= 0∼. Since Ψ(A) is intuitionistic fuzzy-I-open for any A ∈ IX . Hence
e ∈ (Ψ(A))(Ψ(A))−1 ⊆ int(QQ−1).

(1) The proof is similar to (2).
(3) The proof follows from (1) and (2). �

Theorem 3.11. Let (X, τ, I, .) be an ifitg with I ∩ τ = 0∼ and let I be right or left
translation. If Q is intuitionistic fuzzy subgroup and Q ∈ U(X). Then Q = int(Q) =
Cl(Q).

Proof. By Theorem 3.10, e ∈ Q−1Q (or e ∈ QQ−1). Then Q = int(Q). �

Theorem 3.12. Let (X, τ, I, .) be an ifitg with I ∼ τ and let I be right or left
translation. If Q is intuitionistic fuzzy subgroup and Q ∈ U(X). Then Q = int(Q) =
Cl(Q).

Proof. It is clear that Q ∈ U(X) −→ X /∈ I and I ∼ τ −→ τ ∩ I = 0∼. Then by
Theorem 3.10, e ∈ Q−1Q (or e ∈ QQ−1). Thus Q = int(Q). �

Definition 3.13. Let (X, τ, I, .) be an ifitg and let β(I, τ) be a neighbourhood base
of the identity e. Then for each ifp x(t,r) in X, the families

βx(t,r)
(I, τ) = {x(t,r)B : B ∈ β(I, τ)} and β

′

x(t,r)
(I, τ) = {Bx(t,r) : B ∈ β(I, τ)}

are called both neighbourhood bases of x(t,r).

Theorem 3.14. Let (X, τ, I, .) be an ifitg and let β(I, τ) a neighbourhood base of
the identity e. Then the following properties are satisfied:

(1) for each U, V ∈ β(I, τ) there is G ∈ β(I, τ) such that G ⊆ U ∩ V,
(2) for each U ∈ β(I, τ) there is V ∈ β(I, τ) such that V V ⊆ U,
(3) For every U ∈ β(I, τ) there is V ∈ β(I, τ) such that V −1 ⊆ U.

Proof. (1) Every ifits (X, τ, I) satisfies this property.
(2) Let U ∈ β(I, τ). As γ is intuitionistic fuzzy continuous, γ−1(U) is a neigh-

bourhood of e. Then there exist V1, V2 ∈ β(I, τ) such that V1×V2 ⊆ γ−1(U). By (1),
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take V ∈ β(I, τ) such that V ⊆ V1 ∩ V2. Then V × V ⊆ γ−1(U). Thus by applying
γ, we have that V V ⊆ γ(γ−1(U)) ⊆ U.

(3) Let U ∈ β(I, τ). Since ξ−1(U) is a neighbourhood of e, there is V ∈ β(I, τ)
such that V ⊆ ξ−1(U). By taking images by ξ, we have that ξ(V ) = V −1 ⊆
ξ(ξ−1(U)) ⊆ U. �

Theorem 3.15. Let (X, τ, I, .) be an ifitg and let β(I, τ) a neighbourhood base of
the identity e. Then for each fuzzy set A in X, ICl(A) = {AE : E ∈ β(I, τ)}.

Proof. Suppose x(t,r) /∈ ICl(A). Then there is E ∈ β(I, τ) such that x(t,r) /∈ AE.
Since x(t,r) /∈ A, by definition, there is an intuitionistic fuzzy-I-open neighbourhood

G of e so that x(t,r)G ∩ A = 0∼. Let E satisfy the condition E−1 ⊆ G. Then

x(t,r)E
−1 ∩A = 0∼, that is, {x(t,r)} ∩AE = 0∼. Thus x(t,r) /∈ AE. �

Definition 3.16. Let (X, τ, I, .) be an ifitg. An ifs A in X is called symmetric, if
A = A−1.

Theorem 3.17. Let (X, τ, I, .) be an ifitg. Then each lx(t,r)
: X −→ X(rx(t,r)

:

X −→ X) is intuitionistic fuzzy-I-homomorphism. Where lx(t,r)
(y(t,r)) = x(t,r)y(t,r)

(rx(t,r)
(y(t,r)) = y(t,r)x(t,r)).

Proof. Let y(t,r) be any ifp in X and let G be an intuitionistic fuzzy-I-open neigh-

bourhood of lx(t,r)
(y(t,r)) = x(t,r)y(t,r) = x(t,r)(y

−1
(t,r))

−1. Then there are intuition-

istic fuzzy-I-open sets U and V containing x(t,r) and y−1
(t,r), respectively such that

UV −1 ⊆ G. Especially, we have x(t,r)V
−1 ⊆ G. By Proposition 3.5 (5), the set

V −1 is an intuitionistic fuzzy-I-open neighbourhood of y(t,r). Thus lx(t,r)
is intu-

itionistic fuzzy-I-continuous at y(t,r). Since y(t,r) is arbitrary, lx(t,r)
is intuitionistic

fuzzy-I-continuous on X.
Now let A be an intuitionistic fuzzy-I-open set in X. Then by Proposition 3.5 (1),

the set lx(t,r)
(A) = x(t,r)A is intuitionistic fuzzy-I-open set in X. Thus lx(t,r)

is an in-
tuitionistic fuzzy-I-open function. So lx(t,r)

is intuitionistic fuzzy-I-homomorphism.
In the same way, we proof rx(t,r)

is intuitionistic fuzzy-I-homomorphism. �

Definition 3.18. An ifits (X, τ, I) is said to be an intuitionistic fuzzy-I-homogeneous,
if for each ifp x(t,r), y(t,r) in X, there is an intuitionistic fuzzy-I-homomorphism f of
the space X itself such that f(x(t,r)) = y(t,r).

Theorem 3.19. Every ifitg (X, τ, I, .) is an intuitionistic fuzzy-I-homogeneous space.

Proof. Let x(t,r), y(t,r) two ifp in X such that z(t,r) = x−1
(t,r)y(t,r). Then lz(t,r) is an

intuitionistic fuzzy-I-homomorphism of X and lz(t,r)(x(t,r)) = x(t,r)(x
−1
(t,r)y(t,r)) =

y(t,r). �

Theorem 3.20. Let (X, τ, I, .) be an ifitg and let H be an intuitionistic fuzzy sub-
group of X. If H contains a nonempty intuitionistic fuzzy-I-open set. Then H is
intuitionistic fuzzy-I-open in X.

Proof. Let U 6= 0∼ be any intuitionistic fuzzy-I-open set in X with U ⊆ H. Then
for any x(t,r) ∈ H, the set lx(t,r)

(U) = x(t,r)U is intuitionistic fuzzy-I-open in X and

is subset of H. Thus H =
⋃

x(t,r)∈H(x(t,r)U) is intuitionistic fuzzy-I-open in X. �
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Theorem 3.21. Every intuitionistic fuzzy open subgroup H in an ifitg (X, τ, I, .) is
intuitionistic fuzzy ideal topological group and called intuitionistic fuzzy ideal topo-
logical subgroup of X.

Proof. Let x(t,r), y(t,r) two ifp in H and let G ∈ N(x(t,r)y
−1
(t,r)) relative to H there is

intuitionistic fuzzy-I-open neighbourhoods U ⊆ H of x(t,r) and V ⊆ H of y(t,r) such

that UV −1 ⊆ G. Since H is intuitionistic fuzzy open in X, G is an intuitionistic
fuzzy open set in X. Since X is an intuitionistic fuzzy ideal topological group, there
are intuitionistic fuzzy-I-open neighbourhoods W of x(t,r) and Q of y(t,r) such that

WQ−1 ⊆ G. But the sets U = W ∩ H and V = Q ∩ H are intuitionistic fuzz-I-
open sets in H, since H is fuzzy open. Also, UV −1 ⊆ WQ−1 ⊆ G. Then H is an
intuitionistic fuzzy ideal topological group. �

Lemma 3.22. Let (X, τ, I, .) be an ifitg and let H be intuitionistic fuzzy subgroup
of X.

(1) Cl(H) of H is intuitionistic fuzzy subgroup.
(2) If H contains an intuitionistic fuzzy open set, then H is intuitionistic fuzzy-I-

open.
(3) If H is intuitionistic fuzzy open, then H is intuitionistic fuzzy-I-closed.
(4) If H is intuitionistic fuzzy closed and of finite index in X, then H is intuition-

istic fuzzy-I-open.

Theorem 3.23. Let (X, τ, I, .) be an ifitg and let A,B two ifp in X. Then
(1) ICl(A)ICl(B) ⊆ Cl(AB),
(2) (ICl(A))−1 ⊆ Cl(A−1).

Proof. (1) Let x(t,r) ∈ ICl(A), y(t,r) ∈ ICl(B) and let G ∈ N(x(t,r)y(t,r)). Then
there is intuitionistic fuzzy-I-open neighbourhoods U and V such that UV ⊆ G.
Since x(t,r) ∈ ICl(A), y(t,r) ∈ ICl(B), there are x(a1,a2) ∈ A∩U and x(b1,b2) ∈ B∩V.
Thus x(a1,a2)x(b1,b2) ∈ (A∩U)∩(B∩V ) ⊆ (AB)∩G. So x(t,r)y(t,r) ∈ Cl(AB). Hence
ICl(A)ICl(B) ⊆ Cl(AB).

(2) Let x(t,r) ∈ (ICl(A))−1 and let U ∈ N(x(t,r)). Since the inverse mapping is

intuitionistic fuzz-I-open, U−1 ∈ N(x−1
(t,r)). But x−1

(t,r) ∈ ICl(A), U−1 ∩ A 6= 0∼.

Then U ∩A−1 6= 0∼. Thus x(t,r) ∈ Cl(A−1). So (ICl(A))−1 ⊆ Cl(A−1). �

Theorem 3.24. Let (X, τ, I, .) be an ifitg. If U ∈ N(e), then U ⊆ ICl(U) ⊆ U2.

Proof. Since x(t,r)U
−1 is an intuitionistic fuzzy-I-open neighbourhood of x(t,r), there

is y(t,r) ∈ U of form x(t,r)z
−1
(t,r) when z(t,r) ∈ U . But x(t,r) = y(t,r)z(t,r) ∈ UU = U2.

Then U ⊆ ICl(U) ⊆ U2. �

Theorem 3.25. Let (X, τ, I, .) be an ifitg. Then ICl(A) ⊆ AU for every ifs A in
X and every U ∈ N(e).

Proof. From Theorem 3.14 (3), for each U ∈ N(e), there is V ∈ N(e) such that
V −1 ⊆ U. Let x(t,r) ∈ ICl(A) and x(t,r)V is an intuitionistic fuzzy-I-open neigh-
bourhood of x(t,r). Then there is z(t,r) ∈ A ∩ x(t,r)V , that is, z(t,r) ∈ x(t,r)V . Thus

z(t,r) = z(t,r)y
−1
(t,r) ∈ z(t,r)V

−1 ⊆ AU. So ICl(A) ⊆ AU. �
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Theorem 3.26. Let (X, τ, I, .) be an ifitg. Then (X, τ, I) is intuitionistic fuzzy-I-
regular and intuitionistic fuzzy ideal-T2 space.

Proof. Let F be an intuitionistic fuzzy closed in X and let x(t,r) ∈ F. Multiply by

x−1
(t,r) allows to assume that x(t,r) = e. Since F isintuitionistic fuzzy closed, G =

X−F is an intuitionistic fuzzy open neighbourhood of e. Then there is intuitionistic
fuzzy-I-open neighbourhood V of e such that V 2 ⊆ G. Thus ICl(V ) ⊆ G So
U = X − ICl(V ) is an intuitionistic fuzzy-I-neighbourhood containing F which
is disjoint from V . So (X, τ, I, .) is intuitionistic fuzzy-I-regular. That is, e ∈ V
and e 6= y(t,r) ∈ F ⊆ U such that V ∩ U = 0∼. Hence X is intuitionistic fuzzy
ideal-T2−space. �

Theorem 3.27. Let (X, τ, I, .) be an ifitg. If K is an intuitionistic fuzzy-I-compact
in X, and F an intuitionistic fuzzy-I-closed set in X. Then FK and KF are intuition-
istic fuzzy-I-closed sets in X.

Proof. If FK = X, it is done. Let x(t,r) ∈ X − FK. Then F ∩ x(t,r)K
−1 = 0∼.

Since K is intuitionistic fuzzy-I-compact in X, x(t,r)K
−1 is intuitionistic fuzzy-I-

compact. Thus there is an intuitionistic fuzzy-I-open neighbourhood U of e such
that F ∩ Ux(t,r)K

−1 = 0∼. So FK ∩ Ux(t,r) = 0∼. Since Ux(t,r) is intuitionistic
fuzzy-I-open neighbourhood of x(t,r) contained in X − FK, FK is intuitionistic
fuzzy-I-closed.

In same way to the proof of KF . �

Theorem 3.28. Let (X, τ, I, .) be an ifitg and let H be an intuitionistic fuzzy sub-
group in X. Then H is intuitionistic fuzzy-I-open set iff Iint(H) 6= 0∼.

Proof. Let x(t,r) ∈ Iint(H). Then there is an intuitionistic fuzzy-I-open set U such
that x(t,r) ∈ U ⊆ H. For each y(t,r) ∈ H, we have y(t,r)U ⊆ y(t,r)H = H. Since U
is intuitionistic fuzzy-I-open, so is y(t,r)U . Thus H =

⋃
{y(t,r)U : y(t,r) ∈ H} is an

intuitionistic fuzzy-I-open set.
The proof of the Converse is straightforward. �

Theorem 3.29. Let (X, τ, I, .) be an ifitg and V be an intuitionistic fuzzy-I-open
set in X. Then A =

⋃n
i=1 V

n is intuitionistic fuzzy-I-open set.

Proof. Let V be an intuitionistic fuzzy-I-open set in X. Then by Proposition 3.5 (2),
V V = V 2 is intuitionistic fuzzy-I-open set and V 2V = V 3 is intuitionistic fuzzy-I-
open set, similarly, V 4, V 5, ... Thusthe set A =

⋃n
i=1 V

n is intuitionistic fuzzy-I-open
set. �

Theorem 3.30. Let (X, τ, I, .) be an ifitg and let A be an ifs in X. Then (Iint(A))−1 =
Iint(A−1).

Proof. Since i : X −→ X is intuitionistic fuzzy-I-homomorphism, Iint(i(A)) =
Iint(A−1) = i(Iint(A)) = (Iint(A))−1. �

Definition 3.31. Let (X, τ, I, .) be an ifitg and let U be an intuitionistic fuzzy-I-
open neighbourhood of identity e. An intuitionistic fuzzy set A in X is said to be
U -fuzzy-I-disjoint, if x(t,r) /∈ y(t,r)U for any disjoint x(t,r), y(t,r) ∈ A.
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Definition 3.32. Let (X, τ, I, .) be an ifitg. Then the family Ω of ifs in X is said to
be intuitionistic fuzzy-I-discrete, provided for each ifp x(t,r) in X has an intuitionistic
fuzzy-I-open neighbourhood that intersection one element of Ω.

Theorem 3.33. Let (X, τ, I, .) be an ifitg and let U and V be an intuitionistic fuzzy-
I-open neighbourhood of identity e such that V 4 ⊆ U and V −1 = V. If an ifs A in X
is intuitionistic fuzzy-I-disjoint, then the collection of intuitionistic fuzzy-I-open sets
{z(t,r)V : z(t,r) ∈ A} is intuitionistic fuzzy-I-discrete in X.

Proof. Enough verification, for each ifp x(t,r) in X, an intuitionistic fuzzy-I-open
neighbourhood x(t,r)V of x(t,r) intersects at lest one element of the collection {z(t,r)V :
z(t,r) ∈ A}. Let suppose to the contrary that, for some ifp x(t,r) in X, there is
distinct elements z(t,r), y(t,r) ∈ A such that x(t,r)V ∩ z(t,r)V 6= 0∼ and x(t,r)V ∩
y(t,r)V 6= 0∼. Then x−1

(t,r)z(t,r) ∈ V 2 and y−1
(t,r)x(t,r) ∈ V 2, where y−1

(t,r)z(t,r) =

(y−1
(t,r)x(t,r))(x

−1
(t,r)z(t,r)) ∈ V 4. Thus z(t,r) ∈ y(t,r)U . Contradiction with assumption

that A is intuitionistic fuzzy-I-disjoint. �

Theorem 3.34. Let (X, τ, I, .) be an ifitg and let U be a symmetric intuitionistic
fuzzy-I-open neighbourhood of identity e. Then A =

⋃n
i=1 U

n is intuitionistic fuzzy-
I-open set and an intuitionistic fuzzy-I-closed fuzzy subgroup of X.

Proof. It is obvious from Lemma 3.22 and Theorem 3.29. �

Theorem 3.35. Let (X, τ, I, .) be an ifitg and let H be an intuitionistic fuzzy sub-
group of X. Then H is intuitionistic fuzzy-I-discrete iff it has an intuitionistic fuzzy-
I-isolated point.

Proof. Let x(t,r) ∈ H and x(t,r) is intuitionistic fuzzy-I-isolated in the relative
topology of H ⊆ X. Then there is an intuitionistic fuzzy-I-open neighbourhood
U of e in X such that x(t,r)U ∩ H = {x(t,r)}. Thus for any y(t,r) ∈ H, we have

y(t,r)U ∩H = y(t,r)U ∩{y(t,r)x
−1
(t,r)H}. So for every intuitionistic fuzzy point of H is

intuitionistic fuzzy-I-isolated such that H is indeed intuitionistic fuzzy-I-discrete.
Conversely, suppose H is intuitionistic fuzzy-I-discrete. Then by definition, all of

its intuitionistic fuzzy points are intuitionistic fuzzy-I-isolated. �

Theorem 3.36. Let (X, τ, I, .) be an ifitg and let U be an intuitionistic fuzzy neigh-
bourhood of e. Then there is a symmetric intuitionistic fuzzy-I-open neighbourhood
V of e such that V ⊆ U.

Proof. Let U be an intuitionistic fuzzy neighbourhood of e. Then there is an intu-
itionistic fuzzy open neighbourhood G of e such that G ⊆ U and G−1 is intuitionistic
fuzzy-I-open neighbourhood of e. Let V = G ∩ G−1 6= 0∼. Since V is intersection
of intuitionistic fuzzy open and intuitionistic fuzzy-I-open sets, V is intuitionistic
fuzzy-I-open and V = V −1. �

Theorem 3.37. Let (X, τ, I, .) be an intuitionistic fuzzy ideal connected topological
group and let H be an intuitionistic fuzzy subgrop of X. If H is an intuitionistic
fuzzy-I-open, then H=X.

Proof. It is clear. �
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Definition 3.38. An ifitg (X, τ, I, .) with respect to intuitionistic fuzzy-I-continuity
is an intuitionistic fuzzy group X endowed with an intuitionistic fuzzy topology such
that for each ifp x(t,r) in X, the translations lx(t,r)

, rx(t,r)
: X −→ X, lx(t,r)

(y(t,r)) =

x(t,r)y(t,r), rx(t,r)
(y(t,r)) = y(t,r)x(t,r) are intuitionistic fuzzy-I-continuous, and such

that the inverse mapping i : X −→ X, i(x(t,r)) = x−1
(t,r) is intuitionistic fuzzy-I-

continuous.

Theorem 3.39. Let (X, τ, I, .) be a Hausdorff ifitg with respect to intuitionistic
fuzzy-I-continuity such that left translations are intuitionistic fuzzy continuous (intu-
itionistic fuzzy-I-continuous), right translations are intuitionistic fuzzy-I-continuous
(intuitionistic fuzzy continuous) and inverse mapping is intuitionistic fuzzy-I-continuous.
For any ifs W in X, The intuitionistic fuzzy subgroup CX(W ) = {x(t,r) ∈ X :
y(t,r)x(t,r) = x(t,r)y(t,r)} is intuitionistic fuzzy-I-closed in X.

Theorem 3.40. Let (X, τ, I, .) be an intuitionistic fuzzy ideal connected topological
group and let e be the identity. If U an intuitionistic fuzzy-I-open neighbourhood of
e, then if X is generated by U.

Proof. Let U be an intuitionistic fuzzy-I-open neighbourhood of e. For every n ∈ N,
let Un consisting of elements form u1...un, where ui ∈ U . Let G =

⋃∞
n=1 U

n. Since
every Un is intuitionistic fuzzy-I-open, we have that G is an intuitionistic fuzzy-
I-open set. Let X be an element of intuitionistic fuzzy-I-closure G, i.e., x(t,r) ∈
ICl(G). Since x(t,r)U

−1 is an intuitionistic fuzzy-I-open neighborhood of x(t,r), it

must intersect G. Then let y(t,r) ∈ G ∩ x(t,r)U
−1. Since y(t,r) ∈ x(t,r)U

−1, then

y(t,r) = x(t,r)u
−1 for some elements u ∈ U . Since x(t,r) ∈ G, x(t,r) ∈ Un for

some n ∈ N, i.e., y(t,r) = u1...un with every ui ∈ U . Thus x(t,r) = u1...unu, i.e.,

x(t,r) ∈ Un+1 ⊆ G. So G is intuitionistic fuzzy-I-closed. Since X is intuitionistic
fuzzy-I-connected and G is intuitionistic fuzzy-I-open and intuitionistic fuzzy-I-
closed, we must have G = X. This means that X is generated by U . �

4. Conclusions

This paper deals with intuitionistic fuzzy topological groups. One of the im-
portant subclasses is the class of groups. So, in the paper we studied the concept
introduce a new class of topological groups called intuitionistic fuzzy ideal topolog-
ical groups by depended on an intuitionistic fuzzy topological groups (X, τ).
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