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1. Introduction

Imai and Iséki introduced two classes of abstract algebras: BCK-algebras and
BCI-algebras (See [1, 2]). It is known that the class of BCK-algebras is proper
subclass of the class of BCI-algebras. In [3, 4], Hu and Li introduced a wide class of
abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras
is a proper subclass of the class of BCH-algebras. Neggers et al. [5] introduced a new
notion, called Q-algebra, which is a generalization of BCH/BCI/BCK-algebras
and generalize some theorems discussed in BCI-algebras. Mostafa et al. [6, 7,
8] discussed fuzzy, intuitionistic fuzzy and interval valued fuzzy of Q-ideals in Q-
algebra. In 1965, Zadeh [9] introduced the concept of fuzzy sets as a generalization
of a crisp sets. The notion of a fuzzy topology was established by Chang [10] in 1968.
Lee [11] found the idea of bipolar fuzzy sets which is an extension of traditional, fuzzy
sets whose membership degree range is extended from [0, 1] to [-1, 1] and also in
1994, Zhang [12] initiated the concept of bipolar fuzzy sets as a generalization of fuzzy
sets. In [13, 14, 15, 16], the authors introduced bipolar-valued fuzzy set on different
structures. Azhagappan and Kamaraj [17] investigated bipolar fuzzy topological
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spaces. Jun and Hur [18] generalized the fuzzy points and quasi-coincidence in
fuzzy sets, introduced the notion of bipolar-valued fuzzy point and bipolar quasi-
coincidence in bipolar-valued fuzzy sets. Lee et al. [19] defined concepts of a bipolar
fuzzy topology, bipolar fuzzy base, sub-base, bipolar fuzzy point and find some
properties of each concept. Jun et al. [20, 21, 22] introduced the concept of a cubic
set and applied it to the cubic set to BCK/BCI-algebras. Mostafa et al. [23]
established the notion of cubic bipolar BCC-ideal of BCC-algebras and investigate
several properties. In 2017, extending the concept of a cubic set, Jun [24] established
the idea of a cubic intuitionistic set.

In this paper, we present another extension of fuzzy set theory which is called
cubic bipolar structures as the generalization of cubic set and bipolar set and apply
it to Q-algebra. In order to apply it to Q-algebra, we deal with the followings:
in Section 2, we recall definitions of BCK, BCI, BG, QS, Q-algebra; in Section
3, we define the inclusion, the equality and operations of cubic bipolar sets and
the image and preimage of a cubic bipolar set under a mapping, and obtain their
some properties; in Section 4, we define a cubic bipolar point and find some of its
properties; in Section 5, we define a cubic bipolar subalgebra, BCK-ideal and Q-
ideal of a Q-algebra, and obtain some of their properties and give some examples; in
Section 6, we discuss with the image and the preimage of a Q-ideal under a mapping;
in Section 7, we define a cubic bipolar fuzzy topology and a cubic bipolar fuzzy base
and for each concept obtain some of its properties.

2. Preliminaries

We review some definitions and properties that will be useful in the next sections.

Definition 2.1 ([1, 2, 25]). Let X be a set with a binary operation “*” and a
constant 0. Then (X, ∗, 0) is called a BCI-algebra, if it satisfies the following axioms:
for any x, y, z ∈ X,

(BCI-1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(BCI-2) (x ∗ (x ∗ y)) ∗ y = 0,
(BCI-3) x ∗ x = 0,
(BCI-4) x ∗ y = 0 and y ∗ x = 0 imply x = y.

If a BCI-algebra X satisfies the identity 0 ∗ x = 0 for all x ∈ X, then X is called
a BCK-algebra. It is known that the class of BCK-algebras is a proper subclass of
the class of BCI-algebras.

Definition 2.2 ([25]). Let (X, ∗, 0) be a BCK-algebra, and let S be a non-empty
subset of X. Then S is called a subalgebra of X, if x ∗ y ∈ S for all x, y ∈ S, i.e., S
is closed under the binary operation ∗ of X.

Definition 2.3 ([5]). An algebraic system (X, ∗, 0) of type (2, 0) is called a Q-
algebra, if it satisfying the following axioms: for all x, y, z ∈ X,

(i) x ∗ x = 0, (ii) x ∗ 0 = x, (iii) (x ∗ y) ∗ z = (x ∗ z) ∗ y.
In X, we can define a binary relation ≤ by

x ≤ y if and only if x ∗ y = 0.
70
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∗ 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Table 2.1

Example 2.4 ([5]). Let X = {0, 1, 2} be a set with a binary operation ∗ defined by
the following table:
Then (X, ∗, 0) is a Q-algebra.

Theorem 2.5 ([5]). Every BCK-algebra is a Q-algebra, but the converse is not true
(See Example 2.6).

Example 2.6 ([5]). Let X = {0, 1, 2, 3} be a set with a binary operation ∗ defined
by the following table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 0 0 0
3 3 3 3 0

Table 2.2

Then (X, ∗, 0) is a Q-algebra but not a BCK-algebra.

Definition 2.7 (See [26]). An algebraic system (X, ∗, 0) of type (2, 0) is called a
BG-algebra, if it satisfying the following axioms: for all x, y ∈ X,

(BG1) x ∗ x = 0, (BG2) x ∗ 0 = x, (BG3) (x ∗ y) ∗ (0 ∗ y) = x.

We can confirm that BG-algebras and Q-algebra are different notions as the
following Example.

Example 2.8 ([5]). Let X = {0, 1, 2, 3} be a set with a binary operation ∗ defined
by the following table:

∗ 0 1 2 3
0 0 0 0 3
1 1 0 0 3
2 2 2 0 3
3 3 3 3 0

Table 2.3

Then (X, ∗, 0) is a Q-algebra but not a BG-algebra, since (2 ∗ 3) ∗ (0 ∗ 3) = 0 6= 2.

Proposition 2.9 ([5]). If (X, ∗, 0) is a Q-algebra, then

(x ∗ (x ∗ y)) ∗ y = 0 for any x, y ∈ X.

Theorem 2.10 ([5]). Every BCH-algebra is a Q-algebra. Every Q-algebra satisfy-
ing the condition (BCI-4) is a BCH-algebra.
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Theorem 2.11 ([5]). Every Q-algebra satisfying the condition (BCI-4) and the
following axiom

(2.1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0 for all x, y, z ∈ X.
is a BCI-algebra.

Theorem 2.12 ([5]). Every Q-algebra satisfying the conditions (BCI-4), (2.1) and
the following axiom

(2.2) (x ∗ y) ∗ x = 0 for any x, y ∈ X.
is a BCK-algebra.

Theorem 2.13 ([5]). Every Q-algebra X satisfying x ∗ (x ∗ y) = x ∗ y for any
x, y ∈ X, is a trivial algebra.

Definition 2.14 ([27]). A QS-algebra (X, ∗, 0) is a non-empty set with a constant
0 and a binary operation ∗ satisfying the following axioms: for all x, y, z ∈ X,

(QS-1) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(QS-2) x ∗ 0 = x,
(QS-3) x ∗ x = 0,
(QS-4) (x ∗ y) ∗ (x ∗ z) = z ∗ y.

Remark 2.15. Every QS-algebra is a Q-algebra. Every Q-algebra satisfying the
condition

(2.3) (x ∗ y) ∗ (x ∗ z) = z ∗ y for any x, y, z ∈ X.
is a QS-algebra.

Definition 2.16 ([25]). A non-empty subset I of a BCK-algebra X is called an
ideal of X, if it satisfies the following conditions:

(I1) 0 ∈ I,
(I2) x ∈ I and y ∗ x ∈ I imply y ∈ I, for all x, y ∈ X.

Definition 2.17 ([20, 7]). A non-empty subset I of a Q-algebra X is called a Q-ideal
of X, if it satisfies the following conditions:

(Q1) 0 ∈ I,
(Q2) (x ∗ y) ∗ z ∈ I and y ∈ I imply x ∗ z ∈ I, for all x, y, z ∈ X.

Definition 2.18 ([9]). Let X be a non-empty set. Then a mapping λ : X → [0, 1]
is called a fuzzy set in X.

Definition 2.19 ([11, 12]). Let X be a non-empty set. Then a pair A = (AN , AP )
is called a bipolar-valued fuzzy set (or bipolar fuzzy set) (briefly, BPFS) in X , if
AP : X → [0, 1] and AN : X → [−1, 0] are mappings.

For each x ∈ X, we use the positive membership degree AP to denote the satis-
faction degree of the element x to the property corresponding to the bipolar fuzzy
set A and the negative membership degree AN to denote the satisfaction degree of
the element x to some implicit counter-property corresponding to the bipolar fuzzy
set A. We will denote the set of all bipolar fuzzy sets in X as BPF(X). Now, we list
some concepts related to bipolar fuzzy sets (for examples, the inclusion between two
bipolar fuzzy sets ,the complement of a bipolar fuzzy set, the intersection of bipolar
fuzzy set and the union of a bipolar fuzzy set.
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Definition 2.20 ([19]). Let X be a nonempty set and let A, B ∈ BPF (X).
(i) We say that A is a subset of B, denoted by A ⊂ B, if for each x ∈ X,

AP (x) ≤ BP (x) and AN (x) ≥ BN (x).

(ii) We say that A is equal to B, denoted by A = B, if A ⊂ B and B ⊂ A.
(iii) The complement of A, denoted by Ac = (ANc

, AP c
), is a bipolar fuzzy set in

X defined as: for each x ∈ X, Ac(x) = (−1−AN (x), 1−AP (x)), i.e.,

(ANc
)(x) = −1−AN (x), (AP c

)(x) = 1−AP (x).

(iv) The intersection of A and B, denoted by A ∩ B, is a bipolar fuzzy set in X
defined as: for each x ∈ X,

(A ∩B)(x) = (AN (x) ∨BN (x), AP (x) ∧BP (x)).

(v) The union of A and B, denoted by A∪B, is a bipolar fuzzy set in X defined
as: for each x ∈ X,

(A ∪B)(x) = (AN (x) ∧BN (x), AP (x) ∨BP (x)).

Result 2.21 ([19], Proposition 3.5). Let A, B, C ∈ BPF (X). Then
(1) (Idempotent laws): A ∩A = A, A ∪A = A,
(2) (Commutative laws): A ∩B = B ∩A, A ∪B = B ∪A,
(3) (Associative laws): (A ∩B) ∩C = A ∩ (B ∩C), (A ∪B) ∪C = A ∪ (B ∪C),
(4) (Distributive laws): A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
(5) (Absorption laws): A ∪ (A ∩B) = A, A ∩ (A ∪B) = A,
(6) (DeMorgan’s laws): (A ∩B)c = Ac ∪Bc, (A ∪B)c = Ac ∩Bc,
(7) (Ac)c = A,
(8) A ∩B ⊂ A, A ∩B ⊂ B,
(9) A ⊂ A ∪B, B ⊂ A ∪B,
(10) if A ⊂ B and B ⊂ C, then A ⊂ C,
(11) if A ⊂ B, then A ∩ C ⊂ B ∩ C, A ∪ C ⊂ B ∪ C.

Now, we begin with the concepts of interval-valued fuzzy sets.

Definition 2.22 ([28]). Let D[0, 1] denote the set of all closed subintervals of [0, 1],
i.e.,

D[0, 1] = {ã = [a−, a+] : ã ⊂ [0, 1] and 0 ≤ a− ≤ a+ ≤ 1}.

Each member of D[0, 1] is called an interval-valued number. We define the operations
≤, ≥, =, min (denoted by ∧) and max (denoted by ∨) between two elements inD[0, 1]

as follows: for any ã, b̃ ∈ D[0, 1],

(i) ã ≤ b̃ iff a− ≤ b−, a+ ≤ b+,

(ii) ã ≥ b̃ iff a− ≥ b−, a+ ≥ b+,

(iii) ã = b̃ iff a− = b−, a+ = b+,

(iv) ã ∧ b̃ = [a− ∧ b−, a+ ∧ b+],

(v) ã ∨ b̃ = [a− ∨ b−, a+ ∨ b+].
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Here we consider that 0̃ = [0, 0] as the least element and 1̃ = [1, 1] as the greatest
element. Now let {ãj : j ∈ J} ⊂ D[0, 1]. Then its inf and sup are defined as follows:

infj∈J ãj = [
∧
j∈J

a−j ,
∧
j∈J

a+
j ], supj∈J ãj = [

∨
j∈J

a−j ,
∨
j∈J

a+
j ].

Let D[−1, 0] denote the set of all closed subintervals of [−1, 0]. Then min, max,
inf and sup of members of D[−1, 0] are defined similarly to the above.

Definition 2.23 (See [28, 29, 30]). For a nonempty set X, a mapping A : X →
D[0, 1] is called an interval-valued fuzzy set (briefly, an IVF set) in X. Let D[0, 1]

X

denote the set of all IVF sets in X. For each A ∈ D[0, 1]
X

and x ∈ X, A(x) =
[A−(x), A+(x)] is called the degree of membership of an element x to A, where
A−, A+ ∈ IX are called a lower fuzzy set and an upper fuzzy set in X, respectively.
For each A ∈ [I]X , we write A = [A−, A+]. In particular, 0̃ and 1̃ denote the
interval-valued fuzzy empty set and the interval-valued fuzzy empty whole set in X.

Also, refer to [28, 30] for the inclusion, the equality, the intersection, the union of
two IVF sets and the complement of an IVF set.

Result 2.24 ([28], Proposition 3.5). Let A, B, C ∈ D[0, 1]
X
. Then

(1) (Idempotent laws): A ∩A = A, A ∪A = A,
(2) (Commutative laws): A ∩B = B ∩A, A ∪B = B ∪A,
(3) (Associative laws): (A ∩B) ∩C = A ∩ (B ∩C), (A ∪B) ∪C = A ∪ (B ∪C),
(4) (Distributive laws): A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
(5) (Absorption laws): A ∪ (A ∩B) = A, A ∩ (A ∪B) = A,
(6) (DeMorgan’s laws): (A ∩B)c = Ac ∪Bc, (A ∪B)c = Ac ∩Bc,
(7) (Ac)c = A,
(8) A ∩B ⊂ A, A ∩B ⊂ B,
(9) A ⊂ A ∪B, B ⊂ A ∪B,
(10) if A ⊂ B and B ⊂ C, then A ⊂ C,
(11) if A ⊂ B, then A ∩ C ⊂ B ∩ C, A ∪ C ⊂ B ∪ C.

Definition 2.25 ([21, 22]). For a nonempty set X, a pair A = 〈A, λ〉 is called a
cubic set in X, where A is an IVF set in X and λ is a fuzzy set in X.

Definition 2.26 ([14]). For a non-empty set X, a pair A = (AN ,AP ) is called
an interval-valued bipolar fuzzy set (briefly, IVBPFS) in X, if AN : X → D[−1, 0]
and AP : X → D[0, 1]. In this case for each x ∈ X, AN (x) = [AN,−(x), AN,+(x)]
and AP (x) = [AP,−(x), AP,+(x)] are called the interval-valued positive and negative
membership degree of x. In fact, for each x ∈ X,

A(x) = ([AN,−(x), AN,+(x)], [AP,−(x), AP,+(x)]).

We will denote the set of all IVBPFSs as IV BP (X).
For any A, B ∈ IV BP (X),
(i) the intersection of A and B, denoted by A ∩ B, is an IVBPFS in X defined

as: for each x ∈ X,

(A ∩B)(x) = (AN (x) ∨BN (x), AP (x) ∧BP (x)),

where AN (x) ∨BN (x) = [AN,−(x) ∨BN,−(x), AN,+(x) ∨BN,+(x)],
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AP (x) ∧BP (x) = [AP,−(x) ∧BP,−(x), AP,+(x) ∧BP,+(x)].
(ii) the union of A and B, denoted by A ∪B, is an IVBPFS in X defined as: for

each x ∈ X,
(A ∪B)(x) = (AN (x) ∧BN (x), AP (x) ∨BP (x)),

where AN (x) ∧BN (x) = [AN,−(x) ∧BN,−(x), AN,+(x) ∧BN,+(x)],
AP (x) ∨BP (x) = [AP,−(x) ∨BP,−(x), AP,+(x) ∨BP,+(x)].

3. Cubic bipolar sets

In this section, we will introduce a new notion called cubic bipolar set and study
its several properties.

Definition 3.1 ([23]). Let X be a non-empty set. Then a pair A = 〈A, A〉 is called
a cubic bipolar set in X, if A = (AN ,AP ) is an interval-valued bipolar fuzzy set and
A = (AN , AP ) is an bipolar fuzzy set in X, where

AN : X → D[−1, 0], AP : X → D[0, 1]
and

AN : X → [−1, 0], AP : X → [0, 1].
We will denote the set of all cubic bipolar sets in X as CBP (X). In particular,

we will denote the cubic fuzzy set and the cubic bipolar whole set as 0X and 1X ,
and are defined as follows, respectively:

0X = (0̃, 0̄), 1X = (1̃, 1̄),

where 0̃ = ([0, 0], [0, 0]), 0̄ = (0, 0), 1̃ = ([−1,−1], [1, 1]), 1̄ = (−1, 1).

Example 3.2. Let X = {a, b, c} and consider the IVBPFS A and BPFS A in X,
respectively given by:

A(a) = ([−0.5,−0.3], [0.5, 0.6]), A(a) = (−0.1, 0.1),

A(b) = ([−0.7,−0.5], [0.7, 0.8]), A(a) = (−0.5, 0.3),

A(c) = ([−0.8,−0.5], [0.4, 0.7]), A(a) = (−0.4, 0.6).

Then we can easily see that A = 〈A, A〉 ∈ CBP (X)

Definition 3.3. Let X be a non-empty set and let A, B ∈ CBP (X).
(i) We say that A is a subset B, denoted by A ⊂ B, if for each x ∈ X,

A(x) ≤ B(x), A(x) ≤ B(x), i.e.,

AN,−(x) ≥ BN,−(x), AN,+(x) ≥ BN,+(x), AP,−(x) ≤ BP,−(x), AP,+(x) ≤ BP,+(x),

AN (x) ≥ BN (x), AP (x) ≤ BP (x).

(ii) We say that A is equal to B, denoted by A = B, if A ⊂ B and B ⊂ A.
(iii) The complement of A, denoted by Ac, is a cubic bipolar set in X defined by:

for each x ∈ X,
Ac(x) = (Ac(x), Ac(x)),

where Ac(x) = ([−1−AN,+(x),−1−AN,−(x)], [1−AP,+(x), 1−AP,−(x)]),
Ac(x) = (−1−AN (x), 1−AP (x)).

(iv) The intersection of A and B, denoted by A ∩ B, is a cubic bipolar set in X
defined by: for each x ∈ X,

(A ∩ B)(x) = (A(x) ∧B(x), A(x) ∧B(x)),
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where A(x) ∧B(x) = ([AN,−(x) ∨BN,−(x)], [AP,+(x) ∧BP,+(x)]),
A(x) ∧B(x) = (AN (x) ∨BN (x), AP (x) ∧BP (x)).

(v) The union of A and B, denoted by A∪ B, is a cubic bipolar set in X defined
by: for each x ∈ X,

(A ∪ B)(x) = (A(x) ∨B(x), A(x) ∨B(x)),

where A(x) ∨B(x) = ([AN,−(x) ∧BN,−(x)], [AP,+(x) ∨BP,+(x)]),
A(x) ∨B(x) = (AN (x) ∧BN (x), AP (x) ∨BP (x)).

Example 3.4. Let X = {a, b, c} be a set.
(1) Consider two cubic bipolar sets A, B in X given by:

A(a) = 〈([−0.5,−0.3], [0.5, 0.6]), (−0.1, 0.1)〉 ,
A(b) = 〈([−0.7,−0.5], [0.6, 0.8]), (−0.5, 0.3)〉 ,
A(c) = 〈([−0.8,−0.3], [0.4, 0.7]), (−0.4, 0.6)〉 ,
B(a) = 〈([−0.6,−0.5], [0.6, 0.8]), (−0.3, 0.4)〉 ,
B(b) = 〈([−0.8,−0.6], [0.7, 0.8]), (−0.4, 0.4)〉 ,
B(c) = 〈([−0.9,−0.7], [0.5, 0.9]), (−0.6, 0.8)〉 .

Then we can easily check that A ⊂ B.
(2) Consider a cubic bipolar sets A in X given by:

A(a) = 〈([−0.80,−0.50], [0.20, 0.50]), (−0.60, 0.68)〉 ,
A(b) = 〈([−0.90,−0.70], [0.40, 0.60]), (−0.60, 0.55)〉 ,
A(c) = 〈([−0.80,−0.60], [0.20, 0.60]), (−0.45, 0.45)〉 .

Then we obtain easily the Ac given by:

Ac(a) = 〈([−0.50,−0.20], [0.50, 0.80]), (−0.32, 0.40)〉 ,
Ac(b) = 〈([−0.30,−0.10], [0.40, 0.60]), (−0.55, 0.45)〉 ,
Ac(c) = 〈([−0.40,−0.20], [0.40, 0.80]), (−0.55, 0.55)〉 .

(3) Consider two cubic bipolar sets A, B in X given by:

A(a) = 〈([−0.80,−0.40], [0.28, 0.59]), (−0.62, 0.38)〉 ,
A(b) = 〈([−0.50,−0.30], [0.46, 0.71]), (−0.61, 0.53)〉 ,
A(c) = 〈([−0.40,−0.20], [0.24, 0.40]), (−0.47, 0.25)〉 ,
B(a) = 〈([−0.80,−0.20], [0.35, 0.87]), (−0.51, 0.43)〉 ,
B(b) = 〈([−0.70,−0.20], [0.53, 0.82]), (−0.70, 0.40)〉 ,
B(c) = 〈([−0.60,−0.10], [0.33, 0.73]), (−0.71, 0.33)〉 .

Then we have easily A ∩ B and A ∪ B, respectively given by:

(A ∩ B)(a) = 〈([−0.80,−0.20], [0.28, 0.59]), (−0.51, 0.38)〉 ,
(A ∩ B)(b) = 〈([−0.50,−0.20], [0.46, 0.71]), (−0.61, 0.40)〉 ,
(A ∩ B)(c) = 〈([−0.40,−0.10], [0.24, 0.40]), (−0.47, 0.25)〉

and
(A ∪ B)(a) = 〈([−0.80,−0.40], [0.35, 0.87]), (−0.62, 0.43)〉 ,
(A ∪ B)(b) = 〈([−0.70,−0.30], [0.53, 0.82]), (−0.70, 0.53)〉 ,
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(A ∪ B)(c) = 〈([−0.60,−0.20], [0.33, 0.73]), (−0.71, 0.33)〉 .

From Results 2.21 and 2.24, we can easily prove the following.

Theorem 3.5. Let A, B, C ∈ CBP (X). Then
(1) (Idempotent laws): A ∩A = A, A ∪A = A,
(2) (Commutative laws): A ∩ B = B ∩ A, A ∪ B = B ∪ A,
(3) (Associative laws): (A ∩ B) ∩ C = A ∩ (B ∩ C), (A ∪ B) ∪ C = A ∪ (B ∪ C),
(4) (Distributive laws): A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
(5) (Absorption laws): A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A,
(6) (DeMorgan’s laws): (A ∩ B)c = Ac ∪ Bc, (A ∪ B)c = Ac ∩ Bc,
(7) (Ac)c = A,
(8) A ∩ B ⊂ A, A ∩ B ⊂ B,
(9) A ⊂ A ∪ B, B ⊂ A ∪ B,
(10) if A ⊂ B and B ⊂ C, then A ⊂ C,
(11) if A ⊂ B, then A ∩ C ⊂ B ∩ C, A ∪ C ⊂ B ∪ C,
(12) the followings are equivalent:

(a) A ⊂ B, (b) A ∩ B = A, (c) A ∪ B = B,
(13) 0X ⊂ A ⊂ 1X .

Definition 3.6. Let X, Y be two non-empt sets, let A ∈ CBP (X), B ∈ CBP (y)
and let f : X → Y be a mapping.

(i) The image of A under f , denoted by f(A) = 〈f(A), f(A)〉, is a cubic bipolar
set in Y defined as follows: for each y ∈ Y ,

f(A)(y) =

{ 〈∨
x∈f−1(y) A(x),

∨
x∈f−1(y)A(x)

〉
if f−1(y) 6= ∅

〈([0, 0], [0, 0]), (0, 0)〉 otherwise.

(ii) The preimage of B under f , denoted by f−1(B) =
〈
f−1(B), f−1(B)

〉
, is a

cubic bipolar set in X defined as follows: for each x ∈ X,

f−1(B)(x) == 〈B(f(x)), B(f(x))〉 .

Proposition 3.7. Let f : X → Y be a mapping, let A, A1, A2 ∈ CBP (X) and let
B, B1, B2 ∈ CBP (Y ).

(1) If A1 ⊂ A2, then f(A1) ⊂ f(A2).
(2) f(A1 ∪ A2) = f(A1) ∪ f(A2).
(3) f(A1 ∩ A2) ⊂ f(A1) ∩ f(A2).
(4) If B1 ⊂ B2, then f

−1(B1) ⊂ f−1(B2).
(5) f−1(B1 ∪ B2) = f−1(B1) ∪ f−1(B2).
(6) f−1(B1 ∩ B2) = f−1(B1) ∩ f−1(B2).
(7) A ⊂ f−1 ◦ f(A) and A = f−1 ◦ f(A), if f is injective.
(8) f ◦ f−1(B) ⊂ B and f ◦ f−1(B) = B, if f is surjective.
(9) f−1(Bc) = (f−1(B))c.
(10) If g : Y → Z is a mapping, then (g ◦ f)(A) = g(f(A)).
Moreover, for each C ∈ CBP (Z), we have

(g ◦ f)−1(C) = f−1(g−1(C)).

Proof. The proofs are straightforward. �
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4. Cubic bipolar point

Definition 4.1. Let X be a non-empty set, let ā = (aN , aP ) ∈ [−1, 0) × (0, 1],
ã = (aN ,aP ) ∈ D[−1, 0) × D(0, 1] and let A ∈ CBP (X). Then x〈ã,ā〉 is called a
cubic bipolar point in X with the value 〈ã, ā〉 and the support x ∈ X, if for each
y ∈ X,

[x〈ã,ā〉](y) =

{
〈ã, ā〉 if y = x,
〈([0, 0], [0, 0]), (0, 0)〉 otherwise.

We say that x〈ã,ā〉 belongs to A, denoted by x〈ã,ā〉 ∈ A, if the following conditions
hold:

(i) AN (x) ≤ aN , AP (x) ≥ aP , i.e.,

AN,−(x) ≤ aN,−, AN,+(x)AN,+(x) ≤ AN,+(x), AP,−(x) ≥ aP,−, AP,−(x) ≥ aP,−,

(ii) AN (x) ≤ aN , AP (x) ≥ aP .
We will denote the set of all cubic bipolar points in X as CBPP (X).

Lemma 4.2. For any A ∈ CBP (X), A =
⋃
{x〈ã,ā〉 ∈ CBPP (X) : x〈ã,ā〉 ∈ A}.

Proof. The proof is straightforward. �

Proposition 4.3. Let A, B ∈ CBP (X). If A ⊂ B, then x〈ã,ā〉 ∈ B, for each
x〈ã,ā〉 ∈ A.

Proof. Suppose A ⊂ B and let x〈ã,ā〉 ∈ A. Then clearly, we have

AN (x) ≤ aN , AP (x) ≥ aP and AN (x) ≤ aN , AP (x) ≥ aP .
Since A ⊂ B, we have

BN (x) ≤ AN (x), BP (x) ≥ AP (x) and BN (x) ≤ AN (x), BP (x) ≥ AP (x).

Thus BN (x) ≤ aN , BP (x) ≥ aP and BN (x) ≤ aN , BP (x) ≥ aP . So x〈ã,ā〉 ∈ B. �

Theorem 4.4. Let A, B ∈ CBP (X) and let x〈ã,ā〉 ∈ CBPP (X).
(1) x〈ã,ā〉 ∈ A and x〈ã,ā〉 ∈ B if and only if x〈ã,ā〉 ∈ A ∩ B.
(2) If x〈ã,ā〉 ∈ A or x〈ã,ā〉 ∈ B, then x〈ã,ā〉 ∈ A ∪ B.

Proof. Suppose x〈ã,ā〉 ∈ A ∩ B. Then clearly, we have

(AN ∩BN )(x) = AN (x) ∨BN (x) ≤ aN ,

(AP ∩BP )(x) = AP (x) ∧BP (x) ≥ aP ,

(AN ∩BN )(x) = AN (x) ∨BN (x) ≤ aN ,
(AP ∩BP )(x) = AP (x) ∧BP (x) ≥ aP .

Thus we have

AN (x) ≤ aN , AP (x) ≥ aP , AN (x) ≤ aN , AP (x) ≥ aP

and

BN (x) ≤ aN , BP (x) ≥ aP , BN (x) ≤ aN , BP (x) ≥ aP .
So x〈ã,ā〉 ∈ A and x〈ã,ā〉 ∈ B.

The converse is proved similarly.
(2) Suppose x〈ã,ā〉 ∈ A or x〈ã,ā〉 ∈ B. Then we have
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AP (x) ≥ aP , AP (x) ≥ aP and AN (x) ≤ aN , AN (x) ≤ aN
or

BP (x) ≥ aP , BP (x) ≥ aP and BN (x) ≤ aN , BN (x) ≤ aN .
Thus we have

AP (x) ≥ aP , AP (x) ≥ aP or BP (x) ≥ aP , BP (x) ≥ aP
and

AN (x) ≤ aN , AN (x) ≤ aN or BN (x) ≤ aN , BN (x) ≤ aN .
So AP (x) ∨BP (x) ≥ aP , AP (x) ∨BP (x) ≥ aP
and

AN (x) ∧BN (x) ≤ aN , AN (x) ∧BN (x) ≤ aN .
Hence x〈ã,ā〉 ∈ A ∪ B. �

Theorem 4.5. Let (A)j∈J be a family of cubic bipolar sets in X and let x〈ã,ā〉 ∈
CBPP (X).

(1) x〈ã,ā〉 ∈
⋂

j∈J Aj if and only if x〈ã,ā〉 ∈ Aj for each j ∈ J .
(2) If there is a j ∈ J such that x〈ã,ā〉 ∈ Aj, then x〈ã,ā〉 ∈

⋃
j∈J Aj.

Proof. Suppose x〈ã,ā〉 ∈
⋂

j∈J Aj . Then clearly, we have

(
⋂
j∈J

AP
j )(x) =

∧
j∈J

AP
j (x) ≥ aP , (

⋂
j∈J

AP
j )(x) =

∧
j∈J

AP
j (x) ≥ aP

and
(
⋂
j∈J

AN
j )(x) =

∨
j∈J

AN
j (x) ≤ aN , (

⋂
j∈J

AN
j )(x) =

∨
j∈J

AN
j (x) ≤ aN .

Thus we have for each j ∈ J ,

AP
j (x) ≥ aP , AP

j (x) ≥ aP , AN
j (x) ≤ aN , AN

j (x) ≤ aN .
So x〈ã,ā〉 ∈ Aj for each j ∈ J .

The converse is proved similarly.
(2) From the fact that Aj ⊂

⋃
j∈J Aj , the proof is immediate. �

5. Cubic bipolar Q-ideal in Q-algebras

In this section, we present the idea another extension of fuzzy set theory which is
called cubic bipolar structures and it application on Q-algebra, which generalizations
of cubic set and bipolar set.

Definition 5.1. Let X be a Q-algebra and let A ∈ CBP (X). Then A is called a
cubic bipolar subalgebra of X, if it satisfies the following conditions: for any x, y ∈ X,

(CBPS1) AP (x ∗ y) ≥ AP (x) ∧AP (y), AN (x ∗ y) ≤ AN (x) ∨AN (y),
(CBPS2) AP (x ∗ y) ≥ AP (x) ∧AP (y), AN (x ∗ y) ≤ AN (x) ∨AN (y).

Example 5.2. Let X = {0, 1, 2, 3, 4} be a set with a binary operation ∗ defined by
the following table:
Then we can easily check that (X, ∗, 0) is a Q-algebra. Consider the CBPS A in X
given by:

A(x) =

{
([−0.9,−0.5], [0.3, 0.9]) if x ∈ {0, 1}
([−0.8,−0.2], [0.1, 0.6]) otherwise

and
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∗ 0 1 2 3 4
0 0 0 0 0 4
1 1 0 0 1 4
2 2 2 0 0 4
3 3 0 3 0 4
4 4 4 4 4 0

Table 5.1

A(0) = (−0.5, 0.8), A(1) = (−0.4, 0.7), A(2) = (−0.3, 0.6),
A(3) = (−0.2, 0.5), A(4) = (−0.1, 0.4).

Then it is easy to check that A is a cubic bipolar subalgebra of X.

Lemma 5.3. If A is a a cubic bipolar subalgebra of a Q-algebra X, then for each
x ∈ X,

AP (0) ≥ AP (x), AN (0) ≤ AN (x), and AP (0) ≥ AP (x), AN (0) ≤ AN (x).

Proof. Let x ∈ X. Then from (CBPS1) and Definition 2.3 (i), we have

AP (0) = AP (x ∗ x) ≥ AP (x) ∧AP (x) = AP (x),

AN (0) = AN (x ∗ x) ≤ AN (x) ∨AN (x) = AN (x).

Also, by (CBPS2) and Definition 2.3 (i), we have

AP (0) = AP (x ∗ x) ≥ AP (x) ∧AP (x) = AP (x),

AN (0) = AN (x ∗ x) ≤ AN (x) ∨AN (x) = AN (x).

Thus the sufficient conditions hold. �

Definition 5.4. Let X be a Q-algebra and let A ∈ CBP (X). Then A is called
a cubic bipolar BCK-ideal of X, if it satisfies the following conditions: for any
x, y, z ∈ X,

(CBPBCKI0) AP,−(0) ≥ AP,−(x), AP,+(0) ≥ AP,+(x), AN,−(0) ≤ AN,−(x),
AN,+(0) ≥ AN,+(x), AP (0) ≥ AP (x), AN (0) ≤ AN (x),

(CBPBCKI1) AP (x) ≥ AP (x ∗ y) ∧AP (y), AN (x) ≤ AN (x ∗ y) ∨AN (y),
(CBPBCKI2) AP (x) ≥ AP (x ∗ y) ∧AP (y), AN (x) ≤ AN (x ∗ y) ∨AN (y).

Definition 5.5. Let X be a Q-algebra and let A ∈ CBP (X). Then A is called a
cubic bipolar Q-ideal of X, if it satisfies the following conditions: for any x, y, z ∈ X,

(CBPQI0) AP,−(0) ≥ AP,−(x), AP,+(0) ≥ AP,+(x), AN,−(0) ≤ AN,−(x),
AN,+(0) ≥ AN,+(x), AP (0) ≥ AP (x), AN (0) ≤ AN (x),

(CBPQI1) AP (x∗z) ≥ AP ((x∗y)∗z)∧AP (y), AN (x∗z) ≤ AN ((x∗y)∗z)∨AN (y),
(CBPQI2) AP (x∗z) ≥ AP ((x∗y)∗z)∧AP (y), AN (x∗z) ≤ AN ((x∗y)∗z)∨AN (y).

Example 5.6. Let X = {0, 1, 2, 3, 4} be the Q-algebra given in Example 5.2. Con-
sider the CBPS A in X given by:

A(x) =

{
([−0.9,−0.5], [0.2, 0.8]) if x ∈ {0, 1}
([−0.8,−0.2], [0.1, 0.5]) otherwise

and
A(0) = (−0.5, 0.6), A(1) = (−0.4, 0.5), A(2) = (−0.3, 0.3),
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A(3) = (−0.2, 0.3), A(4) = (−0.1, 0.2).
Then it is easy to check that A is a cubic bipolar Q-ideal of X.

Proposition 5.7. Every cubic bipolar Q-ideal of a Q-algebra is cubic bipolar BCK-
ideal of X. But the converse is not true (See Example 5.8).

Proof. The proof is straightforward. �

Example 5.8. Let X = {0, 1, 2, 3} be the Q-algebra with a binary operation ∗
defined by the following table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 2 0 0
3 3 3 2 0

Table 5.2

Consider the CBPS A in X given by:

A(x) =

{
([−0.7,−0.4], [0.2, 0.8]) if x ∈ {0, 1}
([−0.7,−0.3], [0.1, 0.5]) otherwise

and
A(0) = (−0.5, 0.9), A(1) = (−0.4, 0.8), A(2) = (−0.3, 0.6), A(3) = (−0.2, 0.5).

Then we can easily check that A is a cubic bipolar BCK-ideal of X. On the other
hand,

AP (3) = AP (3 ∗ 1) ≥ AP ((3 ∗ 1) ∗ 1) ∧AP (1) = AP (3) ∧AP (1) = 0.5

But 0.5 = AP (3 ∗ 1) 6≥ AP (3 ∗ 2) ∗ 1) ∧ AP (2) = AP (2 ∗ 1) ∧ AP (2) = AP (2) = 0.6.
Thus A is not a cubic bipolar Q-ideal of X.

Lemma 5.9. If A is a a cubic bipolar Q-ideal of a Q-algebra X, then for each
x ∈ X,

(5.1) AP (0) ≥ AP (x), AN (0) ≤ AN (x) and AP (0) ≥ AP (x), AN (0) ≤ AN (x).

Proof. The proof is straightforward. �

Lemma 5.10. Let A be a cubic bipolar Q-ideal of a Q-algebra X. If x ≤ y in X,
then we have

AP (y) ≥ AP (x), AN (y) ≤ AN (x) and AP (y) ≥ AP (x), AN (y) ≤ AN (x).

Proof. Let x, y ∈ X such that x ≤ Y . Then clearly, x ∗ y = 0. Thus we have
AP (x) = AP (x ∗ 0) [By Definition 2.3 (ii)]

≥ AP ((x ∗ y) ∗ 0) ∧AP (y) [Since A is a cubic bipolar Q-ideal of X]
= AP (0 ∗ 0) ∧AP (y) = AP (0) ∧AP (y)
= AP (y), [By 5.1)]

AN (x) = AP (x ∗ 0)
≤ AN ((x ∗ y) ∗ 0) ∨AN (y)
= AN (0 ∗ 0) ∨AN (y) = AN (0) ∨AN (y)
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= AN (y).
Similarly we have AP (x) ≥ AP (y) and AN (x) ≤ AN (y). This completes the proof.

�

Lemma 5.11. Let A be a cubic bipolar Q-ideal of a Q-algebra X. If x ∗ y ≤ z in
X, then we have

AP (x) ≥ AP (z) ∧AP (y), AN (x) ≤ AN (z) ∨AN (y),

AP (x) ≥ AP (z) ∧AP (y), AN (x) ≤ AN (z) ∨AN (y).

Proof. Let x, y, z ∈ X such that x ∗ y ≤ z. Then clearly, (x ∗ y) ∗ z = 0. Thus we
have

AP (x) = AP (x ∗ 0) [By Definition 2.3 (ii)]
≥ AP ((x ∗ y) ∗ 0) ∧AP (y) [Since A is a cubic bipolar Q-ideal of X]
= AP (x ∗ y) ∧AP (y) [By Definition 2.3 (ii)]
≥ AP (z) ∧AP (y). [By Lemma 5.10]

Similarly we have

AN (x) ≤ AN (z) ∨AN (y), AP (x) ≥ AP (z) ∧AP (y), AN (x) ≤ AN (z) ∨AN (y).

This completes the proof. �

Proposition 5.12. Let X be a Q-algebra satisfying the condition (2.2). Then every
cubic bipolar BCK-ideal of X is a cubic bipolar subalgebra of X. But the converse
is not true (See Example 5.13).

Proof. Let A be a cubic bipolar BCK-ideal of X and let x, y ∈ X. Then we have
AP (x ∗ y) ≥ AP ((x ∗ y) ∗ x) ∧AP (x) [By (CBPBCKI1)]

= AP (0) ∧AP (x) [Since (x ∗ y) ∗ x = 0 by (2.2)]
≥ AP (y) ∧AP (x). [By (CBPBCKI0)]

Also, by conditions (CBPBCKI2), (vi) and (CBPBCKI0), we have

AP (x ∗ y) ≥ AP (y) ∧AP (x).

Similarly, we have AN (x∗ y) ≤ AN (y)∨AN (x), AN (x∗ y) ≤ AN (y)∨AN (x). Thus
A is a cubic bipolar subalgebra of X. �

Example 5.13. Let (X, ∗, 0) be the Q-algebra given in Example 5.8. Then we can
see that X satisfies the condition (2.2). Consider the cubic bipolar set B in X defined
by:

B(0) = ([−0.9,−0.8], [0.8, 0.9]), B(1) = ([−0.6,−0.5], [0.7, 0.8]),

B(2) = ([−0.7,−0.6], [0.5, 0.6]), B(3) = ([−0.5,−0.4], [0.6, 0.7]),

B(0) = (−0.9, 0.8), B(1) = (−0.6, 0.7), B(2) = (−0.7, 0.5), B(3) = (−0.5, 0.6).

Then we can easily check that B is a cubic bipolar subalgebra of X. But

BN (3) = [−0.5,−0.4] 6≤ [−0.7,−0.6] = BN (2) = BN (3 ∗ 2) ∨BN (2).

Thus B is a cubic bipolar BCK-ideal of X.
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Proposition 5.14. Let A be a cubic bipolar subalgebra of a Q-algebra X. Suppose
for all x, y, z ∈ X such that x ∗ y ≤ z, the following conditions:

AP (x) ≥ AP (y) ∧AP (z), AN (x) ≤ AN (y) ∨AN (z),

AP (x) ≥ AP (y) ∧AP (z), AN (x) ≤ AN (y) ∨AN (z).

Then A is a cubic bipolar Q-ideal of X.

Proof. Let A be a cubic bipolar subalgebra of X and let x ∈ X. Then by Lemma
5.3, we have

AP (0) ≥ AP (x), AN (0) ≤ AN (x), AP (0) ≥ AP (x), AN (0) ≤ AN (x).

Now let x, y, z ∈ X such that x ∗ y ≤ z. Then
0 = ((x ∗ y) ∗ z) ∗ ((x ∗ y) ∗ z) [By Definition 2.3 (i)]

= ((x ∗ z) ∗ y) ∗ ((x ∗ y) ∗ z) [By Definition 2.3 (iii)]
= ((x ∗ z) ∗ ((x ∗ y) ∗ z)) ∗ y. [By Definition 2.3 (iii)]

Thus (x ∗ z) ∗ ((x ∗ y) ∗ z)) ≤ y. So by Lemma 5.11, we have

AP (x ∗ z) ≥ AP ((x ∗ y) ∗ z) ∧AP (y), AN (x ∗ z) ≤ AN ((x ∗ y) ∗ z) ∨AN (y),

AP (x ∗ z) ≥ AP ((x ∗ y) ∗ z) ∧AP (y), AN (x ∗ z) ≤ AN ((x ∗ y) ∗ z) ∨AN (y).

Hence A is a cubic bipolar Q-ideal of X. This completes the proof. �

Definition 5.15. Let X be a Q-algebra.
(i) A = (AN , AP ) ∈ BPF (X) is called a bipolar fuzzy Q-ideal of X, if it satisfies

the following conditions: for all x, y, z ∈ X,
(BPFQI1) AP (0) ≥ AP (x), AN (0) ≤ AN (x),
(BPFQI2) AP (x ∗ z) ≥ AP ((x ∗ y) ∗ z) ∧AP (y),

AN (x ∗ z) ≤ AN ((x ∗ y) ∗ z) ∨AN (y).
(ii) A = (AN ,AP ) ∈ IV BP (X) is called an interval-valued bipolar fuzzy Q-ideal

of X, if it satisfies the following conditions: for all x, y, z ∈ X,
(IVBPQI1) AP (0) ≥ AP (x), AN (0) ≤ AN (x),
(IVBPQI2) AP (x ∗ z) ≥ AP ((x ∗ y) ∗ z) ∧AP (y),

AN (x ∗ z) ≤ AN ((x ∗ y) ∗ z) ∨AN (y).

Theorem 5.16. A is a cubic bipolar Q-ideal of a Q-algebra X if and only if A is
an interval-valued bipolar fuzzy Q-ideal and A is a bipolar fuzzy Q-ideal of X.

Proof. Suppose A is an interval-valued bipolar fuzzy Q-ideal and A is a bipolar fuzzy
Q-ideal of X and let x ∈ X. Then clearly, we have

AP (0) ≥ AP (x), AN (0) ≤ AN (x), AP (0) ≥ AP (x), AN (0) ≤ AN (x).

Now let x, y, z ∈ X. Since A is an interval-valued bipolar fuzzy Q-ideal, we have
AP (x ∗ z) ≥ AP ((x ∗ y) ∗ z) ∧AP (y)

= [AP,−((x ∗ y) ∗ z), AP,+((x ∗ y) ∗ z) ∧ [AP,−(y), AP,+(y)]
= [AP,−((x ∗ y) ∗ z) ∧AP,−(y), AP,+((x ∗ y) ∗ z) ∧AP,+(y)]
= AP ((x ∗ y) ∗ z) ∧AP (y),

AN (x ∗ z) ≤ AN ((x ∗ y) ∗ z) ∨AN (y)
= [AN,−((x ∗ y) ∗ z), AN,+((x ∗ y) ∗ z) ∨ [AN,−(y), AN,+(y)]
= [AN,−((x ∗ y) ∗ z) ∨AN,−(y), AN,+((x ∗ y) ∗ z) ∨AN,+(y)]
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= AN ((x ∗ y) ∗ z) ∨AN (y).
Since A is a bipolar fuzzy Q-ideal, we have

AP (x ∗ z) ≥ AP ((x ∗ y) ∗ z) ∧AP (y), AN (x ∗ z) ≤ AN ((x ∗ y) ∗ z) ∨AN (y).

Thus A = 〈A, A〉 is a cubic bipolar Q-ideal.
Conversely, suppose A is a cubic bipolar Q-ideal of X and let x ∈ X. Then we

have

AP (0) ≥ AP (x), AN (0) ≤ AN (x), AP (0) ≥ AP (x), AN (0) ≤ AN (x).

Now let x, y, z ∈ X. Since A is an interval-valued bipolar fuzzy Q-ideal, we have
AP (x ∗ z) ≥ AP ((x ∗ y) ∗ z) ∧AP (y)

= [AP,−((x ∗ y) ∗ z), AP,+((x ∗ y) ∗ z) ∧ [AP,−(y), AP,+(y)]
= [AP,−((x ∗ y) ∗ z) ∧AP,−(y), AP,+((x ∗ y) ∗ z) ∧AP,+(y)],

AN (x ∗ z) ≤ AN ((x ∗ y) ∗ z) ∨AN (y)
= [AN,−((x ∗ y) ∗ z), AN,+((x ∗ y) ∗ z) ∨ [AN,−(y), AN,+(y)]
= [AN,−((x ∗ y) ∗ z) ∨AN,−(y), AN,+((x ∗ y) ∗ z) ∨AN,+(y)].

Since AP (x ∗ z) = ([AN,−(x ∗ z), AN,+(x ∗ z)], [AP,−(x ∗ z), AP,+(x ∗ z)]), we have
(5.2)
[AP,−(x ∗ z), AP,+(x ∗ z)] ≥ [AP,−((x ∗ y) ∗ z)∧AP,−(y), AP,+((x ∗ y) ∗ z)∧AP,+(y)],

(5.3)
[AN,−(x∗z), AN,+(x∗z)] ≤ [AN,−((x∗y)∗z)∨AN,−(y), AN,+((x∗y)∗z)∨AN,+(y)].

Then from (5.2) and (5.3), we have
(5.4)
AP,−(x ∗ z) ≥ AP,−((x ∗ y) ∗ z)∧AP,−(y), AP,+(x ∗ z) ≥ AP,+((x ∗ y) ∗ z)∧AP,+(y),

(5.5)
AN,−(x∗z) ≤ AN,−((x∗y)∗z)∨AN,−(y), AN,+(x∗z) ≤ AN,+((x∗y)∗z)∨AN,+(y).

Similarly, we have

(5.6) AP (x ∗ z) ≥ AP ((x ∗ y) ∗ z) ∧AP (y),

(5.7) AN (x ∗ z) ≤ AN ((x ∗ y) ∗ z) ∧AN (y).

Thus from (5.4) and (5.5), A is an interval-valued bipolar fuzzy Q-ideal of X and
from (5.6) and (5.7), A is a bipolar fuzzy Q-ideal of X. This completes the proof. �

Proposition 5.17. Let (Ij)j∈J be a family cubic bipolar Q-ideals of a Q-algebra X.
Then

⋂
j∈J Ij is a cubic bipolar Q-ideal of X.

Proof. The proof is straightforward. �

6. The image and the preimage of a cubic bipolar Q-ideal under a
homomorphism of Q-algebras

Definition 6.1. Let (X, ∗, 0) and (Y, ∗′ , 0′) be two Q-algebras. Then a mapping

f : X → Y is called a homomorphism, if f(x ∗ y) = f(x) ∗′ f(y) for any x, y ∈ X.

It is clear that f(0) = 0
′
.
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Proposition 6.2. Let f : X → Y be a homomorphism of Q-algebras and let B ∈
CBP (Y ). If B is a cubic bipolar Q-ideal of Y , then f−1(B) is a cubic bipolar Q-ideal
of X.

Proof. Suppose B is a cubic bipolar Q-ideal of Y and let x ∈ X. Then
[f−1(BP )](x) = BP (f(x))

≤ BP (0
′
) [By Theorem 5.16 and Definition 5.15 (i)]

= BP (f(0)) [Since f is a homomorphism]
= [f−1(BP )](0),

[f−1(BP )](x) = BP (f(x))

≤ BP (0
′
) [By Theorem 5.16 and Definition 5.15 (ii)]

= BP (f(0)) [Since f is a homomorphism]
= [f−1(BP )](0).

Similarly, we have [f−1(BN )](x) ≥ [f−1(BN )](0) and [f−1(BN )](x) ≥ [f−1(BN )](0).
Thus the condition (CBPQI0) holds.

Now let x, y, z ∈ X. Then
[f−1(BP )](x ∗ z) = BP (f(x ∗ z))

= BP (f(x) ∗′ f(z)) [Since f is a homomorphism]

≥ BP ((f(x) ∗′ f(y)) ∗′ f(z)) ∧BP (f(y))
[By Theorem 5.16 and Definition 5.15 (i)]

= BP ((f(x ∗ y) ∗ z)) ∧BP (f(y))
[Since f is a homomorphism]

= [f−1(BP )]((x ∗ y) ∗ z) ∧ [f−1(BP )](y),
[f−1(BP )](x ∗ z) = BP (f(x ∗ z))

= BP (f(x) ∗′ f(z)) [Since f is a homomorphism]

≥ BP ((f(x) ∗′ f(y)) ∗′ f(z)) ∧BP (f(y))
[By Theorem 5.16 and Definition 5.15 (ii)]

= [f−1(BP )]((x ∗ y) ∗ z) ∧ [f−1(BP )](y).
[Since f is a homomorphism]

Similarly, we have the following inequalities:

[f−1(BN )](x ∗ z) ≤ [f−1(BN )]((x ∗ y) ∗ z) ∨ [f−1(BN )](y),

[f−1(BN )](x ∗ z) ≤ [f−1(BN )]((x ∗ y) ∗ z) ∨ [f−1(BN )](y).

Thus the conditions (CBPQI1) and (CBPQI2) hold. So f−1(B) is a cubic bipolar
Q-ideal of X. �

Proposition 6.3. Let f : X → Y be an epimomorphism of Q-algebras and let
B ∈ CBP (Y ). If f−1(B) is a cubic bipolar Q-ideal of X, B is a cubic bipolar
Q-ideal of Y .

Proof. Suppose f−1(B) is a cubic bipolar Q-ideal of X and let a ∈ Y . Since f is
surjective, there is x ∈ X such that f(x) = a. Then

BP (a) = BP (f(x)) = [f−1(BP )](x)
≤ [f−1(BP )](0) [By Theorem 5.16 and Definition 5.15 (i)]

= BP (f(0)) = BP (0
′
), [Since f is a homomorphism]

BP (a) = BP (f(x)) = [f−1(BP )](x)
≤ [f−1(BP )](0) [By Theorem 5.16 and Definition 5.15 (ii)]
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= BP (f(0)) = BP (0
′
).

Similarly, we have BN (b) ≥ BN (0
′
),BN (b) ≥ BN (0

′
). Thus the condition (CBPQI0)

holds.
Now let a, b, c ∈ Y . Then clearly, there are x, y, z ∈ X such that

f(x) = a, f(y) = b, f(z) = c.

Thus
BP (a ∗′ c) = BP (f(x ∗ z)) [Since f is a homomorphism]

= [f−1(BP )](x ∗ z)
≥ [f−1(BP )]((x ∗ y) ∗ z) ∧ [f−1(BP )](y)

[By Theorem 5.16 and Definition 5.15 (i)]

= BP (((f(x) ∗′ f(y)) ∗′ f(z)) ∧BP (f(y))
[Since f is a homomorphism]

= BP ((a ∗′ b) ∗′ c) ∧BP (b),

BP (a ∗′ c) = BP (f(x ∗ z))
= [f−1(BP )](x ∗ z)
≥ [f−1(BP )]((x ∗ y) ∗ z) ∧ [f−1(BP )](y)

[By Theorem 5.16 and Definition 5.15 (ii)]

= BP (((f(x) ∗′ f(y)) ∗′ f(z)) ∧BP (f(y))
[Since f is a homomorphism]

= BP ((a ∗′ b) ∗′ c) ∧BP (b).
Similarly, we have the following inequalities:

BN (a ∗
′
c) ≤ BN ((a ∗

′
b) ∗

′
c) ∨BN (b),

BN (a ∗
′
c) ≤ BN ((a ∗

′
b) ∗

′
c) ∨BN (b).

Thus the conditions (CBPQI1) and (CBPQI2) hold. So B is a cubic bipolar Q-ideal
of Y . �

7. Cubic bipolar topological spaces

Definition 7.1. Let X be a set and let τ be a family of cubic bipolar sets in X.
Then τ is called a cubic bipolar topology (briefly, CBPT) on X, if it satisfies the
following axioms:

(CBPO1) 0X , 1X ∈ τ,
(CBPO2) A ∩ B ∈ τ for any A, B ∈ τ ,
(CBPO3)

⋃
j∈J Aj ∈ τ,

where (Aj)j∈J is a family of members of τ and J denotes an index set.
The pair (X, τ) is called a cubic bipolar topological space (briefly, CBPTS) and

each member of τ is called a cubic bipolar open set (briefly, CBPOS) in X. We will
denote the set of all CBPTs on X as CBPT (X) and the set of all CBPOSs in X as
CBPO(X).

A cubic bipolar set A in X is called a cubic bipolar closed set (briefly, CBPCS) in
X, if Ac ∈ CBPO(X). We will denote the set of all CBPCSs in X as CBPC(X).

Example 7.2. (1) Let X = {a, b.c} and two cubic bipolar sets A, B in X given by:

A(a) 〈([−0.40,−0.20], [0.50, 0.60]), (−0.62, 0.38)〉 ,
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A(b) 〈([−0.50,−0.40], [0.40, 0.50]), (−0.61, 0.53)〉 ,

A(c) 〈([−0.60,−0.50], [0.20, 0.30]), (−0.47, 0.25)〉 ,

B(a) 〈([−0.30,−0.10], [0.20, 0.70]), (−0.51, 0.43)〉 ,

B(b) 〈([−0.50,−0.40], [0.30, 0.50]), (−0.70, 0.40)〉 ,

B(c) 〈([−0.50,−0.50], [0.10, 0.40]), (−0.47, 0.25)〉 .
Consider the family τ = {0X , 1X ,A,B,A∩B,A∪B}. Then we can easily check that
τ ∈ CBPT (X).

(2) Let A ∈ CBP (X) and let τ ∈ CBPT (X). Consider the family τA cubic
bipolar sets in X given by:

τA = {A ∩ U : U ∈ τ}.

Then we can easily see that τA is a cubic bipolar topology on A. In this case, τA is
called the induced cubic bipolar topology on A by τ and the pair (A, τA) is called a
cubic bipolar subspace of (X, τ).

(3) For a non-empty set X, {0X , 1X} and CBP (X) are CBPTs on X. In this
case, {0X , 1X} [resp. CBP (X)] is called the cubic bipolar indiscrete [resp. discrete]
topology on X and we will denote {0X , 1X} {0X , 1X} [resp. CBP (X)] as τ0 [resp.
τ1].

Let X be a non-empty set, let A be a fuzzy set in X and let τ be a fuzzy topology
on X. Then it is well-known [31] that τA = {A ∩ U : U ∈ τ} is a fuzzy topology
(called the induced fuzzy topology by τ) on A. In this case, the pair (A, τA) is called
a fuzzy subspace of (X, τ).

Let (X, τ) and (y, σ) be two fuzzy topological spaces. Then a mapping f : X → Y
is called a fuzzy continuous [10], if f−1(V ) ∈ τ for each V ∈ σ.

Proposition 7.3. Let X be a non-empty set and let (τj)j∈J ⊂ CBPT (X). Then⋂
j∈J τj ∈ CBPT (X).

Proof. The proof is straightforward. �

Remark 7.4. From Proposition 7.3, we can easily see that CBPT (X) forms a meet
complete lattice with respect to the set inclusion relation of which τ0 is the smallest
element and τ1 is the largest element.

Proposition 7.5. Let (X, τ) be a CBPTS. Then we have the followings:
(i) 0X , 1X ∈ CBPC(X),
(ii) A ∪ B ∈ CBPC(X) for any A, B ∈ CBPC(X),
(iii)

⋂
j∈J Aj ∈ CBPC(X) for each (Aj)j∈J ⊂ CBPC(X).

Proof. The proof is straightforward. �

Definition 7.6. Let (X, τ) be a CBPTS, let B [resp. S] is a subfamily of τ .
(i) δ is called a base for τ , if every member of τ can be expressed as a union of

members of δ.
(ii) η is called a subbase for τ , if the family of all finite intersections of members

of η forms a base for τ .
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Proposition 7.7. Let X be a non-empty set and let δ ⊂ CBP (X) such that
0X , 1X ∈ δ. Suppose for any A1, A2 ∈ δ and for each x〈ã,ā〉 ∈ A1 ∩ A2, there
is A ∈ δ such that x〈ã,ā〉 ∈ A ⊂ A1 ∩ A2. Then δ is a base for some CBPT on X.

Proof. Let τ be the collection of all unions of members of δ.
(CBPO1) It is clear that 0X , 1X ∈ τ .
(CBPO3) The proof is obvious.
(CBPO2) Let U , V ∈ τ . Then clearly there are (Aj)j∈J , (Bk)k∈K ⊂ δ such that

U =
⋃
j∈J
Aj and V =

⋃
k∈K

Bk.

Thus by Theorem 3.5 (4), we have

(7.1) U ∩ V =
⋃

(j,k)∈J×K

(Aj ∩ Bk).

Now let x〈ã,ā〉 ∈ Aj ∩ Bk. Then by the hypothesis, there is W ∈ δ such that

(7.2) x〈ã,ā〉 ∈ W ⊂ Aj ∩ Bk.

By Lemma 4.2, Aj ∩ Bk =
⋃
{x〈ã,ā〉 : x〈ã,ā〉 ∈ Aj ∩ Bk}. Thus by (7.2), U ∩ V is

expressed as a union of members of δ. So U ∩ V ∈ τ . Hence τ is a CBPT on X for
which δ is a base. �

Proposition 7.8. Let (X, τ) be a CBPTS and let A
∫
CBP (X). Suppose for each

x〈ã,ā〉 ∈ A, there is U〈ã,ā〉 ∈ τ such that x〈ã,ā〉 ∈ U〈ã,ā〉 ⊂ A. Then A ∈ τ .

Proof. Suppose the sufficient condition holds. Then by Lemma 4.2, we have

A =
⋃

x〈ã,ā〉∈A
U〈ã,ā〉.

Thus by Definition 7.1 (CBPO3), A ∈ τ . �

Definition 7.9. Let (X, τ) be a CBPTS, letA
∫
CBP (X) and let x〈ã,ā〉 ∈ CBPP (X).

Then A is called a cubic bipolar neighborhood (briefly, CBPN) of x〈ã,ā〉, if there is
U ∈ τ such that x〈ã,ā〉 ∈ U ⊂ A.

We will denote the set of all CBPNs of x〈ã,ā〉 as CBPN(x〈ã,ā〉).

Theorem 7.10. Let (X, τ) be a CBPTS and let A ∈ CBP (X). Then A ∈ τ if and
only if for each x〈ã,ā〉 ∈ A, there is U ∈ CBPN(x〈ã,ā〉) such that U ⊂ A.

Proof. Suppose A ∈ τ and let x〈ã,ā〉 ∈ A. Then clearly, we have A ∈ CBPN(x〈ã,ā〉).
Thus the necessary condition holds.

Conversely, suppose the necessary condition holds and let x〈ã,ā〉 ∈ A. Then there
is U〈ã,ā〉 ∈ τ such that x〈ã,ā〉 ∈ U〈ã,ā〉 ⊂ A. Thus by Proposition 7.8, A ∈ τ . �

Definition 7.11. Let (X, τ1), (Y, τ2) be two CBPTSs. Then a mapping f : X → Y
is said to be continuous, if f−1(V) ∈ τ1 for each V ∈ τ2.

The following is an immediate result of the above definition.

Proposition 7.12. The identity mapping IX : (X, τ)→ (X, τ) is continuous.
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Proposition 7.13. If the mappings f : (X, τ1) → (Y, τ2) and g : (Y, τ2) → (Z, τ3)
are continuous, then g ◦ f : (X, τ1)→ (Z, τ3) is continuous.

Proof. From Proposition 3.7 (10) and Definition 7.11, the proof is obvious. �

Remark 7.14. (1) Let CBPTop be the collection of all CBPTSs and continuous
mappings. Then we can easily see that CBPTop forms a concrete category, from
Propositions 7.12 and 7.13.

(2) From Definitions 3.6 and 4.1, it is obvious that for a mapping f : X → Y and
each x〈ã,ā〉 ∈ CBPP (X), f(x〈ã,ā〉) ∈ CBPP (Y ).

Definition 7.15. Let (X, τ1), (Y, τ2) be two CBPTSs. Then a mapping f : X → Y
is said to be continuous at x〈ã,ā〉 ∈ CBPP (X), if f−1(V) ∈ CBPN(x〈ã,ā〉) for each
V ∈ CBPN(f(x〈ã,ā〉)).

Theorem 7.16. A mapping f : (X, τ1) → (Y, τ2) is continuous if and only if f is
continuous at each x〈ã,ā〉 ∈ CBPP (X).

Proof. The proof is easy. �

Definition 7.17 ([31], Proposition 3.1). Let (A, τA), (B, δB) be fuzzy subspaces of
fts’s (X, τ), (Y, δ), respectively and let f be a mapping of (A, τA) into (B, δB).

(i) f is said to be relatively fuzzy continuous, if for each open fuzzy set V in δB ,
f−1(V ) ∩A ∈ τA.

(ii) f is said to be relatively fuzzy open, if for each open fuzzy set U in τB ,
f(U) ∈ δB .

Result 7.18 ([31]). Let (X, τ) and (Y, δ) be two fuzzy topological spaces, let A [resp.
B] be a fuzzy set in X [resp. Y ] and let (A, τA) [resp. (B, δB)] be a fuzzy subspace
of (X, τ) [resp. (Y, σ)]. Suppose f : X → Y is fuzzy continuous such that f(A) ⊂ B.
Then f is a relatively continuous mapping of (A, τA) into (B, δB).

Lemma 7.19. Let (X, τ) be a cubic bipolar topological space and let A ∈ CBP (X).
Then the family of cubic bipolar sets τA in X given by:

τA = {U ∩ A : U ∈ τ}
is a cubic bipolar topology on A.

In this case, the pair (A, τA) will be called a cubic bipolar subspace of (X, τ).

Proof. The proof is obvious from Theorem 3.5 and Definition 7.1. �

Lemma 7.20. Let X, Y be two Q-algebras and let f : X → Y be a Q-homomorphism.
If B is a subalgebra of Y , then f−1(B) is a subalgebra of X.

Proof. Suppose B is a subalgebra of Y and let x, y ∈ X. Then
[f−1(AP )](x ∗ y) = AP (f(x ∗ y))

= AP (f(x) ∗ f(y)) [Since f is a homomorphism]
≥ AP (f(x)) ∧AP (f(y)) [Since B ∈ SA(Y )]
= [f−1(AP )](x) ∧ [f−1(AP )](y).

Similarly, we have [f−1(AN )](x ∗ y) ≤ [f−1(AN )](x)∨ [f−1(AN )](y). Also, we have

[f−1(AP )](x ∗ y) ≥ [f−1(AP )](x) ∧ [f−1(AP )](y),
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[f−1(AN )](x ∗ y) ≤ [f−1(AN )](x) ∨ [f−1(AP )](y).

Thus f−1(B) is a subalgebra of X. �

Definition 7.21. Let (A, τA), (B, δB) be cubic bipolar subspaces of cubic bipolar
topological spaces (X, τ) and (Y, δ), respectively and let f be a mapping of (A, τA)
into (B, δB). Then

(i) f is said to be relatively cubic bipolar continuous, if for each cubic bipolar open
set V in δB , f−1(V ) ∩A ∈ τA.

(ii) f is said to be relatively cubic bipolar open, if for each cubic bipolar open set
U in τB , f(U) ∈ δB .

From Lemmas 7.19 and 7.20, and Definition 7.21, we get a similar property to
Result 7.18.

Proposition 7.22. Let X, Y be two Q-algebras and let f : X → Y be a Q-
homomorphism. Let (X, τ) and (Y, δ) be two cubic bipolar topological spaces, let
A [resp. B] be a cubic bipolar subalgebra of X [resp. Y ] and let (A, τA) [resp.
(Y, δ)]. Suppose f : X → Y is cubic bipolar continuous such that f(A) ⊂ B. Then
f is a relatively cubic bipolar continuous mapping of (A, τA) into (B, δB).

8. Conclusions

We dealt with basic properties of cubic bipolar sets and cubic bipolar points,
cubic bipolar base and fore each concept obtained some of its properties. Also we
applied the concept of cubic bipolar sets to Q-algebra. Moreover, we discussed with
the image and the preimage of a cubic bipolar set under Q-homorphism. Finally,
we defined a cubic bipolar topology and a continuity, and dealt with some of their
properties.

In the future, we expect that one will study the octahedron bipolar foldedness,
octahedron bipolar topology and octahedron m-polar topology. Furthermore, in our
future study of fuzzy structures of BCK/BCI/KU -algebras, the following topics
should be considered:

(i) cubic bipolar positive implicative ideals in a BCK/BCI/KU -algebra and its
application to topology,

(ii) cubic bipolar commutative ideals in a BCK/BCI/KU -algebra and its appli-
cation to topology,

(iii) the relationship between cubic bipolar implicative ideals, positive implicative
ideals and commutative ideals in a BCK/BCI/KU -algebra and its application to
topology,

(IV) cubic bipolar ideals in a semigroup and its application to topology.
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