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1. INTRODUCTION

As an algebraic structure for many valued logic, a complete residuated lattice is
an important mathematical tool (See [1, 2, 3, 4,5, 6, 7]). For an extension of classical
rough sets introduced by Pawlak [8], many researchers [1, 2, 9, 10] developed L-lower
and L-upper approximation operators in complete residuated lattices. By using the
concepts of lower and upper approximation operators, fuzzy concepts, information
systems and decision rules are investigated in complete residuated lattices (See [I,

4, 9]).

Zhang and Fan [11] introduced the notion of fuzzy complete lattices using fuzzy
partially order on a frame as generalizations of usual complete lattices. Based on
residuated lattices as an extension of frame, Zhang [12], and Zhang and Xie [13] intro-
duced the notions of partially order,join, meet and fuzzy completeness. Bélohldvek
[1, 2] introduced concept lattices for information systems and fuzzy closure operators
using Galois connections in a complete residuated lattice. Georgescu and Popescue
[14, 15] introduced fuzzy attribute-oriented formal concept lattices for information
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systems and fuzzy closure operators using adjunctions in a complete residuated lat-
tice. Rodabaugh [5] interpreted Zadeh’s powersets operators from fuzzy sets to fuzzy
sets as adjoint functions. Join (meet) preserving maps, fuzzy equations, fuzzy rough
sets, fuzzy concepts (See [1, 2, 9, 10, 16, 17, 18]), Dedekind-MacNeille completion
(See [11, 13]) and powerset operators (See [12]) are easily handle by using adjoint
and Galois connection.

On the other hand, Zheng and Wang [19] introduced a complete co-residuated
lattice as the generalization of t-conorm. Junsheng and Qing [4] investigated (©®, &)-
generalized fuzzy rough set on (L, V, A, ®,&,0,1), where (L, V, A, &,0,1) is a com-
plete residuated lattice and (L, V,A,®,0,1) is complete co-residuated lattice in a
sense of Zheng and Wang [19]. Kim and Ko et al. [20] studied preserving maps and
approximation operators in complete co-residuated lattices.

In this paper, we study the distance functions instead of fuzzy partially ordered
sets. We define Alexandrov topologies, join preserving maps as the sense of a distance
function.

This paper is organized as follows. In Section 2, we recall the definitions of com-
plete co-residuated lattices and distance spaces. Moreover, we give their examples
and properties. In Section 3, using distance functions, Alexandrov topologies and
fuzzy complete lattices as an extension of Zhang’s complete residuated lattices are
introduced. In Theorem 3.6, we show that the Alexandrov topology induced by a
distance function is a fuzzy complete lattice. In Theorem 3.8, we investigate the
(dual) embedding maps and join(meet) preserving maps from sets to Alexandrov
topologies. In Theorem 3.10, as extensions of Zadeh’s powersets operators from
fuzzy sets to fuzzy sets, four types of operations are investigated. We give their
examples.

2. PRELIMINARIES

Definition 2.1 ([4, 19, 20]). An algebra (L,A,V,®, L, T) is called a complete co-
residuated lattice , if it satisfies the following conditions:

(Cl) L = (L,V,A, L, T)is a complete lattice, where L is the bottom element and
T is the top element,

(C2la=adLl,adb=bPaand a® (bdc)=(a®b)®cforall a,b,c € L,

(C3) (Njer ai) ®b = N;ep(ai @ ).
Let (L, <,®) be a complete co-residuated lattice. For each z,y € L, we define
x@y:/\{zeL\yéBzZm}.
Then (z @y) >z it z > (2 ©y).

For a € L, A € L, we denote (a« © A),(a ® A),ax € LX as (a © A)(z) =
a8 A(z), (a® A)(z) =ad Ax), ax(z) =a.

Put n(z) = T © z. The condition n(n(z)) = = for each x € L is called a double
negative law.

Remark 2.2 ([20]). (1) An infinitely distributive lattice (L, <,V,A, & =V,
a complete co-residuated lattice. In particular, the unit interval ([0,1],<,V,A, @ =
296
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V,0,1) is a complete co-residuated lattice, where

zoy=NzeL|yVz>z}

|0, ify>a,
) oz, ify R
(2) The unit interval with a right-continuous t-conorm @ [6], ([0, 1], <,®), is a

complete co-residuated lattice.
(3) ([1,00], <, V,® =+, A, 1,00) is a complete co-residuated lattice, where
voy=Nzell,o0]|yz =2}
_ 1L ity =z,
- %, ify 2 x.
oo-a=a-00=00,Va € [l,00],00 800 =1.
(4) ([0,00], <, V,® = +,A,0,00) is a complete co-residuated lattice where
yor=NA{z€0,00]|z+2>y}
=MNMzel0,00] |22 —z+y}=(y—2)VO0,
00+ a=a+o00=o00,Va € [0,00],00 8 00 =0.

(5) ([0,1], <, V,®,A,0,1) is a complete co-residuated lattice, where

@y = (2 +y)r AL, 1<p <o,
1
roy=NMzel0,1][ (" +y)r =z}
1 1
=Mzel01][z= =" —yP)r} = (2P —y")» VO,
(6) Let P(X) be the collection of all subsets of X. Then (P(X),C,U,N,& =
U, d, X) is a complete co-residuated lattice.

Lemma 2.3 ([20]). Let (L,A,V,®,0, L, T) be a complete co-residuated lattice. For
each x,y, z,z;,y; € L, we have the following properties.
D) Ify<z,zdy<zdz,yor<zozxandzoz<zoy.

(2) (\/zer )oYy = \/zer(xz Sy) and v © (/\ieF i) = \/ier(x S Yi)-

(3) (/\zel“ ) Oy < AzEF(xZ Sy).

(4) x (\/zEF yi) < /\zEF(‘T SEDE

b)zocx=1L,z6Ll=xand Loz = L. Moreover, tSy =L iff x <y.

G ye(zoy) >z, y>20(xoy) and (z0y) @ (yo2) =20 2.
(Mzoydz)=(ey)ez=(xez2)Sy.

(8)x6y>(m@z)6(y@z) roy>(x62)6(yoz),ycr>(z02)6(20Y)

and (z®y) S (20 w) < (z62)® (y O w).

9 zxdy=Liffr=1Landy=1

(10) (z@y)oz<z®(yoz) and (z0y) ®z>x20 (yO 2).

(11) If L satisfies a double negative law and n(z) = T © z, then n(z ® y) =
n(z) oy =n(y) ©x and z ©y = n(y) ©n(z).

Definition 2.4 ([20]). Let (L,A,V,®,6, L, T) be a complete co-residuated lattice.
Let X be a set. A function dx : X x X — L is called a distance function, if it
satisfies the following conditions:
(M1) dx(z,z) =L forallx € X,
(M2) dx(x,y) ®dx(y,2z) > dx(z,2) for all z, y, z € X,
297
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(M3) if dx(z,y) =dx(y,x) = L, then z = y.
The pair (X, dx) is called a distance space.

Remark 2.5 ([20]). (1) We define a distance function dx : X x X — [0, 00]. Then
(X,dx) is called a pseudo-quasi-metric space.

(2) Let (L,A,V,®,0, L, T) be a complete co-residuated lattice. Define a function
dr, : Lx L — Lasdp(z,y) =2Sy. By Lemma 2.3 (5) and (6), (L, d) is a distance
space. For 7 ¢ LY, we define a function d, : 7 X 7 — L as

d-(A,B) = \/ (A(x) © B(a)).

zeX

Then (7,d,) is a distance space.

3. Fuzzy COMPLETENESS AND VARIOUS OPERATIONS IN CO-RESIDUATED
LATTICES

In this section, we assume (L, A, V,®, O, L, T) is a complete co-residuated lattice.

Definition 3.1 ([20]). Let (X,dx) be a distance space and A € LX.
(i) A point xg is called a fuzzy join of A, denoted by zo = Ux A, if it satisfies
(J1) A(z) = dx (z, o),
(J2) Voex (dx (z,y) © A(z)) > dx (zo,y).
The pair (X, dx) is called fuzzy join complete , if Lix A exists for each A € LX.
(ii) A point zy is called a fuzzy meet of A, denoted by 1 = Mx A, if it satisfies
(Ml) A(m) > dx(l‘l,a?),
(M2) V/, 5 (dx (3,2) © A(x)) > dx(y,21).
The pair (X, dx) is called fuzzy meet complete, if My A exists for each A € LX.
The pair (X, dx) is called fuzzy complete, if Mx A and Lix A exists for each A € LX.

Theorem 3.2 ([20]). Let (X,dx) be a distance space and ® € LX.

(1) A point xg is a fuzzy join of @ iff \/ .o x(dx(v,y) © ®(x)) = dx(20,y)-

(2) A point x1 is a fuzzy meet of @ iff \/  x(dx(y,7) © ®(x)) = dx(y,21)-

(3) If Ux® is a fuzzy join of ® € LX, then it is unique. Moreover, if Nx® is a
fuzzy meet of ® € LX, then it is unique.

Example 3.3. Let (X,dx) be a distance spaces and A € LX.
(1) Since V¢ x(dx(z,y) © dx(x,z)) = d(2,y), by Theorem 3.2,
z = Ux(dx)z,
where (dx)*(z) = dx(z, 2).
(2) Since V¢ x(dx (y,7) ©dx(z,2)) = dx(y, z), by Theorem 3.3,
z =Mx(dx)z,
where (dx).(z) = dx(z, ).
Remark 3.4. Let (LX,d;x) be a function space and ® € L.
(1) Since Upx® is a join of ®, we see that for all ® € L,
drpx(Upx®,B) =\ 4cpx(dpx (A, B) © ®(A))

= Vaerx dpx(A© ©(4), B)
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=drx (\/AeLX (A S (I)(A))a B)~
Then by Theorem 3.3, we have
Upx®=\/ (Ao d(4)).
AeLX
(2) Since Mpx® is a meet of P, it follows that for all ¢ € LLX,
dpx(B,Mpx®) =\ 4 x(dpx (B, A) © ®(A))
= \/AeLX dLX (Bv (I)(A) 52 A)

= dpx (B, Naepx (®(A) © A)).
Then by Theorem 3.3, My x® = A 1., x(®(A) & A).

Definition 3.5. A subset 7 C LX is called an Alezandrov topology on X, if it
satisfies the following conditions:

(A1) if A; € 7 for all i € I, then \/,.; Ai, \;cp Ai € 7,

(A2)if Ae 7 and o € L, then ax,ASa, A®da €.
The pair (X, 7) is called an Alezandrov topological space on X.

Theorem 3.6. Let (X, dx) be a distance space. We define

Taxy = {A € L¥ | A(x) @ dx (z,y) > A(y)},
Tar ={A€ LX | A(z) @ dx(y,z) > A(y)}-

(1) 74, and Tagr are Alezandrov topologies.
(2) (Tax,dyry, ) is a complete lattice.

(3) (Td 1dr 1) is a complete lattice.

(4) 7

(5) 74

Tax = {\/mex A(z) ®dx (2, —) | A€ L}
ra = {Vyex Alw) ® dx (=) | A € LX),
Proof. (1) For Ae 1, ax,a® A, ASa,(dx), € T from:
(@ ® A(z)) © dx(2,y) > (a ® A(y))
(A(z) © o) @ dx (2,y) = (Ay) © @)
(dx)=(z) ® dx (2,y) < (dx)=(y)-
Then 7 is an Alexandrov topology with (dx). € 7.
(2) For ® € L™x, let Ag = /\AEde (P(A)® A) and A; = \/AETdX (Ao ®(A)).
Then Ay € 74, and Ay € 7q,. Thus 4y =U,, = \/AerX (A @®(A)) from:
deX (Ala B) = deX <VA€T<1X (A S] (I)(A))7 B)
~Voaer,, drus (A0 B(4), B)
Ve (s (A, B) & B(A))
=dr, (Ur, @, B).
Moreover, Ag = A 4¢,, (A®®(A)) =M, @ from:
dmx (Ba AO) = dmx (B7 /\AerX ((I)(A) @ A))
= \/AETdX (d"'dx (B,A) o ®(4))
=dr, (BN, @)
So (Tax,dr, ) is a complete lattice.

(3) Tt is similarly proved as (1).
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(4) W(X) = {A\sex Alx) ©dx(z, ) | A€ L*}.
Let A € 74,. Then we have

/\A )@ dx(z,y) > A(y) and /\A YD dx(z,y) < Aly) ®dx(y,y) = A(y).
reX reX

Thus A = A\, cx A(z) © dx (2, —) € W(X).
Let A\ ex(A(z) @ dx(v,—) € W(X). Then we get

/\ /\A ) @ dx(z,y)) ©dx(y,2) /\A ) ®dx(x,z).
yeX zxzeX rxeX
Thus /\meX( ( )Ede(l‘,—) € Tdx-
(5) It is similarly proved as (4). O

Definition 3.7. Let (X,dx) and (Y, dy) be distance spaces and f : X — Y be a
map. Define f*: LX — LY as

. T if f~ ({y}) =2
[ (A)y) = { AA) ifze fy‘l({y})-

(i) f is called a join preserving map, if f(LxA) = Upx f*(A) for each A € LX
with Lx A exists.

(ii) f is called a meet preserving map, if f(MxA) = Mpx f*(A) for each A € LX
with My A exists.

(iii) f is called a join-meet preserving map, if f(UxA) = Mpx f*(A) for each
A e LX with Ux A exists.

(iv) f is called a meet-join preserving map, if f(MxA) = Urx f*(A4) for each
A e LX with Ux A exists.

(v) f is called an embedding map, if f is injective an dx(x,y) = dx (f(z), f(y)))
for each z, y € X.

(vi) f is called a dual embedding map, if f is injective an dx (z,y) = dx (f(y), f(x)))
for each z, y € X.

Define f®, f5® : LX — LY and f&, f& : LY — LY as

FP(A) W) = Naex (Alz) @ dy (f(2),9)),
oA Y) = Naex (Alz) @ dy (y, f(2))),

fé_(wa) = /\Zex(B(f(Z>) @ dX(z,x)),
37 (B)(x) = N\,ex (B(f(2)) ® dx(, 2)).

Theorem 3.8. Let (X, dx) be a distance space.
(1) Define f: (X,dx) = (Tay,dr,, ) as f(z) = (dx)s. Then f is an embedding
map. Moreover, if Ux A exists, then

mX F(A) = Vyex(dx(z,-)) © A(z)) = f(Ux A),
Mray F7(A) = Noex (A(2) ® dx (2, -))-

If A€ 7qy, then My, f*(A) = A.
300
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(2) Define g : (X,dx) — (Td 1 dr 1) as g(z) = (dx)*. Then g is a dual embed-

ding map. Moreover, if Mx A exists, then

Ur _197(4) = Viex (dx(=,2)) © A)) = g(Nx A),
7' 19 (A) /\zeX(A(Z) @dX(fﬂz))

IfAETd 1, then M _,g *(4) = A.

Proof. (1) Since (dx).(z) ® dx(z,w) > (dx).(w), f(x) € Tay. Then f is well-
defined. If f(z) = f(y) = (dx )z = (dx)y, then dx(z,2) = dx(y,2) for each z € X
implies x = y. Thus f is injective. Moreover, for all z,y € X,

dry (f(2), f(y)) = d-, ((dX)m(dX) )
=\/ x((dx)z(2) © (dx)y(2))
:zl/ %x(agx(x ,2) ©dx (y,2))
1)) Since \/,cx (f(z) © A(2)) € Tay, for C € 744,

Vper, (dr, (D, C) S [*(A)(D))
= \/De-rdX (dmx (D, 0) S) /\zef—l(D) A(x))
= \/DETdX vreffl(D) (dmx (f(z),0) © A(x))
= deX (VmEX(f(x) o Az )a 0).
Hence Ur,._ £*(A) = Ve (F(2) © A(2)) = Ve x (dx (v, ) © A(2)) = dx (Ux A, -).
If Ux A exists, then U, f*(4) =dx(UxA,—) = f(UxA). Since f(z) € 7ay, by
(A1) and (A2), Ayex(f(z) ® A(x)) € T4y. For C € 14,
rgy (C.Trg 7(4) = Viper, (dryy (C.D) © f7(4)(D))
= Vpery, (dra (O, D) S Ny p1(p) Al))
= Vpers, Vaes10)(dray (C f(2)) © A(2))
= \/DerX \/xeffl(D) deX (C, f(z) ® A(x))
= dry (O, Npex (f(z) © A(2))).
Then M, f*(A4) = N,ex(f(2) ® A(2)). f A€ 7y, M7y f7(A) = A
(2) Since (dx)?(z) @ dx (w,z) > (dx)*(w), g(x) € Tat Then g is well-defined.
If g(z) = g(y) = (dx)* = (dx)Y, then dx(z,2) = dx(z,y) for each z € X implies
x = y. Thus g is injective. Moreover, for all z,y € X,

dr, 1 (9(x),9(y)) = dr _, ((dx)" (dx)")
= \/zeX((dX) (2) © (dx)¥(2))
= V.ex(dx(z,2) © dx(2,9))
=dx(y,z).
Thus g is a dual embedding map. Since \/ . y(g9(z) © A(z)) € Tars for O € 7y,
o (U5 (A,C) = Ve, (0, (D1C) ©.9°(A)(D))
= \/DET o (dr 2 (D:0) © Naeg—r () Al2))

- \/DET 1 \/165] (D) (dT Xl (g(l’), C) © A(I))

dy,

= dr, (Vsex (9(@) © A@)). O).

So Lle)_(lg*(A) = VzeX(g(x) S A(x)) = \/weX(dX(_,x) © A(Z‘)) = dx(—,l_le).
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If Mx A exists, then Ur, 9 *(A) =dx(—,NxA) = g(MxA). Since g(z) € Taohs by
(A1) and (A2), A\ cx(g(z )@A( ) € 74+ For Ce gt
&y (CTr 1 0(4) = Ve, (@, (C.D) £ 4°(4)D)
= Ve, 1(d7 1(0 D) © Nueg-1(p) A@))
_\/DET 1 \/meg 1(py(dr, 1 (Cr9(2)) © A(2))
= \/De‘rd . Vaeg-1(p) deXI (C,9(z) ® A(z))

= dr, (€ Asex(9(@) & A)).
Thus My 19" (4) = Apex(9(2) & A@)). A €7y, then M g*(A) = 4. O

Lemma 3.9. Let (L,A,V,®,8, L, T) be a complete co-residuated lattice. For each
xi,y; € L, we have the following properties.

(1) (\/ieF ;) © (\/iEF yi) < Vief(xi S Yi).
(2) (/\ieF ) © (/\ieF yi) < VieF(Ii SEB

Proof. (1) Since z; < (v; © y;) ©yi < Ver(xi ©¥i) © (V;ep ¥i), we conclude that

\/l‘i < \/(xz@y7,> EB(\/ Yi)-

el iel iel

Then (\/iGF ;) © (\/ier Yi) < \/ieF(mi S Yi)-
(2) Since z; < (z; © y;) @ yi, we conclude that

Nzi<@ov eyifzoy> \zoy.
iel el

Then Vier(zi ©9i) = Vier (Nier 2 © 4i) = (Nier i) © (Nier vi)- U

Theorem 3.10. Let (X,dx) and (Y,dy) be distance spaces. Then the following
properties hold.

(1) If f: (X,dx) — (Y,dy) is a map with dx(z,y) > dy (f(z), f(y)) for each
z,y € X, then dy (Uy f*®(A), f(UxA)) = L and dy (f(NxA),Ny fE(A)) = L, for
each A € LX.

(2) dpx(B,A) = dpy (f®(B), f9(A)) and dpx(B, A) > dpy (f*%(B), f*©(A)).

(3) dLY(C D) > dpx (fg (C), f& (E)) and dpy (C, D) = dpx (f57(C), f&7(E)).

(4) f®(A) € 14, and f5P(A ) € Ty

( ) ( )ETdX and fée(A)ETd}l.

Proof. (1) For each A € LX,
dy (Uy f*9(A), f(Ux A))

<

ey (dy (y, f(UxA) & f*9(A)(y))
yex(dY(y fUxA)) e N\ ex(Alz)

vex Vaoex ((dy (y, f(UxA)) ©dy (y, f(2)))
sex(dy(f(z), fUxA)) © A(x))

vex (dx (z, '—'XA)QA( )
x(UxA,UxA) =

1 VAN | T | R
&<<<<
@
QU
»<
s
O =
O

For A € LX,
dy (f(NxA), Ny fP(A))

Il
<<
<

ey (dy (f(Nx A),y) © f2(A)(y))

yex(dy (f(NxA),y) © N\,ex (Az) @ dy (f(2),y))
302
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= Vyex Vaex((dy (f(MxA),y) © dy (f(x),y)) © A(z))
= Vaex Wy (f(NxA), f(z)) © A(z))
< Vieex(dx(Mx A, z) © A(z))
= dx(ﬂXA, ﬂxA) = 1.
(2) Since dy (y, f(z)) & A(z) & (B(z) © A(x)) > dy (y, f(z)) & B(z), we conclude
that

(B(x) © A(z)) = (dy (y, f(x)) @ B(x)) © (dy (y, f(2)) ® A(x)).

By Lemma 3.9,

Similarly, dyv (C, E) >
(4) By Theorem 3.6, f
fEA) () @ dy (y, w)

Y
v I e

Also by Theorem 3.6, f5®
£2(A)(y) & dy (w,y)

A

)€ Tay
Nyex (Alz) @ dy (w, f(x))

(
>
= 59 (A)(w). O

f

Example 3.11. Let ([0,1],<,V,A,®,6,0,1) be a complete co-residuated lattice
defined as n(z) =1 — =,

r@y=(+y)Al, zoy=(zx—y)VO0.
Let X = {a,b,c} be a set and A4, B € [0,1]X with

A(z) =0.3,A(y) = 0.2, A(z) = 0.5, B(z) = 0.6, B(y) = 0.3, B(z) = 0.5.

0 05 038
dx=1| 07 0 06
04 06 O

We easily show that dx is a distance function. Moreover,

A= Npex(Alr) ©dx (2, -)) = Npex (Alz) © dx (=, 2))
B=Npex(B(2) ®dx(z,-)) = Npex (B(x) @ dx (=, )).

By Theorem 3.6, A, B € 4y, A, B € ;1.
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(1) Define f : (X,dx) — (Tax,dr, ) as f(x) = (dx),. Then dx(z,y) =
(f(z), f(y)) for all z,y € X. Since Ux(dx)* = z from Example 3.3,

U (dx)*) = Vaex(dx(z,-)) © (dx)*(2)) = dx(z,—)
= f(Ux(dx)?) = f(z) = (0.4,0.6,0),
Mry [ ((dx)7) = Nyex ((dx)*(y) @ dx(y, —)) = (0.4,0.6,0).

Since V,cx (dx(z,—)) © A(x)) # dx (Ux A, —) for A = (0.3,0.2,0.5), Ux A does not

exist.
Ura F5(4) = Ve x (dx (z,-)) © A(z)) = (0.5,0.2,0.5),
Mry F5(A) = Nyex ((dx)7(y) © dx (y,—)) = (0.3,0.2,0.5).
(2) Define g : (X,dx) = (r,0,d- ) as g(z) = (dx)". Then dx(z,y) =
d- _,(9(y),g(x)) for all z,y € X. Since HX(dX)Z = z from Example 3.3,

Ur s 9" ((dx):) = V,ex(dx(— 7)) 6 (dx):(2)) = dx (-, 2)
=dx(—,MNx(dx).) = g(Nx(dx).) = (0.8,0.6,0),
ey g ((dx)z) = Nyex((dx):(y) & dx(—,y)) = (0.4,0.6,0).

Since V¢ x(dx(—,z) © A(x)) # dx(—,NxA) for A= (0.3,0.2,0.5), NMx A does not

exist.

d

TdX

Ur, 19" (A) = Viex (dx(=2)) © A() = (0.3,0.4,0.4),
M, 107 (4) = Asex (A(2) @ dx (=, 2)) = (0.3,0.2,0.5).

4. CONCLUSION

Using distance functions, we discuss the notions of fuzzy completeness and Alexan-
drov topologies on co-residuated lattices. In particular, we investigate join (meet)
preserving maps between various operations based on co-residuated lattices.

In the future, by using the concepts of fuzzy completeness and various operators,
information systems and decision rules are investigated in co-residuated lattices.
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