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Abstract. Pythagorean fuzzy set (PFS) is a generalized version of in-
tuitionistic fuzzy set (IFS) with the capacity to manage the situation that
cannot be captured by IFS. PFS is characterized by three grades namely;
membership grade, non-membership grade and hesitancy grade with the
property that the square of sum of the grades is equal to one. The idea of
correlation coefficients for measuring the interrelationship between PFSs
have been proposed in literature. Nonetheless, these sort of correlation co-
efficients for PFSs lack precision. Due to this weakness, a new correlation
coefficient for PFSs is introduced in this paper. In this study, the Garg’s
correlation coefficient for PFSs is generalized and modified for better accu-
racy. Some interesting properties of the proposed correlation coefficient for
PFSs are characterized with some results. A set of numerical examples are
given to demonstrate the efficiency of the introduced correlation coefficient
for PFSs with regard to the existing ones. It appears that the proposed
correlation coefficient for PFSs outperforms the ones hitherto studied in
literature. Subsequently, some real-life decision-making (RLDM) problems
such as pattern recognition problem (e.g., classification of mineral fields)
and diagnostic medicine in the framework of Pythagorean fuzzy pairs are
discoursed with the aid of the new correlation coefficient. This proposed
measuring tool could be exploited in multi-criteria decision-making prob-
lems via object oriented approach.
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1. Introduction

Most of the Real-life decision-making (RLDM) problem are multi-criteria in
nature. Multi-criteria decision-making (MCDM) is a discipline in decision science
that deals with decisions involving the choice of a best alternative from several
potential options, subject to several criteria or attributes that may be concrete
or vague. MCDM methods are used to help decision-makers make their decision
according to their preferences to enhance optimal choice among the alternatives, in
cases where there is more than one conflicting criterion [1]. The ultimate target
of RLDM problems is to choose the foremost desirable alternative among limited
options concurring to the preference values of the criteria given by distinctive decision
makers. In real-life issues, we encounter many decision-making (DM) problems,
involving complex uncertainties and hence, beyond the capacity of fuzzy sets. Fuzzy
set [2] has a membership function, µ that assigns to each element of the universe of
discourse, a number from the unit interval, [0, 1] to indicate the degree of membership
to the set under consideration.

Fuzzy set theory could not precisely handle the complex imprecisions imbedded
in decision-making because it considers only membership degree. As a result, a num-
ber of generalizations of fuzzy sets such intuitionistic fuzzy sets (IFSs), Pythagorean
fuzzy sets (PFSs), etc. were proposed. To resolve the limitation of fuzzy set,
Atanassov [3, 4] proposed the construct of IFSs by integrating both the membership
function, µ and non-membership function, ν with hesitation margin, π such that
their sum is one (i.e., µ+ ν+π = 1) with the property that µ+ ν ≤ 1. IFS provides
a better way to manage the inaccuracy, dubiousness, and vulnerabilities in imprecise
information and in tackling DM problems. IFS is way better equipped to deal with
uncertainties because it also factors in the hesitancy of the decision maker, a feature
that is not possible in the fuzzy sets. IFS delivers a formidable framework to reason-
ably curb uncertainties and consequently, very pertinent in modelling many real-life
problems such medical diagnosis [5, 6, 7], electoral process [8, 9], research question-
naire [10], etc. Some applications of IFSs via distance measures were discussed in
[11, 12, 13, 14]. New ranking method in normal intuitionistic fuzzy environment
with application to decision-making was presented in [15].

Though IFS is equipped with the facility to tackle uncertainties, there are times
when µ + ν ≥ 1, which is beyond the ability of IFSs. For example, if a decision
maker expresses preference about the degree of alternative that satisfies a criterion
as 0.7, whereas the degree of alternative that dissatisfies the criterion is 0.5. Clearly,
0.7+0.5 � 1, and as such, beyond the ability of IFS. This rationalizes the reason why
Yager [16] proposed a framework called Pythagorean fuzzy sets (PFSs) also known
as intuitionistic fuzzy set of second type [4], which is equipped with the capacity to
capture such cases. The Pythagorean fuzzy set, as a new extension of intuitionistic
fuzzy set, seek to manage the complex imprecisions in practical decision-making
problems. In PFS, the sum of squares of its membership, µ and non-membership, ν
degrees is either less than or equal to 1, or greater than or equal to 1(i.e., µ+ ν ≤ 1
or µ+ ν ≥ 1), with the property that µ2 + ν2 + π2 = 1, where π is the Pythagorean
fuzzy set index or hesitation margin. Thus, every IFS is a PFS but the inverse
is certainly not true. PFS possesses the power to handle uncertain information
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more sufficiently and accurately when compare to IFS. An elaborate description
on the fundamentals of PFSs such as modal operators on PFSs [17], properties of
continuous Pythagorean fuzzy information [18], Pythagorean fuzzy power average
operators [19] and some results on PFSs [20] have been done. The idea of composite
relations on Pythagorean fuzzy sets with applications have been studied [21, 22].
The application of PFSs in solving multi-criteria decision-making (MCDM) problems
were presented in [23, 24]. Similarly, some novel methods for solving MCDM and
multi-attribute decision-making (MADM) problems in the environment of interval-
valued Pythagorean fuzzy sets have been discussion [25, 26]. Some multi-parametric
similarity measures for PFSs were studied with applications in [27, 28, 29]. In
the same vein, some distance measure operators on PFSs and their applications
have been discussed [30, 31, 32]. The concept of Pythagorean fuzzy aggregation
operators with applications have been studied [33, 34, 35, 36, 37]. By extension,
q-rung orthopair fuzzy sets (crisp or inter-valued), their aggregation operators with
applications were elaborated in [38, 39, 40].

Correlation coefficient plays a vital role in RLDM problems. In correlation anal-
ysis, the joint relationship of two variables can be verified with the aid of a mea-
sure of interdependency of the two variables. The notion of correlation coefficient
have been extended to fuzzy, intuitionistic fuzzy and Pythagorean fuzzy settings
to enable it applications in tackling cases of uncertainties which are rife in RLDM
problems. Correlation coefficient was first studied in fuzzy environment [41, 42, 43]
and extended to intuitionistic fuzzy context [44]. In [45], the correlation coefficient
method for IFSs [44] was modified for better efficiency. Some correlation coefficient
techniques in intuitionistic fuzzy environment which improved the technique in [45]
were presented in [46, 47, 48, 49]. Some correlation coefficient techniques based on
integral functions were studied in [50, 51]. Hung [52] first proposed a method of
computing correlation coefficient of IFSs from statistical viewpoint. Subsequently,
improved versions were presented in [53, 54, 55, 56]. Hung and Wu [57] presented an
approach of measuring correlation coefficient of IFSs based on centroid method. In
Pythagorean fuzzy environment, correlation coefficient was proposed by Garg [58]
via triparametric approach to measure the interrelation between PFSs, and the mea-
sure was applied to pattern recognition and medical diagnostic problems. Ejegwa
[59] proposed a novel correlation coefficient of PFSs and applied the approach to
MCDM problems. A detail explication of an algorithmic approach of computing
correlation coefficient of PFSs and its application in diagnosis was discussed in [60].
The concept of correlation coefficients from a statistical viewpoint have been dis-
cussed [61, 62].

By examining the veracity of the researches on the concept of correlation coeffi-
cient measures in Pythagorean fuzzy environment [58, 59, 61], we discover that the
approaches in [58, 59] cannot reliably measure the correlation coefficient of PFSs
with precision. To remedy this limitation, we are motivated to propose a new tri-
parametric correlation coefficient for PFSs that modifies the approaches in [58, 59]
with better interpretation and output. Crisply, this paper generalizes and modifies
the correlation coefficient approaches in Pythagorean fuzzy environment [58, 59],
numerically validates its superiority over the existing ones, and illustrates its appli-
cations in some selected RLDM problems. The rest of the article are outlined thus;
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Section 2 provides some mathematical preliminaries and discusses the correlation
coefficient measures in [58, 59], Section 3 presents the new correlation coefficient
method for PFSs with numerical verifications/comparisons, Section 4 dwells on the
applications of the proposed method in pattern recognition problem and diagnos-
tic medicine, and Section 5 concludes the paper and provides direction for further
studies.

2. Preliminaries

This section presents the concept of PFSs with some properties and reiterates
some existing correlation coefficient measures of PFSs.

2.1. Pythagorean fuzzy sets. Suppose X is a non-empty set that is fixed, then
the following definitions follow.

Definition 2.1 ([3]). An IFS A of X is an object having the form

(2.1) A = {〈µA(x), νA(x)

x
〉 | x ∈ X},

where the functions

µA(x) : X → [0, 1] and νA(x) : X → [0, 1]

are the degree of membership and the degree of non-membership, respectively of the
element x ∈ X to A, and for every x ∈ X,

0 ≤ µA(x) + νA(x) ≤ 1.

For each A of X,

πA(x) = 1− µA(x)− νA(x)

is the intuitionistic fuzzy set index or hesitation margin of x in X. The hesitation
margin πA(x) is the degree of non-determinacy of x ∈ X, to A and πA(x) ∈ [0, 1].
The hesitation margin is the function that expresses lack of knowledge of whether
x ∈ X or x /∈ X. Thus µA(x)+νA(x)+πA(x) = 1. An IFS A can also be represented
by

A = {〈x, µA(x), νA(x)〉|x ∈ X}.

Definition 2.2 ([16]). A Pythagorean fuzzy set A of X is of the form

(2.2) A = {〈µA(x), νA(x)

x
〉 | x ∈ X},

where the functions

µA(x) : X → [0, 1] and νA(x) : X → [0, 1]

define the degree of membership and the degree of non-membership, respectively of
the element x ∈ X to A, and for every x ∈ X,

(2.3) 0 ≤ (µA(x))2 + (νA(x))2 ≤ 1.

Supposing (µA(x))2+(νA(x))2 ≤ 1, then there is a degree of indeterminacy of x ∈ X
to A defined by

(2.4) πA(x) =
√

1− [(µA(x))2 + (νA(x))2] and πA(x) ∈ [0, 1].
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Thus (µA(x))2+(νA(x))2+(πA(x))2 = 1. Otherwise πA(x) = 0, whenever (µA(x))2+
(νA(x))2 = 1. We can also write a PFS A as

A = {〈x, µA(x), νA(x)〉|x ∈ X}.

The set of all PFSs of X is denoted by PFS(X).

Definition 2.3 ([24]). Let A ∈ PFS(X). Then, the score function, s and the
accuracy function, a of A are defined by

(2.5) s(A) = (µA(x))2 − (νA(x))2 and

(2.6) a(A) = (µA(x))2 + (νA(x))2,

where s(A) ∈ [−1, 1] and a(A) ∈ [0, 1].

It follows immediately from Eq. 2.6 that the degree of indeterminacy of x ∈ X
to A is

(2.7) πA(x) =
√

1− a(A).

Example 2.4. Assume A ∈ PFS(X), µA(x) = 0.7 and νA(x) = 0.5 for X =
{x}. Clearly, 0.7 + 0.5 � 1, but 0.72 + 0.52 ≤ 1. Then πA(x) = 0.5099 and thus
(µA(x))2 + (νA(x))2 + (πA(x))2 = 1.

Table 1 explains the difference between PFSs and IFSs [27].

Table 1. PFSs and IFSs

IFSs PFSs
µ+ ν ≤ 1 µ+ν ≤ 1 or µ+ν ≥ 1
0 ≤ µ+ ν ≤ 1 0 ≤ µ2 + ν2 ≤ 1

π = 1− (µ+ ν) π =
√

1− [µ2 + ν2]
µ+ ν + π = 1 µ2 + ν2 + π2 = 1

Definition 2.5 ([16]). Suppose A,B ∈ PFS(X). Then we have the following:

(i) Ā = {〈x, νA(x), µA(x)〉|x ∈ X},
(ii) A ∪B = {〈x,max(µA(x), µB(x)),min(νA(x), νB(x))〉|x ∈ X},

(iii) A ∩B = {〈x,min(µA(x), µB(x)),max(νA(x), νB(x))〉|x ∈ X},
(iv) A⊕B = {〈x,

√
(µA(x))2 + (µB(x))2 − (µA(x))2(µB(x))2, νA(x)νB(x)〉|x ∈ X},

(v) A⊗B = {〈x, µA(x)µB(x),
√

(νA(x))2 + (νB(x))2 − (νA(x))2(νB(x))2〉|x ∈ X}.

Definition 2.6 ([16]). Let A and B be PFSs of X. Then

A = B ⇔ µA(x) = µB(x) and νA(x) = νB(x) ∀x ∈ X

and

A ⊆ B ⇔ µA(x) ≤ µB(x) and νA(x) ≥ νB(x) or νA(x) ≤ νB(x) ∀x ∈ X.

We say A ⊂ B ⇔ A ⊆ B and A 6= B. Also A and B are comparable to each other
if A ⊆ B and B ⊆ A.
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Definition 2.7 ([27]). Suppose A ∈ PFS(X). Then the level/ground set or support
of A is defined by

A∗ = {x ∈ X|µA(x) > 0, νA(x) < 1}
and the set A∗ is defined by

A∗ = {x ∈ X|µA(x) ≥ 0, νA(x) ≤ 1}.
Certainly, A∗ and A∗ are subsets of X.

Definition 2.8 ([27]). Pythagorean fuzzy pairs (PFPs) or Pythagorean fuzzy values
(PFVs) is an object in the form 〈a, b〉, where a, b ∈ [0, 1], and a2 + b2 ≤ 1. PFPs
are used for the evaluation of objects or processes and which components (a and b)
are interpreted as degrees of membership and non-membership or degrees of validity
and non-validity or degrees of correctness and non-correctness.

Additional properties and examples of PFSs which are not IFSs can be found in

[16]. For clarity, in a PFS A = {〈µA(x), νA(x)

x
〉|x ∈ X}, if µA(x) = 0 (the element

x /∈ A in the ordinary sense), then νA(x) = 1. Again, if µA(x) = 1 (x ∈ X in the
ordinary sense), then νA(x) = 0.

2.2. Correlation coefficient for PFSs. This section studies correlation coefficient
for PFSs. Firstly, we recall the concept of correlation coefficient in [58] in the
framework of PFSs. Although the idea of correlation coefficient for PFSs has been
studied in [61], but the idea do not capture the three fundamental or orthodox
parameters of PFSs and as such, the output cannot be reliably trusted. Now, we
give the axiomatic definition of correlation coefficient for PFSs as follows.

Definition 2.9 ([59]). Let A,B ∈ PFS(X). Then the correlation coefficient, de-
noted by K(A,B), is a measuring function K : PFS × PFS → [0, 1] satisfying the
following conditions;

(i) K(A,B) ∈ [0, 1],
(ii) K(A,B) = K(B,A),

(iii) K(A,B) = 1 if and only if A = B.

2.2.1. Some existing techniques of correlation coefficient for PFSs. Recall the cor-
relation coefficients for PFSs in [58, 59] as follows. Let A,B ∈ PFS(X) for X =
{x1, x2, ..., xn}. Then the correlation coefficients for A and B are given as:

(2.8) K1(A,B) =
C(A,B)

max[T (A), T (B)]

and

(2.9) K2(A,B) =
C(A,B)√
T (A)T (B)

,

where the informational energies and correlation for the PFSs are

(2.10)

T (A) =

n∑
i=1

[µ4
A(xi) + ν4A(xi) + π4

A(xi)]

T (B) =

n∑
i=1

[µ4
B(xi) + ν4B(xi) + π4

B(xi)]

 ,
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(2.11) C(A,B) =

n∑
i=1

[µ2
A(xi)µ

2
B(xi) + ν2A(xi)ν

2
B(xi) + π2

A(xi)π
2
B(xi)].

In [59], a correlation coefficient for PFSs in [58] was generalized. The generalized
correlation coefficient for A and B is

(2.12) K(A,B) =
C(A,B)

max[C(A,A),C(B,B)]
=

C(A,B)

max[T(A),T(B)]
,

where C(A,B), T(A) and T(B) are defined as

(2.13)

T(A) =

n∑
i=1

[µk
A(xi) + νkA(xi) + πk

A(xi)]

T(B) =

n∑
i=1

[µk
B(xi) + νkB(xi) + πk

B(xi)]

 ,

(2.14) C(A,B) =

n∑
i=1

[µ
k
2

A(xi)µ
k
2

B(xi) + ν
k
2

A (xi)ν
k
2

B (xi) + π
k
2

A(xi)π
k
2

B(xi)],

where k ≤ 4 or strictly k = 3.
These correlation coefficient measures for PFSs have been properly character-

ized and approved to be reasonable measuring tools for measuring the interrelation
between PFSs (see [58, 59] for details).

3. New correlation coefficient for PFSs

The novel correlation coefficient for PFSs modify the generalized correlation co-
efficient for PFSs discussed in [59].

Definition 3.1. Let A,B ∈ PFS(X) for X = {x1, x2, ..., xn}. Then the modified
generalized correlation coefficient for A and B is

(3.1) K̃(A,B) =
C(A,B)

Aver[C(A,A),C(B,B)]
=

C(A,B)

Aver[T(A),T(B)]
,

where C(A,B), T(A) and T(B) are as in Definitions 2.13 and 2.14.

Proposition 3.2. Suppose A,B ∈ PFS(X). Then

(1) T(A) = T(Ā),
(2) C(A,B) = C(B,A).

Proof. Straightforward. �

Proposition 3.3. Let A,B ∈ PFS(X). Then the following statements are equiva-
lent:

(1) C(A,B) = C(Ā, B̄).
(2) C(Ā, B̄) = C(B,A).

Proof. Straightforward. �

Theorem 3.4. Suppose A,B ∈ PFS(X). If A = B, then
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(1) C(A,B) = T(A) or C(A,B) = T(B),
(2) C(A,B) = Aver[T(A),T(B)],

(3)
C(A,B)

Aver[T(A),T(B)]
= 1.

Proof. Suppose A = B. Then

(1)

C(A,B) =

n∑
i=1

[µ
k
2

A(xi)µ
k
2

B(xi) + ν
k
2

A (xi)ν
k
2

B (xi) + π
k
2

A(xi)π
k
2

B(xi)]

=

n∑
i=1

[µk
A(xi) + νkA(xi) + πk

A(xi)]

= T(A).

The second alternative follows from the first.
(2) Since C(A,B) = C(A,A) = T(A) and

Aver[T(A),T(B)] = Aver[T(A),T(A)]

= T(A),

the result follows.

(3) It is easy to see from (2) that
C(A,B)

Aver[T(A),T(B)]
= 1.

�

Theorem 3.5. Suppose A,B ∈ PFS(X). Then K̃(A,B) is a correlation coefficient
between A and B.

Proof. The function K̃(A,B) is a correlation coefficient between A and B, if the
conditions in Definition 2.9 are satisfied.

Firstly, we show that K̃(A,B) ∈ [0, 1], i.e., 0 ≤ K(A,B) ≤ 1. But K̃(A,B) ≥ 0
is trivial since C(A,B) ≥ 0 and [T(A),T(B)] > 0.

To show that K̃(A,B) ≤ 1, we make the following assumptions, i.e., let

n∑
i=1

µk
A(xi) = a,

n∑
i=1

µk
B(xi) = b,

n∑
i=1

νkA(xi) = c,

n∑
i=1

νkB(xi) = d,

n∑
i=1

πk
A(xi) = e,

n∑
i=1

πk
B(xi) = f.
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Recall that K̃(A,B) =
C(A,B)

Aver[T(A),T(B)]
. Applying the principle of Cauchy-

Schwarz’s inequality, we have

K̃(A,B) =

∑n
i=1

[
µ

k
2

A(xi)µ
k
2

B(xi) + ν
k
2

A (xi)ν
k
2

B (xi) + π
k
2

A(xi)π
k
2

B(xi)
]

Aver
[∑n

i=1

(
µk
A(xi) + νkA(xi) + πk

A(xi)
)
,
∑n

i=1

(
µk
B(xi) + νkB(xi) + πk

B(xi)
)]

≤

∑n
i=1

[(
µk
A(xi)µ

k
B(xi)

) 1
2

+
(
νkA(xi)ν

k
B(xi)

) 1
2

+
(
πk
A(xi)π

k
B(xi)

) 1
2
]

Aver
[∑n

i=1

(
µk
A(xi) + νkA(xi) + πk

A(xi)
)
,
∑n

i=1

(
µk
B(xi) + νkB(xi) + πk

B(xi)
)]

=
(ab)

1
2 + (cd)

1
2 + (ef)

1
2

Aver[(a+ c+ e), (b+ d+ f)]
.

But

K̃(A,B)− 1 ≤ (ab)
1
2 + (cd)

1
2 + (ef)

1
2

Aver[(a+ c+ e), (b+ d+ f)]
− 1

=
(ab)

1
2 + (cd)

1
2 + (ef)

1
2 −Aver[(a+ c+ e), (b+ d+ f)]

Aver[(a+ c+ e), (b+ d+ f)]

=
−{Aver[(a+ c+ e), (b+ d+ f)]− [(ab)

1
2 + (cd)

1
2 + (ef)

1
2 ]}

Aver[(a+ c+ e), (b+ d+ f)]

= −{Aver[(a+ c+ e), (b+ d+ f)]− [(ab)
1
2 + (cd)

1
2 + (ef)

1
2 ]}

Aver[(a+ c+ e), (b+ d+ f)]

≤ 0.

Thus K̃(A,B) ≤ 1. So K̃(A,B) ∈ [0, 1].

Again, K̃(A,B) = 1 ⇔ A = B ⇒

K̃(A,B) =
C(A,A)

Aver[T(A),T(A)]
=

T(A)

T(A)
= 1.

Clearly, K̃(A,B) = K̃(B,A). These complete the proof. �

Theorem 3.6. Suppose A,B ∈ PFS(X). Then K̃(A,B) = K(A,B) if and only if
T(A) = T(B).

Proof. Straightforward. �

3.1. Numerical comparison of the proposed correlation coefficient for PFSs
with existing methods. In this section, we present reliability analysis of the pro-
posed correlation coefficient for PFSs in comparison to other triparametric correla-
tion coefficients for PFSs.

3.1.1. Numerical experiments. Now, we give examples of PFSs and then compute
their correlation coefficient using the methods in [58, 59] and the proposed method
to enhance juxtaposition.

59



P. A. Ejegwa, J. A. Awolola/Ann. Fuzzy Math. Inform. 21 (2021), No. 1, 51–67

Example 3.7. Suppose A and B are PFSs in X = {x, y, z}, where A∗ = B∗ for

A = {〈0.8, 0.2
x
〉, 〈0.3, 0.1

y
〉, 〈0.7, 0.4

z
〉}

B = {〈0.6, 0.3
x
〉, 〈0.7, 0.3

y
〉, 〈0.9, 0.1

z
〉}.

Using K1, K2, K and K̃, we obtain the following values of correlation coefficient
between A and B:

K1(A,B) = 0.7526 andK2(A,B) = 0.7920.

The values of the generalized correlation coefficient for k = 1, 2, 3, 4 are

K(A,B) = 0.9537 for k = 1,

K(A,B) = 0.9118 for k = 2,

K(A,B) = 0.8359 for k = 3,

K(A,B) = 0.7526 for k = 4.

The values of the modified generalized correlation coefficient for k = 1, 2, 3, 4 are

K̃(A,B) = 0.9648 for k = 1,

K̃(A,B) = 0.9118 for k = 2,

K̃(A,B) = 0.8548 for k = 3,

K̃(A,B) = 0.7909 for k = 4.

Example 3.8. Assume we have two PFSs defined in X = {a, b, c} as follow:

A1 = {〈0.8, 0.1
a
〉, 〈0.7, 0.3

b
〉, 〈0.7, 0.1

c
〉},

A2 = {〈0.5, 0.4
a
〉, 〈0.0, 1.0

b
〉, 〈1.0, 0.0

c
〉}.

Clearly, A∗ 6= B∗. Using the correlation coefficients in [58], we get

K1(A1, A2) = 0.3892, K2(A1, A2) = 0.5050.

The values of the generalized correlation coefficient for k = 1, 2, 3, 4 are

K(A1, A2) = 0.6221 for k = 1,

K(A1, A2) = 0.6315 for k = 2,

K(A1, A2) = 0.4986 for k = 3,

K(A1, A2) = 0.3892 for k = 4.

The values of the modified generalized correlation coefficient for k = 1, 2, 3, 4 are

K̃(A1, A2) = 0.6953 for k = 1,

K̃(A1, A2) = 0.6315 for k = 2,

K̃(A1, A2) = 0.5603 for k = 3,

K̃(A1, A2) = 0.4883 for k = 4.

From Examples 3.7 and 3.8, we obtain the following table.
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Table 2. Results of correlation coefficients

Methods Example 3.7 Example 3.8

Garg [58] I 0.7526 0.3892
Garg [58] II 0.7920 0.5050

Ejegwa [59]

0.9537 for k = 1
0.9118 for k = 2
0.8359 for k = 3
0.7526 for k = 4

0.6221 for k = 1
0.6315 for k = 2
0.4986 for k = 3
0.3892 for k = 4

New method

0.9648 for k = 1
0.9118 for k = 2
0.8548 for k = 3
0.7909 for k = 4

0.6953 for k = 1
0.6315 for k = 2
0.5603 for k = 3
0.4883 for k = 4

3.1.2. Discussion. From Table 2, the following observations are gathered:

(i) In Example 3.7, we see that the proposed method gives a better correlation

coefficient when compare to the existing measures for k ≤ 3. That is, K̃ >
K > K2 > K1 for k ≤ 3. Similarly, in Example 3.8, we see that K̃ > K >
K2 > K1 for k ≤ 2. Also, K1 is recovered from K if k = 4, which proves
that K is the generalized version of K1.

(ii) Since K = K̃ for k = 2 in both examples, we infer that the informational
energies of the PFSs are equal. This agrees to Theorem 3.6.

(iii) The proposed method shows the true relationship that exists between the
PFSs under consideration. Because the proposed method has varieties of
form makes it a choice correlation coefficient measure for PFSs.

(iv) The fact that the proposed correlation coefficient has the greatest correla-
tion coefficient value makes it more suitable to solve RLDM problems more
accurately than the existing ones.

4. Applicative examples in Pythagorean fuzzy decision-making based
on correlation coefficients

RLDM problems in form of MCDM are faced in many real-life issues, and they
pose a huge challenge to decision-maker. In this section, some RLDM problems in
pattern recognition (that is, classification of mineral fields) and medical diagnosis
are discussed using the studied correlation coefficients for PFSs. The cases consider
are drawn from [58].

4.1. Pattern recognition: classification of mineral fields. We consider a set
of some known mineral fields, C̃ = {C̃1, C̃2, C̃3} represented by the following PFSs
in a given finite universe X = {y1, y2, y3} as

C̃1 = {〈1.0, 0.0〉
y1

,
〈0.8, 0.0〉

y2
,
〈0.7, 0.1〉

y3
},
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C̃2 = {〈0.8, 0.1〉
y1

,
〈1.0, 0.0〉

y2
,
〈0.9, 0.1〉

y3
},

C̃3 = {〈0.6, 0.2〉
y1

,
〈0.8, 0.0〉

y2
,
〈1.0, 0.0〉

y3
}.

Also, consider an unknown mineral field, P̃ ∈ PFS(X) represented by

P̃ = {〈0.5, 0.3〉
y1

,
〈0.6, 0.2〉

y2
,
〈0.8, 0.1〉

y3
}

that is supposed to be classified into any of the aforementioned mineral fields.
The aim of this exercise is to classify the unknown mineral field, P̃ into one of

the classes C̃1, C̃2 and C̃3. Using the correlation coefficient measures in [58], K and

K̃ for k = 3, we compute the correlation coefficient for P̃ and C̃i(for i = 1, 2, 3) as
follows:

K1(C̃1, P̃ ) = 0.5864, K1(C̃2, P̃ ) = 0.6004, K1(C̃3, P̃ ) = 0.7762,

K2(C̃1, P̃ ) = 0.6741, K2(C̃2, P̃ ) = 0.7235, K2(C̃3, P̃ ) = 0.8953,

K(C̃1, P̃ ) = 0.6982, K(C̃2, P̃ ) = 0.7100, K(C̃3, P̃ ) = 0.8454.

Similarly,

K̃(C̃1, P̃ ) = 0.7489, K̃(C̃2, P̃ ) = 0.7760, K̃(C̃3, P̃ ) = 0.9053.

Table 3. Results for pattern recognition

Methods (C̃1, P̃ ) (C̃2, P̃ ) (C̃3, P̃ )
Garg [58] I 0.5864 0.6004 0.7762
Garg [58] II 0.6741 0.7235 0.8953
Ejegwa [59] 0.6982 0.7100 0.8454
New method 0.7489 0.7760 0.9053

Thus from the computations (see Table 3), we conclude that the unknown mineral

field, P̃ belongs to the mineral field C̃3 since the correlation coefficient between
P̃ and C̃3 is the greatest. The modified correlation coefficient, K̃ gives the best
measure.

4.2. Medical diagnosis. Here, we present a scenario of medical diagnosis. Assume
a patient, P̌ visits a given laboratory for medical diagnosis. The patient diagnosis
shows the following symptoms viz; temperature, headache, stomach pain, cough,
and chest pain. That is, the set of symptoms S is

S = {x1, x2, x3, x4, x5},

where x1 = temperature, x2 = headache, x3 = stomach pain, x4 = cough, and x5 =
chest pain.
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After the sample collected from P̌ was analysed, the following result in PFS
setting is obtained as

P̌ = {〈0.8, 0.1〉
x1

,
〈0.6, 0.1〉

x2
,
〈0.2, 0.8〉

x3
,
〈0.6, 0.1〉

x4
,
〈0.1, 0.6〉

x5
}.

Let the set of diseases, Ďi (for i = 1, 2, 3, 4, 5) that P̌ is suspected to be suffering
from be

Ďi = {Ď1, Ď2, Ď3, Ď4, Ď5},
where Ď1 =viral fever, Ď2 =malaria fever, Ď3 =typhoid fever, Ď4 =stomach prob-
lem, and Ď5 =heart problem.

The diseases, Ďi (for i = 1, 2, 3, 4, 5) are represented by the following PFSs:

Ď1 = {〈0.4, 0.0〉
x1

,
〈0.3, 0.5〉

x2
,
〈0.1, 0.7〉

x3
,
〈0.4, 0.3〉

x4
,
〈0.1, 0.7〉

x5
},

Ď2 = {〈0.7, 0.0〉
x1

,
〈0.2, 0.6〉

x2
,
〈0.0, 0.9〉

x3
,
〈0.7, 0.0〉

x4
,
〈0.1, 0.8〉

x5
},

Ď3 = {〈0.3, 0.3〉
x1

,
〈0.6, 0.1〉

x2
,
〈0.2, 0.7〉

x3
,
〈0.2, 0.6〉

x4
,
〈0.1, 0.9〉

x5
},

Ď4 = {〈0.1, 0.7〉
x1

,
〈0.2, 0.4〉

x2
,
〈0.8, 0.0〉

x3
,
〈0.2, 0.7〉

x4
,
〈0.2, 0.7〉

x5
},

Ď5 = {〈0.1, 0.8〉
x1

,
〈0.0, 0.8〉

x2
,
〈0.2, 0.8〉

x3
,
〈0.2, 0.8〉

x4
,
〈0.8, 0.1〉

x5
}.

Our goal is to determine the disease that the patient, P̌ is suffering from with
regards to the suspected diseases

Ďi = {Ď1, Ď2, Ď3, Ď4, Ď5}.

Using the correlation coefficients in [58], K and K̃ for k = 3, we get the following
outputs:

K1(P̌ , Ď1) = 0.8328, K1(P̌ , Ď2) = 0.8895, K1(P̌ , Ď3) = 0.7485,

K1(P̌ , Ď4) = 0.6229, K1(P̌ , Ď5) = 0.5075,

K2(P̌ , Ď1) = 0.8622, K2(P̌ , Ď2) = 0.9047, K2(P̌ , Ď3) = 0.7808,

K2(P̌ , Ď4) = 0.6233, K2(P̌ , Ď5) = 0.5080,

K(P̌ , Ď1) = 0.8877, K(P̌ , Ď2) = 0.9125, K(P̌ , Ď3) = 0.8235,

K(P̌ , Ď4) = 0.6628, K(P̌ , Ď5) = 0.5682.

Also

K̃(P̌ , Ď1) = 0.9660, K̃(P̌ , Ď2) = 0.9902, K̃(P̌ , Ď3) = 0.8989,

K̃(P̌ , Ď4) = 0.7123, K̃(P̌ , Ď5) = 0.6116.
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Table 4. Results for medical diagnosis

Methods (P̌ , Ď1) (P̌ , Ď2) (P̌ , Ď3) (P̌ , Ď4) (P̌ , Ď5)
Garg [58] I 0.8328 0.8895 0.7485 0.6229 0.5075
Garg [58] II 0.8622 0.9047 0.7808 0.6233 0.5080
Ejegwa [59] 0.8877 0.9125 0.8235 0.6628 0.5682
New method 0.9660 0.9902 0.8989 0.7123 0.6116

From the computations (see Table 4), we conclude that patient, P̌ is suffering
from malaria fever since the correlation coefficient between them shows the greatest
interrelationship in each of the correlation coefficient measures.

5. Conclusions

In this paper, new correlation coefficient for PFSs which generalized and modified
the correlation coefficients of PFSs in [58, 59] have been proposed and some of its
properties were discussed. The weakness of the existing correlation coefficients for
PFSs have also been emphasized in the paper. With this, the correlation coefficient,
K1 for PFSs in [58] can be effectively recovered from the correlation coefficient, K in

[59] by replacing k = 4, and K and K̃ are equal if they have the same informational

energies. Some examples that authenticate the reliability of K̃ over K and the
existing ones in [58] have been given. Besides ameliorating the existing methods,
the new correlation coefficient measure for PFSs has a better performance index
in comparison to the approaches in [58, 59], as presented in Tables 2, 3 and 4. In
fact, the new approach modifies and generalizes the methods in [58, 59] with an
improved output. To validate the application of the proposed method, some cases
of RLDM problems such as classification of mineral fields and medical diagnosis
were considered as PFPs. From the study, we conclude that the modified version of
the generalized correlation coefficient in Pythagorean fuzzy context gives a reliable
output when compare to the existing ones in Pythagorean fuzzy environment and
hence, can appropriately resolve RLDM problems effectively. In a nutshell, this
paper generalized and modified the correlation coefficient approaches in Pythagorean
fuzzy environment [58, 59], numerically validated its superiority over the existing
ones, and illustrated its applications in some selected RLDM problems. The new
correlation coefficient measure could be applied in some MCDM problems using
cluster algorithm. Exploiting the novel correlation coefficient measure in interval-
valued PFSs and q-rung orthopair fuzzy environments (crisp or inter-valued) [38,
39, 40] could yield some exciting results.

Acknowledgements. The author is thankful to the Editor in-chief for his
technical comments and to the anonymous reviewers for their suggestions, which
have improved the quality of the paper.
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