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1. Introduction

A (crisp) set A in a universe X can be defined in the form of its characteristic
function µA : X → {0, 1} yielding the value 1 for elements belonging to the set A and
the value 0 for elements excluded from the set A. So far most of the generalization of
the crisp set have been conducted on the unit interval [0, 1] and they are consistent
with the asymmetry observation. In other words, the generalization of the crisp set
to fuzzy sets relied on spreading positive information that fit the crisp point {1} into
the interval [0, 1]. In [1], Zadeh made an extension of the concept of a fuzzy set by an
interval-valued fuzzy set. Because no negative meaning of information is suggested,
we now feel a need to deal with negative information. To do so, everyone also feel a
need to supply mathematical tool. To attain such object, Jun et al. [2] introduced
and used a new function which is called negative-valued function. Using a fuzzy set
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and an interval-valued fuzzy set, Jun et al. [3] introduced the notion of cubic sets.
Fuzzy set theory is established in the paper [4]. In the traditional fuzzy sets, the
membership degrees of elements range over the interval [0, 1]. The traditional fuzzy
set representation cannot tell apart contrary elements from irrelevant elements. Only
with the membership degrees ranged on the interval [0, 1], it is difficult to express
the difference of the irrelevant elements from the contrary elements in fuzzy sets. If
a set representation could express this kind of difference, it would be more informa-
tive than the traditional fuzzy set representation. Based on these observations, Lee
[5] introduced an extension of fuzzy sets named bipolar-valued fuzzy sets.

In this paper, using the notion of N -functions and interval-valued fuzzy sets, we
introduce the notion of (inner, outer) crossing cubic structures which is an exten-
sion of bipolar-valued fuzzy sets, and investigate several properties. We define the
same direction order and the opposite direction order in crossing cubic structures.
Also, we define S-union, S-intersection, O-union and O-intersection of crossing cubic
structures, and discuss their related properties. We study crossing cubic subalgebras
by applying crossing cubic structures to BCK/BCI-algebras.

2. Preliminaries

A set X with a binary operation “ ” and a special element 0) is called BCI-
algebra if it satisfies:

(∀x, y, z ∈ X)(((x y) (x z)) (z  y) = 0),(2.1)

(∀x, y ∈ X)((x (x y)) y = 0),(2.2)

(∀x ∈ X)(x x = 0),(2.3)

(∀x, y ∈ X)(x y = 0, y  x = 0 ⇒ x = y).(2.4)

By a BCK-algebra we mean a BCI-algebra X satisfying the following condition:

(∀x ∈ X)(0 x = 0).(2.5)

A subset L of a BCK/BCI-algebra X is called a subalgebra of X if x y ∈ L for
all x, y ∈ L.

Denote by F(X, [−1, 0]) the collection of all functions from a set X to [−1, 0]. We
say that an element of F(X, [−1, 0]) is a negative-valued function from X to [−1, 0]
(briefly, N -function on X.) Define a relation ≤ on F(X, [−1, 0]) as follows:

ξ ≤ η ⇔ (∀x ∈ X)(ξ(x) ≤ η(x))(2.6)

for all ξ, η ∈ F(X, [−1, 0]). The complement of ξ ∈ F(X, [−1, 0]), denoted by ξc, is
defined as follows:

(∀x ∈ X)(ξc(x) = −1− ξ(x)).(2.7)

An interval number is defined to be a subinterval ã = [a−, a+] of [0, 1], where
0 ≤ a− ≤ a+ ≤ 1. The interval number ã = [a−, a+] with a− = a+ is denoted by
a. Denote by [[0, 1]] the set of all interval numbers. Let us define what is known
as refined minimum (briefly, rmin) of two elements in [[0, 1]]. We also define the
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symbols “<”, “4”, “=” in case of two elements in [[0, 1]]. Consider two interval
numbers ã1 :=

[
a−1 , a

+
1

]
and ã2 :=

[
a−2 , a

+
2

]
. Then

rmin {ã1, ã2} =
[
min

{
a−1 , a

−
2

}
,min

{
a+

1 , a
+
2

}]
,

ã1 < ã2 ⇔ a−1 ≥ a
−
2 , a

+
1 ≥ a

+
2 ,

and similarly we may have ã1 4 ã2 and ã1 = ã2. To say ã1 � ã2 (resp. ã1 ≺ ã2)
we mean ã1 < ã2 and ã1 6= ã2 (resp. ã1 4 ã2 and ã1 6= ã2). Let ãi ∈ [[0, 1]] where
i ∈ Λ. We define

rinf
i∈Λ

ãi =

[
inf
i∈Λ

a−i , inf
i∈Λ

a+
i

]
and rsup

i∈Λ
ãi =

[
sup
i∈Λ

a−i , sup
i∈Λ

a+
i

]
.

For any ã ∈ [[0, 1]], its complement, denoted by ãc, is defined to be the interval
number

ãc = [1− a+, 1− a−].

Let X be a nonempty set. A function f : X → [[0, 1]] is called an interval-valued
fuzzy set (briefly, an IVF set) in X. Let [[0, 1]]X stand for the set of all IVF sets
in X. For every f ∈ [[0, 1]]X and x ∈ X, f(x) = [f−(x), f+(x)] is called the degree
of membership of an element x to f, where f− : X → [0, 1] and f+ : X → [0, 1]
are fuzzy sets in X which are called a lower fuzzy set and an upper fuzzy set in X,
respectively. For simplicity, we denote f = [f−, f+]. For every f, g ∈ [[0, 1]]X , we
define

f ⊆ g ⇔ f(x) 4 g(x) for all x ∈ X,

and

f = g ⇔ f(x) = g(x) for all x ∈ X.

The complement f c of f ∈ [[0, 1]]X is defined as follows: f c(x) = f(x)c for all x ∈ X,
that is,

f c(x) = [1− f+(x), 1− f−(x)] for all x ∈ X.

3. Crossing cubic structures

Definition 3.1. By a crossing cubic structure on a set X, we mean a pair
(
X, C(f,ξ)

)
where

C(f,ξ) := {〈x, f(x), ξ(x)〉 | x ∈ X}(3.1)

in which f is an interval-valued fuzzy set in X and ξ is an N -function on X.

Definition 3.2. A crossing cubic structure
(
X, C(f,ξ)

)
on a set X is said to be

• inner, if it satisfies:

(∀x ∈ X)(−ξ(x) ∈ [f−(x), f+(x)]).(3.2)

• outer, if it satisfies:

(∀x ∈ X)(−ξ(x) ≤ f−(x) or −ξ(x) ≥ f+(x)).(3.3)
3
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Example 3.3. 1. Let f be an interval-valued fuzzy set in X. Then C(f,ξ0) :=
{〈x, f(x), ξ0(x)〉 | x ∈ X}, C(f,ξ−1) := {〈x, f(x), ξ−1(x)〉 | x ∈ X} and C(f,ξc) :=
{〈x, f(x), ξc(x)〉 | x ∈ X} are crossing cubic structures on X, where ξ0(x) = 0,
ξ−1(x) = −1 and ξc(x) = 1

2 (f−(x) + f+(x)) for all x ∈ X.

2. Let
(
[0, 1], C(f,ξ)

)
be a crossing cubic structure on [0, 1]. If f(x) = [0.4, 0.7] and

ξ(x) = −0.5 for all x ∈ [0, 1], then
(
[0, 1], C(f,ξ)

)
is an inner crossing cubic structure

on [0, 1]. If f(x) = [0.4, 0.7] and ξ(x) = −0.75 for all x ∈ [0, 1], then
(
[0, 1], C(f,ξ)

)
is an outer crossing cubic structure on [0, 1]. If f(x) = [0.4, 0.7] and ξ(x) = −x for
all x ∈ [0, 1], then

(
[0, 1], C(f,ξ)

)
is neither an inner crossing cubic structure nor an

outer crossing cubic structure .

Example 3.4. Define an interval-valued fuzzy set f and a negative-valued function
ξ on the real line R by

f : R→ [[0, 1]], x 7→

 [0, 0.4] if x < 0
[0.5, 0.6] if x = 0
[0.7, 0.9] if x > 0

and

ξ : R→ [−1, 0], x 7→ −1 +
1

1 + e−x
.

respectively, Then
(
R, C(f,ξ)

)
is a crossing cubic structure on the real line R.

Proposition 3.5. If a crossing cubic structure
(
X, C(f,ξ)

)
on a set X is not outer,

then f−(a) < −ξ(a) < f+(a) for some a ∈ X.

Proof. It is straightforward. �

Proposition 3.6. If a crossing cubic structure
(
X, C(f,ξ)

)
on a set X is inner and

outer, then

(∀x ∈ X)(−ξ(x) = f−(x) or −ξ(x) = f+(x)).(3.4)

Proof. Let
(
X, C(f,ξ)

)
be a crossing cubic structure on a set X which is inner and

outer. Then −ξ(x) ∈ [f−(x), f+(x)] and −ξ(x) ≤ f−(x) or −ξ(x) ∈ [f−(x), f+(x)]
and −ξ(x) ≥ f+(x) for all x ∈ X. It follows that −ξ(x) = f−(x) or −ξ(x) = f+(x).
This completes the proof. �

Definition 3.7. Let
(
X, C(f,ξ)

)
be a crossing cubic structure on a set X. The

complement of
(
X, C(f,ξ)

)
is defined to be the crossing cubic structure(
X, C(f,ξ)

)c
:=
(
X, C(fc,ξc)

)
,

where f c : X → [[0, 1]], x 7→ [1 − f+(x), 1 − f−(x)] and ξc : X → [−1, 0], x 7→
−1− ξ(x).

Example 3.8. Consider the crossing cubic structure
(
R, C(f,ξ)

)
on R which is given

in Example 3.4. Then f c and ξc are calculated as follows:

f c : R→ [[0, 1]], x 7→

 [0.6, 1] if x < 0
[0.4, 0.5] if x = 0
[0.1, 0.3] if x > 0

4
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and

ξc : R→ [−1, 0], x 7→ −1

1 + e−x
.

Hence the crossing cubic structure
(
X, C(f,ξ)

)c
:=
(
X, C(fc,ξc)

)
is the complement of(

R, C(f,ξ)
)
.

For a crossing cubic structure
(
X, C(f,ξ)

)
on a set X, ã = [a−, a+] ∈ [[0, 1]],

t ∈ [−1, 0] and ε ∈ {≥, >, ≤, <}, we define:

C(≥∧≥,ε)
(ã,t) := f≥∧≥ã ∩ ξεt

:= {x ∈ X | f−(x) ≥ a−, f+(x) ≥ a+} ∩ {x ∈ X | ξ(x) ε t},
(3.5)

C(≥∧>,ε)
(ã,t) := f≥∧>ã ∩ ξεt

:= {x ∈ X | f−(x) ≥ a−, f+(x) > a+} ∩ {x ∈ X | ξ(x) ε t},
(3.6)

C(>∧≥,ε)
(ã,t) := f>∧≥ã ∩ ξεt

:= {x ∈ X | f−(x) > a−, f+(x) ≥ a+} ∩ {x ∈ X | ξ(x) ε t},
(3.7)

C(>∧>,ε)
(ã,t) := f>∧>ã ∩ ξεt

:= {x ∈ X | f−(x) > a−, f+(x) > a+} ∩ {x ∈ X | ξ(x) ε t},
(3.8)

C(≤∨≤,ε)
(ã,t) := f≤∨≤ã ∩ ξεt

:= {x ∈ X | f−(x) ≤ a− or f+(x) ≤ a+} ∩ {x ∈ X | ξ(x) ε t},
(3.9)

C(≤∨<,ε)
(ã,t) := f≤∨<ã ∩ ξεt

:= {x ∈ X | f−(x) ≤ a− or f+(x) < a+} ∩ {x ∈ X | ξ(x) ε t},
(3.10)

C(<∨≤,ε)
(ã,t) := f<∨≤ã ∩ ξεt

:= {x ∈ X | f−(x) < a− or f+(x) ≤ a+} ∩ {x ∈ X | ξ(x) ε t},
(3.11)

C(<∨<,ε)
(ã,t) := f<∨<ã ∩ ξεt

:= {x ∈ X | f−(x) < a− or f+(x) < a+} ∩ {x ∈ X | ξ(x) ε t}.
(3.12)

In a crossing cubic structure
(
X, C(f,ξ)

)
on a set X, we define:

f≥a− := {x ∈ X | f−(x) ≥ a−}, f≥a+ := {x ∈ X | f+(x) ≥ a+},
f>a− := {x ∈ X | f−(x) > a−}, f>a+ := {x ∈ X | f+(x) > a+},

f≤a− := {x ∈ X | f−(x) ≤ a−}, f≤a+ := {x ∈ X | f+(x) ≤ a+},
f<a− := {x ∈ X | f−(x) < a−}, f<a+ := {x ∈ X | f+(x) < a+},

for all ã = [a−, a+] ∈ [[0, 1]].

Proposition 3.9. Let
(
X, C(f,ξ)

)
be a crossing cubic structure on a set X. For any

ã = [a−, a+] ∈ [[0, 1]], t ∈ [−1, 0] and ε ∈ {≥, >, ≤, <}, we have:

C(≥∧≥,ε)
(ã,t) = f≥a− ∩ f

≥
a+ ∩ ξεt , C

(≥∧>,ε)
(ã,t) = f≥a− ∩ f

>
a+ ∩ ξεt ,

C(>∧≥,ε)
(ã,t) = f>a− ∩ f

≥
a+ ∩ ξεt , C

(>∧>,ε)
(ã,t) = f>a− ∩ f

>
a+ ∩ ξεt .

5
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Proof. Straightforward. �

Proposition 3.10. Let
(
X, C(f,ξ)

)
be a crossing cubic structure on a set X. For

any ã = [a−, a+] ∈ [[0, 1]], t ∈ [−1, 0] and ε ∈ {≥, >, ≤, <}, we have:

C(≤∨≤,ε)
(ã,t) = (f≤a− ∩ ξ

ε
t ) ∪ (f≤a+ ∩ ξεt ),

C(≤∨<,ε)
(ã,t) = (f≤a− ∩ ξ

ε
t ) ∪ (f<a+ ∩ ξεt ),

C(<∨≤,ε)
(ã,t) = (f<a− ∩ ξ

ε
t ) ∪ (f≤a+ ∩ ξεt ),

C(<∨<,ε)
(ã,t) = (f<a− ∩ ξ

ε
t ) ∪ (f<a+ ∩ ξεt ).

Proof. Straightforward. �

Proposition 3.11. Let
(
X, C(f,ξ)

)
be a crossing cubic structure on a set X. For

any ã = [a−, a+] ∈ [[0, 1]], t ∈ [−1, 0] and ε ∈ {≥, >, ≤, <}, we have:

C(>∧>,ε)
(ã,t) ⊆ C(≥∧>,ε)

(ã,t) ⊆ C(≥∧≥,ε)
(ã,t) ,

C(>∧>,ε)
(ã,t) ⊆ C(>∧≥,ε)

(ã,t) ⊆ C(≥∧≥,ε)
(ã,t) ,

C(<∨<,ε)
(ã,t) ⊆ C(≤∨<,ε)

(ã,t) ⊆ C(≤∨≤,ε)
(ã,t) ,

C(<∨<,ε)
(ã,t) ⊆ C(<∨≤,ε)

(ã,t) ⊆ C(≤∨≤,ε)
(ã,t) .

Proof. Straightforward. �

Proposition 3.12. Let
(
X, C(f,ξ)

)
be a crossing cubic structure on a set X and let

ε ∈ {≥, >, ≤, <}. Let ã = [a−, a+], b̃ = [b−, b+] ∈ [[0, 1]] and t, s ∈ [−1, 0] be such

that ã ≺ b̃ and t < s. If ε ∈ {≥, >}, then C(≥∧≥,ε)
(b̃,s)

⊆ C(>∧>,>)
(ã,t) and C(≤∨≤,ε)

(ã,s) ⊆

C(<∨<,>)

(b̃,t)
. If ε ∈ {≤, <}, then C(≥∧≥,ε)

(b̃,t)
⊆ C(>∧>,<)

(ã,s) and C(≤∨≤,ε)
(ã,t) ⊆ C(<∨<,>)

(b̃,s)
.

Proof. Assume that ã ≺ b̃ and t < s. Then a− < b− and a+ < b+. If x ∈ C(≥∧≥,ε)
(b̃,s)

for ε ∈ {≥, >}, then x ∈ f≥b− ∩ f
≥
b+ ∩ ξ

ε
s . Thus f−(x) ≥ b− > a−, f+(x) ≥ b+ > a+

and ξ(x) ε s > t. This shows that x ∈ C(>∧>,>)
(ã,t) . So C(≥∧≥,ε)

(b̃,s)
⊆ C(>∧>,>)

(ã,t) . Let x ∈

C(≤∨≤,ε)
(ã,s) . Then x ∈ f≤a− ∩ ξ

ε
s or x ∈ f≤a+ ∩ ξεs . If x ∈ f≤a− ∩ ξ

ε
s , then f−(x) ≤ a− < b−

and ξ(x) ε s > t, that is, x ∈ f<b− ∩ ξ
>
t . If x ∈ f≤a+ ∩ ξεs , then f+(x) ≤ a+ < b+ and

ξ(x) ε s > t, that is, x ∈ f<b+ ∩ ξ
>
t . Hence x ∈ (f≤a+ ∩ ξ>t ) ∪ (f<b+ ∩ ξ

>
t ) = C(<∨<,>)

(b̃,t)
.

Similarly, we can verify that C(≥∧≥,ε)
(b̃,t)

⊆ C(>∧>,<)
(ã,s) and C(≤∨≤,ε)

(ã,t) ⊆ C(<∨<,>)

(b̃,s)
for

ε ∈ {≤, <}. �

Applying the De Morgan’s laws to Propositions 3.9 and 3.10 induces the following
results.

Proposition 3.13. Let
(
X, C(f,ξ)

)
be a crossing cubic structure on a set X, ã =

[a−, a+] ∈ [[0, 1]] and t ∈ [−1, 0]. For α =≥ (resp., >, ≤ and <), let αc =< (resp.,

≤, > and ≥). Then
(
C(α∧β,γ)

(ã,t)

)c
= fα

c

a−∪f
βc

a+∪ξγ
c

t and
(
C(α∨β,γ)

(ã,t)

)c
= (fα

c

a−∩f
βc

a+)∪ξγ
c

t

for α, β, γ ∈ {≥, >,≤, <}.
6
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Denote by CCS(X) the set of all crossing cubic structures on a set X. We define
a binary relation “l”, called the same direction order (briefly, S-order), on CCS(X)
as follows: (

X, C(f,ξ)
)
l
(
X, C(g,η)

)
⇔ f ⊆ g, ξ ≤ η(3.13)

for all
(
X, C(f,ξ)

)
,
(
X, C(g,η)

)
∈ CCS(X). It is clear that (CCS(X),l) is a poset.

For any
(
X, C(f,ξ)

)
∈ CCS(X), ã = [a−, a+] ∈ [[0, 1]] and t ∈ [−1, 0], we define a

scalar �-product and a scalar ∗-product of C(f,ξ) by (ã, t)� C(f,ξ) := C(ã�f,t�ξ) and
(ã, t) ∗ C(f,ξ) := C(ã∗f,t∗ξ) where

ã� f : X → [[0, 1]], x 7→ [min{a−, f−(x)},min{a+, f+(x)}],

t� ξ : X → [−1, 0], x 7→ min{t, ξ(x)},

ã ∗ f : X → [[0, 1]], x 7→ [max{a−, f−(x)},max{a+, f+(x)}],

t ∗ ξ : X → [−1, 0], x 7→ max{t, ξ(x)}.

Proposition 3.14. Let
(
X, C(f,ξ)

)
and

(
X, C(g,η)

)
be crossing cubic structures on a

set X, ã = [a−, a+], b̃ = [b−, b+] ∈ [[0, 1]] and t, s ∈ [−1, 0]. If ã 4 b̃ and t ≤ s, then

(X, (ã, t)� C(f,ξ)) l (X, (b̃, s)� C(f,ξ)) and (X, (ã, t) ∗ C(f,ξ)) l (X, (b̃, s) ∗ C(f,ξ)). If(
X, C(f,ξ)

)
l
(
X, C(g,η)

)
, then (X, (ã, t)� C(f,ξ)) l (X, (ã, t)� C(g,η)) and (X, (ã, t) ∗

C(f,ξ)) l (X, (ã, t) ∗ C(g,η)).

Proof. For any x ∈ X, we have

(ã� f)(x) = [min{a−, f−(x)},min{a+, f+(x)}]
4 [min{b−, f−(x)},min{b+, f+(x)}]

= (b̃� f)(x),

(t� ξ)(x) = min{t, ξ(x)} ≤ min{s, ξ(x)} = (s� ξ)(x),

(ã ∗ f)(x) = [max{a−, f−(x)},max{a+, f+(x)}]
4 [max{b−, f−(x)},max{b+, f+(x)}]

= (b̃ ∗ f)(x),

and (t ∗ ξ)(x) = max{t, ξ(x)} ≤ max{s, ξ(x)} = (s ∗ ξ)(x). Then (X, (ã, t)�C(f,ξ))l
(X, (b̃, s)�C(f,ξ)) and (X, (ã, t)∗C(f,ξ))l(X, (b̃, s)∗C(f,ξ)). Assume that

(
X, C(f,ξ)

)
l(

X, C(g,η)

)
. Then f ⊆ g and ξ ≤ η, that is, [f−(x), f+(x)] 4 [g−(x), g+(x)] and

ξ(x) ≤ η(x) for all x ∈ X. Thus

(ã� f)(x) = [min{a−, f−(x)},min{a+, f+(x)}]
4 [min{a−, g−(x)},min{a+, g+(x)}]
= (ã� g)(x)

and (t � ξ)(x) = min{t, ξ(x)} ≤ min{s, ξ(x)} = (s � ξ)(x) for all x ∈ X, that is,
ã� f ⊆ ã� g and t� ξ ≤ t� η. So (X, (ã, t)� C(f,ξ)) l (X, (ã, t)� C(g,η)). Also we

7
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have

(ã ∗ f)(x) = [max{a−, f−(x)},max{a+, f+(x)}]
4 [max{a−, g−(x)},max{a+, g+(x)}]
= (ã ∗ g)(x),

and (t ∗ ξ)(x) = max{t, ξ(x)} ≤ max{t, η(x)} = (t ∗ η)(x) for all x ∈ X. i.e.,
ã ∗ f ⊆ ã ∗ g and t ∗ ξ ≤ t ∗ η. Hence (X, (ã, t) ∗ C(f,ξ)) l (X, (ã, t) ∗ C(g,η)). �

Theorem 3.15. If we define a binary operation “·” on CCS(X) as follows:(
X, C(f,ξ)

)
·
(
X, C(g,η)

)
=
(
X, C(f∧rg,ξ∧η)

)
,(3.14)

where (f∧r g)(x) = rmin{f(x), g(x)} and (ξ∧η)(x) = min{ξ(x), η(x)} for all x ∈ X,
then (CCS(X), ·) is a semigroup.

Proof. Straightworwad. �

Definition 3.16. Let
(
X, C(f,ξ)

)
and

(
X, C(g,η)

)
be crossing cubic structures on a

set X. We define the equality “=” and the opposite direction order (briefly, O-order)
“�” in CCS(X) as follows:(

X, C(f,ξ)
)

=
(
X, C(g,η)

)
⇔ f = g, ξ = η,(

X, C(f,ξ)
)
�
(
X, C(g,η)

)
⇔ f ⊆ g, ξ ≥ η.

Theorem 3.17. (CCS(X),�) is a poset.

Proof. Straightforward. �

Definition 3.18. Let
{(
X, Ci(f,ξ)

)
| i ∈ Λ

}
be a family of crossing cubic structures

on a set X, where Λ is any index set and Ci(f,ξ) = {〈x, fi(x), ξi(x)〉 | x ∈ X}. Then

(i) the S-union, denoted by dS
i∈Λ

(
X, Ci(f,ξ)

)
, of

{(
X, Ci(f,ξ)

)
| i ∈ Λ

}
is defined to

be the crossing cubic structure

(
X, dS

i∈Λ
Ci(f,ξ)

)
in which

dS
i∈Λ
Ci(f,ξ) :=

{〈
x,

(
∪
i∈Λ

fi

)
(x),

(
∨
i∈Λ

ξi

)
(x)

〉
| x ∈ X

}
,

(ii) the S-intersection, denoted by eS
i∈Λ

(
X, Ci(f,ξ)

)
, of

{(
X, Ci(f,ξ)

)
| i ∈ Λ

}
is defined

to be the crossing cubic structure

(
X, eS

i∈Λ
Ci(f,ξ)

)
in which

eS
i∈Λ
Ci(f,ξ) :=

{〈
x,

(
∩
i∈Λ

fi

)
(x),

(
∧
i∈Λ

ξi

)
(x)

〉
| x ∈ X

}
,

(iii) the O-union, denoted by dO
i∈Λ

(
X, Ci(f,ξ)

)
, of

{(
X, Ci(f,ξ)

)
| i ∈ Λ

}
is defined to

be the crossing cubic structure

(
X,dO

i∈Λ
Ci(f,ξ)

)
in which

dO
i∈Λ
Ci(f,ξ) :=

{〈
x,

(
∪
i∈Λ

fi

)
(x),

(
∧
i∈Λ

ξi

)
(x)

〉
| x ∈ X

}
,

8
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(iv) the O-intersection, denoted by eO
i∈Λ

(
X, Ci(f,ξ)

)
, of
{(
X, Ci(f,ξ)

)
| i ∈ Λ

}
is defined

to be the crossing cubic structure

(
X,eO

i∈Λ
Ci(f,ξ)

)
in which

eO
i∈Λ
Ci(f,ξ) :=

{〈
x,

(
∩
i∈Λ

fi

)
(x),

(
∨
i∈Λ

ξi

)
(x)

〉
| x ∈ X

}
,

where

(
∪
i∈Λ

fi

)
(x) = rsup

i∈Λ
fi(x),

(
∨
i∈Λ

ξi

)
(x) = sup{ξi(x) | i ∈ Λ},(

∩
i∈Λ

fi

)
(x) = rinf

i∈Λ
fi(x) and

(
∧
i∈Λ

ξi

)
(x) = inf{ξi(x) | i ∈ Λ}.

Note that(
X, dS

i∈Λ
Ci(f,ξ)

)
=

(
X, C( ∪

i∈Λ
fi, ∨

i∈Λ
ξi)

)
,

(
X, eS

i∈Λ
Ci(f,ξ)

)
=

(
X, C( ∩

i∈Λ
fi, ∧

i∈Λ
ξi)

)
,(

X,dO
i∈Λ
Ci(f,ξ)

)
=

(
X, C( ∪

i∈Λ
fi, ∧

i∈Λ
ξi)

)
,

(
X,eO

i∈Λ
Ci(f,ξ)

)
=

(
X, C( ∩

i∈Λ
fi, ∨

i∈Λ
ξi)

)
.

Proposition 3.19. Given crossing cubic structures(
X, C(f,ξ)

)
,
(
X, C(g,η)

)
,
(
X, C(h,ζ)

)
and

(
X, C(k,%)

)
on a set X, we have

(1) if
(
X, C(f,ξ)

)
l
(
X, C(g,η)

)
, then

(
X, C(g,η)

)c l (X, C(f,ξ))c,
(2) if

(
X, C(f,ξ)

)
l
(
X, C(g,η)

)
and

(
X, C(f,ξ)

)
l
(
X, C(h,ζ)

)
, then(

X, C(f,ξ)
)
l
(
X, C(g,η)

)
eS
(
X, C(h,ζ)

)
,

(3) if
(
X, C(f,ξ)

)
l
(
X, C(h,ζ)

)
and

(
X, C(g,η)

)
l
(
X, C(h,ζ)

)
, then(

X, C(f,ξ)
)
dS
(
X, C(g,η)

)
l
(
X, C(h,ζ)

)
,

(4) if
(
X, C(f,ξ)

)
l
(
X, C(h,ζ)

)
and

(
X, C(g,η)

)
l
(
X, C(k,%)

)
, then(

X, C(f,ξ)
)
dS
(
X, C(g,η)

)
l
(
X, C(h,ζ)

)
dS
(
X, C(k,%)

)
and(

X, C(f,ξ)
)
eS
(
X, C(g,η)

)
l
(
X, C(h,ζ)

)
eS
(
X, C(k,%)

)
,

(5) if
(
X, C(f,ξ)

)
�
(
X, C(g,η)

)
, then

(
X, C(g,η)

)c � (
X, C(f,ξ)

)c
,

(6) if
(
X, C(f,ξ)

)
�
(
X, C(g,η)

)
and

(
X, C(f,ξ)

)
�
(
X, C(h,ζ)

)
, then(

X, C(f,ξ)
)
�
(
X, C(g,η)

)
eO
(
X, C(h,ζ)

)
,

(7) if
(
X, C(f,ξ)

)
�
(
X, C(h,ζ)

)
and

(
X, C(g,η)

)
�
(
X, C(h,ζ)

)
, then(

X, C(f,ξ)
)
dO
(
X, C(g,η)

)
�
(
X, C(h,ζ)

)
,

(8) if
(
X, C(f,ξ)

)
�
(
X, C(h,ζ)

)
and

(
X, C(g,η)

)
�
(
X, C(k,%)

)
, then(

X, C(f,ξ)
)
dO
(
X, C(g,η)

)
�
(
X, C(h,ζ)

)
dO
(
X, C(k,%)

)
and(

X, C(f,ξ)
)
eO
(
X, C(g,η)

)
�
(
X, C(h,ζ)

)
eO
(
X, C(k,%)

)
.

Proof. Straightforward. �

Theorem 3.20. If a crossing cubic structure
(
X, C(f,ξ)

)
on a set X is inner (resp.,

outer), then its complement is also inner (resp., outer).
9
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Proof. Assume that
(
X, C(f,ξ)

)
is an inner crossing cubic structure on a set X. Then

−ξ(x) ∈ [f−(x), f+(x)] = f(x), that is, f−(x) ≤ −ξ(x) ≤ f+(x) for all x ∈ X. It
follows that 1−f+(x) ≤ −ξc(x) ≤ 1−f−(x), i.e., −ξc(x) ∈ [1−f+(x), 1−f−(x)] =

f c(x) for all x ∈ X. Thus
(
X, C(f,ξ)

)c
is an inner crossing cubic structure on X. Now

if
(
X, C(f,ξ)

)
is an outer crossing cubic structure on a set X, then −ξ(x) ≤ f−(x) or

−ξ(x) ≥ f+(x) for all x ∈ X. So −ξc(x) = −(−1− ξ(x)) = 1 + ξ(x) ≥ 1− f−(x) or

−ξc(x) = −(−1− ξ(x)) = 1 + ξ(x) ≤ 1− f+(x) for all x ∈ X. Hence
(
X, C(f,ξ)

)c
is

an outer crossing cubic structure on X. �

Theorem 3.21. If
(
X, C(f,ξ)

)
and

(
X, C(g,η)

)
are inner crossing cubic structures on

a set X, then so is their O-union.

Proof. Let
(
X, C(f,ξ)

)
and

(
X, C(g,η)

)
be inner crossing cubic structures on a set X.

Then f−(x) ≤ −ξ(x) ≤ f+(x) and g−(x) ≤ −η(x) ≤ g+(x) for all x ∈ X. It follows
that

(f ∪ g)−(x) = max{f−(x), g−(x)} ≤ max{−ξ(x),−η(x)}
= −min{ξ(x), η(x)} = −(ξ ∧ η)(x)

and

−(ξ ∧ η)(x) = −min{ξ(x), η(x)} = max{−ξ(x),−η(x)}
≤ max{f+(x), g+(x)} = (f ∪ g)+(x)

for all x ∈ X. Thus
(
X, C(f,ξ)

)
dO
(
X, C(g,η)

)
is an inner crossing cubic structure on

X. �

Theorem 3.22. If
(
X, C(f,ξ)

)
and

(
X, C(g,η)

)
are inner crossing cubic structures on

a set X, then so is their O-intersection.

Proof. Let
(
X, C(f,ξ)

)
and

(
X, C(g,η)

)
be inner crossing cubic structures on a set X.

Then f−(x) ≤ −ξ(x) ≤ f+(x) and g−(x) ≤ −η(x) ≤ g+(x) for all x ∈ X. Thus

(f ∩ g)−(x) = min{f−(x), g−(x)} ≤ min{−ξ(x),−η(x)}
= −max{ξ(x), η(x)} = −(ξ ∨ η)(x)

and

−(ξ ∨ η)(x) = −max{ξ(x), η(x)} = min{−ξ(x),−η(x)}
≤ min{f+(x), g+(x)} = (f ∩ g)+(x)

for all x ∈ X. So
(
X, C(f,ξ)

)
eO

(
X, C(g,η)

)
is an inner crossing cubic structure on

X. �

In the following example, we know that the S-union and the S-intersection of
inner crossing cubic structures may not be an inner crossing cubic structure.

Example 3.23. 1. Let
(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
be crossing cubic structures

on [0, 1] in which f(x) = [0.1, 0.8], ξ(x) = −0.2, g(x) = [0.4, 0.9] and η(x) = −0.5
for all x ∈ [0, 1]. Then

(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
are inner crossing cubic

structures on [0, 1]. The S-union of
(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
is(

[0, 1], C(f,ξ)
)
dS
(
[0, 1], C(g,η)

)
=
(
[0, 1], C(f∪g,ξ∨η)

)
=
(
[0, 1], C(g,ξ)

)
10
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We can check that −ξ(x) = 0.2 /∈ [0.4, 0.9] = g(x) which shows that
(
[0, 1], C(f,ξ)

)
dS(

[0, 1], C(g,η)

)
is not an inner crossing cubic structure on [0, 1].

2. Let
(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
be crossing cubic structures on [0, 1] in

which f(x) = [0.2, 0.4], ξ(x) = −0.35, g(x) = [0.2, 0.3] and η(x) = −0.25 for all
x ∈ [0, 1]. Then

(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
are inner crossing cubic structures

on [0, 1]. The S-intersection of
(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
is(

[0, 1], C(f,ξ)
)
eS
(
[0, 1], C(g,η)

)
=
(
[0, 1], C(f∩g,ξ∧η)

)
=
(
[0, 1], C(g,ξ)

)
and it is not an inner crossing cubic structure on [0, 1] since −ξ(x) = 0.35 /∈
[0.2, 0.3] = g(x).

The following example shows that the S-union and the S-intersection of outer
crossing cubic structures may not be an outer crossing cubic structure.

Example 3.24. (1) Let
(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
be crossing cubic structures

on [0, 1] in which f(x) = [0.31, 0.53], ξ(x) = −0.76, g(x) = [0.72, 0.83] and η(x) =
−0.87 for all x ∈ [0, 1]. Then

(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
are outer crossing cubic

structures on [0, 1]. The S-union of
(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
is(

[0, 1], C(f,ξ)
)
dS
(
[0, 1], C(g,η)

)
=
(
[0, 1], C(f∪g,ξ∨η)

)
=
(
[0, 1], C(g,ξ)

)
and it is not an outer crossing cubic structure on [0, 1] since −ξ(x) = 0.76 ∈
[0.72, 0.83] = [g−(x), g+(x)].

(2) Let
(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
be crossing cubic structures on [0, 1] in

which f(x) = [0.4, 0.6], ξ(x) = −0.28, g(x) = [0.5, 0.7] and η(x) = −0.47 for all
x ∈ [0, 1]. Then

(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
are outer crossing cubic structures

on [0, 1]. The S-intersection of
(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
is(

[0, 1], C(f,ξ)
)
eS
(
[0, 1], C(g,η)

)
=
(
[0, 1], C(f∩g,ξ∧η)

)
=
(
[0, 1], C(f,η)

)
and it is not an outer crossing cubic structure on [0, 1] since −η(x) = 0.47 ∈
[0.4, 0.6] = [f−(x), f+(x)].

The O-union of two outer crossing cubic structures is not an outer crossing cubic
structure as seen in the following example.

Example 3.25. Let
(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
be crossing cubic structures on

[0, 1] in which f(x) = [0.4, 0.7], ξ(x) = −0.8, g(x) = [0.6, 0.9] and η(x) = −0.5 for all
x ∈ [0, 1]. Then

(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
are outer crossing cubic structures

on [0, 1]. The O-union of
(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
is(

[0, 1], C(f,ξ)
)
dO
(
[0, 1], C(g,η)

)
=
(
[0, 1], C(f∪g,ξ∧η)

)
=
(
[0, 1], C(g,ξ)

)
,

and it is not an outer crossing cubic structure on [0, 1].

The O-intersection of two outer crossing cubic structures is not an outer crossing
cubic structure as seen in the following example.

Example 3.26. Let
(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
be crossing cubic structures on

[0, 1] in which f(x) = [0.47, 0.75], ξ(x) = −0.83, g(x) = [0.68, 0.87] and η(x) = −0.45
11
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for all x ∈ [0, 1]. Then
(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
are outer crossing cubic

structures on [0, 1]. The O-intersection of
(
[0, 1], C(f,ξ)

)
and

(
[0, 1], C(g,η)

)
is(

[0, 1], C(f,ξ)
)
eO
(
[0, 1], C(g,η)

)
=
(
[0, 1], C(f∩g,ξ∨η)

)
=
(
[0, 1], C(f,η)

)
,

and it is not an outer crossing cubic structure on [0, 1].

4. Application to BCK/BCI-algebras

In this section, let X denote a BCK/BCI-algebra unless otherwise specified.

Definition 4.1. A crossing cubic structure
(
X, C(f,ξ)

)
on X is called a crossing

cubic subalgebra of X, if it satisfies:

(∀x, y ∈ X)

(
f(x y) < rmin{f(x), f(y)}
ξ(x y) ≤ max{ξ(x), ξ(y)}

)
.(4.1)

Example 4.2. Consider a BCK-algebra X = {0, 1, 2, 3} with the binary operation
 given by Table 1.

Table 1. Cayley table for the binary operation “ ”

 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 1 0 2
3 3 3 3 0

Let
(
X, C(f,ξ)

)
be a crossing cubic structure on X which is given by Table 2. It is

Table 2. Tabular representation for
(
X, C(f,ξ)

)
X f(x) ξ(x)
0 [0.33, 0.83] −0.8
1 [0.15, 0.56] −0.5
2 [0.33, 0.83] −0.7
3 [0.15, 0.56] −0.3

routine to verify that
(
X, C(f,ξ)

)
is a crossing cubic subalgebra of X.

Proposition 4.3. If
(
X, C(f,ξ)

)
is a crossing cubic subalgebra of X, then f(0) < f(x)

and ξ(0) ≤ ξ(x) for all x ∈ X.

Proof. Let
(
X, C(f,ξ)

)
be a crossing cubic subalgebra of X. Using (2.3) and (4.1),

we get

f(0) = f(x x) < rmin{f(x), f(y)}
= rmin{[f−(x), f−(x)], [f+(x), f+(x)]}
= [f−(x), f−(x)] = f(x)

and ξ(0) = ξ(x x) ≤ max{ξ(x), ξ(x)} = ξ(x) for all x ∈ X. �
12
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Theorem 4.4. Let
(
X, C(f,ξ)

)
be a crossing cubic structure on X. Then it is a

crossing cubic subalgebra of X if and only if f− and f+ are fuzzy subalgebras of X,
and ξ is an N -subalgebra of X.

Proof. It is easy to verify that if f− and f+ are fuzzy subalgebras of X, and ξ is an
N -subalgebra of X, then

(
X, C(f,ξ)

)
is a crossing cubic subalgebra of X.

Conversely, assume that
(
X, C(f,ξ)

)
is a crossing cubic subalgebra of X. It is clear

that ξ is an N -subalgebra of X. For any x, y ∈ X, we have

[f−(x y), f+(x y)] = f(x y) < rmin{f(x), f(y)}
= rmin{[f−(x), f+(x)], [f−(y), f+(y)]}
= [min{f−(x), f−(y)},min{f+(x), f+(y)}].

It follows that f−(x y) ≥ min{f−(x), f−(y)} and f+(x y) ≥ min{f+(x), f+(y)}.
Therefore f− and f+ are fuzzy subalgebras of X. �

Let
(
X, C(f,ξ)

)
be a crossing cubic structure on X. We define a level set of(

X, C(f,ξ)
)
, written as `

(
X, C(f,ξ)

)
, as follows:

`
(
X, C(f,ξ), [α, β], t

)
= `(X, f, [α, β]) ∩ `(X, ξ, t)(4.2)

where `(X, f, [α, β]) = {x ∈ X | f(x) < [α, β]} and `(X, ξ, t) = {x ∈ X | ξ(x) ≤ t}
for [α, β] ∈ [[0, 1]] and t ∈ [−1, 0]. We say that `(X, f, [α, β]) and `(X, ξ, t) are f -level
set and ξ-level set of

(
X, C(f,ξ)

)
with level indices [α, β] and t, respectively.

Theorem 4.5. If
(
X, C(f,ξ)

)
is a crossing cubic subalgebra of X, then its nonempty

f -level set and ξ-level set are subalgebras of X for all level indices.

Proof. Let [α, β] ∈ [[0, 1]] and t ∈ [−1, 0] be level indices of
(
X, C(f,ξ)

)
such that

`(X, f, [α, β]) and `(X, ξ, t) are nonempty. Let x, y ∈ `(X, f, [α, β]) and a, b ∈
`(X, ξ, t). Then f(x) < [α, β], f(y) < [α, β], ξ(a) ≤ t and ξ(b) ≤ t. It follows
from (4.1) that f(x  y) < rmin{f(x), f(y)} < rmin{[α, β], [α, β]} = [α, β] and
ξ(a  b) ≤ max{ξ(a), ξ(b)} ≤ max{t, t} = t. Thus x  y ∈ `(X, f, [α, β]) and
a b ∈ `(X, ξ, t). So `(X, f, [α, β]) and `(X, ξ, t) are subalgebras of X. �

Corollary 4.6. If
(
X, C(f,ξ)

)
is a crossing cubic subalgebra of X, then its nonempty

level set `
(
X, C(f,ξ), [α, β], t

)
is a subalgebra of X for all [α, β] ∈ [[0, 1]] and t ∈

[−1, 0].

Theorem 4.7. Let
(
X, C(f,ξ)

)
be a crossing cubic structure on X in which its

nonempty f -level set and ξ-level set are subalgebras of X for all level indices. Then(
X, C(f,ξ)

)
is a crossing cubic subalgebra of X.

Proof. Assume that `(X, f, [α, β]) and `(X, ξ, t) are nonempty subalgebras of X for
all level indices [α, β] ∈ [[0, 1]] and t ∈ [−1, 0]. Suppose that there exist x, y, a, b ∈
X such that f(x  y) ≺ rmin{f(x), f(y)} and ξ(a  b) > max{ξ(a), ξ(b)}.
Taking [αx, βy] := rmin{f(x), f(y)} and ta b := max{ξ(a), ξ(b)} induces x, y ∈
`(X, f, [αx, βy]) and a, b ∈ `(X, ξ, ta b). But x  y /∈ `(X, f, [αx, βy]) and a  b /∈
`(X, ξ, ta b). This is a contradiction, and then f(x  y) < rmin{f(x), f(y)} and
ξ(x  y) ≤ max{ξ(x), ξ(y)} for all x, y ∈ X. Thus

(
X, C(f,ξ)

)
is a crossing cubic

subalgebra of X. �
13
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Theorem 4.8. Given a subset L of X, we define a crossing cubic structure
(
X, C(f,ξ)

)
as follows:

f : X → [[0, 1]], x 7→
{

[α, β] if x ∈ L,
[0, 0] otherwise,

ξ : X → [−1, 0], x 7→
{
t if x ∈ L,
0 otherwise,

where α, β ∈ (0, 1] with α < β and t ∈ [−1, 0). Then L is a subalgebra of X if and
only if

(
X, C(f,ξ)

)
is a crossing cubic subalgebra of X.

Proof. We know that `(X, f, [α, β]) = L, `(X, f, [0, 0]) = X, `(X, ξ, t) = L and
`(X, ξ, 0) = X. Using Theorems 4.5 and 4.7, we have the desired result. �

Theorem 4.9. If
(
X, C(f,ξ)

)
is a crossing cubic subalgebra of X, then the set

X(X,C(f,ξ)) := {x ∈ X | f(x) = f(0), ξ(x) = ξ(0)}

is a subalgebra of X.

Proof. Let x, y ∈ X(X,C(f,ξ)). Then f(x) = f(0) = f(y) and ξ(x) = ξ(0) = ξ(y).

Thus

f(x y) < rmin{f(x), f(y)} = rmin{f(0), f(0)} = f(0),

ξ(x y) ≤ max{ξ(x), ξ(y)} = max{ξ(0), ξ(0)} = ξ(0).
(4.3)

We get f(x  y) = f(0) and ξ(x  y) = ξ(0) by combining Proposition 4.3 and
(4.3). Thus x y ∈ X(X,C(f,ξ)). So X(X,C(f,ξ)) is a subalgebra of X. �

The following theorem describes how to create a new crossing cubic subalgebra
from a given crossing cubic subalgebra in BCI-algebras.

Theorem 4.10. Let
(
X, C(f,ξ)

)
be a crossing cubic subalgebra on a BCI-algebra X

and let
(
X, C(f ,ξ )

)
be a crossing cubic structure on X in which

f : X → [[0, 1]], x 7→ f(0 x) and ξ : X → [−1, 0], x 7→ ξ(0 x).(4.4)

Then
(
X, C(f ,ξ )

)
is a crossing cubic subalgebra of X.

Proof. Note that every BCI-algebra X satisfies:

(∀x, y ∈ X)(0 (x y) = (0 x) (0 y)).

It follows from (4.1) and (4.4) that

f (x y) = f(0 (x y)) = f((0 x) (0 y))

< rmin{f(0 x), f(0 y)} = rmin{f (x), f (y)}
and

ξ (x y) = ξ(0 (x y)) = ξ(0 x) (0 y))

≤ max{ξ(0 x), ξ(0 y)} = max{ξ (x), ξ (y)}.

Therefore
(
X, C(f ,ξ )

)
is a crossing cubic subalgebra of X. �
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