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1. Introduction

The complete residuated lattice introduced Ward and Dilworth [1] is an im-
portant mathematical tool as algebraic structures for many valued logics ([2, 3, 4,
5, 6, 7]). Bělohlávek [2] investigated information systems and decision rules over
complete residuated lattices. Pawlak [8] introduced the rough set theory as a formal
tool to deal with imprecision and uncertainty in the data analysis. For an extension
of Pawlak’s rough sets, many researchers([9, 10, 11]) developed fuzzy rough sets,
L-lower and L-upper approximation operators in complete residuated lattices.

Zheng and Wang [12] introduced a complete co-residuated lattice as the general-
ization of t-conorm. Junsheng and Qing [13] investigated (�,&)-generalized fuzzy
rough set on (L,∨,∧,�,&, 0, 1) where (L,∨,∧,&, 0, 1) is a complete residuated lat-
tice and (L,∨,∧,�, 0, 1) is complete co-residuated lattice in a sense [12]. Kim and Ko
[14] studied preserving maps and approximation operators in complete co-residuated
lattices.

In this paper, we introduce the concepts of distance spaces instead of fuzzy par-
tially ordered spaces in complete co-residuated lattices. We study the notions of
	-join and ⊕-meet preserving maps in complete co-residuated lattices. Moreover,
we investigate the relations between 	-join and ⊕-meet preserving maps and resid-
uated connections. We give their examples.
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2. Preliminaries

Definition 2.1 ([12, 13, 14]). An algebra (L,∧,∨,⊕,⊥,>) is called a complete
co-residuated lattice, if it satisfies the following conditions:

(C1) L = (L,∨,∧,⊥,>) is a complete lattice, where ⊥ is the bottom element and
> is the top element,

(C2) a = a⊕⊥, a⊕ b = b⊕ a and a⊕ (b⊕ c) = (a⊕ b)⊕ c for all a, b, c ∈ L,
(C3) (

∧
i∈Γ ai)⊕ b =

∧
i∈Γ(ai ⊕ b).

Let (L,≤,⊕) be a complete co-residuated lattice. For each x, y ∈ L, we define

x	 y =
∧
{z ∈ L | y ⊕ z ≥ x}.

Then (x⊕ y) ≥ z iff x ≥ (z 	 y).

Put n(x) = > 	 x. The condition n(n(x)) = x for each x ∈ L is called a double
negative law. We denote

>x(y) =

{
> if y = x
⊥ otherwise

, ⊥x(y) =

{
⊥ if y = x
> otherwise,

for α ∈ L,A ∈ LX , (α	A), (α⊕A), αX ∈ LX as (A	α)(x) = A(x)	α, (α⊕A)(x) =
α⊕A(x), αX(x) = α.

Remark 2.2 ([14]). (1) An infinitely distributive lattice (L,≤,∨,∧,⊕ = ∨,⊥,>) is
a complete co-residuated lattice. In particular, the unit interval ([0, 1],≤,∨,∧,⊕ =
∨, 0, 1) is a complete co-residuated lattice where

x	 y =
∧
{z ∈ L | y ∨ z ≥ x} =

{
0 if y ≥ x
x if y 6≥ x.

Put n(x) = 1 	 x = 1 for x 6= 1 and n(1) = 0. Then n(n(x)) = 0 for x 6= 1 and
n(n(1)) = 1. Hence n does not satisfy a double negative law.

(2) The unit interval with a right-continuous t-conorm ⊕, ([0, 1],≤,⊕), is a com-
plete co-residuated lattice [7].

(3) ([1,∞],≤,∨,⊕ = ·,∧, 1,∞) is a complete co-residuated lattice, where

x	 y =
∧
{z ∈ [1,∞] | yz ≥ x} =

{
1 if y ≥ x
x
y if y 6≥ x.

∞ · a = a · ∞ =∞,∀a ∈ [1,∞],∞	∞ = 1.

Put n(x) =∞	x =∞ for x 6=∞ and n(∞) = 1. Then n(n(x)) = 1 for x 6=∞ and
n(n(∞)) =∞. Hence n does not satisfy a double negative law.

(4) ([0,∞],≤,∨,⊕ = +,∧, 0,∞) is a complete co-residuated lattice, where

y 	 x =
∧
{z ∈ [0,∞] | x+ z ≥ y}

=
∧
{z ∈ [0,∞] | z ≥ −x+ y} = (y − x) ∨ 0,

∞+ a = a+∞ =∞,∀a ∈ [0,∞],∞	∞ = 0.

Put n(x) =∞	x =∞ for x 6=∞ and n(∞) = 0. Then n(n(x)) = 0 for x 6=∞ and
n(n(∞)) =∞. Hence n does not satisfy a double negative law.
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(5) ([0, 1],≤,∨,⊕,∧, 0, 1) is a complete co-residuated lattice where

x⊕ y = (xp + yp)
1
p ∧ 1, 1 ≤ p <∞,

x	 y =
∧
{z ∈ [0, 1] | (zp + yp)

1
p ≥ x}

=
∧
{z ∈ [0, 1] | z ≥ (xp − yp)

1
p } = (xp − yp)

1
p ∨ 0,

Put n(x) = 1 	 x = (1 − xp)
1
p for 1 ≤ p < ∞. Then n(n(x)) = x for x ∈ [0, 1].

Hence n satisfies a double negative law.
(6) Let P (X) be the collection of all subsets of X. Then (P (X),⊂,∪,∩,⊕ =

∪,∅, X) is a complete co-residuated lattice where

A	B =
∧
{C ∈ P (X) | B ∪ C ⊃ A}

= A ∩Bc = A−B.

Put n(A) = X 	 A = Ac for each A ⊂ X. Then n(n(A)) = A. Hence n satisfies a
double negative law.

Lemma 2.3 ([14]). Let (L,∧,∨,⊕,	,⊥,>) be a complete co-residuated lattice. For
each x, y, z, xi, yi ∈ L, we have the following properties.

(1) If y ≤ z, x⊕ y ≤ x⊕ z, y 	 x ≤ z 	 x and x	 z ≤ x	 y.
(2) (

∨
i∈Γ xi)	 y =

∨
i∈Γ(xi 	 y) and x	 (

∧
i∈Γ yi) =

∨
i∈Γ(x	 yi).

(3) (
∧

i∈Γ xi)	 y ≤
∧

i∈Γ(xi 	 y)
(4) x	 (

∨
i∈Γ yi) ≤

∧
i∈Γ(x	 yi).

(5) x	 x = ⊥, x	⊥ = x and ⊥	 x = ⊥. Moreover, x	 y = ⊥ iff x ≤ y.
(6) y ⊕ (x	 y) ≥ x, y ≥ x	 (x	 y) and (x	 y)⊕ (y 	 z) ≥ x	 z.
(7) x	 (y ⊕ z) = (x	 y)	 z = (x	 z)	 y.
(8) x	 y ≥ (x⊕ z)	 (y⊕ z), x	 y ≥ (x	 z)	 (y	 z), y	 x ≥ (z 	 x)	 (z 	 y)

and (x⊕ y)	 (z ⊕ w) ≤ (x	 z)⊕ (y 	 w).
(9) x⊕ y = ⊥ iff x = ⊥ and y = ⊥.
(10) (x⊕ y)	 z ≤ x⊕ (y 	 z) and (x	 y)⊕ z ≥ x	 (y 	 z).
(11) If L satisfies a double negative law and n(x) = > 	 x, then n(x ⊕ y) =

n(x)	 y = n(y)	 x and x	 y = n(y)	 n(x).

Definition 2.4 ([14]). Let (L,∧,∨,⊕,	,⊥,>) be a complete co-residuated lattice.
Let X be a set. A function dX : X×X → L is called a distance function if it satisfies
the following conditions:

(M1) dX(x, x) = ⊥ for all x ∈ X,
(M2) dX(x, y)⊕ dX(y, z) ≥ dX(x, z) for all x, y, z ∈ X,
(M3) If dX(x, y) = dX(y, x) = ⊥, then x = y.
The pair (X, dX) is called a distance space.

Remark 2.5 ([14]). (1) We define a distance function dX : X ×X → [0,∞]. Then
(X, dX) is called a pseudo-quasi-metric space.

(2) Let (L,∧,∨,⊕,	,⊥,>) be a complete co-residuated lattice. Define a function
dL : L×L→ L as dL(x, y) = x	 y. By Lemma 2.3 (5) and (6), (L, dL) is a distance
space. Define a function dLX : LX × LX → L as dLX (A,B) =

∨
x∈X(A(x)	B(x)).

Then (LX , dLX ) is a distance space.
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3. Preserving maps in complete co-residuated lattices

In this section, we assume (L,∧,∨,⊕,	,⊥,>) is a complete co-residuated lattice.

Definition 3.1. (i) A map F : LX → LY is called an 	-join preserving map, i it
satisfies the following conditions:

(J1) F(A	 α) = F(A)	 α,
(J2) F(

∨
i∈I Ai) =

∨
i∈I F(Ai).

(ii) A map G : LX → LY is an ⊕- meet preserving map, i it satisfies the following
conditions:

(M1) G(α⊕A) = α⊕ G(A),
(M2) G(

∧
i∈I Ai) =

∧
i∈I G(Ai).

(iii) Let F : LX → LY and G : LX → LY be maps. The pair (F ,G) is called a
residuated connection, if dLY (B,F(A)) = dLX (G(B), A) for each A ∈ LX , B ∈ LY .

Theorem 3.2. If F : LX → LY and G : LY → LX such that dLY (F(A), B) =
dLX (A,G(B)) for all A ∈ LX , B ∈ LY , then F is an 	-join preserving map and G
is an ⊕- meet preserving map.

Proof. Since dLY (F(
∨

i∈ΓAi), B) = dLX (
∨

i∈ΓAi,G(B))
=
∨

i∈Γ dLX (Ai,G(B)) [By Lemma 2.3 (2)]
=
∨

i∈Γ dLY (F(Ai), B)
= dLY (

∨
i∈Γ F(Ai), B),

for B = ⊥X , F(
∨

i∈ΓAi) =
∨

i∈Γ F(Ai) by Lemma 2.3 (5). Since
dLY (F(A	 α), B) = dLX (A	 α,G(B))

=
∨

x∈X((A(x)	α)	G(B)(x)) [By Lemma 2.3 (7)]
=
∨

x∈X(A(x)	 G(B)(x))	 α
= dLX (F(A), B)	 α
= dLX (F(A)	 α,B),

we have F(A	 α) = F(A)	 α for all α ∈ L.
Since dLX (A,G(

∧
i∈ΓBi)) = dLY (F(A),

∧
i∈ΓBi)

=
∨

i∈Γ dLX (A,G(Bi)) = dLX (A,
∧

i∈Γ G(Bi)),
we get G(

∧
i∈ΓBi) =

∧
i∈Γ G(Bi). On the other hand,

dLX (A,G(α⊕B)) = dLY (F(A), α⊕B)
=
∨

y∈Y ((F(A)(y)	B(y))	 α)

=
∨

x∈X(A(x)	 G(B)(x))	 α = dLX (A,G(B))	 α
= dLX (A,G(B)⊕ α) [By Lemma 2.3 (7)].

Thus G(α⊕A) = α⊕ G(A) for all α ∈ L. �

Theorem 3.3. (1) Let G : LY → LX be an ⊕-meet preserving map. Then there
exists an 	-join preserving map F : LX → LY such that F(A)(y) = dLX (A,G(⊥y)).
Moreover, dLY (F(A), B) = dLX (A,G(B)) for each A ∈ LX , B ∈ LY .

(2) Let G : LY → LX be an ⊕-meet preserving map. Then there exists a fuzzy
relation R ∈ LX×Y with G(B)(x) =

∧
y∈Y (B(y)⊕R(x, y)) and an 	-join preserving

map F(A)(y) =
∨

x∈X(A(x)	R(x, y)) such that dLY (F(A), B) = dLX (A,G(B)) for

each A ∈ LX , B ∈ LY .
(3) If L satisfies a double negative law with n(x) = >	x and F : LX → LY is an

	-join preserving map, then there exists an ⊕-meet preserving map G : LY → LX
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such that G(⊥y)(x) = n(F(n(⊥x)))(y). Moreover, dLY (F(A), B) = dLX (A,G(B))
for each A ∈ LX , B ∈ LY .

(4) If L satisfies a double negative law with n(x) = >	x and F : LX → LY is an
	-join-preserving map, then there exists a fuzzy relation R ∈ LX×Y with F(A)(y) =∨

x∈X(A(x) 	 R(x, y)) and an ⊕-meet preserving map G(B)(x) =
∧

y∈Y (B(y) ⊕
R(x, y)) such that dLY (F(A), B) = dLX (A,G(B)) for each A ∈ LX , B ∈ LY .

Proof. (1) Since G(
∧

i∈ΓBi) =
∧

i∈Γ G(Bi) and G(α ⊕ B) = α ⊕ G(B), for B(w) =∧
y∈Y (B(y)⊕⊥y(w)), G(B)(x) = G(

∧
y∈Y (B(y)⊕⊥y)(x) =

∧
y∈Y (B(y)⊕G(⊥y)(x)).

Then A ∈ LX , by Lemma 2.3,

F(A)(y) =
∧
{B(y) | G(B) ≥ A}

=
∧
{B(y) |

∧
y∈Y (B(y)⊕ G(⊥y)(x)) ≥ A(x)}

=
∧
{B(y) | B(y) ≥

∨
x∈X(A(x)	 G(⊥y)(x))}

=
∨

x∈X(A(x)	 G(⊥y)(x)).

Moreover, F(
∨

i∈ΓAi) =
∨

x∈X(
∨

i∈ΓAi(x) 	 G(⊥y)(x)) =
∨

i∈Γ(
∨

x∈X(Ai(x) 	
G(⊥y)(x))) =

∨
i∈Γ F(Ai) and F(A	α) =

∨
x∈X((A	α)	G(⊥y)(x)) =

∨
x∈X(A(x)	

G(⊥y)(x)))	 α = F(A)	 α from Lemma 2.3 (7). For A ∈ LX , B ∈ LY , by Lemma
2.3,

dLX (A,G(B)) =
∨

x∈X(A(x)	 G(B)(x))
=
∨

x∈X(A(x)	 G(
∧

y∈Y (B(y)⊕⊥y)(x))

=
∨

x∈X
∨

y∈Y (A(x)	 (B(y)⊕ G(⊥y)(x)))

=
∨

x∈X
∨

y∈Y (A(x)	 G(⊥y)(x))	B(y))

=
∨

y∈Y ((
∨

x∈X(A(x)	 G(⊥y)(x)))	B(y))

=
∨

y∈Y (F(A)(y)	B(y))

= dLY (F(A), B).

(2) By (1), put R(x, y) = G(⊥y)(x). Then the result holds.
(3) Since F(

∨
i∈ΓAi) =

∨
i∈Γ F(Ai) and F(A	α) = F(A)	α forA =

∨
x∈X(A(x)	

⊥x) =
∨

x∈X(n(⊥x)	 n(A)(x)),

F(A)(y) = F(
∨
x∈X

(n(⊥x)	 n(A)(x))(y) =
∨
x∈X

(F(n(⊥x))(y)	 n(A)(x)).

For B ∈ LY ,

G(B)(x) =
∨
{A(x) | F(A)(y) ≤ B(y)}

=
∨
{A(x) |

∨
x∈X(F(n(⊥x))(y)	 n(A)(x)) ≤ B(y)}

=
∨
{A(x) |

∨
y∈Y (F(n(⊥x))(y)	B(y)) ≤ n(A)(x)}

=
∨
{A(x) |

∧
y∈Y (n(F(n(⊥x)))(y)⊕B(y)) ≥ A(x)}

=
∧

y∈Y (n(F(n(⊥x)))(y)⊕B(y)).
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Moreover, G(
∧

i∈ΓBi) =
∧

i∈Γ G(Bi), G(α ⊕ B) = α ⊕ G(B) and G(⊥y)(x) =

n(F(n(⊥x)))(y). For each A ∈ LX , B ∈ LY ,

dLX (A,G(B)) =
∨

x∈X(A(x)	 G(B)(x))
=
∨

x∈X(A(x)	
∧

y∈Y (n(F(n(⊥x)))(y)⊕B(y)))

=
∨

x∈X
∨

y∈Y (A(x)	 (n(F(n(⊥x)))(y)⊕B(y)))

=
∨

x∈X
∨

y∈Y (A(x)	 n(F(n(⊥x)))(y))	B(y))

=
∨

y∈Y ((
∨

x∈X(F(n(⊥x))(y)	 n(A)(x)))	B(y))

=
∨

y∈Y (F(
∨

x∈X(n(⊥x)(y)	 n(A)(x)))	B(y))

=
∨

y∈Y (F(A)(y)	B(y))

= dLY (F(A), B).

(4) By (3), put R(x, y) = n(F(n(⊥x)))(y) = G(⊥y)(x)).

F(A)(y) =
∨

x∈X(F(n(⊥x))(y)	 n(A)(x))
=
∨

x∈X(A(x)	 n(F(n(⊥x)))(y)) =
∨

x∈X(A(x)	R(x, y)),
G(B)(x) =

∧
y∈Y (n(F(n(⊥x)))(y)⊕B(y)) =

∧
y∈Y (R(x, y)⊕B(y)).

Then the result holds. �

Remark 3.4. Let L be satisfied a double negative law with n(x) = > 	 x and
f : X → Y be a map. A map f→ : LX → LY is defined as f→(A)(y) =∨

x∈f−1({y})A(x). Then

f→(A	 α)(y) =
∨

x∈f−1({y})(A	 α)(x)

= (
∨

x∈f−1({y})A(x))	 α = f→(A)(y)	 α [By Lemma 2.3 (2)]

and f→(
∨

i∈ΓAi) =
∨

i∈Γ f
→(Ai). Thus f→ : LX → LY is an 	-join preserving

map. By Theorem 3.3 (3), there exists G : LY → LX defined as:
G(B)(x) =

∧
y∈Y (n(f→(n(⊥x)))(y)⊕B(y))

=
∧

y∈Y (n(
∨

z∈f−1({y}) n(⊥x)(z)⊕B(y))

=
∧

y∈Y (
∧

z∈f−1({y})⊥x(z)⊕B(y))

= ⊥x(x)⊕B(f(x)) = f←(B)(x)
such that G(

∧
i∈ΓBi) =

∧
i∈Γ G(Bi), G(α ⊕ A) = α ⊕ G(A) with f→(n(⊥x))(y) =

dLX (n(⊥x),G(⊥y)) = n(G(⊥y))(x).
Moreover, dLY (f→(A), B) = dLX (A,G(B)) for each A ∈ LX , B ∈ LY .

Example 3.5. Let X = {a, b, c} and Y = {x, y, z} be sets. We define f : X → Y
with f(a) = x, f(b) = f(c) = y.

(1) A map f→ : LX → LY is defined as f→(A)(y) =
∨

x∈f−1({y})A(x). Then

f→(A)(x) = A(a), f→(A)(y) = A(b) ∨A(c), f→(A)(z) = 0

f→(n(0a)) = (1, 0, 0), f→(n(0b)) = (0, 1, 0), f→(n(0c)) = (0, 1, 0)

and f→ : LX → LY is an 	-join preserving map. Then there exists G : LY → LX

defined as G(B)(x) =
∧

y∈Y (n(f→(n(0x)))(y)⊕B(y)) = f←(B)(x) as follows:

G(B)(a) = f←(B)(a) = B(x), G(B)(b) = B(y), G(B)(c) = B(y)

such that G(
∧

i∈ΓBi) =
∧

i∈Γ G(Bi), G(α ⊕ A) = α ⊕ G(A) with f→(n(0x))(y) =
dLX (n(0x),G(0y)) = n(G(0y))(x). Moreover, dLY (f→(A), B) = dLX (A,G(B) =
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f←(B)) for each A ∈ LX , B ∈ LY . Put R(a, y) = n(f→(n(0a)))(y) as

R =

 0 1 1
1 0 1
1 0 1

 .

Then

f→(A)(y) =
∨
a∈X

(A(a)	R(a, y)),G(B)(a) = f←(B)(a) =
∧
y∈Y

(B(y)⊕R(a, y)).

(2) A map f← : LY → LX is defined as f←(B)(x) = B(f(x)). Then

f←(B)(a) = B(f(a)), f←(B)(b) = B(f(b)), f←(B)(c) = B(f(c))

f←(n(0x)) = (1, 0, 0), f←(n(0y)) = (0, 1, 1), f←(n(0z)) = (1, 1, 1).

Since f←(
∧

i∈ΓBi) =
∧

i∈Γ f
←(Bi), f

←(α ⊕ B) = α ⊕ f←(B), f← : LY → LX is
an ⊕-meet preserving map. By Theorem 3.3 (1), there exists an 	-join preserving
map F : LX → LY such that F(A)(y) = dLX (A, f←(0y)) =

∨
x∈f−1({y})A(x) =

f→(A)(y). Moreover, dLY (F(A) = f→(A), B) = dLX (A, f←(B)) for each A ∈
LX , B ∈ LY . Put R(a, y) = f←(0y)(a) as

R =

 0 1 1
1 0 1
1 0 1

 .

Then
F(A)(y) = f→(A)(y) =

∨
a∈X(A(a)	R(a, y)),

f←(B)(a) =
∧

y∈Y (B(y)⊕R(a, y)).

(3) Let ([0, 1],⊕,	, n, 0, 1) be a complete co-residuated lattice as n(x) = 1 − x
and

x⊕ y = (x+ y) ∧ 1, x	 y = (x− y) ∨ 0.

Let dX ∈ [0, 1]X×X , dY ∈ [0, 1]Y×Y be distance functions as follows:

dX =

 0 0.3 0
0.4 0 0.2
0.5 0.4 0

 , dY =

 0 0.6 0.4
0.5 0 0.7
0.3 0.6 0

 .

A map G : LX → LY is defined as G(A)(y) =
∧

x∈X(A(x)⊕dY (f(x), y). Then G is an
⊕-meet preserving map. By Theorem 3.3 (1), there exists an 	-join preserving map
F : LY → LX defined as F(B)(x) = dLY (B,G(0x)) =

∨
y∈Y (B(y) 	 G(0x)(y)) =∨

y∈Y (B(y)	R(x, y)) with R(x, y) = G(0x)(y) = dY (f(x), y) as follows:

R =

 0 0.6 0.6
0.5 0 1
0.5 0 1

 .

(4) In (3), a map F : LY → LX is defined as:

F(B)(x) =
∨
z∈X

(B(f(z))	 dX(z, x)).

Then F is an 	-join preserving map. On the other hand,
R(x, y) = n(F(n(0y))(x) = n(

∨
z∈X(n(0y)(f(z))	 dX(z, x)))
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= n(
∨

z∈X(n(dX(z, x))	 0y(f(z))) [By Lemma 2.3 (2)]
=
∧

z∈X(dX(z, x)⊕ 0y(f(z))) [By Lemma 2.3 (11)]
as follows:

R =

 0 0.4 1
0.3 0 1
0 0 1

 .

Then F : LY → LX is defined as F(B)(x) =
∨

y∈Y (B(y) 	 R(x, y)). By Theorem

3.3 (3), there exists an ⊕-meet preserving map G : LX → LY defined as G(A)(y) =∧
x∈X(A(x)	R(x, y)) with dLX (F(B), A) = dLX (B,G(A)).

Example 3.6. Let X = {x, y, z} be a set and ([0, 1],⊕,	, n, 0, 1) be a complete
co-residuated lattice as n(x) = 1− x and

x⊕ y = (x+ y) ∧ 1, x	 y = (x− y) ∨ 0.

Put D = (0.7, 0.4, 0.2) ∈ [0, 1]X .
(1) Define a map F : LX → LX as F(A)(y) = dLX (A,D)	D(y). Then
F(A	 α)(y) = dLX (A	 α,D)	D(y)

= (dLX (A,D)	 α)	D(y) [By Lemma 2.3 (2)]
= (dLX (A,D)	D(y))	 α = (F(A)	 α)(y) [By Lemma 2.3 (7)],

F(
∨

i∈ΓAi)(y) = dLX (
∨

i∈ΓAi, D)	D(y)
=
∨

i∈Γ(dLX (Ai, D)	D(y))
=
∨

i∈Γ F(Ai)(y).

Thus F : LX → LX is an 	-join preserving map. By Theorem 3.3 (3), there exists
G : LX → LX defined as G(B)(x) =

∧
y∈X(n(F(n(0x)))(y)⊕B(y)) such that

G(
∧
i∈Γ

Bi) =
∧
i∈Γ

G(Bi), G(α⊕B) = α⊕ G(B)

with F(n(0x))(y) = dLX (n(0x),G(0y)) = n(G(0y))(x).
Moreover, dLX (F (A), B) = dLX (A,G(B)) for each A,B ∈ LX . By Theorem 3.4

(4), put R(x, y) = n(F (n(0x)))(y). Since

F(n(0x))(y) = (
∨
z∈X

(n(0x)(z)	D(z)))	D(y) = n(D(x)))	D(y),

we have R(x, y) = n(F(n(0x)))(y) = n(n(D(x))	D(y)) = D(x)⊕D(y) as

R =

 1 1 0.9
1 0.8 0.6

0.9 0.6 0.4

 .

So
F(A)(y) =

∨
x∈X(A(x)	R(x, y)),

G(B)(x) =
∧

y∈Y (B(y)⊕R(x, y)).

(2) Define a map G : LX → LX as G(A)(y) =
∧

x∈X(n(D)(x) ⊕ A(x)) ⊕ D(y).

Since G(
∧

i∈ΓAi) =
∧

i∈Γ G(Ai), G(α⊕ A) = α⊕ G(A), G : LX → LX is an ⊕-meet
preserving map. By Theorem 3.3 (1), there exists an 	-join preserving map F :
LX → LX defined as F(B)(x) = dLX (B,G(0x)) =

∨
y∈X(B(y)	 (D(y)⊕ n(D(x)))

224



Ju-mok Oh, Yong Chan Kim /Ann. Fuzzy Math. Inform. 21 (2021), No. 2, 217–226

with F(n(0y))(x) = dLX (n(0y),G(0x)) = n(G(0x))(y). Put R(x, y) = G(0x)(y) =
n(D)(x)⊕D(y) as

R =

 1 0.7 0.5
1 1 0.8
1 1 1

 .

Then

G(A)(y) =
∧

x∈X(A(x)⊕R(x, y))
F(B)(x) =

∨
y∈X(B(y)	R(x, y)).

4. Conclusion

The distance function instead of fuzzy partially ordered set is a new notion. We
investigated the relations among residuated connections, 	-join preserving maps and
⊕-meet preserving maps on complete co-residuated lattices.

In the future, fuzzy rough sets, information systems and decision rules are inves-
tigated by using the concepts of distance spaces in complete co-residuated lattices.
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