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meet preserving maps in complete co-residuated lattices. Moreover, we
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1. INTRODUCTION

The complete residuated lattice introduced Ward and Dilworth [1] is an im-
portant mathematical tool as algebraic structures for many valued logics ([2, 3, 4,
, 6, 7]). Bélohlavek [2] investigated information systems and decision rules over
complete residuated lattices. Pawlak [8] introduced the rough set theory as a formal
tool to deal with imprecision and uncertainty in the data analysis. For an extension
of Pawlak’s rough sets, many researchers([9, 10, 11]) developed fuzzy rough sets,
L-lower and L-upper approximation operators in complete residuated lattices.

Zheng and Wang [12] introduced a complete co-residuated lattice as the general-
ization of t-conorm. Junsheng and Qing [13] investigated (®, &)-generalized fuzzy
rough set on (L, V, A, ®,&,0,1) where (L,V, A, &,0,1) is a complete residuated lat-
tice and (L, V, A, ®, 0, 1) is complete co-residuated lattice in a sense [12]. Kim and Ko
[14] studied preserving maps and approximation operators in complete co-residuated
lattices.

In this paper, we introduce the concepts of distance spaces instead of fuzzy par-
tially ordered spaces in complete co-residuated lattices. We study the notions of
©-join and G-meet preserving maps in complete co-residuated lattices. Moreover,
we investigate the relations between ©-join and ®-meet preserving maps and resid-
uated connections. We give their examples.
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2. PRELIMINARIES

Definition 2.1 ([12, 13, 14]). An algebra (L,A,V,®, L, T) is called a complete
co-residuated lattice, if it satisfies the following conditions:

(Cl) L =(L,V,A,L,T) is a complete lattice, where L is the bottom element and
T is the top element,

(C2la=adLl,adb=bPaand a® (bdc)=(a®b)®cforall a,b,c € L,

(C3) (Nier 3) @b = Aser(a: D).

Let (L, <,®) be a complete co-residuated lattice. For each x,y € L, we define

m@y:/\{zeL\yGBZZx}.
Then (z®vy) > ziff z > (z 0 y).

Put n(z) = T © x. The condition n(n(x)) = = for each x € L is called a double
negative law. We denote

T ify=2 L ify=2
Taly) = { 1 otherwise ’ La(y) = { T  otherwise,
fora € L,Ae LY, (a0A), (a®A),ax € LX as (Aoa)(z) = A(z)oa, (a®A)(z) =
a® A(z), ax(z)=a.

Remark 2.2 ([14]). (1) An infinitely distributive lattice (L, <,V,A,& =V, L, T) is
a complete co-residuated lattice. In particular, the unit interval ([0,1],<,V,A, @ =
V,0,1) is a complete co-residuated lattice where

0 ify>=x
x ify # .

Put n(z) =16z =1 for z # 1 and n(l) = 0. Then n(n(z)) = 0 for z # 1 and
n(n(1)) = 1. Hence n does not satisfy a double negative law.

(2) The unit interval with a right-continuous t-conorm @, ([0,1], <, ®), is a com-
plete co-residuated lattice [7].

(3) ([1,00], <, V,® = -, A, 1,00) is a complete co-residuated lattice, where

x@y:/\{zeL|y\/zEx}:{

ify>a

x@y=/\{ZE[1,OO]|y22$}={ ify #

Qg

x0-a=a-00=00,Ya € [1,00],00 S o0 =1.

Put n(z) = coox = oo for & # oo and n(oo) = 1. Then n(n(z)) =1 for x # oo and
n(n(co)) = oo. Hence n does not satisfy a double negative law.
(4) ([0,00], <, V,® = +,A,0,00) is a complete co-residuated lattice, where

yor=Nzel0,00] |xz+2>y}
=Nz€0,00 |22 —x+y}=(y—2) VO,
o0+ a=a+00=00,Va € [0,00],00 S o0 =0.

Put n(z) = co©x = oo for z # oo and n(oo) = 0. Then n(n(x)) = 0 for z # oo and
n(n(oco)) = oco. Hence n does not satisfy a double negative law.
218
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(5) ([0,1], <, V, 8, A,0,1) is a complete co-residuated lattice where

@y = (2" +y")r AL, 1<p< o,
roy=Nzel0,1]](z* +yP)r >z}
=Nz€0.1] ]|z > (aP —yP)r} = (aP —yP)» VO,

Put n(z) = 162 = (1 —aP)» for 1 < p < co. Then n(n(z)) = z for z € [0,1].
Hence n satisfies a double negative law.

(6) Let P(X) be the collection of all subsets of X. Then (P(X),C,U,N,&® =
U, @, X) is a complete co-residuated lattice where

ASB=N\{CePX)|BUC> A}
= ANB=A-B.

Put n(A) = X 6 A = A for each A C X. Then n(n(A4)) = A. Hence n satisfies a
double negative law.

Lemma 2.3 ([14]). Let (L,A,V,®,8, L, T) be a complete co-residuated lattice. For
each x,y, z,x;,y; € L, we have the following properties.

(D) Ify<z,zdy<zd®z,yozr<z0z andrzOz<z0y.
2) (\/ieF ) Oy = vier(xi Sy) and x © (/\ieF i) = \/ier(x S Yi).
) (/\z’eF ) oy < /\ier(xi Sy)
)28 Wi ) < Ar (2 © 92)
Yeoz=1lL,z6L=xand LOxz= 1. Moreover, tOy =L iff t <y.
Jy@(@oy) 2z, y>x0(x0y) and (zO0yY)© (yo2) 270 2.
)zO(yd2) =0y oz=(202)0y.
)oYy 2 (x®2)0(ydz), 20y 2 (202)0[Yyo2), Y07 = (207)6(20Y)
and (z©4)6 (:8w) < (162)® (y O w).
Nzdy=Liffe=_Landy= L.
10) (z@y)0z2<zs@®(yoz) and (z0y)®z>26 (y S 2).
11) If L satisfies a double negative law and n(x) = T © z, then n(x y) =

Definition 2.4 ([14]). Let (L,A,V,®,0, L, T) be a complete co-residuated lattice.
Let X be aset. A function dx : X x X — L is called a distance function if it satisfies
the following conditions:

(M1) dx(xz,z) = L for all z € X,

(M2) dx(x,y) ® dx(y,2) > dx(z,z) for all x,y,z € X,

(M3) If dx (x,y) =dx(y,z) = L, then x = y.

The pair (X, dx) is called a distance space.

Remark 2.5 ([14]). (1) We define a distance function dx : X x X — [0, 00]. Then
(X, dx) is called a pseudo-quasi-metric space.

(2) Let (L,A,V,®,5, L, T) be a complete co-residuated lattice. Define a function
dr : Lx L — Lasdp(z,y) =2xSy. By Lemma 2.3 (5) and (6), (L,dr) is a distance
space. Define a function dpx : L* x LY — L as dpx (A, B) =\ .y (A(z) © B(z)).
Then (L%, dyx) is a distance space.
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3. PRESERVING MAPS IN COMPLETE CO-RESIDUATED LATTICES
In this section, we assume (L, A, V,®, S, L, T) is a complete co-residuated lattice.

Definition 3.1. (i) A map F : LX — LY is called an ©-join preserving map, i it
satisfies the following conditions:
(J1) F(Aoa)=F(A) o a,
(J2) F(Vies Ai) = Ve F(Ad).
(i) Amap G : L* — LY is an @©- meet preserving map, i it satisfies the following
conditions:
(M1) Gla® A) = a® G(A),
(M2) G(Njer Ai) = Nier 9(Ai).
(iii) Let F : LX — LY and G : L* — LY be maps. The pair (F,G) is called a
residuated connection, if dpy (B, F(A)) = dpx(G(B), A) for each A € LX, B € LY.

Theorem 3.2. If F : LX — LY and G : LY — L% such that dpv (F(A),B) =
dpx(A,G(B)) for all A€ LX,B € LY, then F is an ©-join preserving map and G
1s an @- meet preserving map.

Proof. Since dpy (F(V;ep Ai), B) = dpx (V;er Ai, G(B))
= Verdrx (A, G(B)) [By Lemma 2.3 (2)]
= Vierdov (F(A;), B)
=dry (Ver F(Ai), B)
for B = Ly, ]:(VzeFA )= szF‘F( ;) by Lemma 2.3 (5
dpy(F(Aea),B) =dpx(AS a,G(B))
=V,ex((A(z) ©a) ©G(B)(x)) [By Lemma 2.3 (7)]
= V.ex(A(z) 8G(B)(z)) © a
=drx (f(A), B) SXe’
=drx(F(A) & o, B),
we have F(A© a) = F(A)S a for all « € L.
Since dpx (A,G(Aer Bi)) = dpv (F(A), Nier Bi)
= Vierdox(A,G(B;)) = dpx (A, \jcr 6(Bs)),
we get G(A;er Bi) = Njer G(Bi). On the other hand,
dix(A,G(a® B)) =dpy (F(A),a® B)
—V,oey (F(A) ) & By) & a)
Ve (A(2) 8 G(B)(2)) & a = dpx (A,G(B)) & a
=drx(A,G(B) @ ) [By Lemma 2.3 (7)].
Thus G(a® A) =a® G(A) for all a € L. O

)

3

7

). Since

Theorem 3.3. (1) Let G : LY — LX be an ®-meet preserving map. Then there
ezists an ©-join preserving map F : LX — LY such that F(A)(y) = dpx(A,G(L,)).
Moreover, dpv (F(A), B) = dix (A,G(B)) for each A€ L* B e LY.

(2) Let G : LY — LX be an ®-meet preserving map. Then there exists a fuzzy
relation R € LX*Y with G(B)(z) = Nyey (B(y) ® R(z,y)) and an ©-join preserving
map F(A)(y) = V,ex(A(z) © R(x,y)) such that dpy (F(A), B) = dpx(A,G(B)) for
each A€ LX,B e LY.

(3) If L satisfies a double negative law with n(x) = T Oz and F : LX — LY is an
©-join preserving map, then there exists an ©-meet preserving map G : LY - X
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such that G(Ly)(xz) = n(F(n(Lsz)))(y). Moreover, dpy (F(A),B) = dpx(A,G(B))
for each Ac LX Be LY.

(4) If L satisfies a double negative law with n(x) = T ©x and F : LX — LY is an
©-join-preserving map, then there exists a fuzzy relation R € L**Y with F(A)(y) =
V.ex(A(z) © R(z,y)) and an ©-meet preserving map G(B)(z) = A,y (B(y) &
R(z,vy)) such that dv (F(A), B) = dpx(A,G(B)) for each A€ LX B € LY.

G(B), for B(w)

Proof. (1) Since G(A\;cp Bi) = N;cr 9(B:) and g( ® B) = =
)=/\ ( (y) DG (Ly)(2)).

Nyey (By)®Ly(w)), G(B)(x) = G(A ey (B(y)®Ly)(x
Then A € LX, by Lemma 2.3,

F(A)y) =NBy) | 9(B) = A}
= NMBW) [ Ayey (Bly) ©G(Ly)(z)) > A(x)}
=B | B(y) > V,ex (Al) ©G(Ly)(2))}
= Vaiex(A@) ©G(Ly)(2))

Moreover, F(V;cp Ai) = Voex(Vier 4i(x) © G(Ly) (@) = Vier(V,ex(Ai(z) ©
G(1,)(2))) = Vs F(As) and F(460) = Ve x (AC0)SG(L,)(0) = Vaex (A)E
G(L,)(z))) ©a=F(A) o« from Lemma 2.3 (7). For A € LX, B € LY, by Lemma
2.3,
dpx(A,G(B)) = V,ex(A(z) © G(B)(z))
= Vaoex (A(@) © G(Ayey (Bly) @ Ly)(2))
= Vaex Vyey (A(@) © (B(y) ® G(1Ly)(2)))
= Vaex Vyey (A@) ©G(Ly)(2)) © B(y))
= Vyer (Voex(A(z) © G(Ly)(2))) © B(y))
= Vyey (F(A)(y) © B(y))
=drv(F(A4),B).
(2) By (1), put R(z,y) = G(Ly)(x). Then the result holds.
(3) Since F(V;p A ) = V,er F(4i) and F(ASa) = F(A)oafor A=\ (A(x)o

reX zeX
For B e LY
9(B)(z) = V{A(x) | F(A)(y) < B(y)}
= V{A(@) | Vyex (F(n(Le))(y) ©n(A)(x)) < B(y)}
= V{A@) | V ey (F(n(Le))(y) © B(y)) < n(A)(z)}
= V{A(@) [ Ayey (n(F(n(Le)))(y) ® Bly)) = A(x)}
= Nyey (((F(n(L2)))(y) © B(y))
221
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Moreover, G(Aier B) = Aver G(B), Gla ® B) = a ® G(B) and G(L,)(x) =
n(F(n(Ls)))(y). Foreach Ae LX Be LY,

drx(A,G(B)) =V,ex(A(@) ©G(B)(x))
= Vsex(A@) © A\yey (n(F(n(Lz)))(y) & B(y)))
= Viex Vyer (A(2) © (n(F(n(L:)))(y) © B(y)))
= Viex Vyer (A(z) ©n(F(n(L:)))(y)) © By))
= Vyey (Voex (F(n(La))(y) ©n(4)(x))) © B(y))
= Vyey (F(V,ex(n(Ls)(y) ©n(A)(2))) © B(y))
= Vyey (F(A)(y) © B(y))
=dpv(F(A),B).
(4) By (3), put R(z,y) = n(F(n(Lz)))(y) = G(Ly)(2)).
F(A) () =V,eex(F(n(Lsa))(y) ©n(A)(x))
= Viex(A(z) ©n(F(n(L:)) () = V,ex(A(2) © R(z,y)),
g(B)(@) = Nyey((F(n(L:)(y) ® B(y)) = \,ev (R(z,y) & B(y)).
Then the result holds. O

Remark 3.4. Let L be satisfied a double negative law with n(z) = T & = and
f: X — Y beamap. A map f7 : LX — LY is defined as f~(A)(y) =
Vies—1qyy A@). Then
P A )(H) = Vaes s (o) (A S a)(@)

= Voe 1y A@) © @ = 17 (4)(y) © @ [By Lemma 2.3 ()]
and 7 (V,er 4i) = Vier f7(4i). Thus f7 : LY — LY is an ©-join preserving
map. By Theorem 3.3 (3), there exists G : LY — LX defined as:

G(B)(x) = Nyey (n(f7 (n(La)))(y) ® B(y))

= Nyey (Ve -1y (L) (2) @ B(y))

= /\yey(/\zeffl({y}) L.(2) @ B(y))

= La(z) ® B(f(x)) = f7(B)(x)
such that G(A,cr Bi) = N;er 9(Bi), Ga® A) = a ® G(A) with f7(n(L))(y) =
dpx(n(Le), G(Ly)) = n(G(Ly))(x).

Moreover, dyv (f 7 (A), B) = d;x (A,G(B)) for each A € LX B ¢ LY.

Example 3.5. Let X = {a,b,c} and Y = {z,y, 2z} be sets. We define f: X =Y

with f(a) =z, f(b) = f(c) = y.
(1) Amap f7: LX — LY is defined as f~(A)(y) = Vier-1(qyy Al@). Then

f7(A)(@) = A(a), f7(A)(y) = Ab) V A(c), [T (A)(z) =0
fﬁ(n(oa)) = (1’0’0)7 fﬁ(n(ObD = (O’ 170), fﬁ(n(OC)) = (07 1’0)

and f7 : LX — LY is an ©-join preserving map. Then there exists G : LY — LX
defined as G(B)(z) = \,ey (0~ (n(0,)))(y) & B(y)) = f(B)(x) as follows:

G(B)(a) = f~(B)(a) = B(x), G(B)(b) = B(y), G(B)(c) = B(y)

such that G(Aser Bi) = Aver G(B), G(a® A) = a ® G(A) with 1~ ((0,))(y)
drx (n(ow)7 g(ou)) = n(g(Oy))(x) Morgggerv dry (f_> (A), B) = dpx (Aa g<B)
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f(B)) for each A € L*, B € LY. Put R(a,y) = n(f~(n(0.)))(y) as

R
(0 1 1)
R=|101].
1 01
Then
(A =\ (Ala) © R(a,9)),6(B)(a) = [ (B)(a) = /\ (B(y) © R(a.y)).
acX yeyY
(2) A map f : LY — LX is defined as f<(B)(z) = B(f(x)). Then
F(B)(a) = B(f(a)), F7(B)(b) = B(f(b)), [T (B)(c) = B(f(c))
), F(n(02)) = (1,1, 1).

7 (n(0z)) = (1,0,0), £~ (n(0y)) = ( 0,1,1
Since f<(Njer Bi) = Nier f<(Bi), fT(@®B) = a® f(B), f©: LY - LY is
an @-meet preserving map. By Theorem 3. 3 (1), there exists an ©-join preserving
map F : LX — LY such that F(A)(y) = dpx (A, f7(0,)) = Vier1qup Al@) =
f7(A)(y). Moreover, dpy (F(A) = f7(A),B) = dpx (A, f<(B)) for each A €
LX B e LY. Put R(a,y) = fT(0,)(a) as

01 1
R=|[101].
(1 0 1)
F(A)y) = [7(A)Y) = Ve x (Ala) © R(a,y)),
Fo(B)(a) = Ayey (Bly) ® R(a,y)).

(3) Let ([0,1],®,9,n,0,1) be a complete co-residuated lattice as n(z) =1 —z
and

Then

xr@y=(x+y ANl z8y=(xr—y)VO.
Let dx € [0,1]X*X dy € [0,1]Y*Y be distance functions as follows:

0 03 0 0 06 04
dx=1 04 0 02 |,dy=1{ 05 0 07 |.
05 04 O 03 06 O

Amap G : LY — LY is defined as G(A)(y) = A\, cx (A(z)®dy (f(x),y). Then G is an
@-meet preserving map. By Theorem 3.3 (1), there exists an ©-join preserving map
F : LY — LX defined as F(B)(z) = dpv(B,G(0,)) = \/er(B(y) ©G(0)(y) =
Vyey (B(y) © R(z,y)) with R(z,y) = G(02)(y) = dy (f(x), y) as follows:

0 06 06
R=1| 05 0 1 .
05 0 1

(4) In (3), amap F : LY — LX is defined as:
F(B)@) =\ (B(f(2)) & dx(=,2)).
zeX

Then F is an ©-join preserving map. On the other hand,

R(z,y) = n(F(n(0y))(z) = N(Q\Q/gex(n(oy)(f(Z)) ©dx(z,1)))
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n(V.ex (n(dx(z,7)) ©0,(f(2))) [By Lemma 2.3 (2)]
cex(dx(z,2) ©0,(f(2))) [By Lemma 2.3 (11)]

0 04 1
R={ 03 0 1 ].
0 0 1

Then F : LY — LX is defined as F(B)(x) = Vyey (B(y) © R(z,y)). By Theorem
3.3 (3), there exists an @-meet preserving map G : LX — LY defined as G(A)(y) =
Niex(A(z) © R(z,y)) with dpx (F(B), A) = dpx (B, G(A)).

Example 3.6. Let X = {z,y,z} be a set and ([0,1],®,5,n,0,1) be a complete
co-residuated lattice as n(z) = 1 — z and

as follows:

r@y=(+y ANl z0y=(xr—y)VO.

Put D = (0.7,0.4,0.2) € [0, 1]X.
(1) Define a map F : LX — LX as F(A)(y) = dyx (A, D) © D(y). Then
FAca)(y) =dix (Ao a,D)e D(y)
= (drx (A, D) & o) © D(y) [By Lemma 2.3 (2)]
— (dx (A, D) & D(y)) & o = (F(A) © a)(y) [By Lemma 2.3 (7)),
FVier A)y) = dix (Vo 41, D) & D(y)
= Vier(dix (A, D) © D(y))
= V;er F(4:) ()
Thus F : LX — LX is an ©-join preserving map. By Theorem 3.3 (3), there exists
G : LX — LX defined as G(B)(z) = /\yEX( n(F(n(0:)))(y) ® B(y)) such that

G(N\ Bi)= N\ 6(B:), Gla® B)=a®G(B)

ier i€l
with F(n(02))(y) = dpx (n(0),G(0,)) = n(G(0y))(x).
Moreover, dyx (F(A), B) = dyx (A,G(B)) for each A, B € LX. By Theorem 3.4
(4), put R(z,5) = n(F(n(0,)))(y). Since
F(n =(\/ (n(0 D(z))) © D(y) = n(D(x))) © D(y),

z€X
we have R(z,y) = n(F(n(0,)))(y)

So
F(A)(Y) = Vaex (Al@) © R(z,y)),
G(B)(x) = Nyey (B(y) @ R(z,y)).

(2) Define a map G : LY — LY as G(A)(y) = A,ex(n(D)(x) & A(2)) & D(y).
Since G(A;er Ai) = Nier G(4i), Gla® A) = a® G(A), G : LY — LY is an &-meet
preserving map. By Theorem 3.3 (1), there exists an ©-join preserving map F :
LY — LX defined as F(B)(z) = drx (B, G(02)) = Ve x (B(y) © (D(y) & n(D(x)))
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with F(n(0y))(x) = drx(n(0,),G(02)) = n(G(0:))(y). Put R(z,y) = G(0:)(y) =
n(D)(x) ® D(y) as

1 07 0.5
R={(1 1 08
1 1 1

Then

9(A)(Y) = Npex (Alz) © R(z,y))
F(B)(x) = V,ex (B(y) © R(z,y))-

4. CONCLUSION

The distance function instead of fuzzy partially ordered set is a new notion. We
investigated the relations among residuated connections, ©-join preserving maps and
@-meet preserving maps on complete co-residuated lattices.

In the future, fuzzy rough sets, information systems and decision rules are inves-
tigated by using the concepts of distance spaces in complete co-residuated lattices.
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