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ABSTRACT. As an extension of bipolar-valued fuzzy sets, the notion of
(inner, outer) crossing cubic structures is introduced by using the notion
of N-functions and interval-valued fuzzy sets, and related properties are
investigated. The same direction order and the opposite direction order in
crossing cubic structures are defined, and several properties are discussed.
Also, S-union, S-intersection, O-union and O-intersection of crossing cu-
bic structures are introduced, and their related properties are considered.
Crossing cubic subalgebras are studied by applying a crossing cubic struc-
ture to BCK/BCl-algebras.
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1. INTRODUCTION

A (crisp) set A in a universe X can be defined in the form of its characteristic
function p4 : X — {0,1} yielding the value 1 for elements belonging to the set A and
the value 0 for elements excluded from the set A. So far most of the generalization of
the crisp set have been conducted on the unit interval [0, 1] and they are consistent
with the asymmetry observation. In other words, the generalization of the crisp set
to fuzzy sets relied on spreading positive information that fit the crisp point {1} into
the interval [0,1]. In [1], Zadeh made an extension of the concept of a fuzzy set by an
interval-valued fuzzy set. Because no negative meaning of information is suggested,
we now feel a need to deal with negative information. To do so, everyone also feel a
need to supply mathematical tool. To attain such object, Jun et al. [2] introduced
and used a new function which is called negative-valued function. Using a fuzzy set
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and an interval-valued fuzzy set, Jun et al. [3] introduced the notion of cubic sets.
Fuzzy set theory is established in the paper [4]. In the traditional fuzzy sets, the
membership degrees of elements range over the interval [0, 1]. The traditional fuzzy
set representation cannot tell apart contrary elements from irrelevant elements. Only
with the membership degrees ranged on the interval [0, 1], it is difficult to express
the difference of the irrelevant elements from the contrary elements in fuzzy sets. If
a set representation could express this kind of difference, it would be more informa-
tive than the traditional fuzzy set representation. Based on these observations, Lee
[5] introduced an extension of fuzzy sets named bipolar-valued fuzzy sets.

In this paper, using the notion of N-functions and interval-valued fuzzy sets, we
introduce the notion of (inner, outer) crossing cubic structures which is an exten-
sion of bipolar-valued fuzzy sets, and investigate several properties. We define the
same direction order and the opposite direction order in crossing cubic structures.
Also, we define S-union, S-intersection, O-union and O-intersection of crossing cubic
structures, and discuss their related properties. We study crossing cubic subalgebras
by applying crossing cubic structures to BCK/BCl-algebras.

2. PRELIMINARIES

13 Y

A set X with a binary operation “~~” and a special element 0) is called BCI-
algebra if it satisfies:

(Va,y,2 € X)(((z v y) ~» (x> 2)) ~ (2 v y) = 0),
(Va,y € X)((z ~ (x~y)) ~y = 0),

(Vz € X)(z ~ x =0),

Ve,ye X)(x~»y=0,y~»z=0 = z=y).

(2.1)
(2.2)
(2.3)
(2.4)

By a BCK-algebra we mean a BCl-algebra X satisfying the following condition:
(2.5) (Vz € X)(0 ~ x=0).

A subset L of a BCK/BCl-algebra X is called a subalgebra of X if 2 ~» y € L for
all z,y € L.

Denote by F(X,[—1,0]) the collection of all functions from a set X to [—1,0]. We
say that an element of F(X,[—1,0]) is a negative-valued function from X to [—1,0]
(briefly, N -function on X.) Define a relation < on F(X,[—1,0]) as follows:

(2.6) §<n & (Vo e X)(E(r) <n(x))

for all £,n € F(X,[-1,0]). The complement of £ € F(X,[—1,0]), denoted by £°, is
defined as follows:

(2.7) (Ve € X)(E(z) = -1 = &(x)).
An interval number is defined to be a subinterval a = [a~,a™] of [0,1], where
0 < a~ <a' < 1. The interval number a = [a~,a™] with a= = a™ is denoted by

a. Denote by [[0,1]] the set of all interval numbers. Let us define what is known
as refined minimum (briefly, rmin) of two elements in [[0,1]]. We also define the
2
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symbols “=", “x”, “=" in case of two elements in [[0,1]]. Consider two interval
numbers a; := [al_,aﬂ and ag := [az_,aﬂ . Then

rmin {ay,as} = [min {af,a;} , min {af,aj}] ,

1% Gy < a; >ay, af >af,
and similarly we may have a; < a2 and a1 = as. To say a; > ao (resp. a; < as)

we mean @y = G and Gy # ao (resp. a1 < @ and @y # as). Let a; € [[0, 1]] where
1 € A. We define
saf = [aforigiot] . maps = [ruper gt
For any a € [[0,1]], its complement, denoted by a°, is defined to be the interval
number
i“=1-a"1-a"].

Let X be a nonempty set. A function f : X — [[0,1]] is called an interval-valued
fuzzy set (briefly, an IVF set) in X. Let [[0,1]]% stand for the set of all IVF sets
in X. For every f € [[0,1]]% and = € X, f(z) = [f~(z), fT ()] is called the degree
of membership of an element = to f, where f~ : X — [0,1] and f* : X — [0,1]
are fuzzy sets in X which are called a lower fuzzy set and an upper fuzzy set in X,

respectively. For simplicity, we denote f = [f~, f*]. For every f,g € [[0,1]]%, we
define

fCg & f(r)xg(x) forallz € X,
and
f=g9g< f()=g(z) forall z € X.

The complement f¢ of f € [[0,1]]X is defined as follows: f¢(x) = f(x)¢ for all x € X,
that is,
fé(x)=[1-f*(z),1 - f (2)] forallz € X.

3. CROSSING CUBIC STRUCTURES

Definition 3.1. By a crossing cubic structure on a set X, we mean a pair (X, C(f,g))
where

(3.1) Cire = {(z, f(2),6(x)) |z € X}
in which f is an interval-valued fuzzy set in X and ¢ is an A-function on X.

Definition 3.2. A crossing cubic structure (X, C(ﬁg)) on a set X is said to be

e inner, if it satisfies:

(3:2) (Vo € X)(—¢(x) € [f(2), fT(2)]).
e outer, if it satisfies:
(3.3) (Vo € X)(—€(z) < f~(x) or —&(x) > [T ().

3
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Example 3.3. 1. Let f be an interval-valued fuzzy set in X. Then C(s¢,) =
{{2. /(). 60(@)) | © € X}, Clre ) i= {(o, f(@),€1(2)) | @ € X} and C(re) =
{{z, f(x),&(z)) | © € X} are crossing cubic structures on X, where &(z) = 0,
E-1(z) = —1and &(z) = 2(f(z) + fH(z)) for all z € X.

2. Let ([0,1],C(;¢)) be a crossing cubic structure on [0, 1]. If f(z) = [0.4,0.7] and
&(z) = —0.5 for all z € [0,1], then ([0,1],C(s¢)) is an inner crossing cubic structure
on [0,1]. If f(x) = [0.4,0.7] and &(x) = —0.75 for all € [0,1], then ([0,1],C(y¢))
is an outer crossing cubic structure on [0,1]. If f(z) = [0.4,0.7] and {(z) = —=z for
all z € [0,1], then ([0,1],C(s¢)) is neither an inner crossing cubic structure nor an
outer crossing cubic structure .

Example 3.4. Define an interval-valued fuzzy set f and a negative-valued function
& on the real line R by

(0,04] ifz<0
fiR=[0,1)], z—<{ [0.5,0.6] if z=0
(0.7,0.9] if >0

and

E:R—[-1,0,z— -1+

14e2
respectively, Then (R,C(s)) is a crossing cubic structure on the real line R.

Proposition 3.5. If a crossing cubic structure (X, C(f’g)) on a set X is not outer,
then f~(a) < —¢&(a) < fT(a) for some a € X.

Proof. Tt is straightforward. O

Proposition 3.6. If a crossing cubic structure (X, C(f)g)) on a set X is inner and
outer, then

(3.4) (Vo € X)(—¢(2) = f~(z) or —§(x) = [T (2)).

Proof. Let (X ,C( f’g)) be a crossing cubic structure on a set X which is inner and
outer. Then —¢(x) € [f(z), f*(2)] and —¢(z) < ™ (2) or —¢() € [f~(2), f*(2)]
and —&(z) > f1(z) for all z € X. It follows that —£(z) = f~ () or —&(z) = f1(z).
This completes the proof. O
Definition 3.7. Let (X,C(s¢)) be a crossing cubic structure on a set X. The
complement of (X7 C(fﬁg)) is defined to be the crossing cubic structure

(X.Cir.e) = (X.Cipeee))

where f¢: X — [[0,1],z — [1 — fT(z),1 — f~(z)] and &° : X — [-1,0], = —
—1-¢(2).
Example 3.8. Consider the crossing cubic structure (R, C( f{)) on R which is given
in Example 3.4. Then f¢ and £¢ are calculated as follows:

[0.6, 1] if <0

SR —=1[0,1]], z+ ¢ [0.4,0.5] if =0
(0.1,0.3] if >0



Y.B. Jun et al./Ann. Fuzzy Math. Inform. 22 (2021), No. 1, 1-15

and

-t

1+e @’

Hence the crossing cubic structure (X, C(fé))c = (X7 C(fz:,Ec)) is the complement of
(R, Cr.6))-

For a crossing cubic structure (X,C(s¢)) on a set X, a = [a™,a™] € [[0,1]],
te[-1,00 and € € {>, >, <, <}, we define:

(2A20) — 2z

(3.5) @y !
={reX|f (2)2a", fT(z) 2a"}n{z € X|L(x)et},

(3.6) o D=1 0g
={reX|f (x)>a, fH(z)>at}n{z e X|&(z)et],

(>AZpe) . >AZ g

=172 ng

(3.7) (&2)
={reX[f (@)>a, () 2a"}n{ze X |g(x)et},

(>A>, 5) f>/\> ne

& R—[-1,0,z—

(3.8) (@2)
={reX|f (x)>a, fH(z)>at}n{z e X|(z)et],
(SV<ie) <v<
3.9 @0 “

—{reX|[ (@) <a or fT@) <aT}n{ze X |&w)et),
P e L

={zeX|f (x)<a or fH(z)<a"}n{reX|&x)et},
auy Can - 52¥ng

(e X | (@) <aor [*(@) <aT}n{re X |&@)et),
(.12 50 = g

={recX|f (x)<a or ff(z)<at}n{zec X |&(x)et}).

(=
In a crossing cubic structure (X C(, 5)) on a set X, we define:

[Z=lreX | @) 2a ), A i={zeX | M) >at},
Z={zeX|f(x)>a}, fH={zeX]| [t (z)>aT}
S={eeX|ffw<a) fG={re X @) <at),
S={reX|f@)<a}), fo={reX | fT(x) <at},

for all @ = [a—,a™] € [[0, 1]].

Proposition 3.9. Let (X, C(f,g)) be a crossing cubic structure on a set X. For any
a=[a",aT] €[[0,1]], t € [-1,0] and e € {>, >, <, <}, we have:

>A> >
C((a;\) 8) f ﬂfa+ m€t7 C((az\)>€ f n ﬁft,

Clon ? = I2 N fENE, COY0 = f2 nfang.
5
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Proof. Straightforward. O
Proposition 3.10. Let (X Cire )) be a crossing cubic structure on a set X. For
any a=la",a™] € [[0,1]], t € [-1,0] and € € {>, >, <, <}, we have:
Con=) = (U2 nEHUUE ng),
c<<v<f (F= NE) VIS NE),
<<V< U= (SN UUENE),
c<<v< P = (S nEHUUS nE).
Proof. Straightforward. d

Proposition 3.11. Let (X, C(fyg)) be a crossing cubic structure on a set X. For
any a=la",a™] €[[0,1]], t € [-1,0] and € € {>, >, <, <}, we have:
(>/\> €) (>A>e) (>/\> €)
Ci CCin CCs )

(>/\> €) (>A>e) (>/\> €)
C (a,t) < C(a t) < C(a t) ’

C(<V)< & C((<v)< ,€) C C(<V)< ,€)

a a,t a,t ’

C(<v< €) c C((<v)< ,E) C C(<v< 5)
t

Proof. Straightforward. O

Proposition 3.12. Let (X, C(f’g)) be a crossing cubic structure on a set X and let
ee{> > < <}. Leta=[a",at],b=[b",bt] € [[0,1]] and t,s € [-1,0] be such

that @ < b and t < s. If e € {>,>}, then C(EAE’E) C(;z\f >) and C(SVS’E) C

(<v<,>) (>A> g) (>/\> < (<Vv<,e) (<v< >)
Cion Ife € {<, <}, then c(b S and €557 € Clr

Proof. Assume that @ < b and ¢ < s. Then a~ < b~ and a™ < b*. If z € C((EZS/\)Z’E)
for e € {>,>}, then z € sz, ﬁfb%r NEE. Thus f~(z) >b” >a™, fT(z) >b" >a™
and £(x)es > ¢. This shows that © € C((;;\)>’>). So C((;A; €) ¢ C(>A> >) Let x €

C((CES:)S’E). Then z € ff_ NE orax e fa%mgg. Ifre fa_ NEE, then f~(x) <a™ < b~

and £(x)es >, that is, z € fi= N&7. Ifx e fa% N&E, then f(z) <at < bt and
E(x)es > t, that is, z € f5 NE&7. Hence z € (fag+ NENU(fs NET) = C(<\;<’>).

Similarly, we can verify that C(:t/;> < C(>A> <) and C(<tv)< €) C C(<V)< =) for

ee{<, <} O

Applying the De Morgan’s laws to Propositions 3.9 and 3.10 induces the following
results.

Proposition 3.13. Let (X Cy, 5)) be a crossing cubic structure on a set X, a =
[a™,a™] €[[0,1]] and t € [-1 ] For o => (resp , >, < and <), let af =< (resp.,

<,>and>). Then (cg;ff”)) = o uffug and (cggjfm)cz (fenfeyue”
for o, B,y € {=,>, <, <}
6
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Denote by CCS(X) the set of all crossing cubic structures on a set X. We define
a binary relation “<”, called the same direction order (briefly, S-order), on CCS(X)
as follows:

(3.13) (X.Cire)) < (X,Clym) & fCyg €<

for all (X,Cs.¢)), (X,Clg.m) € CCS(X). It is clear that (CCS(X), <) is a poset.

For any (X,C(s¢)) € CCS(X), a=[a",a"] €[[0,1]] and t € [-1,0], we define a
scalar O-product and a scalar *-product of C(y¢) by (@,t) © C5¢) := Clans,to¢) and
(@,t) * C(s,6) = Claxf,tve) Where

a® f:X = [[0,1], z > [min{a”, f~(2)}, min{a®, f7(2)}],
teE: X = [-1,0], =+ min{t,&(z)},
axf: X —[[0,1]], z— [max{a™, f~(z)}, max{a®, f+(x)}],

t+x&: X —[-1,0], z — max{t,&(z)}.
Proposition 3.14. Let (X, C(fyg)) and (X, C(g,n)) be crossing cubic structures on a
set X, a=[a",at],b= [b~,b"] € [[0,1]] and t,s € [~1,0]. Ifa <b andt <s, then

(X’ C(f»f)) < (:)(7 C(Qﬂ?))’ then (X’ (&at) QC(f,E)) < (X, (d7 t) © C(g,n)) and (X7 (dvt) *
Cire)) < (X, (@, 1) Cgp))-

Proof. For any x € X, we have
(@® f)(z) = min{a", f~ (z)}, min{a”, f*(2)}]
< [min{b™, £~ (2)}, min{b*, £+ (2)}]
= (bo (@),
(t ©&)(x) = min{t, §(2)} <min{s, ()} = (s © §)(x),
(@ f)(x) = [max{a”, f~ (2)}, max{a™, f*(x)}]
< [max{b™, £~ (2)}, max{b*, £ (2)}]
= (b* f)(2),

and(~ &)(z) = max{t,&(z)} < max{s,&(x )}~:(8 §)(z). Then (X, (a,t) ©Cs,¢)) <
(X, (b,s)OC(1,¢)) and (X, (a,t)*C(,¢)) < (X, (b, 5)*C(,¢)). Assume that (X,C(s¢)) <
(X Cigm) ). Then f C g and & < 7, that is, [f~(z), fT(z)] < [¢7(z), g7 (z)] and
&(x) < n(z) for all z € X. Thus

(@© f)(z) = [min{a™, f~(2)}, min{a™, [ (2)}]
< [min{a”, g7 (2)}, min{a™, g* (2)}]
= (@©g)(x)
and (¢t © §)(xz) = min{t,{(x)} < min{s,{(x)} = (s © &)(z) for all z € X, that is,
a0 fCacgandt©&<ton. So (X, (a,t) ©Ce) < (X, (a,t) ©Clgy)) Also we
7
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have
(@ f)(z) = [max{a™, f~(2)}, max{a™, f*(2)}]

< [max{a”, ¢ (z)}, max{a®, g" (2)}]

= (ax*g)(x),
and (t * &)(x) = max{t,&(z)} < max{t,n(x)} = (t*xn)(z) for all x € X. ie,
axfCaxgandt*&<txn Hence (X,(a,t)*Cie)) < (X,(a,t)*Crgp)- O
Theorem 3.15. If we define a binary operation “” on CCS(X) as follows:
(3.14) (X.Cire) - (XsClgm) = (X, Cpnrgenm) »

where (A g)(x) = rmin{f(z), g(x)} and (€An)(z) = min{€(z), n(2)} for allz € X,
then (CCS(X),-) is a semigroup.

Proof. Straightworwad. O

Definition 3.16. Let (X,C(y¢)) and (X,C(y.,) be crossing cubic structures on a
set X. We define the equality “=" and the opposite direction order (briefly, O-order)
“<” in CCS(X) as follows:

(X.Clr.o) = (X.Cm) & f=g, &=,
(X.Cir.o) < (X.Clym) & fCg, &2
Theorem 3.17. (CCS(X), <) is a poset.
Proof. Straightforward. O

Definition 3.18. Let {(X, Céf,g)) | i€ A} be a family of crossing cubic structures
on a set X, where A is any index set and Céf,g) = {(z, fi(z),&(z)) | x € X}. Then

(i) the S-union, denoted by Ug (X, Céf’§)>, of {(X, Céf,{)) |ie A} is defined to

i€EA

be the crossing cubic structure (X USC (t, £)> in which

s ={{e (20) 0 (1)) e}

(ii) the S-intersection, denoted by erei (X, C(iflg)), of {( (f o ) | i€ A} is defined

to be the crossing cubic structure <X ﬂSC(f §)> in which

o= (0 (a6) ) e}

(iii) the O-union, denoted by tje?\ (X C(f E))’ {(X C(f €)> |ie A} is defined to

be the crossing cubic structure (X UOC(f §)> in which

z‘UUe?\Cgf’E) = {<z, <igAfi> (2), <ié\A&) (:c)> |z € X},

8
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(iv) the O-intersection, denoted by @O (X C(f g)) {(X C(f &)) | i€ A} is defined

to be the crossing cubic structure (X OOC (, 5)> in which

neCro = { (o (o) @ (16) @) o€ x},

where (U ) (0) = sup £i0), (9,6 ) (@) = supfs(o) i € A),

iEA
(;QAﬁ) (x) = rllen/{ fi(z) and (ié\AfZ) (z) = inf{&(z) | i € A}
Note that

X, UsClpe ) = (X V& X, MsClre ) = (X A

( 7i6§\6(f’£)> ( ’C(igAf“igAE”))7 ( 7iﬂe§\C(f’§)> < ,C(iQAj“ié\Agl)>7
X, UoClre ) = (X LA X,moClpe ) = (X v )
< ’Z.Lgcu,s)) ( ’ngAfl,ieAAfl)), < vi@egcu,s)) < ’C(iQAfz,ievA&,)>

Proposition 3.19. Given crossing cubic structures
(X, Cir.e))s (X, Cgm) s (X5 Cingy) and (X, Cii o))

on a set X, we have

(1) i (X,Cire)) < (X,Cgm), then (X,Cgmy)” < (X,Cre))"
(2) i (X,Cre) < (X, Clgmy) and (X, C(re)) < (X,Concy), then

(X.C1.0) < (X, Clgm) Ms (X,Cinc)) -
(3) & (X,Cre) < (X:Cingy) and (X,Cigm) < (X,Cng)), then
(X,C1.0) Us (X,Cgm) < (X.Cinc)) »
(4) if (X,Cp)) < (X,Cny) and (X,Cigm)) < (X, Clhyg) then
(X,C1.6) Us (X,Cgm) < (X,Cin)) Us (X, Crp)) and
(X.Cir.e) Ms (X,Cgm) < (X.Cin0y) Ms (X,Cirp)) 5
(5) if (X,Cis.e)) < (X,Cgm)) then (X, Clym) < (X,Cir0)",
(6) if (X,C(f’g)) < (X Ciy )) and (X C(fg ) < (X,C(h’g)), then
(X, Cfé)) (X, Cigam) Mo (X,Cn))
(7) if (X,Cre) < (X, Congy) and (ch(gm)) < (X, Cng)), then
(X.Cir.6)) Yo (X, Cigm) < (X, Cinc))
(8) i (X,Cre) < (X, Cncy) and (X,Com)) < (X, Cirg)), then
(X.Cir.)) Yo (X, Cigm) < (X,Cine)) Yo (X,Ci,g) and
(X.Cir.e)) Mo (X, Cigm) < (X,Cin)) Mo (X,Cir.)) -
Proof. Straightforward. O

Theorem 3.20. If a crossing cubic structure (X, C(fﬁg)) on a set X is inner (resp.,

outer), then its complement is also inner (resp., outer).
9
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Proof. Assume that (X ,C( f{)) is an inner crossing cubic structure on a set X. Then
—&(z) € [f(x), [T (x)] = f(x), that is, f~(x) < =&(z) < fT(z) forall z € X. Tt
follows that 1 — f*(z) < —€%(z) < 1—f~(x),ie., —&(x) € [1— fT(z),1—f ()] =
fé(z) forallz € X. Thus (X, C(f_f))c is an inner crossing cubic structure on X. Now
if (X,C(s,¢)) is an outer crossing cubic structure on a set X, then —¢(z) < f~ () or
—&(z) > fH(x) forall z € X. So —¢(z) = —(—1—&(2) =1+&(x) > 1— f~(z) or
—&(z) =—(-1—-¢@) =1+&(x) <1— fT(x) for all z € X. Hence (X, C(fyf))c is
an outer crossing cubic structure on X. O
Theorem 3.21. If (X7 C(f’g)) and (X7 C(g,n)) are inner crossing cubic structures on
a set X, then so is their O-union.

Proof. Let (X7 C(fyg)) and (X, C(g,n)) be inner crossing cubic structures on a set X.
Then f~(z) < —&(z) < fT(z) and ¢~ (z) < —n(z) < gt (z) for all z € X. Tt follows
that
(fUg)”(x) = max{f (x), g (x)} < max{—¢(z), —n(z)}
= —min{{(x), n(x)} = —(EAn)(z)
and
—(EAn)(z) = —min{{(z), n(z)} = max{-£(x), —n(z)}
< max{f"(z),g"(x)} = (fUg)"(x)
for all z € X. Thus (X, C(fé)) Uo (X, C(g,n)) is an inner crossing cubic structure on
X. O
Theorem 3.22. If (X7 C(f,g)) and (X7 C(g,n)) are inner crossing cubic structures on
a set X, then so is their O-intersection.
Proof. Let (X7 C(f,g)) and (X, C(g,n)) be inner crossing cubic structures on a set X.
Then f~(z) < —£(z) < fH(z) and g~ (z) < —n(x) < g7 () for all z € X. Thus
(fNg)" (z) = min{f~ (z),9” (2)} < min{-¢{(x), —n(z)}
= —max{{(z),n(z)} = —(§ Vn)(z)
and
—(§Vn)(z) = —max{{(z),n(z)} = min{-{(z), —n(z)}
< min{f*(z),g"(z)} = (fNg)" (x)
for all x € X. So (X, C(f@) Mo (X, C(g,n)) is an inner crossing cubic structure on
X. O
In the following example, we know that the S-union and the S-intersection of

inner crossing cubic structures may not be an inner crossing cubic structure.

Example 3.23. 1. Let ([0,1],Cs.¢)) and ([0,1],C(y.;)) be crossing cubic structures
on [0,1] in which f(z) = [0.1,0.8], {(x) = —0.2, g(z) = [0.4,0.9] and n(z) = —0.5
for all z € [0,1]. Then ([0,1],C(s¢)) and ([0,1],C(y.y) are inner crossing cubic
structures on [0, 1]. The S-union of ([0,1],C(s¢)) and ([0,1],C(y.p) is

([0,1],C1.6)) Us ([0,1],Cg,m)) = ([0:1],Crugevm) = ([0, 1 Cig,6))
10
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We can check that —£(z) = 0.2 ¢ [0.4,0.9] = g(z) which shows that ([0,1],Cs.¢)) Us
([0,1],C(g,) is not an inner crossing cubic structure on [0, 1].

2. Let ([0,1],C(t¢)) and ([0,1],Cy,p) be crossing cubic structures on [0,1] in
which f(z) = [0.2,0.4], &{(x) = —0.35, g(z) = [0.2,0.3] and n(x) = —0.25 for all
x € [0,1]. Then ([0,1],C(s¢)) and ([0,1],C(y,,)) are inner crossing cubic structures
on [0,1]. The S-intersection of ([0,1],C(y¢)) and ([0, 1],C(g.rp) is

([0,1],Cir6)) Ms ([0, 1], Cig,my) = ([0,1],Crgenny) = ([0, 1], Crgre)

and it is not an inner crossing cubic structure on [0,1] since —&(x) = 0.35 ¢
[0.2,0.3] = g(x).

The following example shows that the S-union and the S-intersection of outer
crossing cubic structures may not be an outer crossing cubic structure.

Example 3.24. (1) Let ([0,1],C(s.¢)) and ([0,1],C,.,)) be crossing cubic structures
on [0, 1] in which f(x) = [0.31,0.53], {(x) = —0.76, g(z) = [0.72,0.83] and n(x) =
—0.87 for all z € [0,1]. Then ([0,1],Cs¢)) and ([0,1],C(,,,)) are outer crossing cubic
structures on [0,1]. The S-union of ([0,1],C(y¢)) and ([0,1],C(y.,y)) is

([0:1],Cr.6) Us ([0,1,Cgmy) = (10,1]: Cpug.evm) = ([0:1),Co.6))
and it is not an outer crossing cubic structure on [0,1] since —¢(x) = 0.76 €
0.72,083] = [g- (2), g* (1)
(2) Let ([0,1],C(s,¢)) and ([0,1],C(y.;)) be crossing cubic structures on [0,1] in
which f(z) = [0.4,0.6], {(z) = —0.28, g(z) = [0.5,0.7] and n(x) = —0.47 for all
€ [0,1]. Then ([0,1],Cs.¢)) and ([0,1],Cy.,,)) are outer crossing cubic structures
on [0,1]. The S-intersection of ([0,1],C(s¢)) and ([0, 1],C(y.p) is

(10,11, C1.69) Ms (10,1, Cgm) = ([0 1], Cisrg.enm) = ([0:1]:Crm)
and it is not an outer crossing cubic structure on [0, 1] since —n(z) = 0.47 €
[0.4,0.6] = [f~ (z), f* (2)].

The O-union of two outer crossing cubic structures is not an outer crossing cubic
structure as seen in the following example.

Example 3.25. Let ([0,1],Cs¢)) and ([0,1],Cy.,)) be crossing cubic structures on
[0,1] in which f(z) =[0.4,0.7], {(z) = —0.8, g(z) = [0.6,0.9] and n(z) = —0.5 for all

€ [0,1]. Then ([0,1],Cs.¢)) and ([0,1],Cy.) are outer crossing cubic structures
on [0,1]. The O-union of ([0,1],C(y¢)) and ([0,1],C(y.p) is

(10,1],Cr.69) Yo ([0,1],Cg,m) = ([0,1),Csugienn) = ([0:1],Co))
and it is not an outer crossing cubic structure on [0, 1].

The O-intersection of two outer crossing cubic structures is not an outer crossing
cubic structure as seen in the following example.

Example 3.26. Let ([0,1],Cs¢)) and ([0,1],Cy.,)) be crossing cubic structures on
[0,1] in which f(x) = [0.47,0.75], {(x) = —0.83, g(x) = [0.68,0.87] and n(z) = —0.45
11
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for all 2 € [0,1]. Then ([0,1],Cs¢)) and ([0,1],C,,,) are outer crossing cubic
structures on [0,1]. The O-intersection of ([0,1],Cs¢)) and ([0,1],Cg,)) is

(10,11, Cr.e9) Mo (10,1, Cg,m) = ([0:1], Cisrg vm) = (10,1, Crmy)
and it is not an outer crossing cubic structure on [0, 1].

4. ApPLICATION TO BCK/BCI-ALGEBRAS
In this section, let X denote a BCK/BCI-algebra unless otherwise specified.

Definition 4.1. A crossing cubic structure (X7 C(f,g)) on X is called a crossing
cubic subalgebra of X, if it satisfies:

f(z ~y) = rmin{f(z), f(y)}
§(x ~y) <max{¢(z),(y)} |

Example 4.2. Consider a BCK-algebra X = {0, 1,2,3} with the binary operation
~» given by Table 1.

(4.1) (Va,y € X) (

TABLE 1. Cayley table for the binary operation “~»”

w o= ol
w = oo
W= O o=
w o o olN
o Oo|w

Let (X, C(ﬁg)) be a crossing cubic structure on X which is given by Table 2. It is

TABLE 2. Tabular representation for (X ,C( f,g))

X f(=@) £(z)
0 [0.33,0.83] —0.8
1 [0.15, 0.56] —0.5
2 [0.33,0.83] —0.7
3 [0.15, 0.56] —0.3

routine to verify that (X ,C f,g)) is a crossing cubic subalgebra of X.

Proposition 4.3. If (X,C(¢)) is a crossing cubic subalgebra of X, then f(0) = f(x)
and £(0) < &(x) for allz € X.

Proof. Let (X,Cs,¢)) be a crossing cubic subalgebra of X. Using (2.3) and (4.1),
we get

f(0) = f(z ~ ) = rmin{ f (2), f(y)}
= rmin{[f ™ (), f~ (@), [f T (=), ()]}
=[f"(2),f (@) = f(=)
and £(0) = &(x ~» ) < max{é(x),{(x)} = 2«5( z) for all z € X. =
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Theorem 4.4. Let (X, C(ﬁg)) be a crossing cubic structure on X. Then it is a
crossing cubic subalgebra of X if and only if f~ and f+ are fuzzy subalgebras of X,
and £ is an N -subalgebra of X .

Proof. It is easy to verify that if f~ and f1 are fuzzy subalgebras of X, and ¢ is an
N-subalgebra of X, then (X, C(f’g)) is a crossing cubic subalgebra of X.

Conversely, assume that (X ,C( f,g)) is a crossing cubic subalgebra of X. It is clear
that ¢ is an N-subalgebra of X. For any z,y € X, we have

[f~ (@~ ), [T (@~ )] = fz~y) = min{f(z), f(y)}
= min{[f~ (z), f"(@)], [f~ (). T ()]}
min{f~(z), £~ (y)}, min{ " (x), f* (y)}].

It follows that f~(z ~ y) > min{f~ (), f~(y)} and 7 (z ~ y) > min{f*(z), f*(y)}.
Therefore f~ and f*+ are fuzzy subalgebras of X. O

Let (X,C(s¢)) be a crossing cubic structure on X. We define a level set of
(X, C(f’g)), written as ¢ (X7 C(fﬁg)), as follows:

(4.2) (X, Cpe)s o, Bl t) = U(X, f, o, B]) NU(X, &, t)

where (X, f,]a, 8]) = {z € X | f(z) = [o, A} and £(X,&,6) = {o € X | &(x) < 1}
for e, 8] € [[0,1]] and ¢ € [—1,0]. We say that (X, f, [a, B]) and £(X, &, t) are f-level
set and &-level set of (X, C(fyg)) with level indices [a, 8] and ¢, respectively.

Theorem 4.5. If (X, C(f,&)) s a crossing cubic subalgebra of X, then its nonempty
f-level set and &-level set are subalgebras of X for all level indices.

Proof. Let [, 8] € [[0,1]] and ¢t € [—1,0] be level indices of (X,C(s¢)) such that
X, f,|a,B]) and £(X,€,t) are nonempty. Let z,y € 4(X, f,[o,5]) and a,b €
UX, & t). Then f(z) = [, B8], fly) = [o, 8], &(a) < t and &(b) < t. It follows
from (4.1) that f(x ~ y) = rmin{f(x), f(y)} = rmin{[e, F], [o, B]} = [«, 5] and
&(a ~ b) < max{{(a),£(b)} < max{t,t} = t. Thus z ~ y € (X, f,[a, B]) and

a~belX, ). Sol(X, f, o, B]) and £(X,€,t) are subalgebras of X. O
Corollary 4.6. If (X C(f £) ) 18 a crossing cubic subalgebra of X, then its nonempty
level set {(X,C(j¢),[a,B],t) is a subalgebra of X for all [a, 3] € [[0,1] and t €
[—1,0].

Theorem 4.7. Let (X, C(f,f)) be a crossing cubic structure on X in which its
nonempty f-level set and &-level set are subalgebras of X for all level indices. Then
(X, C(f’g)) is a crossing cubic subalgebra of X .

Proof. Assume that (X, f, [a, 8]) and £(X, &, t) are nonempty subalgebras of X for
all level indices [, 8] € [[0,1]] and ¢ € [—1,0]. Suppose that there exist z,y,a,b €
X such that f(x ~ y) < rmin{f(x), f(y)} and &{(a ~ b) > max{(a),&(d)}.
Taking [ag, 8,] = rmin{f(z), f(y)} and tewp = max{(a),£(b)} induces z,y €
UX, f, [0 By]) and a,b € £(X, €, taws). But @~ y & £(X, [, (g, B,]) and a — b ¢
0(X,&, tawp). This is a contradiction, and then f(z ~ y) = rmin{f(x), f(y)} and
£(z ~ y) < max{¢(z),&(y)} for all z,y € X. Thus (X,C(s¢)) is a crossing cubic
subalgebra of X. O
13
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Theorem 4.8. Given a subset L of X, we define a crossing cubic structure (X, C(ﬁg))
as follows:

. [a’ﬁ} if z €L,
[ X —[0,1]], { [0,0] otherwise,
t fzel,

§: X = [-1,0], 2~ { 0 otherwise,

where o, B € (0,1] with « < 8 and t € [-1,0). Then L is a subalgebra of X if and
only if (X, C(f,g)) is a crossing cubic subalgebra of X .

Proof. We know that ¢(X, f, [, 8]) = L, ¢(X, f,[0,0]) = X, ¢X,&t) = L and
0(X,£,0) = X. Using Theorems 4.5 and 4.7, we have the desired result. O

Theorem 4.9. If (X7 C(fﬁg)) s a crossing cubic subalgebra of X, then the set
X(xeya) = € X | f(z) = F(0), &) = £(0)}
is a subalgebra of X.

Proof. Let x,y € X(X,C(M)). Then f(z) = f(0) = f(y) and &(z) = £(0) = £(y).
Thus

f(@ ~y) = min{f(z), f(y)} = rmin{f(0), f(0)} = f(0),

§(z ~ y) < max{¢(x),{(y)} = max{(0),£(0)} = £(0).

We get f(z ~ y) = f(0) and &(z ~ y) = £(0) by combining Proposition 4.3 and
(4.3). Thus ¢ ~ y € X(X o) So X(X Cire) is a subalgebra of X. O

(4.3)

The following theorem describes how to create a new crossing cubic subalgebra
from a given crossing cubic subalgebra in BCI-algebras.

Theorem 4.10. Let (X, C(f,g)) be a crossing cubic subalgebra on a BCIl-algebra X
and let (X, C(fwéw)) be a crossing cubic structure on X in which

(44) X =>[0,1], 2~ f(0~z)and &~ : X — [-1,0], z — £(0 ~ x).
Then (X7 C(fw)fw)) is a crossing cubic subalgebra of X.
Proof. Note that every BCI-algebra X satisfies:
(Va,y € X)(0~ (2~ y) = (0~ ) ~ (0~ y)).
It follows from (4.1) and (4.4) that
7@~ y) = [0~ (x> y) = F((0~ 2) ~ (0~ y))
7 rmin{f(0 ~ x), f(0 ~ y)} = rmin{ /™ (z), /7 (y)}

and
{7 (@~ y) =£0~ (z~y) =0~ z)~ (0~ y))
< max{{(0 ~ 2),£(0 ~ y)} = max{{™(z), £ (y) }.
Therefore (X ,C( fw,gw)) is a crossing cubic subalgebra of X. O
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