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Abstract. In this paper, we introduce the new notion of intuition-
istic neutrosophic crisp sets as a tool for approximating undefinable or
complex concepts in real world. First, we deal with some of its algebraic
structures. Next, we define an intuitionistic neutrosophic crisp topology,
base (subbase) and interior (closure), respectively and investigate some of
each properties, and give some examples. Finally, we discussed various
intuitionistic neutrosophic crisp continuities.
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1. Introduction

In 2014, Salama et al. [1] proposed the concept of neutrosophic crisp sets as the
generalization of classical sets and the special case of neutrosophic sets proposed
by Smarandache [2, 3, 4], and studied its some algebraic structures and dealt with
topological structures. After then, Hur et al. [5] investigated categorical structures
via neutrosophic crisp sets. From now on, the notion of neutrosophic crisp sets has
been mainly studied by many researchers [6, 7, 8, 9, 10, 11, 12]. Recently, Kim et
al. [13] defined an interval-valued set and applied it to topological structures. Also,
Kim et al. [14] introduced the concept of interval-valued neutrosophic crisp sets,
and investigated its some algebraic and topological structures.

In order to express mathematically the complex real world, we propose a new con-
cept combined intuitionistic set and neutrosophic crisp set, and apply it to topology.
In order to accomplish such research, this paper is composed of six sections. In



J. Kim et al./Ann. Fuzzy Math. Inform. 21 (2021), No. 2, 125–145

Section 2, we recall some definitions related to intuitionistic sets and neutrosophic
crisp sets. In Section 3, we introduce the new concept of intuitionistic neutrosophic
crisp set and obtain some of its algebraic structures, and give some examples. In
Section 4, we define an intuitionistic neutrosophic crisp topology, an intuitionistic
neutrosophic crisp base and subbase, and study some of their properties. In Section
5, we define an intuitionistic neutrosophic crisp interior and closure and obtain some
of their properties. Also, we show that there is a unique INCT for intuitionistic neu-
trosophic crisp interior [resp. closure] operators. In Section 6, we deal with various
properties of intuitionistic neutrosophic crisp continuities.

2. Preliminaries

In this section, we recall the concepts of an intuitionistic set introduced in [15].
Also we recall some concepts proposed in [16] and [13, 17].

Definition 2.1 ([15]). Let X be a non-empty set. Then A is called an intuitionistic
set (briefly, IS) of X, if it is an object having the form

A = (A∈, A6∈),

such that A∈ ∩ A 6∈ = ∅, where A∈ [resp. A 6∈] represents the set of memberships
[resp. non-memberships] of each element x ∈ X to A.

In fact, A∈ [resp. A 6∈] is a subset of X agreeing or approving [resp. refusing or
opposing] for a certain opinion, view, suggestion or policy.

The intuitionistic empty set [resp. the intuitionistic whole set] of X, denoted by
∅̄ [resp. X̄], is defined by ∅̄ = (∅, X) [resp. X̄ = (X,∅)]. We will denote the set of
all ISs of X as IS(X). Also, it is clear that for each A ∈ IS(X), χ

A
= (χ

A∈
, χ

A6∈
) is

an intuitionistic fuzzy set in X proposed by Atanassov [18]. Thus we can consider
the intuitionistic set A in X as an intuitionistic fuzzy set in X.

For the inclusion, the equality, the union and the intersection of intuionistic sets,
and the complement of an intuitionistic set, the operations [ ] and < > on IS(X),
refer to [15].

Definition 2.2 ([16, 19]). LetX be a non-empty set. Then the formA =
〈
AT , AI , AF

〉
is called a neutrosophic crisp set in X, if AT , AI , AF ⊂ X.

In this case, AT , AI and AF represent the set of memberships, indeterminacies
and non-memberships respectively of each element x ∈ X to A. In particular, a
neutrosophic crisp set is defined as three types below.

A neutrosophic crisp set A =
〈
AT , AI , AF

〉
in X is said to be of:

(i) Type 1, if it satisfies the following conditions:

AT ∩AI = ∅, AT ∩AF = ∅, AI ∩AF = ∅,

(ii) Type 2, if it satisfies the following conditions:

AT ∩AI = ∅, AT ∩AF = ∅, AI ∩AF = ∅, AT ∪AI ∪AF = X,

(iii) Type 3, if it satisfies the following conditions:

AT ∩AI ∩AF = ∅, AT ∪AI ∪AF = X.
126
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We consider neutrosophic crisp empty [resp. whole] sets of two types in X, de-
noted by ∅1,N , ∅2,N [resp. X1,N , X2,N ] and defined by (See Remark 1.1.1 in [16]):

∅1,N = 〈∅,∅, X〉 , ∅2,N = 〈∅, X,X〉 [resp.X1,N = 〈X,X,∅〉 , X2,N = 〈X,∅,∅〉].
We will denote the set of all neutrosophic crisp sets in X denoted by N(X).

It is obvious that A = 〈A,∅, Ac〉 ∈ N(X) for each ordinary subset A of X.
Then we can consider a neutrosophic set in X as the generalization of an ordinary
subset of X. Also, it is clear that A =

〈
A∈,∅, A6∈

〉
is an neutrosophic crisp set in

X for each A ∈ I(X). Thus we can consider a neutrosophic crisp set in X as the
generalization of an intuitionisatic set in X. Furthermore, we can easily see that for
each A ∈ N(X),

χ
A

=
〈
χ

AT
, χ

AI
, χ

AF

〉
is a neutrosophic set in X introduced by Salama and Smarandache [2, 3, 4]. So we
can consider the neutrosophic crisp set as the specialization of a neutrosophic set.

Definition 2.3 ([16]). Let A ∈ N(X). Then the complement of A, denoted by Ai,c

(i = 1, 2) and defined by:

A1,c =
〈
AF , AIc, AT

〉
, A2,c =

〈
AF , AI , AT

〉
.

Definition 2.4 ([16]). Let X be a non-empty set and let A, B ∈ N(X).
(i) We say that A is a 1-type subset of B, denoted by A ⊂1 B, if it satisfies the

following conditions:
AT ⊂ BT , AI ⊂ BI , AF ⊃ BF .

(ii) We say that A is a 2-type subset of B, denoted by A ⊂2 B, if it satisfies the
following conditions:

AT ⊂ BT , AI ⊃ BI , AF ⊃ BF .

Definition 2.5 ([16]). Let X be a non-empty set and let A, B ∈ N(X).
(i) The i-intersection of A and B, denoted by A ∩i B (i = 1, 2) and defined by:

A∩1B =
〈
AT ∩BT , AI ∩BI , AF ∪BF

〉
, A∩2B =

〈
AT ∩BT , AI ∪BI , AF ∪BF

〉
.

(ii) The i-union of A and B, denoted by A ∪i B (i = 1, 2) and defined by:

A∪1B =
〈
AT ∪BT , AI ∪BI , AF ∩BF

〉
, A∪2B =

〈
AT ∪BT , AI ∩BI , AF ∩BF

〉
.

(iii) [ ]A =
〈
AT , AI , AT c〉

, 〈 〉A =
〈
AF c

, AI , AF
〉
.

Definition 2.6 ([16]). Let X be a non-empty set and let (Aj)j∈J be a family of
neutrosophic crisp sets in X.

(i) The i-intersection of (Aj)j∈J , denoted by
⋂i

j∈JAj (i = 1, 2) and defined as
follows:

1⋂
j∈J

Aj =

〈⋂
j∈J

AT
j ,
⋂
j∈J

AI
j ,
⋃
j∈J

AF
j

〉
,

2⋂
j∈J

Aj =

〈⋂
j∈J

AT
j ,
⋃
j∈J

AI
j ,
⋃
j∈J

AF
j

〉
.

(ii) The i-union of (Aj)j∈J , denoted by
⋃i

j∈JAj (i = 1, 2) and defined as follows:

1⋃
j∈J

Aj =

〈⋃
j∈J

AT
j ,
⋃
j∈J

AI
j ,
⋂
j∈J

AF
j

〉
,

2⋃
j∈J

Aj =

〈⋃
j∈J

AT
j ,
⋂
j∈J

AI
j ,
⋂
j∈J

AF
j

〉
.
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Definition 2.7 ([13]). Let X be an non-empty set. Then the form

[A−, A+] = {B ⊂ X : A− ⊂ B ⊂ A+}
is called an interval-valued sets (briefly, IVS) in X, where A−, A+ ⊂ X and A− ⊂
A+. In particular, [∅,∅] [resp. [X,X]] is called the interval-valued empty [resp.

whole] set in X and denoted by ∅̃ [resp. X̃].
We will denote the set of all IVSs in X as IV S(X).

It is obvious that [A,A] ∈ IV S(X) for classical subset A of X. Then we can
consider an IVS in X as the generalization of a classical subset of X. Also, if
A = [A−, A+] ∈ IV S(X), then χA = [χA− , χA+ ] is an interval-valued fuzzy set in
X introduced by Zadeh [20]. Thus we can consider an interval-valued fuzzy set as
the generalization of an IVS.

For the inclusion, the equality, the union and the intersection of interval-valued
sets, and the complement of an interval-valued set, refer to [13, 17].

3. Intuitionistic neutrosophic crisp sets

In this section, we introduce the concept of an intuitionistic neutrosophic crisp
set combined by a neutrosophic crisp set and an intuitionistic set, and obtain some
of its properties.

Definition 3.1. Let X be a non-empty set. Then the form〈
(AT,∈, AT, 6∈), (AI,∈, AI,6∈), (AF,∈, AF,6∈)

〉
is called an intuitionistic neutrosophic crispset (briefly, INCS) in X,
where (AT,∈, AT, 6∈), (AI,∈, AI,6∈), (AF,∈, AF,6∈) ∈ IS(X) such that AT,∈∩AF,∈ = ∅.

In this case, (AT,∈, AT, 6∈), (AI,∈, AI,6∈) and (AF,∈, AF,6∈) represent the IS of mem-
berships, indeterminacies and non-memberships respectively of each element x ∈ X
to A. In particular, an INCS is defined as three types below.

An INCS A =
〈
(AT,∈, AT, 6∈), (AI,∈, AI,6∈), (AF,∈, AF,6∈)

〉
in X is said to be of:

(i) Type 1, if it satisfies the following conditions:

AT,∈ ∩AI,∈ = ∅, AI,∈ ∩AF,∈ = ∅, AT,∈ ∩AF,∈ = ∅,

(ii) Type 2, if it satisfies the following conditions:

AT,∈ ∩AI,∈ = ∅, AI,∈ ∩AF,∈ = ∅, AT,∈ ∪AI,∈ ∪AF,∈ = X,

(iii) Type 3, if it satisfies the following conditions:

AT,∈ ∩AI,∈ ∩AF,∈ = ∅, AT,∈ ∪AI,∈ ∪AF,∈ = X.

We will denote the set of all INCSs of Type 1 [resp. Type 2 and Type 3] in
X denoted by IN1(X) [resp. IN2(X) and IN3(X)], and INC(X) = IN1(X) ∪
IN2(X) ∪ IN3(X).

It is obvious that 〈(A,Ac), ∅̄, (Ac, A)〉 ∈ INC(X) for classical subset A of X.
Then we can consider an INCS in X as the generalization of a classical subset of X.
Moreover, if A =

〈
(AT,∈, AT, 6∈), (AI,∈, AI,6∈), (AF,∈, AF,6∈)

〉
∈ INC(X), then χA =

〈(χAT,∈ , χAT, 6∈), (χAI,∈ , χAI,+ 6∈), (χAF,∈ , χAF,6∈)〉) is an intuitionistic neutrosophic set
128
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in X. Thus we can consider an intuitionistic neutrosophic set as the generalization
of an INCS.

Remark 3.2. In general, the followings hold:
(1) IN2(X) ⊂ IN1(X), IN2(X) ⊂ IN3(X),
(2) IN1(X) 6⊂ IN2(X), IN1(X) 6⊂ IN3(X) in general,
(3) IN3(X) 6⊂ IN1(X), IN3(X) 6⊂ IN2(X) in general.

Example 3.3. Let X = {a, b, c, d, e, f, g, h, i}. Consider two INCSs in given by:

A = 〈({a, b, c, d}, {e, f}), ({e, f}, {a}), ({g, h}, {a, f})〉 ,

B = 〈({a, b, c, f}, {e, i}), ({a, d, e}, {f}), ({g, h, i}, {a, f})〉 .
(i) AT,∈ ∩ AI,∈ = ∅, AT,∈ ∩ AF,∈ = ∅, AI,∈ ∩ AF,∈ = ∅. Then A ∈ IN1(X).

But we have AT,∈ ∪ AI,∈ ∪ AF,∈ = [{a, b, c, d, e, f, g, h} 6= X. Thus A 6∈ IN2(X).
Moreover, AT,∈ ∩AI,∈ ∩AT,∈ = ∅. So A 6∈ IN3(X). Hence Remark 3.2 (2) holds.

(ii) BT,∈ ∩ BI,∈ ∩ BF,∈ = ∅ and BT,∈ ∪ BI,∈ ∪ BF,∈ = X. Then B ∈ IN3(X).
But we have BT,∈ ∩BI,∈ = {a} 6= ∅. Thus B 6∈ IN1(X), B 6∈ IN2(X). So Remark
3.2 (3) holds.

Definition 3.4. Let X be a non-empty set. Then we may define the intuitionistic
neutrosophic crisp empty sets and the intuitionistic neutrosophic crisp whole sets,
denoted by ∅i,IN and Xi,IN (i = 1, 2, 3, 4), respectively as follows:

(i) ∅1,IN =
〈
∅̄, ∅̄, X̄

〉
, ∅2,IN =

〈
∅̄, X̄, X̄

〉
,

∅3,IN =
〈
∅̄, X̄, ∅̄

〉
, ∅4,IN = 〈∅̄, ∅̄, ∅̄〉 ,

(ii) X1,IN =
〈
X̄, X̄, ∅̄

〉
, X2,IN =

〈
X̄, ∅̄, ∅̄

〉
,

X3,IN =
〈
X̄, ∅̄, X̄

〉
, X4,IN =

〈
X̄, X̄, X̄

〉
.

Definition 3.5. Let X be a non-empty set and let A ∈ INC(X). Then the com-
plements of A, denoted by Ai,c (i = 1, 2, 3), is an INCS in X, respectively as
follows:

A1,c =
〈

(AT,∈, AT, 6∈)
c
, (AI,∈, AI,6∈)

c
, (AF,∈, AF,6∈)

c
〉
,

A2,c =
〈
(AF,∈, AF,6∈), (AI,∈, AI,6∈), (AT,∈, AT, 6∈)

〉
,

A3,c =
〈

(AF,∈, AF,6∈), (AI,∈, AI,6∈)
c
, (AT,∈, AT, 6∈)

〉
.

Example 3.6. Let A = 〈({a, b, c, d}, {e, f}), ({e, f}, {a}), ({g, h}, {a, f})〉 be the
INCS in X given in Example 3.3. Then we can easily check that

A1,c = 〈({e, f}, {a, b, c, d}), ({a}, {e, f}), ({a, f}, {g, h})〉 ,

A2,c = 〈({a, f}, {g, h}, ({e, f}, {a}), ({e, f}, {a, b, c, d})〉 ,
A3,c = 〈({a, f}, {g, h}, ({a}, {e, f}), ({e, f}, {a, b, c, d})〉 .

Definition 3.7. Let X be a non-empty set and let A, B ∈ INC(X). Then we may
define the inclusions between A and B, denoted by A ⊂i B (i = 1, 2), as follows:

A ⊂1 B iff (AT,∈, AT, 6∈) ⊂ (BT,∈, BT, 6∈), (AI,∈, AI,6∈) ⊂ (BI,−, BI,+),
(AF,∈, AF,6∈) ⊃ (BF,∈, BF,6∈),

A ⊂2 B iff (AT,∈, AT, 6∈) ⊂ (BT,∈, BT, 6∈), (AI,∈, AI,6∈) ⊃ (BI,−, BI,6∈),
(AF,∈, AF,6∈) ⊃ (BF,∈, BF,6∈).
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Proposition 3.8. For any A ∈ INC(X), the followings hold:
(1) ∅1,IN ⊂1 A ⊂1 X1,IN , ∅2,IN ⊂2 A ⊂2 X2,IN ,
(2) ∅i,IN ⊂j ∅i,IN , Xi,IN ⊂j Xi,IN , (i = 1, 2, 3, 4, j = 1, 2).

Proof. Straightforward. �

Definition 3.9. Let X be a non-empty set and let A, B ∈ INC(X).
(i) A ∩B may be defined as two types:

A ∩1 B =< (AT,∈, AT, 6∈) ∩ (BT,∈, BT, 6∈), (AI,∈, AI,6∈) ∩ (BI,∈, BI,6∈),
(AF,∈, AF,6∈) ∪ (BF,∈, BF,6∈) >,

A ∩2 B =< (AT,∈, AT, 6∈) ∩ (BT,∈, BT, 6∈), (AI,∈, AI,6∈) ∪ [BI,∈, BI,6∈],
(AF,∈, AF,6∈) ∪ (BF,∈, BF,6∈) > .

(ii) A ∪B may be defined as two types:
A ∪1 B =< (AT,∈, AT, 6∈) ∪ (BT,∈, BT, 6∈), (AI,∈, AI,6∈) ∪ (BI,∈, BI,6∈),

(AF,∈, AF,6∈) ∩ (BF,∈, BF,6∈) >,
A ∩2 B =< (AT,∈, AT, 6∈) ∪ (BT,∈, BT, 6∈), (AI,∈, AI,6∈) ∩ (BI,∈, BI,6∈),

(AF,∈, AF,6∈) ∩ (BF,∈, BF,6∈) > .
(iii) [ ]A =

〈
[(AT,∈, AT, 6∈), (AI,∈, AI,6∈), (AT,∈, AT, 6∈)c

〉
.

(iv) < > A =
〈
(AF,∈, AF,6∈)c, (AI,∈, AI,6∈), (AF,∈, AF,6∈)

〉
.

From Definitions 3.4, 3.5, 3.7 and 3.9, we get the similar results of Propositions
3.5 and 3.6 in [13].

Proposition 3.10. Let X be a non-empty set, let A, B, C ∈ INC(X) and let
i = 1, 2. Then

(1) if A ⊂i B and B ⊂i C, then A ⊂i C,
(2) A ⊂i A ∪i B and B ⊂i A ∪i B,
(3) A ∩i B ⊂i A and A ∩i B ⊂i B,
(4) A ⊂i B if and only if A ∩i B = A,
(5) A ⊂i B if and only if A ∪i B = B.

Proposition 3.11. Let X be a non-empty set, let A, B, C ∈ INC(X)and let
i = 1, 2, j = 1, 2, 3, k = 1, 2, 3, 4. Then

(1) (Idempotent laws) A ∪i A = A, A ∩i A = A,
(2) (Commutative laws) A ∪i B = B ∪i A, A ∩i B = B ∩i A,
(3) (Associative laws) A∪i (B∪iC) = (A∪iB)∪iC, A∩i (B∩iC) = (A∩iB)∩iC,
(4) (Distributive laws) A ∪i (B ∩i C) = (A ∪i B) ∩i (A ∪i C),

A ∩i (B ∪i C) = (A ∩i B) ∪i (A ∩i C),
(5) (Absorption laws) A ∪i (A ∩i B) = A, A ∩i (A ∪i B) = A,
(6) (DeMorgan’s laws) (A ∪1 B)1,c = A1,c ∩1 B1,c, (A ∩1 B)1,c = A1,c ∪1 B1,c,

(A ∪1 B)2,c = A2,c ∩2 B2,c, (A ∩1 B)2,c = A2,c ∪2 B2,c,
(A ∪1 B)3,c = A3,c ∩1 B3,c, (A ∩1 B)3,c = A3,c ∪1 B3,c,
(A ∪2 B)1,c = A1,c ∩2 B1,c, (A ∩2 B)1,c = A1,c ∪2 B1,c,
(A ∪2 B)2,c = A2,c ∩1 B2,c, (A ∩2 B)2,c = A2,c ∪1 B2,c,
(A ∪2 B)3,c = A3,c ∩2 B3,c, (A ∩2 B)3,c = A3,c ∪2 B3,c,

(7) (Aj,c)j,c = A,
(8) (8a) A ∪i ∅i,IN = A, A ∩i ∅i,IN = ∅i,IN ,

(8b) A ∪i Xi,IN = Xi,IN , A ∩i Xi,IN = A,

(8c) X1,IN
1,c = ∅1,IN , X1,IN

2,c = ∅2,IN , X1,IN
3,c = ∅1,IN ,
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X2,IN
1,c = ∅2,IN , X2,IN

2,c = ∅1,IN , X2,IN
3,c = ∅2,IN ,

X3,IN
1,c = ∅3,IN , X3,IN

2,c = X3,IN , X3,IN
3,c = X4,IN ,

X4,IN
1,c = ∅4,IN , X4,IN

2,c = X4,IN , X4,IN
3,c = X3,IN ,

∅1,IN
1,c = X1,IN , ∅1,IN

2,c = X2,IN , ∅1,IN
3,c = X1,IV N ,

∅2,IN
1,c = X2,IN , ∅2,IN

2,c = X1,IN , ∅2,IN
3,c = X2,IN ,

∅3,IN
1,c = X3,IN , ∅3,IN

2,c = ∅3,IN , ∅3,IN
3,c = ∅4,IN ,

∅4,IN
1,c = X4,IN , ∅4,IN

2,c = ∅4,IN , ∅4,IN
3,c = ∅3,IN ,

(8d) A ∪i Aj,c 6= Xk,IN , A ∩i Aj,c 6= ∅k,IN in general (See Example 3.12).

Example 3.12. Consider the IVNCS A in X given in Example 3.6. Then
A ∩1 A3,c

= 〈({a, b, c, d}, {e, f}), ({e, f}, {a}), ({g, h}, {a, f})〉
∩1 〈({g, h}, {a, f}), ({a}, {e, f}), ({a, b, c, d}, {e, f})〉

= 〈[∅, {a, e, f}], [∅, {a, e, f}], [{a, b, c, d, g, h}, {f}}]〉
6= ∅k,IN .

Similarly, we can check that

A ∪1 A3,c 6= Xk,IN , A ∩1 A1,c 6= ∅k,IN , A ∪1 A1,c 6= Xk,IN ,

A ∩1 A2,c 6= ∅k,IN , A ∪1 A2,c 6= Xk,IN .

Also, we can easily check the remainders.

Definition 3.13. Let (Aj)j∈J be a family of INCSs in X. Then
(i) the intersection of (Aj)j∈J , denoted by

⋂
j∈J Aj , is an INCS in X defined by:

1⋂
j∈J

Aj =

〈
(
⋂
j∈J

AT,∈
j ,

⋃
j∈J

AT, 6∈
j ), (

⋂
j∈J

AI,∈
j ,

⋃
j∈J

AI,6∈
j ), (

⋃
j∈J

AF,∈
j ,

⋂
j∈J

AF,6∈
j ]

〉
,

2⋂
j∈J

Aj =

〈
(
⋂
j∈J

AT,∈
j ,

⋃
j∈J

AT, 6∈
j ), (

⋃
j∈J

AI,∈
j ,

⋂
j∈J

AI,6∈
j ), (

⋃
j∈J

AF,∈
j ,

⋂
j∈J

AF,6∈
j )

〉
,

(ii) the union of (Aj)j∈J , denoted by
⋃

j∈J Ãj , is an INCS in X in X defined by:

1⋃
j∈J

Aj =

〈
(
⋃
j∈J

AT,∈
j ,

⋂
j∈J

AT, 6∈
j ), (

⋃
j∈J

AI,∈
j ,

⋂
j∈J

AI,6∈
j ), (

⋂
j∈J

AF,∈
j ,

⋃
j∈J

AF,6∈
j )

〉
,

2⋃
j∈J

Aj =

〈
(
⋃
j∈J

AT,∈
j ,

⋂
j∈J

AT, 6∈
j ), (

⋂
j∈J

AI,∈
j ,

⋃
j∈J

AI,6∈
j ), (

⋂
j∈J

AF,∈
j ,

⋃
j∈J

AF,6∈
j )

〉
,

From Definition 3.13, we get the similar result of Proposition 3.11 (6).

Proposition 3.14. Let A ∈ INC(X) and let (Aj)j∈J be a family of INCSs in X.
Then

(1) (
⋂1

j∈J Aj)
1,c =

⋃1
j∈J A

1,c
j , (

⋃1
j∈J Aj)

1,c =
⋂1

j∈J A
1,c
j ,

(
⋂1

j∈J Aj)
2,c =

⋃2
j∈J A

2,c
j , (

⋃1
j∈J Aj)

2,c =
⋂2

j∈J A
2,c
j ,

(
⋂1

j∈J Aj)
3,c =

⋃1
j∈J A

3,c
j , (

⋃1
j∈J Aj)

3,c =
⋂1

j∈J A
3,c
j ,

(
⋂2

j∈J Aj)
1,c =

⋃2
j∈J A

1,c
j , (

⋃2
j∈J Aj)

1,c =
⋂1

j∈J A
1,c
j ,

(
⋂2

j∈J Aj)
2,c =

⋃1
j∈J A

2,c
j , (

⋃2
j∈J Aj)

2,c =
⋂1

j∈J A
2,c
j ,
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(
⋂2

j∈J Aj)
3,c =

⋃2
j∈J A

3,c
j , (

⋃2
j∈J Aj)

3,c =
⋂2

j∈J A
3,c
j ,

(2) A∩i (
⋃i

j∈J Aj) =
⋃i

j∈J(A∩iAj), A∪i (
⋂i

j∈J Aj) =
⋂i

j∈J(A∪iAj) (i = 1, 2).

From Propositions 3.11 and 3.14, we can easily see that (INC(X),∪i,∩i,j,c ) is
a boolean algebra except the condition (8d) with the least element ∅i,IN and the
largest Xi,IN , where i = 1, 2 and j = 1, 2, 3.

Definition 3.15. Let X, Y be two non-empty sets, let f : X → Y be a mapping
and let A ∈ INC(X), B ∈ INC(Y ).

(i) The image of A under f , denoted by f(A), is an INCS in Y defined as:

f(A) =
〈
(f(AT,∈), f(AT, 6∈)), (f(AI,∈), f(AI,6∈)), (f(AF,∈), f(AF,6∈))

〉
.

(ii) The preimage of B under f , denoted by f−1(B), is an interval set in X defined
as:

f−1(B) =
〈
(f−1(BT,∈), f−1(BT, 6∈)), (f−1(BI,∈), f−1(BI,6∈)), (f−1(BF,∈), f−1(BF,6∈))

〉
.

Proposition 3.16. Let X, Y be two non-empty sets, let f : X → Y be a map-
ping, let A, A1, A2 ∈ INC(X), (Aj)j∈J ⊂ INC(X) and let B, B1, B2 ∈
INC(Y ), (Aj)j∈J ⊂ INC(Y ). Let i = 1, 2, j = 1, 2, 3, k = 1, 2, 3, 4. Then

(1) if A1 ⊂i A2, then f(A1) ⊂i f(A2),
(2) if B1 ⊂i B2, then f−1(B1) ⊂i f

−1(B1),
(3) A ⊂i f

−1(f(A)) and if f is injective, then A = f−1(f(A)),
(4) f(f−1(B)) ⊂i B and if f is surjective, f(f−1(B)) = B,

(5) f−1(
⋃i

j∈J Bj) =
⋃i

j∈J f
−1(Bj),

(6) f−1(
⋂i

j∈J Bj) =
⋂i

j∈J f
−1(Bj),

(7) f(
⋃i

j∈J Aj)i ⊂i

⋃i
j∈J f(Aj) and if f is surjective, then f(

⋃i
j∈J Aj)i =

⋃i
j∈J f(Aj),

(8) f(
⋂i

j∈J Aj) ⊂i

⋂i
j∈J f(Aj) and if f is injective, then f(

⋂i
j∈J Aj) =

⋂i
j∈J f(Aj),

(9) if f is surjective, then f(A)j,c ⊂i f(Aj,c).
(10) f−1(Bj,c) = f−1(B)j,c.
(11) f−1(∅k,IN ) = ∅k,IN , f−1(Xk,IN ) = Xk,IN ,
(12) f(∅k,IN ) = ∅k,IN and if f is surjective, then f(Xk,IN ) = Xk,IN ,
(13) if g : Y → Z is a mapping, then (g ◦ f)−1(C) = f−1(g−1(C)), for each

C ∈ [Z].

Proof. The proofs are straightforward. �

4. Intuitionistic topological spaces

In this section, we define an intuitionistic neutrosophic crisp topology on a non-
empty set X and study some of its properties, and give some examples. Also, we
introduce the concepts of an intuitionistic neutrosophic crisp base and subbase, and
a family of INCSs gets the necessary and sufficient conditions to become INCB and
gives some examples.

From this section to the rest sections, we will denote ⊂1, ∪1, ∩1, 3,c, ∅1,IN and
X1,IN by ⊂, ∩, ∪, c, ∅IN and XIN , respectively.

132



J. Kim et al./Ann. Fuzzy Math. Inform. 21 (2021), No. 2, 125–145

Definition 4.1. Let X be a non-empty set and let τ be a non-empty family of
INCSs on X, i.e., ∅ 6= τ ⊂ INC(X). Then τ is called an intuitionistic neutrosophic
crisp topology (briefly, INCT) on X, if it satisfies the following axioms:

(INCO1) ∅IN , XIN ∈ τ ,
(INCO2) A ∩B ∈ τ for any A, B ∈ τ ,
(INCO3)

⋃
j∈J Aj ∈ τ for any family (Aj)j∈J of members of τ .

In this case, the pair (X, τ) is called an intuitionistic neutrosophic crisp topological
space (briefly, INCTS) and each member of τ is called an intuitionistic neutrosophic
crisp open set (briefly, INCOS) in X. An INCS A is called an intuitionistic neutro-
sophic crisp closed set (briefly, INCCS) in X, if Ac ∈ τ .

It is obvious that {∅IN , XIN} is an INCT on X, and will be called the intuition-
istic neutrosophic crisp indiscrete topology (briefly, INCIT) on X and denoted by
τ
IN,0

. Also IN1(X) is an INCT on X, and will be called the intuitionistic neutro-
sophic crisp discrete topology (briefly, INCDT) on X and denoted by τ

IN,1
. The

pair (X, τ
IN,0

) [resp. (X, τ
IN,1

)] will be called an intuitionistic neutrosophic crisp
indiscrete [resp. discrete] space (briefly, INCITS) [resp. (briefly, INCDTS)].

We will denote the set of all INCTs on X as INCT (X). For an INCTS X, we will
denote the set of all INCOs [resp. INCCSs] in X as INCO(X) [resp. INCC(X)].

Remark 4.2. (1) For each τ ∈ INCT (X), consider three families of ISs in X:

τT = {(AT,∈, AT, 6∈) ∈ IS(X) : A ∈ τ}, τ I = {(AI,∈, AI,6∈) ∈ IS(X) : A ∈ τ},

τF = {(AF,6∈, AF,∈) ∈ IS(X) : A ∈ τ}.
Then we can easily check that τT , τ I and τF are ITs on X proposed by Çoker [21].

In this case, τT [resp. τ I and τF ] will be called the membership [resp. indeter-
minacy and non-membership] topology of τ and we will write τ =

〈
τT , τ I , τF

〉
. In

fact, we can consider (X, τT , τ I , τF ) as an intuitionistic tri-topological space on X
(See the concept of bitopology introduced by Kelly [22]).

Also, let us consider six families of ordinary subsets of X:

τT,∈ = {AT,∈ ⊂ X : A ∈ τ}, τT, 6∈ = {AT, 6∈c ⊂ X : A ∈ τ},

τ I,∈ = {AI,∈ ⊂ X : A ∈ τ}, τ I,6∈ = {AI,6∈c ⊂ X : A ∈ τ},

τF,∈ = {AF,∈c ⊂ X : A ∈ τ}, τF,6∈ = {AF,6∈ ⊂ X : A ∈ τ}.
Then clearly, τT,∈, τT, 6∈, τ I,∈, τ I,6∈, τF,∈, τF,6∈ are ordinary topologies on X.

(2) Let (X, τo) be an ordinary topological space. Then there are three INCTs on
X given by: for each G ∈ τo,

τ1 =

{
{〈(G,Gc), ∅̄, (Gc, G)〉 : G ∈ τo} if G 6= X
XIN if G = X,

τ2 =

{
{
〈
(G,∅), X̄, (∅, G)

〉
: G ∈ τo} if G 6= ∅

∅IN if G = ∅,

τ3 =

{
{〈(∅, Gc), ∅̄, (Gc,∅)〉 : G ∈ τo} if G 6= X
XIN if G = X.
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(3) Let (X, τ
IV

) be an IVTS introduced by Kim et al. [13]. Consider the family
τ of intuitionistic neutrosophic sets in a set X given by:

τ = {
〈
(A−, A+c

), ∅̄, (A−c
, A+)

〉
∈ INC(X) : A ∈ τ

IV
}.

Then clearly, τ ∈ INCT (X).
(4) Let (X, τ

I
) be an ITS introduced by Çoker [21]. Consider the family τ of

intuitionistic neutrosophic sets in a set X given by:

τ = {
〈
(A∈, A6∈), ∅̄, (A∈c, A6∈)

〉
∈ INC(X) : A ∈ τ

I
}.

Then clearly, τ ∈ INCT (X).
(5) Let (X, τ

NC
) be a neutrosophic crisp topological space introduced by Salama

and Smarandache [16]. Then clearly,

τ = {
〈

(AT , AT c
), (AI , AIc), AF c

, AF )
〉
∈ INC(X) : A ∈ τ

NC
} ∈ INCT (X).

From Remark 4.2, we can easily see that an INCT is a generalization of a clas-
sical topology, an interval-valued intuitionistic topology (briefly, IVT) proposed by
Cha et al. [23], an intuitionistic topology (briefly, IT) defined by Çoker [21] and
a neutrosophic crisp topology introduced by Salama et al. [9]. Then we have the
following Figure 1:

Intuitionistic neutrosophic crisp topology

Neutrosophic crisp topology

Interval-valued 
topology

Intuitionistic 
topology

Classical    
topology 

Figure 1.

Example 4.3. (1) Let X be a set and let A ∈ INC(X). Then A is said to be finite,
if AT, 6∈, AI,6∈ and AF,6∈ are finite. Consider the family

τ = {U ∈ INC(X) : U = ∅IN or U c is finite}.
Then we can easily check that τ ∈ INCT (X).

In this case, τ will be called an intuitionistic neutrosiophic crisp cofinite topology
(briefly, INCCFT) on X.
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(2) Let X be a set and let A ∈ INC(X). Then A is said to be countable, if
AT, 6∈, AI,6∈ and AF,6∈ are countable. Consider the family

τ = {U ∈ INC(X) : U = ∅IN or U c is countable}.
Then we can easily prove that τ ∈ INCT (X).

In this case, τ will be called an intuitionistic neutrosiophic crisp cocountable
topology (briefly, INCCCT) on X.

(3) Let X = {a, b, c, d, e, f, g, h, i} and the family τ of IVNCSs on X given by:

τ = {∅IN , A1, A2, A3, A4, XIN},
where A1 = 〈({a, b, c}, {d, e}), ({e, f}, {g}), ({g, h}, {b, i})〉 ,

A2 = 〈({a, c, d}, {e, i}), ({e, g}, {h}), ({h, i}, {a})〉 ,
A3 = 〈({a, c}, {d, e, i}), ({e}, {g, h}), ({g, h, i},∅)〉 ,
A4 = 〈({a, b, c, d}, {e}), ({e, f, g},∅), ({h}, {a, b, i})〉 .

Then we can easily check that τ ∈ INCT (X).
(4) Let X = {0, 1}. Consider the family τ of INCSs on X given by:

τ = {∅IN , 〈({0}, {1}), ∅̄, ({1}, {0})〉 , XIN}.
Then we can easily check that τ ∈ INCT (X). In this case, (X, τ) will be called the

intuitionistic neutrosophic crisp Sierpin
′
ski space.

The following is the immediate result of Definition 4.1

Proposition 4.4. Let X be an IVNCTS. Then
(1) ∅IN , XIN ∈ IV NCC(X),
(2) A ∪B ∈ INCC(X) for any A, B ∈ INCC(X),
(3)

⋂
j∈J Aj ∈ INCC(X) for any (Aj)j∈J ⊂ INCC(X).

Definition 4.5. Let X be a non-empty set and let τ1, τ2 ∈ INCT (X). Then we
say that τ1 is contained in τ2 or τ1 is coarser than τ2 or τ2 is finer than τ1, if τ1 ⊂ τ2,
i.e., A ∈ τ2 for each A ∈ τ1.

It is obvious that τ
IN,0
⊂ τ ⊂ τ

IN,1
for each τ ∈ INCT (X).

The following is the immediate result of Definitions 3.13 and 4.1.

Proposition 4.6. Let (τj)j∈J ⊂ INCT (X). Then
⋂

j∈J τj ∈ INCT (X).

In fact,
⋂

j∈J τj is the coarsest INCT on X containing each τj.

Proposition 4.7. Let τ, γ ∈ INCT (X). We define τ ∧ γ and τ ∨ γ as follows:

τ ∧ γ = {W : W ∈ τ, W ∈ γ},

τ ∨ γ = {W : W = U ∪ V, U ∈ τ, V ∈ γ}.
Then we have

(1) τ ∧ γ is an INCT on X which is the finest INCT coarser than both τ and γ,
(2) τ ∨ γ is an INCT on X which is the coarsest INCT finer than both τ and γ,

Proof. (1) It is clear that τ ∧ γ ∈ INCT (X). Let η be any INCT on X which is
coarser than both τ and γ, and let W ∈ η. Then clearly, W ∈ τ and W ∈ γ. Thus
W ∈ τ ∧ γ. So η is coarser than τ ∧ γ.

(2) The proof is similar to (1). �
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Definition 4.8. Let (X, τ) be an IVNCTS.
(i) A subfamily β of τ is called an intuitionistic neutrosophic crisp base (briefly,

INCB) for τ , if for each A ∈ τ , A = ∅IN or there is β
′ ⊂ β such that A =

⋃
β
′
.

(ii) A subfamily σ of τ is called an intuitionistic neutrosophic crisp subbase

(briefly, INCSB) for τ , if the family β = {
⋂
σ
′

: σ
′

is a finite subset of σ} is an
INCB for τ .

Remark 4.9. (1) Let β be an INCB for an INCT τ on a non-empty set X and
consider three families of ISs in X:

βT = {(AT,∈, AT, 6∈) ∈ IS(X) : A ∈ β}, βI = {(AI,∈, AI,6∈) ∈ IS(X) : A ∈ β},

βF = {AF,∈c, AF,6∈c) ∈ IS(X) : A ∈ β}.
Then we can easily see that βT , βI and βF are an intuitionistic base (See [21]) for
τT , τ I and τF , respectively.

Also, let us consider six families of ordinary subsets of X:

βT,∈ = {AT,∈ ⊂ X : A ∈ β}, βT, 6∈ = {AT, 6∈c ⊂ X : A ∈ β},

βI,∈ = {AI,∈ ⊂ X : A ∈ β}, βI,6∈ = {AI,6∈c ⊂ X : A ∈ β},
βF,∈ = {AF,∈c ⊂ X : A ∈ β}, βF,6∈ = {AI,6∈ ⊂ X : A ∈ β}.

Then clearly, βT,∈, βT, 6∈, βI,∈, βI,6∈, βF,∈, βF,6∈ are ordinary bases for ordinary
topologies τT,∈, τT, 6∈, τ I,∈, τ I,6∈, τF,∈, τF,6∈ on X, respectively.

(2) Let σ be an INCSB for an INCT τ on a non-empty set X and consider three
families of ISs in X:

σT = {(AT,∈, AT, 6∈) ∈ IS(X) : A ∈ σ}, σI = {[AI,∈, AI,6∈) ∈ IS(X) : A ∈ σ},

σF = {(AF,∈c, AF,6∈c) ∈ IS(X) : A ∈ σ}.
Then we can easily see that σT , σI and σF are an intuitionistic subbases (See [21])
for τT , τ I and τF , respectively.

Also, let us consider six families of ordinary subsets of X:

σT,∈ = {AT,−∈ ⊂ X : A ∈ σ}, σT, 6∈ = {AT, 6∈c ⊂ X : A ∈ σ},

σI,∈ = {AI,∈ ⊂ X : A ∈ σ}, σI,6∈ = {AI,6∈c ⊂ X : A ∈ σ},
σF,∈ = {AF,∈c ⊂ X : A ∈ σ}, σF,6∈ = {AF,6∈ ⊂ X : A ∈ σ}.

Then clearly, σT,∈, σT, 6∈, σI,∈, σI,6∈, σF,∈, σF,6∈ are ordinary subbases for ordinary
topologies τT,∈, τT, 6∈, τ I,∈, τ I,6∈, τF,∈, τF,6∈ on X, respectively.

Example 4.10. (1) Let us consider the family of INCs σ in R given by:

σ = {
〈
((a, b), (−∞, a]), R̄, ∅̄

〉
: a, b ∈ R}.

Then σ generates an INCT τ on R which will be called the “usual left intuitionistic
neutrosophic crisp topology (briefly, ULINCT)” on R. In fact, the INCB β for τ can
be written in the form:

β = {RIN} ∪ {B ∈ INC(R) : B is a finite intersection of members of σ}
and τ consists of the following INCSs in R:

τ = {∅IN ,RIN} ∪ {
〈
(∪(aj , bj), (−∞, c]), R̄, ∅̄

〉
}
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or
τ = {∅IN ,RIN} ∪ {

〈
(∪(ak, bk),∅), R̄, ∅̄

〉
}

where aj , bj , c, d ∈ R, c < inf{aj : j ∈ J} and ak, bk ∈ R, {ak : k ∈ K} is not
bounded from below. Similarly, one can define the “usual right intuitionistic neu-
trosophic crisp topology (briefly, URINCT)” on R using an analogue construction.

(2) Consider the family σ of INCSs in R:

σ = {
〈
((a, b), (−∞, a1] ∪ [b1,∞), R̄, ∅̄

〉
: a, b, a1, b1 ∈ R, a1 ≤ a, b1 ≥ b}.

Then σ generates an INCT τ on R which will be called the “usual intuitionistic
neutrosophic crisp topology (briefly, UINCT)” on R. In fact, the INCB β for τ can
be written in the form:

β = {RIN} ∪ {B ∈ INC(R) : B is a finite intersection of members of σ}
and the elements of τ can be easily written down as in (1).

(3) Consider the family σ
[0,1]

of INCSs in R:

σ
[0,1]

= {
〈
([a, b], (−∞, a) ∪ (b,∞)), R̄, ∅̄

〉
: a, b ∈ R and 0 ≤ a ≤ b ≤ 1}.

Then σ
[0,1]

generates an INCT τ
[0,1]

on R which will be called the “usual unit closed
intuitionistic neutrosophic crisp topology” on R. In fact, the INCB β

[0,1]
for τ

[0,1]

can be written in the form:

β
[0,1]

= {RIN} ∪ {B ∈ INC(R) : B is a finite intersection of members of σ
[0,1]
}

and the elements of τ can be easily written down as in (1).
In this case, ([0, 1], τ

[0,1]
) is called the “intuitionistic neutrosophic crisp usual unit

closed interval” and will be denoted by [0, 1]INCI . In fact,

[0, 1]INCI =
〈
([0, 1], (−∞, 0) ∪ (1,∞)), R̄, ∅̄

〉
.

(4) Let X = {a, b, c, d, e, f, g, h, i} and consider the family β of INCSs in X given
by:

β = {A,B,XIV N},
where A = 〈({a, b, c}, {f, g}), ({e, f}, {h}), ({g, i}, {d})〉 ,

B = 〈({a, c, d}, {f, h}), ({e, g}, {f}), ({f, h, i}, {a, g})〉 .
Assume that β is an INCB for an INCT τ on X. Then by the definition of base, β ⊂
τ . Thus A, B ∈ τ . So A ∩B = 〈({a, c}, {f, g, h}), ({e}, {f, h}), ({f, g, h, i},∅)〉 ∈ τ .

But for any β
′ ⊂ β, A ∩B 6=

⋃
β
′
. Hence β is not an INCB for an INCT on X.

From (1), (2) and (3) in Example 4.10, we can define intuitionistic neutrosophic
crisp intervals as following.

Definition 4.11. Let a, b ∈ R such that a ≤ b. Then
(i) (the closed interval)

[a, b]INCI =
〈
([a, b], (−∞, a) ∪ (b,∞, b)), R̄, ∅̄

〉
,

(ii) (the open interval)

(a, b)INCI =
〈
((a, b), (−∞, a] ∩ [b,∞, b)), R̄, ∅̄

〉
,

(iii) (the half open interval or the half closed interval)

(a, b]INCI =
〈
((a, b], (−∞, a] ∪ (b,∞)), R̄, ∅̄

〉
,
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[a, b)INCI =
〈
([a, b), (−∞, a) ∪ [b,∞)), R̄, ∅̄

〉
,

(iv) (the half interval-valued real line)

(−∞, a]INCI =
〈
((−∞, a], (a,∞)), R̄, ∅̄

〉
,

(−∞, a)INCI =
〈
((−∞, a), [a,∞)), R̄, ∅̄

〉
,

[a,∞)INCI =
〈
([a,∞), (−∞, a)), R̄, ∅̄

〉
,

(a,∞)INCI =
〈
((a,∞), (−∞, a]), R̄, ∅̄

〉
,

(v) (the interval-valued real line)

(−∞,∞)INCI =
〈
((−∞,∞),∅), R̄, ∅̄

〉
= RIN .

The following provides the sufficient conditions for a family of intuitionistic neu-
trosophic crisp sets to be an INCSB of an INCT.

Proposition 4.12. Let X be a non-empty set and let σ ⊂ INC(X) such that
XIN =

⋃
σ.

Then there exists a unique INCT τ on X such that σ is an INCSB for τ .

Proof. Let β = {B ∈ IN1(X) : B =
⋃n

i=1 Si and Si ∈ σ}. Let τ = {U ∈ IN1(X) :

U = ∅̃ or there is a subcollection β
′

of β such that U =
⋃
β
′}. Then we can show

that τ is the unique INCT on X such that σ is an INCSB for τ . �

In Proposition 4.12, τ is called the INCT on X generated by σ.

Example 4.13. Let X = {a, b, c, d, e} and consider the family σ of INCSs in X
given by:

σ = {A1, A2, A3, A4},
where A1 = 〈({a}, {b}), ({c, d},∅), ({b}, {a})〉 ,

A2 = 〈({a, b, c}, {d}), ({e},∅), ({d}, {a, b, c})〉 ,
A3 = 〈({b, c, e}, {a}), ({d},∅), ({a}, {b, e})〉 ,
A4 = 〈({c, d}, {e}], ({a, b}, {e}), ({e}, {d})〉 .

Then clearly,
⋃
σ = XIN . Let β be the collection of all finite intersections of

members of σ. Then we have

β = {A5, A6, A7, A8, A9, A10, A11, A12, A13},
where A5 = 〈({a}, {b, d}), ∅̄, ({b, d}, {a})〉 ,

A6 = 〈(∅, {a, b}), ({d},∅), ({a, b},∅)〉 ,
A7 = 〈(∅, {b, e}), (∅, {e}), ({b, e},∅)〉 ,
A8 = 〈({b, c}, {a, d}), ∅̄, ({a, d}, {b})〉 ,
A9 = 〈({c}, {d, e}), (∅, {e}), ({d, e},∅)〉 ,
A10 = 〈({c}, {a, e}), (∅, {e}), ({a, e},∅)〉 ,
A11 = 〈(∅, {a, b, d}), ∅̄, ({a, b, d},∅)〉 ,
A12 = 〈({c}, {a, d, e}), ∅̄, ({b, d, e},∅)〉 ,
A13 = 〈(∅, {b, d, e}), ∅̄, ({a, d, e},∅)〉 .

Thus we have the generated INCT τ by σ:
τ = {∅IN , A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14

, A15, A16, A17, A18, A19, A20, A21, A22, XIN},
where A14 = 〈({a, b, c},∅), ({c, d, e},∅), (∅, {a, b, c})〉 ,

A15 = 〈({a, b, c, e},∅), ({c, d},∅), (∅, {a, b, e})〉 ,
138



J. Kim et al./Ann. Fuzzy Math. Inform. 21 (2021), No. 2, 125–145

A16 = 〈({a, c, d},∅), ({a, b, c, d},∅), (∅, {a, d})〉 ,
A17 = 〈({a, b, c, e},∅), ({c, d},∅), (∅, {a, b, c, e})〉 ,
A18 = 〈({a, b, c, d},∅), ({a, b, e},∅), (∅, {a, b, c, d})〉 ,
A19 = 〈({b, c, d, e},∅), ({a, b, d},∅), (∅, {b, d, e})〉 ,
A20 = 〈({a, b, c, e},∅), ({c, d, e},∅), (∅, {a, b, c, e})〉 ,
A21 =

〈
X̄, ({a, c, d},∅), ∅̄

〉
,

A22 = 〈({b, c, d, e},∅), ({a, b, d},∅), (∅, {b, d, e})〉 .

5. Interiors and closures of INCSs

In this section, we define intuitionistic neutrosophic crisp interiors and closures,
and investigate some of their properties and give some examples. In particular, we
will show that there is a unique INCT on a set X from the intuitionistic neutrosophic
crisp closure [resp. interior] operator.

Definition 5.1. Let (X, τ) be an INCTS and let A ∈ INC(X).
(i) The intuitionistic neutrosophic crisp closure of A w.r.t. τ , denoted by INcl(A),

is an INCS in X defined as:

IV Ncl(A) =
⋂
{K : Kc ∈ τ and A ⊂ K}.

(ii) The intuitionistic neutrosophic crisp interior ofA w.r.t. τ , denoted by IV Nint(A),
is an IVS in X defined as:

IV Nint(A) =
⋃
{G : G ∈ τ and G ⊂ A}.

Example 5.2. Let X = {a, b, c, d, e, f, g, h, i} and consider INCT τ on X given in
Example 4.3 (3):

τ = {∅IN , A1, A2, A3, A4, XIN},
where A1 = 〈({a, b, c}, {d, e}), ({e, f}, {g}), ({g, h}, {b, i})〉 ,

A2 = 〈({a, c, d}, {e, i}), ({e, g}, {h}), ({h, i}, {a})〉 ,
A3 = 〈({a, c}, {d, e, i}), ({e}, {g, h}), ({g, h, i},∅)〉 ,
A4 = 〈({a, b, c, d}, {e}), ({e, f, g},∅), ({h}, {a, b, i})〉 .

Then clearly, we have

INCC(X) = {∅IN , A
c
1, A

c
2, A

c
3, A

c
4, XIN},

where, Ac
1 = 〈({g, h}, {b, i}), ({g}, {e, f}), {a, b, c}, {d, e})〉 ,

Ac
2 = 〈({h, i}, {a}), ({h}, {e, g}), ({a, c, d}, {e, i})〉 ,

Ac
3 = 〈({g, h, i},∅), ({g, h}, {e}), ({a, c}, {d, e, i}))〉 ,

Ac
4 = 〈({h}, {a, b, i}), (∅, {e, f, g}), ({a, b, c, d}, {e})〉 .

Consider two INCSs in X given by:

A = 〈({a, b, c}, {e}), ({e, f, g},∅), ({h}, {a, b, i}]〉 ,
B = 〈({h}, {a, b, i}), (∅, {e, f, g}), ({a, b, c, d},∅)〉 .

Then we have
IV Nint(A) =

⋃
{G ∈ τ : G ⊂ A} = A1 ∪A3

= 〈({a, b, c}, {d, e}), ({e, f}, {g}), ({g, h}, {a, b, i}]〉 ,
IV Ncl(B) =

⋂
{F : F c ∈ τ, B ⊂ F} = Ac

1 ∩Ac
2 ∩Ac

3 ∩Ac
4

= 〈({h}, {a, b, i}), (∅, {e, f, g}), ({a, c}, {d, e, i})〉 .
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Proposition 5.3. Let (X, τ) be an INCTS and let A ∈ INC(X). Then

INint(Ac) = (INcl(A))c and INcl(Ac) = (INint(A))c.

Proof. INint(Ac) =
⋃
{U ∈ τ : U ⊂ Ac} =

⋃
{U ∈ τ : U ⊂

〈
AF , AIc, AT

〉
}

=
⋃
{U ∈ τ : UT ⊂ AF , U I ⊂ AIc, UF ⊃ AT }

=
⋃
{U ∈ τ : UF ⊃ AT , U Ic ⊃ AI , UT ⊂ AF }

= (
⋂
{U c : U ∈ τ,A ⊂ U c})c

= (INcl(A))c.
Similarly, we can show that INcl(Ac) = (INint(A))c. �

Theorem 5.4. Let X be an INCTS and let A ∈ IV NC(X). Then
(1) A ∈ INCC(X) if and only if A = INcl(A),
(2) A ∈ INCO(X) if and only if A = INint(A).

Proof. Straightforward. �

Proposition 5.5 (Kuratowski Closure Axioms). Let X be an INCTS and let A,B ∈
IV NC(X). Then

[INCK0] if A ⊂ B, then INcl(A) ⊂ INcl(B),
[INCK1] INcl(∅IN ) = ∅IN ,
[INCK2] A ⊂ INcl(A),
[INCK3] INcl(INcl(A)) = INcl(A),
[INCK4] INcl(A ∪B) = INcl(A) ∪ INcl(A).

Proof. Straightforward. �

Let INcl∗ : INC(X) → INC(X) be the mapping satisfying the properties
[INCK1], [INCK2],[INCK3] and [INCK4]. Then we will call the mapping INcl∗

as the intuitionistic neutrosophic crisp closure operator(briefly, INCCO) on X.

Proposition 5.6. Let INcl∗ be the INCCO on X. Then there exists a unique INCT
τ on X such that INcl∗(A) = INcl(A), for each A ∈ INC(X), where INcl(A)
denotes the intuitionistic neutrosophic crisp closure of A in the INCTS (X, τ). In
fact,

τ = {Ac ∈ INC(X) : INcl∗(A) = A}.

Proof. The proof is almost similar to the case of ordinary topological spaces. �

Proposition 5.7. Let X be an INCTS and let A,B ∈ INC(X). Then
[INCI0] if A ⊂ B, then INint(A) ⊂ INint(B),
[INCI1] INint(XIN ) = XIN ,
[INCI2] INint(A) ⊂ A,
[INCI3] INint(INint(A)) = INint(A),
[INCI4] INint(A ∩B) = INint(A) ∩ INint(A).

Proof. Straightforward. �

Let INint∗ : INC(X) → INC(X) be the mapping satisfying the properties
[INCI1], [INCI2],[INCI3] and [INCI4]. Then we will call the mapping INint∗ as the
intuitionistic neutrosophic crisp interior operator (briefly, INCIO) on X.

140



J. Kim et al./Ann. Fuzzy Math. Inform. 21 (2021), No. 2, 125–145

Proposition 5.8. Let IV Nint∗ be the IVNCIO on X. Then there exists a unique
IVNCT τ on X such that IV Nint∗(A) = IV Nint(A) for each A ∈ IV N1(X),
where IV Nint(A) denotes the interval-valued neutrosophic crisp interior of A in
the IVNCTS (X, τ). In fact,

τ = {A ∈ IV N1(X) : IV Nint∗(A) = A}.

Proof. The proof is similar to one of Proposition 5.6. �

Remark 5.9. By using “⊂2, ∪2, ∩2, i,c(i = 1, 2, 3), ∅2,IN , X2,IN and INC(X),
we can have the definitions corresponding to Definitions 4.1, 4.8 and 5.1, respectively.

6. Intuitionistic neutrosophic crisp continuous mappings

In this section, we define intuitionistic neutrosophic crisp continuous mappings
and study some of their properties.

Definition 6.1 ([21]). Let (X, τ), (Y, δ) be two ITSs. Then a mapping f : X → Y
is said to be intuitionistic continuous, if f−1(V ) ∈ τ for each v ∈ δ.

Definition 6.2. Let (X, τ), (Y, δ) be two INCTSs. Then a mapping f : X → Y is
said to be intuitionistic neutrosophic crisp continuous, if f−1(V ) ∈ τ for each V ∈ δ.

From Remark 4.2 (1), and Definitions 6.1 and 6.2, we can easily have the following.

Theorem 6.3. Let (X, τ), (Y, δ) be two INCTSs and let f : X → Y be a mapping.
Then f is intuitionistic neutrosophic crisp continuous if and only if f : (X, τT ) →
(Y, δT ), f : (X, τ I) → (Y, δI) and f : (X, τF ) → (Y, δF ) are intuitionistic continu-
ous, respectively.

The followings are immediate results of Proposition 3.16 (13) and Definition 6.2.

Proposition 6.4. Let X, Y, Z be INCTSs.
(1) The identity mapping id : X → X is continuous.
(2) If f : X → Y and g : Y → Z are continuous, then g◦f : X → Z is continuous.

Remark 6.5. From Proposition 6.4, we can easily see that the class of all INCTSs
and continuous mappings, denoted by INCTop, forms a concrete category.

Also, the followings are immediate results of Definition 6.2.

Proposition 6.6. Let X, Y be INCTSs.
(1) If X is an INCDTS, the f : X → Y is continuous.
(2) If Y is an INCITS, then f : X → Y is continuous.

Theorem 6.7. Let X, Y be INCTSs and let f : X → Y be a mapping. Then the
followings are equivalent:

(1) f is continuous,
(2) f−1(C) ∈ INCC(X) for each C ∈ INCC(Y ),
(3) f−1(S) ∈ INCO(X) for each member S of the subbase for the INCT on Y ,
(4) INcl(f−1(B)) ⊂ f−1(INcl(B)) for each B ∈ INC(Y ),
(5) f(INcl(A)) ⊂ INcl(f(A)) for each A ∈ INC(X).
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Proof. The proofs of (1)⇒(2)⇒(3)⇒(1) are obvious.
(2)⇒(4): Suppose the condition (2) holds and let B ∈ INC(Y ). By Proposition

5.5 [INCK2], B ⊂ INcl(B). Then by Proposition 3.16 (2), f−1(B) ⊂ f−1(INcl(B)).
Thus by Proposition 5.5 [INCK0], INcl(f−1(B)) ⊂ INcl(f−1(INcl(B))). Since
INcl(B) ∈ INCC(Y ), f−1(INcl(B)) ∈ INCC(X) by the condition (2). So by
Theorem 5.4 (1), INcl(f−1(INcl(B))) = f−1(INcl(B)). Hence INcl(f−1(B)) ⊂
f−1(INcl(B)).

(4)⇒(5): Suppose the condition (4) holds and let B = f(A) for each A ∈
INC(X). Then we have INcl(f−1(f(A))) ⊂ f−1(INcl(f(A))). Thus by Propo-
sition 3.16 (3), INcl(A) ⊂ f−1(INcl(f(A))). So by Proposition 3.16 (1) and (4),
f(INcl(A)) ⊂ INcl(f(A)).

(5)⇒(4): The proof is similar to (4)⇒(5). �

Theorem 6.8. Let X, Y be INCTSs and let f : X → Y be a mapping. Then f is
continuous if and only if f−1(INint(B)) ⊂ INint(f−1(B)) for each B ∈ INC(Y ).

Proof. The proof is straightforward. �

Definition 6.9. Let (X, τ), (Y, δ) be two INCTSs. Then a mapping f : X → Y is
said to be:

(i) intuitionistic neutrosophic crisp open, if f(U) ∈ δ for each U ∈ τ ,
(ii) intuitionistic neutrosophic crisp closed, if f(C) ∈ INCC(Y ) for each C ∈

INCC(X).

Proposition 6.10. Let X, Y, Z be INCTSs, let f : X → Y and g : Y → Z be
mappings. If f, g are open [resp. closed], then g ◦ g is open [resp. closed].

Proof. The proof is straightforward. �

Theorem 6.11. Let X, Y be INCTSs and let f : X → Y be a mapping. Then f is
open if and only if INint(f(A)) ⊂ f(INint(A)) for each A ∈ INC(X).

Proof. The proof is straightforward. �

Proposition 6.12. Let X, Y be INCTSs and let f : X → Y be injective. If f is
continuous, then f(INint(A)) ⊂ INint(f(A)) for each A ∈ INC(X).

Proof. The proof is straightforward. �

The following is the immediate result of Theorem 6.11 and Proposition 6.12.

Corollary 6.13. Let X, Y be INCTSs and let f : X → Y be continuous, open and
injective. Then f(INint(A)) = INint(f(A)) for each A ∈ INC(X).

Theorem 6.14. Let X, Y be INCTSs and let f : X → Y be a mapping. Then f is
close if and only if INcl(f(A)) ⊂ f(INcl(A)) for each A ∈ INC(X).

Proof. The proof is straightforward. �

The following is the immediate result of Theorems 6.7 and 6.14.

Corollary 6.15. Let X, Y be INCTSs and let f : X → Y be a mapping. Then
f is continuous and closed if and only if f(INcl(A)) = INcl(f(A)) for each A ∈
INC(X).
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Definition 6.16. Let (X, τ), (Y, δ) be two INCTSs. Then a mapping f : X →
Y is called an intuitionistic neutrosophic crisp homeomorphism, if f is bijective,
continuous and open.

Theorem 6.17. Let X, Y be INCDTSs and let f : X → Y be a mapping. Then f
is a homeomorphism if and only if f is bijective.

Proof. The proof is straightforward. �

Definition 6.18. Let (X, τ) be an INCTS, let Y be a set and let f : X → Y be a
surjective mapping. Let δ be the family of INCSs in Y given by:

δ = {B ∈ INC(Y ) : f−1(B) ∈ τ}.

Then δ is called the intuitionistic neutrosophic crisp quotient topology (briefly, IN-
CQT) on Y .

It can be easily see that δ ∈ INCT (Y ). Also, it is obvious that for each B ∈
INC(Y ), B is closed in δ if and only if f−1(B) is closed in X.

Proposition 6.19. Let (X, τ), (Y, δ) be two INCTSs, where δ is the INCQT on
Y . Then a surjection f : X → Y is continuous and open. Moreover, δ is the finest
topology on Y which f is continuous.

Proof. The proof is similar to the classical case. �

The following is the immediate result of Proposition 6.19.

Corollary 6.20. Let (X, τ), (Y, δ) be two INCTSs. If a mapping f : X → Y is
continuous, open and sujective, then δ is the INCQT on Y . But the converse does
not hold in general (See Example 6.21).

Example 6.21. Let ([0, 1], τ) be an INCTS and let A = [
1

2
, 1]. Consider the charac-

teristic function χ
A

: [0, 1] → {0, 1}, where {0, 1} be the intuitionistic neutrosophic

crisp Sierpin
′
ski space (See Example 4.3 (4)). Then we can easily see that the topol-

ogy on {0, 1} is the INCQT. On the other hand, (
1

2
, 1)INCI ∈ τ but χ

A
((

1

2
, 1)INCI)

is not open in {0, 1}. Thus χ
A

is not an open mapping.

Theorem 6.22. Let (X, τ), (Y, δ), (Z, σ) be INCTSs, where δ is the INCQT on Y .
Let f : X → Y and g : Y → Z be mappings. Then g is continuous if and only if
g ◦ f is continuous.

Proof. The proof is similar to the classical case. �

7. Conclusions

We introduced the new concept of intuitionistic neutrosophic crisp sets which
are the generalization of classical sets and the specialization of intuitionistic neu-
trosophic sets, and obtained its various properties. Next, we introduced the notion
of intuitionistic neutrosophic crisp topological spaces which are considered as an
intuitionistic tri-opological space, and obtained some of its properties. Finally, we
defined the notions of intuitionistic neutrosophic crisp closures and interiors, and
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discussed with their some properties. Also, we discussed various properties of intu-
itionistic neutrosophic crisp continuities and quotient topologies.

In the future, we expect that one can apply the concept of intuitionistic neutro-
sophic crisp sets to group and ring theory, BCK-algebra and category theory, etc.
Also, we expect that one can deal with the concepts of intuitionistic soft sets and
intuitionistic neutrosophic crisp soft sets.
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