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Abstract. Zadeh initiated fuzzy sets, as a generalization, Jun et al.
introduced the notion of a cubic set. Pawlak initiated rough set theory to
study incomplete and insufficient information. Dubois, Prade first investi-
gated fuzzy rough set and rough fuzzy set. Then many researchers studied
the theory of rough sets in variously fuzzy structures. In the paper, we
define two rough operators on cubic sets by means of a cubic relation, and
investigate some of their properties with respect to two systems operators
on cubic sets.
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1. Introduction

In 1965, Zadeh [1] initiated fuzzy sets. As a generalization, Jun et al. [2] intro-
duced the notion of a cubic set. After then, Kang and Kim [3] defined a mapping
of cubic sets, Kim et al. [4] investigated a cubic relation between cubic sets. The
related contents may be referred [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

Pawlak initiated rough set theory to study incomplete and insufficient information
[16]. As a generalization, Yao studied two rough operators induced by an arbitrary
binary relation [17]. Dubois, Prade first investigated fuzzy rough set and rough
fuzzy set in[18]. After that time, from the point of view of the theory of fuzzy sets,
many researchers studied the theory of rough sets in variously fuzzy structures, for
example: fuzzy sets, L-sets, Hesitant fuzzy sets, interval fuzzy sets, fuzzy soft sets,
intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, etc.. See [19, 20,
21, 22, 23]

In the paper, we define two rough approximations in cubic sets induced by a cubic
relation. The contents are arranged into three parts, Section 3: Rough cubic sets,
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Section 4: A equivalence definition. In Section 2, we give an overview of rough sets
and cubic sets, which surveys Preliminaries

2. Preliminaries

In the section, we introduce some main notions for each area, i.e., rough sets
[16, 17], fuzzy sets[1], interval-valued fuzzy sets [23, 24], and cubic sets [2, 4].

2.1. Rough Sets. In rough set theory, the approximation of an arbitrary subset
of a universe by two definable subsets are called lower and upper approximations,
which correspond to two rough operators. The two rough operators were first defined
by means of a given indiscernibility relation in [16]. Usually indiscernibility relations
are supposed to be equivalences.

Let (X,R) be an approximation space, and R ⊆ X×X be an equivalence relation,
then for A ⊆ X, two subsets R(A) and R(A) of X are defined:

R(A) = {x ∈ X | [x]R ⊆ A}, R(A) = {x ∈ X | [x]R ∩A 6= ∅},

where [x]R = {y ∈ X | xRy}.
If R(A) = R(A), A is called a definable set; if R(A) 6= R(A), A is called an

undefinable set, and (R(A), R(A)) is referred to as a pair of rough set. Therefore, R
and R are called two rough operators.

Furthermore, as a generalization, in [17], Yao defined the two rough operators by
an arbitrary binary relation. Suppose R is a binary relation on X, for x ∈ X, let
r(x) = {y | xRy}, then a pair of lower and upper approximations is defined: for
A ⊆ X,

apprA = {x | r(x) ⊆ A}, apprA = {x | r(x) ∩A 6= ∅}.

2.2. Fuzzy sets. In the section, we introduce some basic definitions related to
fuzzy sets, fuzzy relations (See [1]).

For a set X, a mapping λ : X → I is called a fuzzy set in X, where I = [0, 1].
The collection of all fuzzy sets in X is denoted by IX . In particular, 0 and 1 denote
the fuzzy empty set and the fuzzy whole set in X, respectively.

For any λ, µ ∈ IX , the join (∨) and meet (∧) of λ and µ, denoted by λ ∨ µ and
λ ∧ µ, are defined as follows: for each x ∈ X,

(λ ∨ µ)(x) = max{λ(x), µ(x)}, (λ ∧ µ)(x) = min{λ(x), µ(x)}.

For any family (λj)j∈J of fuzzy sets in X, the join (∨) and meet (∧) of (λj)j∈J ,
denoted by

∨
j∈J λj and

∧
j∈J λj , are defined as follows: for each x ∈ X,

(
∨
j∈J

λj)(x) = supj∈Jλj(x), (
∧
j∈J

λj)(x) = infj∈Jλj(x).

For two sets X,Y , r ∈ IX×Y is called a fuzzy relation from X to Y . In particular,
r ∈ IX×X is called a fuzzy relation on X.
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2.3. Interval-valued fuzzy sets. In the section, we list some basic definitions
related to interval-valued fuzzy sets and interval-valued fuzzy relations (See [23, 24]).

The set of all closed subintervals of I is denoted by [I], and members of [I] are

called interval numbers and are denoted by ã, b̃, c̃, etc., where ã = [a−, a+] and
0 ≤ a− ≤ a+ ≤ 1. In particular, if a− = a+, then we write as ã = a.

We define relations � and = on [I] as follows:

(∀ ã, b̃ ∈ [I])(ã � b̃⇐⇒ a− ≤ b− and a+ ≤ b+),

(∀ ã, b̃ ∈ [I])(ã = b̃⇐⇒ ã � b̃ and ã � b̃), i.e.,

(∀ ã, b̃ ∈ [I])(ã = b̃⇐⇒ a− = b− and a+ = b+).

To say ã ≺ b̃, we mean ã � b̃ and ã 6= b̃.

For any ã, b̃ ∈ [I], their minimum and maximum, denoted by ã ∧ b̃ and ã ∨ b̃
are defined as follows:

ã ∧ b̃ = [a− ∧ b−, a+ ∧ b+], ã ∨ b̃ = [a− ∨ b−, a+ ∨ b+].

Let (ãj)j∈J ⊂ [I]. Then its inf and sup, denoted by
∧

j∈J ãj and
∨

j∈J ãj , are
defined as follows:∧

j∈J
ãj = [

∧
j∈J

a−j ,
∧
j∈J

a+j ],
∨
j∈J

ãj = [
∨
j∈J

a−j ,
∨
j∈J

a+j ].

For a nonempty set X, a mapping A : X → [I] is called an interval-valued fuzzy
set (briefly, an IVF set) in X. Let [I]X denote the set of all IVF sets in X. For each
A ∈ [I]X and x ∈ X, A(x) = [A−(x), A+(x)] is called the degree of membership of an
element x to A, where A−, A+ ∈ IX are called a lower fuzzy set and an upper fuzzy
set in X, respectively. For each A ∈ [I]X , we write A = [A−, A+]. In particular, 0̃

and 1̃ denote the interval-valued fuzzy empty set and the interval-valued fuzzy whole
set in X, respectively. We define relations ⊂ and = on [I]X as follows:

(∀ A, B ∈ [I]X)(A ⊂ B ⇐⇒ (x ∈ X)(A(x) � B(x)),

(∀ A, B ∈ [I]X)(A = B ⇐⇒ (x ∈ X)(A(x) = B(x)).

For each A ∈ [I]X , the complement of A, denoted by Ac, is defined as follows:
for each x ∈ X,

Ac(x) = [1−A+(x), 1−A−(x)].

For any (Aj)j∈J ⊂ [I]X , its intersection
⋂

j∈J Aj and union
⋃

j∈J Aj are defined,
respectively as follows: for each x ∈ X,

(
⋂
j∈J

Aj)(x) =
∧
j∈J

Aj(x), (
⋃
j∈J

Aj)(x) =
∨
j∈J

Aj(x).

For two sets X, Y , R ∈ [I]X×Y is called an interval-valued fuzzy relation(briefly,
IVF relation) from X to Y . In particular, R ∈ [I]X×X is called an IVF relation on
X.
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2.4. Cubic sets and cubic relations. As a generalization of Zadeh’s fuzzy set,
the notions of a cubic fuzzy set and a cubic fuzzy relation are introduced in [2, 4].

Definition 2.1 ([2]). Let X be a nonempty set. Then a complex mapping A =
〈A, λ〉 : X → [I]× I is called a cubic set in X.

In special, a cubic set A = 〈A, λ〉 in which A(x) = 1 and λ(x) = 1 (resp. A(x) = 0

and λ(x) = 0) for each x ∈ X is denoted by 0̂ (resp. 1̂). In this case, 0̂ (resp. 1̂) will
be called a cubic empty (resp. whole) set in X.

A cubic set A = 〈A, λ〉 in which A(x) = 0 and λ(x) = 1 (resp. A(x) = 1 and
λ(x) = 0) for each x ∈ X is denoted by 0̈ (resp. 1̈).

We denote the set of all cubic sets in X as ([I]× I)X .

Example 2.2. Let X = {a, b, c} be a set, A be the interval fuzzy set and λ be the
fuzzy set on X given, respectively by the following tables:

X a b c
A =< A, λ > < [0.3, 0.7], 0.5 > < [0.3, 0.4], 0.7 > < [0.1, 0.6], 0.3 >

Table 2.1

Then A =< A, λ > is a cubic set in X.

Definition 2.3 ([2]). Let A = 〈A, λ〉 , B = 〈B,µ〉 ∈ ([I]× I)X . Then we define the
following relations:

(i) (Equality) A = B ⇔ A = B and λ = µ,
(ii) (P-order) A < B ⇔ A ⊂ B and λ ≤ µ,
(iii) (R-order) A b B ⇔ A ⊂ B and λ ≥ µ

Definition 2.4 ([2]). Let A = 〈A, λ〉 , B = 〈B,µ〉 ∈ ([I] × I)X and let (Aj)j∈J =
(〈Aj , λj〉)j∈J ⊂ ([I]×I)X . Then the complement Ac of A, P-union t, P-intersection
u, R-union d and R-intersection e are defined as follows, respectively: for each
x ∈ X,

(i) (Complement) Ac(x) = 〈Ac(x), λc(x)〉,
(ii) (P-union) (A t B)(x) = 〈(A ∪B)(x), (λ ∨ µ)(x)〉,

(tj∈JAj)(x) =
〈

(
⋃

j∈J Aj)(x), (
∨

j∈J λj)(x)
〉

,

(iii) (P-intersection) (A u B)(x) = 〈(A ∩B)(x), (λ ∧ µ)(x)〉,
(uj∈JAj)(x) =

〈
(
⋂

j∈J Aj)(x), (
∧

j∈J λj)(x)
〉

,

(iv) (R-union) (A d B)(x) = 〈(A ∪B)(x), (λ ∧ µ)(x)〉,
(dj∈JAj)(x) =

〈
(
⋃

j∈J Aj)(x), (
∧

j∈J λj)(x)
〉

,

(v) (R-intersection) (A e B)(x) = 〈(A ∩B)(x), (λ ∨ µ)(x)〉,
(ej∈JAj)(x) =

〈
(
⋂

j∈J Aj)(x), (
∨

j∈J λj)(x)
〉

.

For more references,see [25, 26, 27, 28, 29, 30].

In special, for cubic sets 〈ã, λ〉 ,
〈
b̃, µ

〉
, 〈ãj , λj〉 ,

〈
b̃j , µj

〉
(j ∈ J), we also adopt

the above symbols:

〈ã, λ〉 <
〈
b̃, µ

〉
⇔ ã � b̃ and λ ≤ µ, < ã, λ >=< b̃, µ >⇔ ã = b̃ and λ = µ,
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〈ã, λ〉 t
〈
b̃, µ

〉
=

〈
ã ∨ b̃, λ ∨ µ

〉
, 〈ã, λ〉 u

〈
b̃, µ

〉
=

〈
ã ∧ b̃, λ ∧ µ

〉
,⊔

j∈J
〈ãj , λj〉 =

〈 ∨
j∈J

ãj ,
∨
j∈J

λj

〉
, uj∈J 〈ãj , λj〉 =

〈 ∧
j∈J

ãj ,
∧
j∈J

λj

〉
,

〈ã, λ〉 b
〈
b̃, µ

〉
⇔ ã � b̃ and λ ≥ µ.

Cubic relations are cubic sets, we have the following example [4].

Example 2.5. Let X = {a, b, c} be a set, let R be the IVF relation and r be the
fuzzy relation on X given, respectively by the following tables:

R =< R, r > a b c
a 〈[0.3, 0.7], 06〉 〈[0.4, 0.8], 0.4〉 〈[0.1, 0.6], 0.〉
b 〈[0.1, 0.6], 0.8〉 〈[0, 1], 0.5〉 〈[0.2, 0.5], 0.9〉
c 〈[0.4, 0.9], 0.4〉 〈[0.3, 0.8], 0.7〉 〈[0, 1], 0.6〉

Table 2.2

Then clearly, R =< R, r > is a cubic relation on X.

3. Rough cubic sets

In Section 2.4, we know there exist two systems operators P-order, P-union, P-
intersection and R-order,R-union, R-intersection on cubic sets. So we define rough
operators on cubic sets induced by a cubic relation, and investigate some of their
properties respectively.

3.1. Rough cubic sets I. In the section, we investigate rough cubic sets with the
operators P-order, P-union, P-intersection.

Definition 3.1. Suppose X is a universe set, R =< R, r > is a cubic relation, and
two rough operators NP , HP (shorthand for N,H) are defined as follows, for every
cubic set A =< A, λ > on X,

N(A)(x) = uy∈XA(y) tRc(y, x), H(A)(x) =
⊔
y∈X
A(y) uR(x, y).

If N(A) = H(A), then A is called a definable cubic set; otherwise, A is called an
undefinable cubic set. (N(A), H(A)) is referred to as a pair of cubic rough set [31].

Next, we introduce some examples.

Example 3.2. Suppose A and R are defined as Examples 2.2 and 2.5, then we
obtain N(A) and H(A) as follows.

X a b c
N(A) 〈[0.1, 0.6], 0.5〉 〈[0.2, 0.7], 0.3〉 〈[0.1, 0.8], 0.4〉

Table 3.1

Where
323
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N(A)(a) = uy∈XA(y) tRc(y, a)
= (A(a) tRc(a, a)) u (A(b) tRc(b, a)) u (A(c) tRc(c, a))
= (〈[0.3, 0.7], 0.5〉 t 〈[0.3, 0.7], 0.6〉c) u (〈[0.3, 0.4], 0.7〉
t 〈[0.1, 0.6], 0.8〉c) u (〈[0.1, 0.6], 0.3〉 t 〈[0.4, 0.9], 0.4〉c)

= (〈[0.3, 0.7], 0.5〉 t 〈[0.3, 0.7], 0.4〉) u (〈[0.3, 0.4], 0.7〉
t 〈[0.4, 0.9], 0.2〉) u (〈[0.1, 0.6], 0.3〉 t 〈[0.1, 0.6], 0.6〉)

= 〈[0.3, 0.7], 0.5〉 u 〈[0.4, 0.9], 0.7〉 u 〈[0.1, 0.6], 0.6〉
= 〈[0.1, 0.6], 0.5〉.

In the similar way, we obtain

N(A)(b) = 〈[0.2, 0.7], 0.3〉 , N(A)(c) = 〈[0.1, 0.8], 0.4〉 .
and

X a b c
H(A) 〈[0.3, 0.7], 0.5〉 〈[0.1, 0.6], 0.5〉 〈[0.3, 0.7], 0.7〉

Table 3.2

Where
H(A)(a) =

⊔
y∈X
A(y) uR(a, y)

= (A(a) uR(a, a)) t (A(b) uR(a, b)) t (A(c) uR(a, c))
= (〈[0.3, 0.7], 0.5〉 u 〈[0.3, 0.7], 0.6〉) t (〈[0.3, 0.4], 0.7〉
u 〈[0.4, 0.8], 0.4〉) t (〈[0.1, 0.6], 0.3〉 u 〈[0.1, 0.6], 0.7〉

= 〈[0.3, 0.7], 0.5〉 t 〈[0.3, 0.4], 0.4〉 t 〈[0.1, 0.6], 0.3〉
= 〈[0.3, 0.7], 0.5〉.

In the similar way, we obtain

H(A)(b) = 〈[0.1, 0.6], 0.5〉 , H(A)(c) = 〈[0.3, 0.7], 0.7〉 .

Third, we investigate some properties of the two rough operators.
In the classical case, N and H are monotone increasing, i.e., if A ⊆ B, N(A) ⊆

N(B) and H(A) ⊆ H(B) hold. For the P-order <, we obtain

Proposition 3.3. (1) N(1̂) = 1̂ , H(0̂) = 0̂,
(2) A < B ⇒ N(A) < N(B),
(3) A < B ⇒ H(A) < H(B),

For every A =< A, λ >, the complement of A is defined by Ac = 〈Ac, λc〉, and
Acc = A, combine with the two rough operator N, H, we have

Proposition 3.4. Suppose A = 〈A, λ〉 is a cubic set, R = 〈R, r〉 is symmetric, we
have

(1) H(Ac) = (N(A))c,
(2) (H(A))c = N(Ac)

Proof. (1) For every x ∈ X, we have
H(Ac)(x) =

⊔
y∈X
Ac(y) uR(x, y)

=
⊔

y∈X
(A(y) tRc(x, y))c
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= (uy∈XA(y) tRc(x, y))c

= (uy∈XA(y) tRc(y, x))c

= (N(A)(x))c.
Then H(Ac) = (N(A))c.

(2) In the similar way. �

Note that R = 〈R, r〉 is said to be symmetric, if for every x, y ∈ X, R(x, y) =
R(y, x), r(x, y) = r(y, x)[4].

Combine with the operators P-order, P-union, P-intersection and the two rough
operators N,H, we obtain

Proposition 3.5. Suppose A = 〈A, λ〉 ,B = 〈B,µ〉 are two cubic sets, we have
(1) N(A) tN(B) < N(A t B),
(2) N(A u B) = N(A) uN(B),
(3) H(A t B) = H(A) tH(B),
(4) H(A u B) < H(A) uH(B).

Proof. (1) Since A ⊂ A ∪B,B ⊂ A ∪B, N(A) tN(B) < N(A t B). The converse
does not hold (See Example 3.6).

(2) For every x ∈ X,
N(A u B)(x) = uy∈X(A u B)(y) tRc(y, x)

= uy∈X(A(y) u B(y)) tRc(y, x)
= uy∈X(A(y) tRc(y, x)) u (B(y) tRc(y, x))
= (uy∈XA(y) tRc(y, x)) u (uy∈XB(y) tRc(y, x))
= N(A)(x) uN(B)(x).

Then N(A) uN(B) = N(A u B).
(3) For every x ∈ X,

H(A t B)(x) =
⊔

y∈X
(A ∪ B)(y) uR(x, y)

=
⊔

y∈X
(A(y) t B(y)) uR(x, y)

=
⊔

y∈X
(A(y) uR(x, y)) t (B(y) uR(x, y))

= (
⊔

y∈X
A(y) uR(x, y)) t (

⊔
y∈X
B(y) uR(x, y))

= H(A)(x) tH(B)(x).
Then H(A) tH(B) = H(A t B).

(4) Since A u B < A, A u B < B, H(A u B) < H(A) uH(B). �

The converse of Proposition 3.5 (1) does not hold (See the following example).

Example 3.6. Let X = {a, b} be a set, and R a cubic relation, A, B, AtB cubic
sets inn X given, respectively by the following tables:

X a b
A 〈[0.1, 0.2], 1〉 〈[0.6, 0.7], 1〉
B 〈[0.3, 0.4], 1〉 〈[0.2, 0.3], 1〉
A t B 〈[0.3, 0.4], 1〉 〈[0.6, 0.7], 1〉

Table 3.3
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R a b
a 〈1,1〉 〈[0, 0.5], 1〉
b 〈[0.5, 1], 1〉 〈1,1〉

Table 3.4

Then we have
N(A)(a) = (A(a) tRc(a, a)) u (A(b) tRc(a, b))

= (〈[0.1, 0.2], 1 > t 〈0,0〉) u (〈[0.6, 0.7], 1〉 t < [0.5, 1], 0〉)
= 〈[0.1, 0.2], 1〉 u 〈[0.6, 1], 1〉 = 〈[0.1, 0.2], 1〉,

N(B)(a) = (B(a) tRc(b, a)) u (B(b) tRc(b, b))
= (〈[0.3, 0.4], 1〉 t 〈[0, 0.5], 0〉) u (〈[0.2, 0.3], 1〉 t 〈0,0〉
= 〈[0.3, 0.5], 1〉 u 〈[0.2, 0.3], 1〉 = 〈[0.2, 0.3], 1〉,

N(A t B)(a) = ((A t B)(a) tRc(a, a)) u ((A t B) tRc(a, b))
= (〈[0.3, 0.4], 1〉 t 〈0,0〉) u (〈[0.6, 0.7], 1〉 t 〈[0.5, 1], 0〉)
= 〈[0.3, 0.4], 1〉 u 〈[0.6, 1], 1〉 = 〈[0.3, 0.4], 1〉.

Thus we get

N(A)(a) tN(B)(a) = 〈[0.2, 0.3], 1〉 6= 〈[0.3, 0.4], 1〉 = N(A t B)(a).

So N(A) tN(B) 6= N(A t B).

Suppose {Aj , j ∈ J} is a family of cubic sets, about P-order, P-union and P-
intersection, we have

Proposition 3.7. Suppose Aj , j ∈ J is a family of cubic sets, we have
(1) tj∈JN(Aj∈J) < N(tj∈JAj),
(2) N(uj∈JAj) = uj∈JN(Aj∈J),
(3) tj∈JH(Aj∈J) = H(tj∈JAj),
(4) H(uj∈JAj) < uj∈JH(Aj).

So the set {N(A),<} forms a u-semilattice with the maximal element 1̂. The

set {H(A),<} also forms a t-semilattice with the minimal element 0̂.
We consider a special case. R is reflexive.

A cubic relationR = 〈R, r〉 is said to be reflexive, if for every x ∈ X, R(x, x) = 1,

r(x, x) = 1 [4], i.e., R(x, x) = 1̂.

Proposition 3.8. Suppose A =< A, λ > is a cubic set, R =< R, r > is reflexive,
we have

(1) N(A) < A,
(2) A < H(A).

Proof. (1) For each x ∈ X,
N(A)(x) = uy∈XA(y) tRc(y, x)

< A(x) tRc(x, x)
= A(x) t 〈1,1〉c
= A(x) t 〈0,0〉
= A(x).

Then N(A) < A.
(2) For each x ∈ X,
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H(A)(x) =
⊔

y∈X
A(y) uR(x, y)

= A(x) uR(x, x)
= A(x) u 〈1,1〉
= A(x).

Then A < H(A). �

3.2. Rough cubic sets II. In the section, we define rough cubic sets with these
operators R-order, R-union and R-intersection.

Definition 3.9. Suppose X is a universe set, R =< R, r > is a cubic relation, and
two rough operators NR, HR are defined as follows, for every cubic set A = 〈A, λ〉
in X,

NR(A)(x) = ey∈XA(y) dRc(y, x), HR(A)(x) = dy∈XA(y) eR(x, y).

If NR(A) = HR(A), then A is called a definable cubic set; otherwise, A is called
an undefinable cubic set. (NR(A), HR(A)) is referred to as a pair of cubic rough set
[31].

Next, we give an example to computer NR(A), HR(A).

Example 3.10. Suppose X, A,R defined as Example 3.2. Then
NR(A)(a) = ey∈XA(y) dRc(y, a)

= (A(a) dRc(a, a)) e (A(b) dRc(b, a)) e (A(c) dRc(c, a))
= (〈[0.3, 0.7], 0.5〉 d 〈[0.3, 0.7], 0.6〉c) e (〈[0.3, 0.4], 0.7〉
d 〈[0.1, 0.6], 0.8〉c) e (〈[0.1, 0.6], 0.3〉 d 〈[0.4, 0.9], 0.4〉c)

= (〈[0.3, 0.7], 0.5〉 d 〈[0.3, 0.7], 0.4〉) e (〈[0.3, 0.4], 0.7〉
d 〈[0.4, 0.9], 0.2〉) e (〈[0.1, 0.6], 0.3〉 d 〈[0.1, 0.6], 0.6〉)

= 〈[0.3, 0.7], 0.4〉 e 〈[0.4, 0.9], 0.2〉 e 〈[0.1, 0.6], 0.3〉
= 〈[0.1, 0.6], 0.4〉,

HR(A)(a) = dy∈XA(y) eR(a, y)
= (A(a) eR(a, a)) d (A(b) eR(a, b)) d (A(c) eR(a, c))
= (〈[0.3, 0.7], 0.5〉 e 〈[0.3, 0.7], 0.6〉) d (〈[0.3, 0.4], 0.7〉
e 〈[0.4, 0.8], 0.4〉) d (〈[0.1, 0.6], 0.3〉 e 〈[0.1, 0.6], 0.7〉

= 〈[0.3, 0.7], 0.6〉 d 〈[0.3, 0.4], 0.7〉 d 〈[0.1, 0.6], 0.7〉
= 〈[0.3, 0.7], 0.6〉.

Similarly to Proposition 3.3, for R-order, we have

Proposition 3.11. (1) NR(1̈) = 1̈, HR(0̈) = 0̈,
(2) A b B ⇒ NR(A) b NR(B),
(3) A b B ⇒ HR(A) b HR(B).

Propositions 3.4 also holds for the R-order.

Proposition 3.12. Suppose A = 〈A, λ〉 is a cubic set and R = 〈R, r〉 is symmetric.
Then we have

(1) HR(Ac) = (NR(A))c,
(2) (HR(A))c = NR(Ac).

About R-order, R-union, R-intersection, we have the following proposition.
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Proposition 3.13. Suppose A and B are two cubic sets. Then we have
(1) NR(A) dNR(B) b NR(A d B),
(2) HR(A) dHR(B) = HR(A d B),
(3) NR(A e B) = NR(A) eNR(B),
(4) HR(A e B) b HR(A) eHR(B).

Proof. Similarly to Proposition 3.5. �

Furthermore, suppose {Aj , j ∈ J} is a family of cubic sets, about R-order, R-
union and R-intersection, we also have

Proposition 3.14. Suppose Aj , j ∈ J is a family of cubic sets. Then we have
(1) dj∈JNR(Aj∈J) b NR(dj∈JAj),
(2) dj∈JHR(Aj∈J) = HR(dj∈JAj),
(3) NR(ej∈JAj) = ej∈JNR(Aj∈J),
(4) HR(ej∈JAj) b ej∈JHR(Aj∈J).

Clearly, {NR(A),b} forms a e−semilattice with the maximal element 1̈, and
{HR(A),b} forms a d−semilattice with minimal element 0̈.

Similarly to Proposition 3.8, we also have

Proposition 3.15. Suppose A = 〈A, λ〉 is a cubic set and R = 〈R, r〉 is a cubic
relation satisfying the condition:

R(x, x) = 〈1,0〉 = 1̈ for every x ∈ X.
Then we have

(1) NR(A) b A,
(2) A b HR(A).

Proof. (1) For each x ∈ X,
NR(A)(x) = ey∈XA(y) dRc(y, x)

b A(x) dRc(x, x)
= A(x) d 〈1,0〉 c

= A(x) d 〈0,1〉
= A(x).

Then NR(A) b A.
(2) For each x ∈ X,

HR(A)(x) = dy∈XA(y) eR(x, y)
c A(x) eR(x, x)
= A(x) e 〈1,0〉
= A(x).

Then A b HR(A). �

4. Note

In Definition 3.1, for a cubic set A, we define two rough operators N(A) and
H(A). In the follows, we give a equivalence definition.

Definition 4.1. Suppose X is a universe set, R =< R, r > is a cubic relation and
two rough operators N,H are defined as follows: for every cubic set A = 〈A, λ〉 in
X,
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N(A)(x) = 〈N(A)(x), N(λ)(x)〉 ,

H(A)(x) = 〈H(A)(x), H(λ)(x)〉 ,
where

N(A)(x) =
∧
y∈X

A(y) ∨Rc(y, x), N(λ)(x) =
∧
y∈X

λ(y) ∨ rc(y, x),

H(A)(x) =
∨
y∈X

A(y) ∧R(x, y), H(λ)(x) =
∨
y∈X

λ(y) ∧ r(x, y).

We investigate the relation between N(A), H(A) and N(A−), N(A+), H(A−),
H(A+).

Proposition 4.2. Suppose A = 〈A, λ〉 is a cubic set, A = [A−, A+]. Then we have
(1) (N(A))− = N(A−), (N(A))+ = N(A+),
(2) (H(A))− = H(A−), (H(A))+ = H(A+).

Proof. (1) For every x ∈ X.

[N(A))−(x), N(A))+(x)]

= N(A(x))

=
∧

y∈Y
A(y) ∨Rc(y, x)

=
∧

y∈Y
[A−(y), A+(y)] ∨ [(Rc)−(y, x), (Rc)+(y, x)]

=
∧

y∈Y
[A−(y) ∨ [(Rc)−(y, x), A+(y) ∨ (Rc)+(y, x)]

= [
∧

y∈Y
A−(y) ∨ (Rc)−(y, x),

∧
y∈Y

A+(y) ∨ (Rc)+(y, x)]

= [N(A−)(x), N(A+)(x)].

Then (N(A))− = N(A−), (N(A))+ = N(A+).
(2) In the similar way. �

5. Conclusion

In the paper, we define two rough operators on a cubic set induced by a cubic rela-
tion, give some examples, and investigate some of their properties with respect to the
P-order <, P-union t, P-intersection u, and R-order b, R-union d, R-intersection
e on cubic sets, provide a new platform to further study.
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