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1. Introduction

Mathematicians worked to find a mathematical expression of uncertainty in
order to solve various real-life problems. Zadeh [1], Molodtsov [2] and Lee et al
[3] presented the fuzzy sets, soft sets and octahedron sets as different mathemat-
ical models for this mathematical expression, which were applied in various fields
of mathematics, engineering and medicine, etc. Later, some researchers (See, for
example, [4, 5, 6, 7, 8, 9, 10]) introduced and studied these models.

One of the important branches of mathematics that has been accepted which it
has been studied by researchers recent years is the abstract convexity theory [11],
[12] which plays an important role in various branches of mathematics. It deals
with set-theoretic structures which satisfies axioms similar to that usual convex sets
fulfill. Here, by ” usual convex sets ”, we mean convex sets in real linear spaces.
Also, many different mathematical research fields applied abstract convexity theory,
such as topological spaces, lattices, metric spaces and graphs (See, for example,
[13, 14, 15, 16, 17, 18, 19]). The concept of convex structures as a topology-like
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structure, it can be also treated as a special kind of spatial structures and some
topology-like properties.

As we all know fuzzy mathematics has been applied in many different fields of
mathematics as well and through the theory of fuzzy sets was applied fuzzy math-
ematics in convex structures, Rosa has worked to generalize the convex structure,
where he introduced the idea of a fuzzy convex structure in [20, 21] which is called
an I-convex structure. Also, Rosa studied a fuzzy topology together with a fuzzy
convexity on the same underlying set X, and introduced fuzzy topology fuzzy con-
vexity spaces and the notion of fuzzy local convexity. By framework, which pro-
posed in [22], Li [23] presented a categorical approach to enrich (L,M)-fuzzy convex
structures, Xiu et al [24] presented a degree approach to study the relationship
between (L,M)-fuzzy convex structures and (L,M)-fuzzy closure systems and Wu
and Li [25] introduced (L,M)-fuzzy domain finiteness, (L,M)-fuzzy restricted hull
spaces and several characterizations of the category (L,M)-CS of (L,M)-fuzzy con-
vex spaces. Recently, there has been significant research on fuzzy convex structures
(See [26, 27, 28, 29, 30, 31, 32, 33, 34, 35]).

The main contributions of the present paper are to give investigations on an
(L,M)-fuzzy topology (L,M)-fuzzy convexity spaces where we define an r-L-fuzzy
neighbourhood separation properties r-L-FNSi with respect to (L,M)-fuzzy topol-
ogy (L,M)-fuzzy convexity space where i = {0, 1, 2, 3, 4}. Also, We study their
properties and discuss the relationships between these concepts.

2. Preliminaries

Throughout this paper, let X be a non-empty set, both L and M be completely
distributive lattices with order reversing involution ′ where ⊥M (⊥L) and >M (>L)
denote the least and the greatest elements in M(L) respectively, and M⊥M

= M −
{⊥M}(L⊥L

= L − {⊥L}). An L-fuzzy subset of X is a mapping µ : X −→ L
and the family LX denoted the set of all fuzzy subsets of a given X [5]. The
least and the greatest elements in LX are denoted by χ∅ and χX , respectively.
For each α ∈ L, let α denote the constant L-fuzzy subset of X with the value
α. The complementation of a fuzzy subset are defined as µ′(x) = (µ(x))′ for all
x ∈ X, (e.g. µ′(x) = 1 − µ(x) in the case of L = [0, 1]). Let X =

∏
i∈ΓXi and

µi ∈ LXi , then µ ∈ LX denote the product of all µi ∈ LXi is defined as follows:
µ(x) = ∧i∈Γµi(xi) for all x ∈ X [36].

Definition 2.1 ([37]). Let ∅ 6= Y ⊆ X and µ ∈ LX . Then the restriction of µ on
Y, is denoted by µ|Y. The extension of µ ∈ LY on X, denoted by µX , is defined by:

µX(x) =

{
µ(x), if x ∈ Y,
⊥L, if x ∈ X − Y.

Definition 2.2 ([38, 39]). A fuzzy point xt for t ∈ L⊥L
is an element of LX such

that

xt(y) =

{
t, if y = x,
⊥L, if y 6= x.

The set of all fuzzy points in X is denoted by Pt(X). Two fuzzy points xt and ys
are distinct if x 6= y.
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Definition 2.3 ([1]). Let f : X −→ Y. Then the image f→(µ) of µ ∈ LX and the
preimage f←(ν) of ν ∈ LY are defined by:

f→(µ)(y) =
∨
{µ(x) : x ∈ X, f(x) = y} and f←(ν) = ν ◦ f, respectively.

Definition 2.4 ([22, 40]). The pair (X, C) is called an (L,M)-fuzzy convex structure,
where C : LX −→M satisfies the following axioms:

(LMC1) C(χ∅) = C(χX) = >M ,
(LMC2) if {µi : i ∈ Γ} ⊆ LX is nonempty, then C(

∧
i∈Γ µi) ≥

∧
i∈Γ C(µi),

(LMC3) if {µi : i ∈ Γ} ⊆ LX is nonempty and totally ordered by inclusion, then
C(
∨
i∈Γ µi) ≥

∧
i∈Γ C(µi).

The mapping C is called an (L,M)-fuzzy convexity on X and C(µ) can be regarded
as the degree to which µ is an L-convex fuzzy set.

Theorem 2.5 ([22]). Let (X, C) be an (L,M)-fuzzy convex structure, ∅ 6= Y ⊆ X.
Then (Y, C|Y ) is an (L,M)-fuzzy convex structure on Y, where

(C|Y )(µ) =
∨
{C(ν) : ν ∈ LX , ν|Y = µ},

for each µ ∈ LY . The pair (Y, C|Y ) is called an (L,M)-fuzzy convex sub-structure
of (X, C).

Definition 2.6 ([22]). Let {(Xi, Ci) : i ∈ Γ} be a set of (L,M)-fuzzy convex struc-
tures, X be the product of the sets Xi for i ∈ Γ and πi : X −→ Xi be the projection
for each i ∈ Γ. Define a mapping ϕ : LX −→M by

ϕ(µ) =
∨
i∈Γ

∨
π←i (ν)=µ

Ci(ν), for each µ, ν ∈ LX .

Then the product convexity C of X is the one generated by subbase ϕ. The resulting
(L,M)-fuzzy convex structure (X, C) is called the product of {(Xi, Ci) : i ∈ Γ} and
is denoted by

∏
i∈Γ(Xi, Ci).

Definition 2.7 ([36, 41]). An (L,M)-fuzzy topology on X is a map T : LX −→M
with the following conditions:

(i) T (χ∅) = T (χX) = >M ,
(ii) T (µ ∧ ν) ≥ T (µ) ∧ T (ν), ∀µ, ν ∈ LX ,
(iii) T (

∨
i∈Γ µi) ≥

∧
i∈Γ T (µi), ∀µi ∈ LX , i ∈ Γ.

The pair (X, T ) is called an (L,M)-fuzzy topological space.

Definition 2.8 ([42]). A triple (X, C, T ) consisting of a set X, an (L,M)-fuzzy
convexity, and an (L,M)-fuzzy topology is called an (L,M)-fuzzy topology (L,M)-
fuzzy convexity space (briefly, (L,M)-ftfcs).

Proposition 2.9 ([4, 6]). Let (X, T ) be an (L,M)-fuzzy topological space and A ⊆
X. Define a mapping TA : LX −→M by

TA(µ) =
∨
{T (ν) : ν ∈ LX , ν|A = µ}.

(
∨

being the supremum operation on M). Then TA is an (L,M)-fuzzy topology A.
95
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3. r-L-FNS0, r-L-FNS1 and r-L-FNS2 spaces

Definition 3.1. Let (X, C, T ) be an (L,M)-ftfcs and µ ∈ LX . Then µ is called an:
(i) r-L-fuzzy closed convex set, if T (µ′) ≥ r and C(µ) ≥ r,
(ii) r-L-fuzzy closed convex neighbourhood of xt ∈ Pt(X), if it is an r-L-fuzzy

closed convex set and an r-L-fuzzy neighbourhood of xt.

Definition 3.2. Let (X, C, T ) be an (L,M)-ftfcs. Then (X, C, T ) is said to be an:
(i) r-L-FNS0 space, if for any two distinct fuzzy points there exists r-L-fuzzy

closed convex neighbourhood containing one and not containing the other,
(ii) r-L-FNS1 space, if for any two distinct fuzzy points there exists r-L-fuzzy

closed convex neighbourhood of each of them not containing the other,
(iii) r-L-FNS2 space, if for any two distinct fuzzy points there exist disjoint

r-L-fuzzy closed convex neighbourhoods of each of them.

Theorem 3.3. Let (X, C, T ) be an r-L-FNSi space for i ∈ {0, 1, 2} and ∅ 6= Y ⊆ X.
Then (Y, C|Y, TY ) is an r-LFSi space.

Proof. Let (X, C, T ) be an r-L-FNS2 space and xt, ys ∈ Pt(Y ) such that x 6= y.
Then xt, ys ∈ Pt(X) such that x 6= y. Thus there exist disjoint r-L-fuzzy closed
convex neighbourhoods µ and ν for xt and ys in X, respectively. So µ|Y and ν|Y
are disjoint r-L-fuzzy closed convex neighbourhoods of xt and ys in Y , respectively.
Hence (Y, C|Y, TY ) is an r-LFS2 space.

Similarly, we can prove the result for i ∈ {0, 1}. �

Theorem 3.4. Let (X, C, T ) be the product of {(Xi, Ci, Ti) : i ∈ Γ}. Then, (X, C, T )
is an r-L-FNSα space for α ∈ {0, 1, 2} if (Xi, Ci, Ti) is an r-L-FNSα space for each
i ∈ Γ.

Proof. Consider the case when α = 2.
Let {(Xi, Ci, Ti) : i ∈ Γ} be an r-L-FNS2 space and xt, ys ∈ Pt(X) such that

x 6= y with X =
∏
i∈ΓXi and πi : X −→ Xi be the projection map for each

i ∈ Γ. Then for some i ∈ Γ, (xi)t and (yi)s are distinct fuzzy points in Xi and there
exist disjoint r-L-fuzzy closed convex neighbourhoods µi and νi in Xi for (xi)t and
(yi)s, respectively. Since πi is the projection map, µ = π←i (µi) and ν = π←i (νi)
are disjoint r-L-fuzzy closed convex neighbourhoods in X of xt and ys respectively.
Thus (X, C, T ) is an r-L-FNS2 space. Similarly, we can prove the result when
i ∈ {0, 1}. �

Proposition 3.5. For r ∈M⊥, we have
(1) an r-L-FNS2 space is always r-L-FNS1 space,
(2) an r-L-FNS1 space is always r-L-FNS0 space.

Proof. By Definition 3.2, the proofs are trivial. �

The next examples shows that the converse of Proposition 3.5 is not true.

96



Osama Rashed Sayed et al. /Ann. Fuzzy Math. Inform. 21 (2021), No. 1, 93–103

Example 3.6. Let L = M = [0, 1] and µi be fuzzy subsets of X = {a, b, c}, where
i = {1, 2, 3, 4, 5} is defined as follows:

µ1(a) = 1.0, µ1(b) = 0.0, µ1(c) = 0.0,

µ2(a) = 0.5, µ2(b) = 1.0, µ2(c) = 0.0,

µ3(a) = 0.5, µ3(b) = 0.0, µ3(c) = 0.0,

µ4(a) = 0.0, µ4(b) = 0.0, µ4(c) = 1.0,

µ5(a) = 1.0, µ5(b) = 0.0, µ5(c) = 1.0.

Define an (L,M)-fuzzy topology in [36, 41] T : [0, 1]X −→ [0, 1] and an (L,M)-fuzzy
convexity C : [0, 1]X −→ [0, 1] on X as follows:

T (ν) =



1, if ν ∈ {0, 1},

1
4 , if ν = µ1,

1
4 , if ν = 1− µ1,

1
4 , if ν = µ2,

1
4 , if ν = 1− µ2,

1
4 , if ν = µ3,

1
4 , if ν = 1− µ3,

1
2 , if ν = µ4,

1
2 , if ν = µ5,

0, otherwise.

C(ν) =



1, if ν ∈ {0, 1},

1
4 , if ν = µ1,

1
4 , if ν = µ2,

1
4 , if ν = µ3,

0, otherwise.

Then (X, C, T ) is an r-L-FNS0 space but it is not r-L-FNS1 space because µ2, µ3

are 1
4 -fuzzy closed convex neighbourhood of b1.0, a0.5 and a0.5 ∈ µ2.

Example 3.7. Let L = M = [0, 1] and µi be fuzzy subsets of X = {a, b, c}, where
i = {1, 2, 3, 4, 5} is defined as follows:

µ1(a) = 1.0, µ1(b) = 0.0, µ1(c) = 0.0,

µ2(a) = 0.0, µ2(b) = 1.0, µ2(c) = 0.0,

µ3(a) = 0.0, µ3(b) = 0.0, µ3(c) = 1.0,

µ4(a) = 0.5, µ4(b) = 0.0, µ4(c) = 1.0,

µ5(a) = 0.5, µ5(b) = 0.0, µ5(c) = 0.0.
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Define an (L,M)-fuzzy topology in [36, 41] T : [0, 1]X −→ [0, 1] and an (L,M)-fuzzy
convexity C : [0, 1]X −→ [0, 1] on X as follows:

T (ν) =



1, if ν ∈ {0, 1},

1
7 , if ν = µ1,

1
7 , if ν = 1− µ1,

1
6 , if ν = µ2,

1
6 , if ν = 1− µ2,

1
5 , if ν = µ3,

1
5 , if ν = 1− µ3,

1
4 , if ν = µ4,

1
4 , if ν = 1− µ4,

1
3 , if ν = µ5,

1
3 , if ν = 1− µ5,

0, otherwise.

C(ν) =



1, if ν ∈ {0, 1},

1
7 , if ν = µ1,

1
7 , if ν = 1− µ1,

1
4 , if ν = µ4,

1
4 , if ν = 1− µ4,

1
3 , if ν = µ5,

1
6 , if ν = µ2,

1
5 , if ν = µ3,

0, otherwise.

Then (X, C, T ) is an r-L-FNS1 space but it is not r-L-FNS2 space because 1− µ1

is 1
7 -fuzzy closed convex neighbourhood of b1.0, c1.0.

4. Pseudo r-L-FNS3 and r-L-FNS3 spaces

Definition 4.1. Let (X, C, T ) be an (L,M)-ftfcs, µ be an r-L-fuzzy closed convex
set in LX and xt ∈ Pt(X) such that supports of xt and µ are disjoint. Then (X, C, T )
is said to be :

(i) a pseudo r-L-FNS3 space, if there exists r-L-fuzzy closed convex neighbour-
hood ν of µ such that xt /∈ ν,

(ii) an r-L-FNS3 space, if there exists r-L-fuzzy closed convex neighbourhoods ν
of µ and λ of xt.

Theorem 4.2. Let (X, C, T ) be an r-L-FNS3 space (resp. Pseudo r-L-FNS3 space)
and ∅ 6= Y ⊆ X. Then (Y, C|Y, TY ) is r-LFS3 space (resp. Pseudo r-L-FNS3

space).

Proof. Let (X, C, T ) be an r-L-FNS3 space, xt ∈ Pt(Y ) and µ be an r-L-fuzzy closed
convex set in LY such that supports of xt and µ are disjoint and ∅ 6= Y ⊆ X. Then
µ = ν|Y is an r-L-fuzzy closed convex set in LX , where ν is an r-L-fuzzy closed
convex set in LX . Since supports of xt and µ are disjoint, we have supports of xt
and ν are disjoint in X. Thus there exists r-L-fuzzy closed convex neighbourhoods
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λ1, λ2 of xt and ν, respectively. So λ1|Y and λ2|Y are disjoint r-L-fuzzy closed
convex neighbourhoods of xt and µ, respectively in Y. Hence (Y, C|Y, TY ) is r-L-
FNS3 space.

Similarly, we can prove result Pseudo r-L-FNS3 space. �

Theorem 4.3. Let (X, C, T ) be the product of {(Xi, Ci, Ti) : i ∈ Γ}. Then (X, C, T )
is an r-L-FNS3 space (resp. pseudo r-L-FNS3 space), if (Xi, Ci, Ti) is an r-L-
FNS3 space (resp. Pseudo r-L-FNS3 space) for each i ∈ Γ.

Proof. Let {(Xi, Ci, Ti) : i ∈ Γ} be an r-L-FNS3 space, xt ∈ Pt(X) and µ be an
r-L-fuzzy closed convex set in LX such that supports of xt and µ are disjoint and
πi : X −→ Xi is the projection map for each i ∈ Γ. Then

µ = π←i (νi) where νi is r-L-fuzzy closed convex set in LXi

For some i ∈ Γ, (xi)t and νi are distinct. Since Xi is an r-L-FNS3 space, there
exists r-L-fuzzy closed convex neighbourhoods λi, ρi of (xi)t and νi respectively such
that (xi)t /∈ ρi and λi and νi are disjoint. Thus ν = π←i (λi) and ρ = π←i (ρi) are
disjoint r-L-fuzzy closed convex neighbourhoods of xt and µ, respectively such that
xt /∈ ρ, ν and µ are disjoint.

Similarly, we can prove result Pseudo r-L-FNS3 space. �

Proposition 4.4. For r ∈ M⊥, an r-L-FNS3 space is always pseudo r-L-FNS3

space.

Proof. By Definition 4.1, the proof is trivial. �

The next example shows that the converse of Proposition 4.4 is not true.

Example 4.5. Let L = M = [0, 1] and µi be fuzzy subsets of X = {a, b, c}, where
i = {1, 2} is defined as follows:

µ1(a) = 1.0, µ1(b) = 0.0, µ1(c) = 0.0,

µ2(a) = 0.0, µ2(b) = 1.0, µ2(c) = 1.0.

Define an (L,M)-fuzzy topology in [36, 41] T : [0, 1]X −→ [0, 1] and an (L,M)-fuzzy
convexity C : [0, 1]X −→ [0, 1] on X as follows:

T (ν) =



1, if ν ∈ {0, 1},

1
4 , if ν = µ1,

1
3 , if ν = µ2,

0, otherwise,

C(ν) =


1, if ν ∈ {0, 1},

1
3 , if ν = µ1,

0, otherwise.

Then (X, C, T ) is Pseudo r-L-FNS3 space but it is not r-L-FNS3 space because the
only 1

3 -fuzzy closed convex set is µ1 and for b1.0 ∈ Pt(X) there is not r-fuzzy closed

convex neighbourhood where µ1 is 1
3 -fuzzy closed convex neighbourhood of µ1.

Note 1: An r-L-FNS3 space and so a pseudo r-L-FNS3 need not be an r-L-
FNS2 space.
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Example 4.6. Let L,M,X and µi be given as Example 3.5. Define an (L,M)-
fuzzy topology in [36, 41] T : [0, 1]X −→ [0, 1] and an (L,M)-fuzzy convexity C :
[0, 1]X −→ [0, 1] on X as follows:

T (ν) = C(ν) =



1, if ν ∈ {0, 1},

1
4 , if ν = µ1,

1
3 , if ν = µ2,

0, otherwise.

Then (X, C, T ) is r-L-FNS3 space but it is not r-L-FNS2 space.

5. Semi r-L-FNS4 and r-L-FNS4 spaces

Definition 5.1. Let (X, C, T ) be an (L,M)-ftfcs and µ, ν ∈ LX are disjoint r-L-
fuzzy closed convex sets. Then (X, C, T ) is said to be:

(i) a semi r-L-FNS4 space, if there exists r-L-fuzzy closed convex neighbourhood
λ of µ such that λ and ν are disjoint,

(ii) an r-L-FNS4 space, if there exists r-L-fuzzy closed convex neighbourhoods
λ1 of µ and λ2 of ν such that λ1 and ν are disjoint λ2 and µ are disjoint.

Theorem 5.2. Let (X, C, T ) be an r-L-FNS4 space (resp. semi r-L-FNS4 space)
and ∅ 6= Y ⊆ X. Then (Y, C|Y, TY ) is r-LFS4 space (resp. semi r-L-FNS4 space).

Proof. The proof is similar to Theorem 4.2. �

Proposition 5.3. For r ∈ M⊥, an r-L-FNS4 space is always semi r-L-FNS4

space.

Proof. By Definition 5.1, the proof is trivial. �

The next example shows that the converse of Proposition 5.3 is not true.

Example 5.4. Let L = M = [0, 1] and µi be fuzzy subsets of X = {a, b, c}, where
i = {1, 2, 3, 4, 5, 6, 7} is defined as follows:

µ1(a) = 0.75, µ1(b) = 1.00, µ1(c) = 1.00,

µ2(a) = 1.00, µ2(b) = 0.75, µ2(c) = 1.00,

µ3(a) = 0.75, µ3(b) = 0.75, µ3(c) = 1.00,

µ4(a) = 0.50, µ4(b) = 1.00, µ4(c) = 1.00,

µ5(a) = 0.30, µ5(b) = 0.00, µ5(c) = 0.00,

µ6(a) = 0.50, µ6(b) = 0.75, µ6(c) = 1.00,

µ7(a) = 0.50, µ7(b) = 0.50, µ7(c) = 0.00.
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Define an (L,M)-fuzzy topology in [36, 41] T : [0, 1]X −→ [0, 1] and an (L,M)-fuzzy
convexity C : [0, 1]X −→ [0, 1] on X as follows:

T (ν) =



1, if ν ∈ {0, 1},

1
4 , if ν = µ1,

1
3 , if ν = µ2,

1
4 , if ν = µ3,

1
5 , if ν = µ4,

1
5 , if ν = µ5,

1
5 , if ν = µ6,

0, otherwise,

C(ν) =


1, if ν ∈ {0, 1},

1
5 , if ν ≤ µ7,

0, otherwise.

Then
(1) µ′1 and µ′2 are disjoint 1

5 -L-fuzzy closed convex sets in X, where

µ′1(a) = 0.25, µ′1(b) = 0.00, µ′1(c) = 0.00,

µ′2(a) = 0.00, µ′2(b) = 0.25, µ′2(c) = 0.00.

Also, µ′4 and µ′2 are disjoint 1
5 -L-fuzzy closed convex sets in X, where,

µ′4(a) = 0.50, µ′4(b) = 0.00, µ′4(c) = 0.00.

Thus µ′4 is 1
5 -L-fuzzy closed convex neighbourhood of µ′1, because

µ′1 ≤ µ5 ≤ µ′4 where T (µ5) ≥ 1

5
.

So (X, C, T ) is semi r-L-FNS4 but it is not r-L-FNS4, because there is no r-L-fuzzy
closed convex neighbourhood of µ′2.

(2) (X, C, T ) isn’t r-L-FNS3, because there is no r-L-fuzzy closed convex neigh-
bourhood containing µ′3 and disjoint with ct, where 0 < t ≤ 1 and

µ′3(a) = 0.25, µ′3(b) = 0.25, µ′3(c) = 0.00.

Where µ′3 is 1
5 -L-fuzzy closed convex sets in X.
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[7] G. Şenel, J. G. Lee and K. Hur, Distance and similarity measures for octahedron sets and thier

application to MCGDM problems, Mathematics 8 (10) 1690 (2020).
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