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1. Introduction

In 1996, Çoker [1] proposed the concept of an intuitionistic set as the generalza-
tion of an ordinary set and the specialization of an intuitionistic fuzzy set introduced
by Atanassove [2]. After then, many researchers [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
applied the notion to topology and category theory. Recently, Kim et al [14] dealt
with some properties of interval-valued sets (by introduced bu Yao [15]) as the gen-
eralization of classical sets and the special case of interval-valued fuzzy set proposed
by Zadeh [16] and applied it to topological structures.

In order to provide a tool for modelling and processing partially known con-
cepts, we propose a new notion of interval-valued intuitionistic sets by combining
interval-valued sets with intuitionistic sets. Furthermore, we apply this concept to
topology. To accomplish such research, this paper is composed of six sections. In
Section 2, we recall some definitions of intuitionistic sets introduced by Çoker [1]
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and interval-valued sets proposed by Yao [15], and Kim et al. [14]. In Section 3,
we introduce the new concept of interval-valued intuitionistic set and obtain some
of its algebraic structures. Also, we define interval-valued intuitionistic points of
two types and discuss with the characterizations of inclusions, intersections and
unions of interval-valued intuitionistic sets. Furthermore, we introduce the concept
of interval-valued intuitionistic ideals and obtain some of its properties. In Section 4,
we define an interval-valued intuitionistic topology, an interval-valued intuitionistic
base and subbase, and study some of their properties. In Section 5, we introduce
the notions of interval-valued neighborhoods of two types and find some of their
properties. In particular, we show that there is an IVIT under the hypothesis satis-
fying some properties of interval-valued intuitionistic neighborhoods. In Section 6,
we define an interval-valued interior and closure and obtain some of their properties.
Also, we prove that there is a unique IVIT for interval-valued intuitionistic interior
[resp. closure] operators.

2. Preliminaries

In this section, we recall the concepts of intuitionistic sets and intuitionistc points
introduced by [1]. Also, we recall the notions of interval-valued sets and interval-
valued points proposed by [14, 15].

Definition 2.1 ([1]). LetX be a non-empty set. ThenA is called an intuitionistic set
(briefly, IS) of X, if it is an object having the form

A = (A∈, A6∈),

such that A∈∩A 6∈ = ∅, where A∈ [resp. A 6∈] represents the set of memberships [resp.
non-memberships] of elements of X to A. In fact, A∈ [resp. A 6∈] is a subset of X
agreeing or approving [resp. refusing or opposing] for a certain opinion, suggestion
or policy.

The intuitionistic empty set [resp. the intuitionistic whole set] of X, denoted by
∅̄ [resp. X̄], is defined by ∅̄ = (∅, X) [resp. X̄ = (X,∅)]. We will denote the set
of all ISs of X as IS(X). Note that for each A ∈ IS(X), A∈ ∪ A 6∈ 6= X in general.
The inclusion, the equality, the intersection and the union of ISs, the complement
of an IS, and the operations intersection [ ] and < > on IS(X) refer to [1].

It is obvious that A = (A,∅) ∈ IS(X) for each ordinary subset A of X. Then we
can consider an IS of X as the generalization of an ordinary subset of X.

Remark 2.2. Let X be a set and let A ∈ IS(X). Then we can easily see that

χ
A

= (χ
A∈
, χ

A 6∈
)

is an intuitionistic fuzzy set in X introduced by Atanassov [2]. Thus we can consider
an intuitionistic set A in X as the specialization of an intuitionistic fuzzy set in X.

Definition 2.3 ([1]). Let X be a non-empty set, a ∈ X and let A ∈ IS(X).
(i) The form ({a}, {a}c) [resp. (∅, {a}c)] is called an intuitionistic point [resp.

vanishing point] of X and denoted by a
I

[resp. a
IV

].
(ii) We say that a

I
[resp. a

IV
] is contained in A, denoted by a

I
∈ A [resp.

a
IV
∈ A], if a ∈ A∈ [resp. a /∈ A 6∈].

2
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We will denote the set of all intuitionistic points and intuitionistic vanishing points
in X as IP (X).

Result 2.4 ([1], Proposition 3.6). Let A ∈ IS(X). Then

A = AI ∪AIV ,

where AI =
⋃
a
I
∈A aI and AIV =

⋃
a
IV
∈A aIV . In fact, AI = (A∈, A∈

c
) and AIV =

(∅, A6∈).

Definition 2.5 ([14, 15]). Let X be an non-empty set. Then the form

[A−, A+] = {B : A− ⊂ B ⊂ A+}

is called an interval-valued set (briefly, IVS) in X, if A−, A+ ⊂ X and A− ⊂ A+.
where A−, A+ ⊂ X and A− ⊂ A+. In this case, A− [resp. A+] represents the
set of minimum [resp. maximum] memberships of elements of X to A. In fact, A−

[resp. A+] is a minimum [resp. maximum] subset of X agreeing or approving for
a certain opinion, suggestion or policy. [∅,∅] [resp. [X,X]] is called the interval-

valued empty [resp. whole] set in X and denoted by ∅̃ [resp. X̃]. We will denote
the set of all IVSs in X as IV S(X).

It is obvious that [A,A] ∈ IV S(X) for classical subset A of X. Then we can
consider an IVS in X as the generalization of a classical subset of X. Furthermore,
if A = [A−, A+] ∈ [X], then

χ
A

= [χ
A−
, χ

A+ ]

is an interval-valued fuzzy set in X introduced by Zadeh [16]. Thus we can con-
sider an interval-valued fuzzy set as the generalization of an IVS. The inclusion, the
equality, the intersection and the union of IVSs and the complement of an IVS refer
to [14, 15].

Definition 2.6 ([14]). Let X be a non-empty set, let a ∈ X and let A ∈ IV S(X).
Then the form [{a}, {a}] [resp. [∅, {a}]] is called an interval-valued [resp. vanishing]
point in X and denoted by a

IV P
[resp. a

IV V P
]. We will denote the set of all interval-

valued points in X as IVP (X).
(i) We say that a

IV P
belongs to A, denoted by a

IV P
∈ A, if a ∈ A−.

(ii) We say that a
IV V P

belongs to A, denoted by a
IV V P

∈ A, if a ∈ A+.

Result 2.7 ([14], Proposition 3.11). Let X be a non-empty set and let A ∈ IV S(X).
Then

A = AIV P ∪AIV V P ,
where AIV P =

⋃
a
IV P
∈A aIV and AIV V P =

⋃
a
IV V P

∈A aIV V P .

In fact, AIV P = [A−, A−] and AIV V P = [∅, A+]

3. Interval-valued intuitionistic sets

In this section, we introduce the notion of interval-valued intuitionistic sets and
study some of its properties. Also, we define an ideal of interval-valued intuitionistic
sets and obtain some of its properties.

3
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Definition 3.1. Let X be a non-empty set. Then the form

A = ([A∈,−, A∈,+], [A 6∈,−, A6∈,+])

is called an interval-valued intuitionistic set (briefly, IVIS) in X, if it satisfies the
following conditions:

[A∈,−, A∈,+], [A 6∈,−, A6∈,+] ∈ IV S(X) and A∈,+ ∩A 6∈,+ = ∅.
In this case, [A∈,−, A∈,+] [resp. [A 6∈,−, A6∈,+]] represents the interval-valued set of
memberships [resp. non-memberships] of elements of X to A. In fact, [A∈,−, A∈,+]
[resp. [A 6∈,−, A6∈,+]] is an interval-valued set in X agreeing or approving [resp. re-

fusing or opposing] for a certain opinion, suggestion or policy. (∅̃, X̃) [resp. (X̃, ∅̃)]
is called the interval-valued intuitionistic empty [resp. whole] set in X and denoted

by ¯̃∅ [resp.
¯̃
X]. We will denote the set of all IVISs in X as IV IS(X).

It is clear that A∈,− ∩A 6∈,− = ∅ for each A ∈ IV IS(X).

It is obvious that ([A,A], [Ac, Ac]) ∈ IV IS(X) for a classical subset A of X. Then
we can consider an IVIS in X as the generalization of a classical subset of X. If
A = ([A∈,−, A∈,+], [A 6∈,−, A6∈,+]) ∈ IV IS(X), then

χ
A

= ([χ
A∈,−

, χ
A∈,+

], [χ
A6∈,−

, χ
A6∈,+

])

is an interval-valued intuitionistic fuzzy set in X (See [17]). Thus we can consider an
interval-valued intuitionistic fuzzy set as the generalization of an IVIS. Furthermore,
for any IS A = (A∈, A6∈) and any IVS B = [B−, B+] in a set X, we may write

A = ([A∈, A6∈
c
], [A 6∈, A∈

c
]) and B = ([B−, B+], [B+c, B−

c
]).

So we can consider an IVIS as the generalization of both an IS and an IVS. Hence
we have the following Figure 1:

Interval-valued intuitionistic fuzzy set 

Interval-valued intuitionistic set 

Intuitionistic set 
Interval-valued

set 
Classical    

set 

Figure 1.
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Example 3.2. Let X = {a, b, c}. Then we can easily check that

([∅, {a}], [∅, {b}]), ([{a}, {a, b}], [{c}, {c}]), ([{b}, {b}], [{c}, {a, c}]) ∈ IV IS(X).

Definition 3.3. Let X be a non-empty set and let A, B ∈ IV IS(X). Then
(i) we say that A contained in B, denoted by A ⊂ B, if it satisfies the following

conditions: A∈,− ⊂ B∈,−, A∈,+ ⊂ B∈,+, A 6∈,− ⊃ B 6∈,− and A 6∈,+ ⊃ B 6∈,+,
(ii) we say that A equal to B, denoted by A = B, if A ⊂ B and B ⊂ A,
(iii) the complement of A, denoted Ac, is an interval-valued set in X defined by:

Ac = ([A 6∈,−, A6∈,+], [A∈,−, A∈,+]),

(iv) the union of A and B, denoted by A∪B, is an interval-valued set in X defined
by:

A ∪B = ([A∈,− ∪A∈,−, A∈,+ ∪A∈,+], [A 6∈,− ∩A 6∈,−, A6∈,+ ∩A 6∈,+]),

(v) the intersection of A and B, denoted by A∩B, is an interval-valued set in X
defined by:

A ∩B = ([A∈,− ∩A∈,−, A∈,+ ∩A∈,+], [A 6∈,− ∪A 6∈,−, A6∈,+ ∪A 6∈,+]).

(vi) the operations [ ] and 〈 〉 on IV IS(X) define as follows: for each A ∈ IV S(X),

[ ]A = ([A∈,−, A∈,+], [A∈,+
c
, A∈,−

c
]), 〈 〉A = ([A 6∈,+

c
, A6∈,−

c
], [A 6∈,−, A6∈,+]).

Example 3.4. LetX = {a, b, c}. Consider two IVISsA = ([{a}, {a, b}], [{c}, {c}]), B =
([{b}, {b}], [{a}, {a, c}]). Then clearly we have

Ac = ([{c}, {c}], [{a}, {a, b}]), A ∪B = ([{a, b}, {a, b}], [∅, {c}]),
A ∩B = ([∅, {b}], [{a, c}, {a, c}]), [ ]A = ([{a}, {a, b}], [{c}, {b, c}]),
〈 〉A = ([{a, b}, {a, b}], [{c}, {c}]).

The followings are immediate results of Definition 3.3.

Proposition 3.5 (See [13], Proposition 3.5). Let X be a non-empty set and let
A, B, C ∈ IV IS(X). Then

(1) ¯̃∅ ⊂ A ⊂ ¯̃
X,

(2) if A ⊂ B and B ⊂ C, then A ⊂ C,
(3) A ⊂ A ∪B and B ⊂ A ∪B,
(4) A ∩B ⊂ A and A ∩B ⊂ B,
(5) A ⊂ B if and only if A ∩B = A,
(6) A ⊂ B if and only if A ∪B = B.

Proposition 3.6 (See [13], Proposition 3.6). Let X be a non-empty set and let
A, B, C ∈ IV IS(X). Then

(1) (Idempotent laws) A ∪A = A, A ∩A = A,
(2) (Commutative laws) A ∪B = B ∪A, A ∩B = B ∩A,
(3) (Associative laws) A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C,
(4) (Distributive laws) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
(5) (Absorption laws) A ∪ (A ∩B) = A, A ∩ (A ∪B) = A,
(6) (DeMorgan’s laws) (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc,
(7) (Ac)c = A,

(8) (8a) A ∪ ¯̃∅ = A, A ∩ ¯̃∅ = ¯̃∅,
5
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(8b) A ∪
¯̃
X =

¯̃
X, A ∩ ¯̃

X = A,

(8c)
¯̃
X
c

= ¯̃∅, ¯̃∅
c

=
¯̃
X,

(8d) A ∪Ac 6=
¯̃
X, A ∩Ac 6= ¯̃∅ in general (See Example 3.7).

Example 3.7. Let X = {a, b, c}. Consider an IVIS A = ([{a}, {a, b}], [{c}, {c}]) ∈
[X]. Then clearly, Ac = ([{c}, {c}], [{a}, {a, b}]). Thus we have

A ∩Ac = ([∅,∅], [{a, c}, X]) 6= ¯̃∅ and A ∪Ac = ([{a, c}, X], [∅,∅]) 6= ¯̃
X.

Definition 3.8. Let (Aj)j∈J be a family of members of IV IS(X). Then
(i) the intersection of (Aj)j∈J , denoted by

⋂
j∈J Aj , is an interval-valued set in

X defined by: ⋂
j∈J

Aj = ([
⋂
j∈J

A∈,−j ,
⋂
j∈J

A∈,+j ], [
⋃
j∈J

A 6∈,−j ,
⋃
j∈J

A 6∈,+j ]),

(ii) the union of (Aj)j∈J , denoted by
⋃
j∈J Ãj , is an interval-valued set in X

defined by: ⋃
j∈J

Aj = ([
⋃
j∈J

A∈,−j ,
⋃
j∈J

A∈,+j ], [
⋂
j∈J

A 6∈,−j ,
⋂
j∈J

A 6∈,+j ]).

The following is the immediate result of Definition 3.8.

Proposition 3.9 (See [13], Proposition 3.7). Let A ∈ IV IS(X) and let (Aj)j∈J be
a family of members of IV IS(X). Then

(1) (
⋂
j∈J Aj)

c =
⋃
j∈J A

c
j , (

⋃
j∈J Aj)

c =
⋂
j∈J A

c
j ,

(2) A ∩ (
⋃
j∈J Aj) =

⋃
j∈J(A ∩Aj), A ∪ (

⋂
j∈J Aj) =

⋂
j∈J(A ∪Aj).

From Propositions 3.6 and 3.9, we can easily see that (IV IS(X),∪,∩,c , ¯̃∅, ¯̃
X)

forms a Boolian algebra except the property (8d).

Definition 3.10. Let X be a non-empty set, let a ∈ X and let A ∈ IV IS(X). Then
the form ([{a}, {a}], [{a}c, {a}c]) [resp. ([∅, {a}], [{a}c, {a}c])] is called an interval-
valued intuitionistic [resp. vanishing] point in X and denoted by a

IV I
[resp. a

IV IV
].

We will denote the set of all interval-valued points in X as IV IP (X).
(i) We say that a

IV I
belongs to A, denoted by a

IV I
∈ A, if a ∈ A∈,−.

(ii) We say that a
IV IV

belongs to A, denoted by a
IV IV

∈ A, if a 6∈ A 6∈,+.

It is obvious that if a
IV IV

∈ A, then a 6∈ A 6∈,+ and if a
IV I
∈ A, then a ∈ A∈,+.

Proposition 3.11. Let X be a non-empty set and let A ∈ IV IS(X). Then

A = AIV I ∪AIV IV ,
where AIV I =

⋃
a
IV I
∈A aIV I and AIV IV =

⋃
a
IV IV

∈A aIV IV .

In fact, AIV I = ([A∈,−, A∈,−], [A 6∈,+, A6∈,+]) and AIV IV = ([∅, A∈,+], [A 6∈,−, A6∈,+]).

Proof. From Definition 3.10 and the definitions of AIV I and AIV IV , we have
AIV I =

⋃
a
IV I
∈A aIV I

= ([
⋃
a
IV I
∈A{a},

⋃
a
IV I
∈A{a}], [

⋂
a
IV I
∈A{a}c,

⋂
a
IV I
∈A{a}c])

= ([
⋃
a∈A∈,−{a},

⋃
a∈A∈,−{a}], [

⋂
a∈A∈,−{a}c,

⋂
a∈A∈,−{a}c])

= ([
⋃
a∈A∈,−{a},

⋃
a∈A∈,−{a}], [

⋂
a 6∈A6∈,+{a}c,

⋂
a 6∈A 6∈,+{a}c])

6
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= ([A∈,−, A∈,−], [A 6∈,+, A6∈,+])
and

AIV IV =
⋃
a
IV IV

∈A aIV IV
= ([∅,

⋃
a
IV IV

∈A{a}], [
⋂
a
IV IV

∈A{a}c,
⋂
a
IV IV

∈A{a}c])
= ([∅,

⋃
a∈A∈,+{a}], [

⋂
a6∈A 6∈,−{a}c,

⋂
a 6∈A6∈,+{a}c])

= ([∅, A∈,+], [A 6∈,−, A6∈,+]).
Then A = AIV I ∪AIV IV . �

Example 3.12. Let X = {a, b, c, d, e, f, g, h, i}. Consider an IVIS

A = ([{a, b, c}, {a, b, c, d, e}], [{f, g}, {f, g, h}].

Then clearly, we have

a
IV I

, b
IV I

, c
IV I
∈ A and a

IV IV
, b

IV IV
, c

IV IV
, d

IV IV
, e

IV IV
, i

IV IV
∈ A.

Thus we can easily calculate the followings:

AIV I = ([{a, b, c}, {a, b, c}], [{f, g, h}, {f, g, h}] = ([A∈,−, A∈,−], [A 6∈,+, A6∈,+])

and

AIV IV = ([∅, {a, b, c, d, e}], [{f, g}, {f, g, h}]) = ([∅, A∈,+], [A 6∈,−, A6∈,+]).

So we can confirm that Proposition 3.11 holds.

Theorem 3.13. Let (Aj)j∈J ⊂ IV IS(X) and let a ∈ X.
(1) a

IV I
∈

⋂
j∈J Aj [resp. a

IV IV
∈

⋂
j∈J Aj] if and only if a

IV I
∈ Aj [resp.

a
IV IV

∈ Aj] for each j ∈ J .
(2) a

IV I
∈
⋃
j∈J Aj [resp. a

IV IV
∈
⋃
j∈J Aj] if and only if there exists j ∈ J such

that a
IV I
∈ Aj [resp. a

IV IV
∈ Aj].

Proof. Straightforward. �

Theorem 3.14. Let A,B ∈ IV IS(X). Then
(1) A ⊂ B if and only if a

IV I
∈ A ⇒ a

IV I
∈ B [resp. a

IV IV
∈ A ⇒ a

IV IV
∈ B]

for each a ∈ X.
(2) A = B if and only if a

IV I
∈ A ⇔ a

IV I
∈ B [resp. a

IV IV
∈ A ⇔ a

IV IV
∈ B]

for each a ∈ X.

Proof. Straightforward. �

Definition 3.15. Let X, Y be two non-empty sets, let f : X → Y be a mapping
and let A ∈ IV IS(X), B ∈ IV IS(Y ).

(i) The image of A under f , denoted by f(A), is an interval set in Y defined as:

f(A) = ([f(A∈,−), f(A∈,+)], [f(A 6∈,−), f(A 6∈,+)]).

(ii) The preimage of B under f , denoted by f−1(B), is an interval set in X defined
as:

f−1(B) = ([f−1(B∈,−), f−1(B∈,+)], [f−1(B 6∈−), f−1(B 6∈,+)]).

It is obvious that f(aIV I) = f(a)IV I and f(aIV IV ) = f(a)IV IV for each a ∈ X.
7
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Proposition 3.16. Let X, Y be two non-empty sets, let f : X → Y be a map-
ping, let A, A1, A2 ∈ IV IS(X), (Aj)j∈J ⊂ IV IS(X) and let B, B1, B2 ∈
IV IS(Y ), (Aj)j∈J ⊂ IV IS(Y ). Then

(1) if A1 ⊂ A2, then f(A1) ⊂ f(A2),
(2) if B1 ⊂ B2, then f−1(B1) ⊂ f−1(B1),
(3) A ⊂ f−1(f(A)) and if f is injective, then A = f−1(f(A)),
(4) f(f−1(B)) ⊂ B and if f is surjective, f(f−1(B)) = B,
(5) f−1(

⋃
j∈J Bj) =

⋃
j∈J f

−1(Bj),

(6) f−1(
⋂
j∈J Bj) =

⋂
j∈J f

−1(Bj),

(7) f(
⋃
j∈J Aj) =

⋃
j∈J f(Aj),

(8) f(
⋂
j∈J Aj) ⊂

⋂
j∈J f(Aj) and if f is injective, then f(

⋂
j∈J Aj) =

⋂
j∈J f(Aj),

(9) if f is surjective, then f(A)c ⊂ f(Ac).
(10) f−1(Bc) = f−1(B)c.

(11) f−1( ¯̃∅) = ¯̃∅, f−1(
¯̃
X) =

¯̃
X,

(12) f( ¯̃∅) = ¯̃∅ and if f is surjective, then f(
¯̃
X) =

¯̃
X,

(13) if g : Y → Z is a mapping, then (g ◦ f)−1(C) = f−1(g−1(C)), for each
C ∈ IV IS(Z).

Proof. The proofs are straightforward. �

Definition 3.17. Let X be a non-empty sets and let L be a non-empty family of
IVISs in X. Then Li is called an interval-valued intuitionistic ideal (briefly, IVII)
on X, provided that it satisfies the following conditions: for any A, B ∈ IV IS(X),

(i) (Heredity) ifA ∈ L and B ⊂ A, then B ∈ L,
(ii) (Finite additivity) if A, B ∈ L, then A ∪B ∈ L.

An IVII L is called a σ-interval-valued intuitionistic ideal (briefly, σ-IVII), pro-
vided that it satisfies the following condition:

(Countable additivity) if (An)n∈N ⊂ L, then
⋃
n∈NAn ∈ L.

In particular, an IVII L is said to be proper [resp. improper], if
¯̃
X 6∈ L [resp.

¯̃
X ∈ L].

It is obvious that ¯̃∅ ∈ L and for each ¯̃∅ 6= A ∈ IV IS(X),

{B ∈ IV IS(X) : B ⊂ A}

is an IVII on X. In this case, we will write {B ∈ IV IS(X) : B ⊂ A} = IV II(A)
and call it as the principal IVII of A, and A is called a base of IV II(A).

We will denote the IVII of IVISs in X having finite [resp. countable] support of
X, as IV IIf [resp. IV IIc] and the set of all IVIIs on X as IV II(X).

Example 3.18. Let X = {a, b, c} and consider the collection of IVISs L in X given
by:

L = {A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18},
8
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where A1 = ([{a}, {a, b}], [{c}, {c}]), A2 = ([{a}, {a, b}], [∅, {c}]),
A3 = ([{a}, {a, b}], [∅,∅]), A4 = ([{a}, {a}], [{c}, {c}]),
A5 = ([{a}, {a}], [∅, {c}]), A6 = ([{a}, {a}], [∅,∅]),
A7 = ([∅, {a, b}], [{c}, {c}]), A8 = ([∅, {a, b}], [∅, {c}]),
A9 = ([∅, {a, b}], [∅,∅]), A10 = ([∅, {a}], [{c}, {c}]),
A11 = ([∅, {a}], [∅, {c}]), A12 = ([∅, {a}], [∅,∅]),
A13 = ([∅, {b}], [{c}, {c}]), A14 = ([∅, {b}], [∅, {c}]),
A15 = ([∅, {b}], [∅,∅]), A16 = ([∅,∅], [{c}, {c}]),
A17 = ([∅,∅], [∅, {c}]), A18 = ([∅,∅], [∅,∅]) = ¯̃∅.

Then we can easily check that L is an IVII on X.

Definition 3.19. Let L1, L2 be two IVIIs on a non-empty set X. Then
(i) we say that L2 is finer than L1 or L1 is coarser than L2, if L1 ⊂ L2,
(ii) we say that L2 is strictly finer than L1 or L1 is strictly coarser than L2, if

L1 ⊂ L2 and L1 6= L2,
(iii) L1 and L2 are said to be comparable, if one is finer than the other.

It is clear that (IV II(X),⊂) is a poset. Furthermore, { ¯̃∅} [resp. IV II(X)] is
the smallest [resp. largest] IVII on X.

The following is the immediate result of Definitions 3.3 and 3.17.

Proposition 3.20. Let X be a non-empty set and let (Lj)j∈J be a non-empty family
of IVIIs on X. Then

⋂
j∈J Lj ,

⋃
j∈J Lj ∈ IV II(X).

In fact,
⋂
j∈J Lj = infj∈JLj and

⋃
j∈J Lj = supj∈JLj.

The following is the immediate result of Definition 3.17.

Theorem 3.21. Let X be a non-empty set, A ∈ IV IS(X) and let L ∈ IV II(X).
Then A is a base of L if and only if B ⊂ A for each B ∈ L

Theorem 3.22. Let X be a non-empty set and A, B ∈ IV IS(X). Let L1 be an
IVII on X with a base A and let L2 be an IVII on X with a base B. Then L1 is
finer than L2 if and only if B ⊂ A for each C ∈ IV II(X) such that C ⊂ B.

Proof. The proof is straightforward from Definition 3.19 �

The following is the immediate result of Theorem 3.22.

Corollary 3.23. Let X be a non-empty set and A, B ∈ IV IS(X). Let L1 be an
IVII on X with a base A and let L2 be an IVII on X with a base B. Then A and
B are equivalent if and only if C ⊂ A for each C ∈ IV IS(X) such that C ⊂ B and
D ⊂ B for each D ∈ IV IS(X) such that D ⊂ A.

Proposition 3.24. Let X be a non-empty set and let η = (Aj)j∈J be a non-empty
family of IVISs in X. Then there is an IVII L(η) on X, where

L(η) = {A ∈ IV IS(X) : A ⊂
⋃
j∈J

Aj , J is finite}.

Proof. The proof is straightforward from Definition 3.19 �
9
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4. Interval-valued intuitionistic topological spaces

In this section, we define an interval-valued intuitionistic topology on a non-empty
set X, and study some of its properties, and give some examples. Also, we introduce
the concepts of an interval-valued intuitionistic base and subbase, and a family of
IVISs obtains the necessary and sufficient conditions to become an IVIB, and gives
some examples.

Definition 4.1 ([4, 11]). Let X be a non-empty set and let τ ⊂ IS(X). Then τ is
called an intuitionistic topology (briefly, IT) on X, it satisfies the following axioms:

(IO1) ∅̄, X̄ ∈ τ,
(IO2) A ∩B ∈ τ, for any A,B ∈ τ,
(IO3)

⋃
j∈J Aj ∈ τ, for each (Aj)j∈J ⊂ τ .

In this case, the pair (X, τ) is called an intuitionistic topological space (briefly,
ITS) and each member O of τ is called an intuitionistic open set (briefly, IOS) in X.
An IS F of X is called an intuitionistic closed set (briefly, ICS) in X, if F c ∈ τ.

It is obvious that {φI , XI} is the smallest IT on X and will be called the intuition-
istic indiscreet topology and denoted by τI,0. Also IS(X) is the greatest IT on X
and will be called the intuitionistic discreet topology and denoted by τI,1. The pair
(X, τI,0) [resp. (X, τI,1)] will be called the intuitionistic indiscrete [resp. discreet]
space.

We will denote the set of all ITs on X as IT (X). For an ITS X, we will denote
the set of all IOSs [resp. ICSs] on X as IO(X) [resp. IC(X)].

Definition 4.2 ([14]). Let X be a non-empty set and let τ be a non-empty family
of IVSs on X. Then τ is called an interval-valued topology (briefly, IVT) on X, if it
satisfies the following axioms:

(IVO1) ∅̃, X̃ ∈ τ ,
(IVO2) A ∩B ∈∈ τ for any A, B ∈∈ τ ,
(IVO3)

⋃
j∈J Aj ∈∈ τ for any family (Aj)j∈J of members of τ .

In this case, the pair (X, τ) is called an interval-valued topological space (briefly,
IVTS) and each member of τ is called an interval-valued open set (briefly, IVOS) in
X. A IVS A is called an interval-valued closed set (briefly, IVCS) in X, if Ac ∈ τ .

It is obvious that {∅̃, X̃} is an IVT on X, and will be called the interval-valued
indiscrete topology on X and denoted by τIV,0. Also IV S(X) is an IVT on X, and
will be called the interval-valued discrete topology on X and denoted by τIV,1. The
pair (X, τIV,0) [resp. (X, τIV,1)] will be called the interval-valued indiscrete [resp.
discrete] space.

We will denote the set of all IVTs on X as IV T (X). for an IVTS X, we will
denote the set of all IVOSs [resp. IVCSs] in X as IV O(X) [resp. IV C(X)].

Definition 4.3. Let X be a non-empty set and let τ be a non-empty family of IVISs
on X. Then τ is called an interval-valued intuitionistic topology (briefly, IVIT) on
X, if it satisfies the following axioms:

10
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(IVIO1) ¯̃∅, ¯̃
X ∈ τ ,

(IVIO2) A ∩B ∈∈ τ for any A, B ∈∈ τ ,
(IVIO3)

⋃
j∈J Aj ∈∈ τ for any family (Aj)j∈J of members of τ .

In this case, the pair (X, τ) is called an interval-valued intuitionistic topological
space (briefly, IVITS) and each member of τ is called an interval-valued intuitionistic
open set (briefly, IVIOS) in X. A IVIS A is called an interval-valued intuitionistic
closed set (briefly, IVICS) in X, if Ac ∈ τ .

It is obvious that { ¯̃∅, ¯̃
X} is an IVIT on X, and will be called the interval-valued

intuitionistic indiscrete topology on X and denoted by τIV I,0. Also IV IS(X) is an
IVIT on X, and will be called the interval-valued intuitionistic discrete topology on
X and denoted by τIV I,1. The pair (X, τIV I,0) [resp. (X, τIV I,1)] will be called the
interval-valued intuitionistic indiscrete [resp. discrete] space.

We will denote the set of all IVITs on X as IV IT (X). For an IVITS X, we will
denote the set of all IVIOSs [resp. IVICSs] in X as IV IO(X) [resp. IV IC(X)].

We can easily see that for each τ ∈ IV IT (X), the family

χ
τ

= {χ
A

: χ
A

= ([χ
A∈,−

, χ
A∈,+

], [χ
A6∈,−

, χ
A6∈,+

]), A ∈ τ}
is an interval-valued intuitionistic fuzzy topology on X introduced by Samanta and
Mondal [18].

Remark 4.4. (1) For each τ ∈ IV IT (X), consider two families of ISs and two
families of IVSs in X, respectively given by:

τ− = {(A∈,−, A6∈,−) ∈ IS(X) : A ∈ τ}, τ+ = {(A∈,+, A6∈,+) ∈ IS(X) : A ∈ τ}
and

τ∈ = {[A∈,−, A∈,+] ∈ IV S(X) : A ∈ τ}, τ 6∈ = {[A 6∈,+c, A6∈,−c] ∈ IV S(X) : A ∈ τ}.
Then we can easily check that τ−, τ+ ∈ IT (X) and τ∈, τ 6∈ ∈ IV T (X).

In this case, the pair (τ−, τ+) [resp. (τ∈, τ 6∈)] will be called an intuitionistic [resp.
interval-valued] bitopology on X (See [19]).

Now let us consider the following families of subsets of X given by:

τ∈,− = {A∈,− ⊂ X : A ∈ τ}, τ∈,+ = {A∈,+ ⊂ X : A ∈ τ},

τ 6∈,− = {A 6∈,−c ⊂ X : A ∈ τ}, τ 6∈,+ = {A 6∈,+c ⊂ X : A ∈ τ}.
Then clearly, τ∈,− [resp. τ∈,+, τ 6∈,− and τ 6∈,+] forms an ordinary topology on X.

(2) Let (X, τ) be an ordinary topological space such that τ is not indiscrete. Then
there are two IVITs on X given by:

τ1 = {([G,G], [Gc, Gc]) ∈ IV IS(X) : G ∈ τ},

τ2 = { ¯̃∅, ¯̃
X}

⋃
{([∅, G], [∅, Gc]) ∈ IV IS(X) : G ∈ τ}.

(3) Let τ
I

be an intuitionistic topology on a set X in the sense of Coker [4]. Then
we can easily see that the following families are IVITs on X:

τ
I,1

= {([A∈, A∈], [A 6∈, A6∈]) ∈ IV IS(X) : A ∈ τ
I
},

τ
I,2

= {([A∈, A6∈c], [A 6∈, A6∈]) ∈ IV IS(X) : A ∈ τ
I
},

11
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τ
I,3

= {([A∈, A6∈c], [A 6∈, A∈c]) ∈ IV IS(X) : A ∈ τ
I
}.

(4) Let τ
IV

be an interval-valued topology on a set X in the sense of Kim et al.
[14]. Then we can easily see that the following families are IVITs on X:

τ
IV,1

= {([A−, A+], [A+c, A−
c
]) ∈ IV IS(X) : A ∈ τ

IV
},

τ
IV,2

= {([A−, A+], [A+c, A+c]) ∈ IV IS(X) : A ∈ τ
IV
},

τ
IV,3

= {([A−, A+], [A−
c
, A−

c
]) ∈ IV IS(X) : A ∈ τ

IV
}.

(5) Let (X, τ) be an IVITS and consider two families of IVISs in given by:

[ ]τ = {[ ]A : A ∈ τ}, 〈 〉 τ = {〈 〉A : A ∈ τ}.
Then we can easily check that [ ]τ, 〈 〉 τ ∈ IV IT (X).

From Remark 4.4, we have the following Figure 2:

Interval-valued intuitionistic fuzzy topology

Interval-valued intuitionistic topology

Intuitionistic topology Interval-valued
topology 

Classical    
topology 

Figure 2.

Example 4.5. (1) Let X = {a, b}. Then clearly, we have

τ
IV I,1

= { ¯̃∅, a
IV I

, b
IV I

, a
IV IV

, b
IV IV

, ([{a}, X], ∅̃),
¯̃
X}.

(2) Let X be a set and let A ∈ IV IS(X). Then A is said to be finite, if A∈,+

is finite. Consider the family τ = {U ∈ IV IS(X) : U = ¯̃∅ or U c is finite}. Then we
can easily check that τ ∈ IV IT (X). In this case, τ will be called an interval-valued
intuitionistic cofinite topology (briefly, IVICFT) on X.

(3) Let X be a set and let A ∈ IV (X). Then A is said to be countable, if A∈,+

is countable. Consider the family τ = {U ∈ IV (X) : U = ¯̃∅ or U c is countable}.
Then we can easily prove that τ ∈ IV IT (X). In this case, τ will be called an
interval-valued intuitionistic cocountable topology (briefly, IVICCT) on X.

(4) Let X = {a, b, c, d, e, f, g, h} and the consider the family τ of IVISs in X given
by:

τ = { ¯̃∅, A1, A2, A3, A4,
¯̃
X},

whereA1 = ([{a}, {a, b}], [{f}, {f, g}]), A2 = ([{a, c, d}, {a, b, c, d}], [{f, h}, {f, g, h}]),
12
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A3 = ([{a}, {a, b}], [{f, h}, {f, g, h}]), A4 = ([{a, c, d}, {a, b, c, d}], [{f}, {f, g}]).
Then we can easily check that τ is an IVIT on X.

The following is the immediate result of Definition 4.3

Proposition 4.6. Let X be an IVITS. Then

(1) ¯̃∅, ¯̃
X ∈ IV IC(X),

(2) A ∪B ∈ IV IC(X) for any A, B ∈ IV IC(X),
(3)

⋂
j∈J Aj ∈ IV IC(X) for any (Aj)j∈J ⊂ IV IC(X).

Definition 4.7. Let X be a non-empty set and let τ1, τ1 ∈ IV IT (X). Then we say
that τ1 is contained in τ2 or τ1 is coarser than τ2 or τ2 is finer than τ1, if τ1 ⊂ τ2,
i.e., A ∈ τ2 for each A ∈ τ1.

It is obvious that τIV I,0 ⊂ τ ⊂ τIV I,1 for each τ ∈ IV IT (X).
The following is the immediate result of Definitions 3.8 and 4.3.

Proposition 4.8. Let (τj)j∈J ⊂ IV IT (X). Then
⋂
j∈J τj ∈ IV IT (X).

In fact,
⋂
j∈J τj is the coarsest IVIT on X containing each τj.

Proposition 4.9. Let τ, γ ∈ IV IT (X). We define τ ∧ γ and τ ∨ γ as follows:

τ ∧ γ = {W : W ∈ τ, W ∈ γ},

τ ∨ γ = {W : W = U ∪ V, U ∈ τ, V ∈ γ}.
Then we have

(1) τ ∧ γ is an IVIT on X which is the finest IVIT coarser than both τ and γ,
(2) τ ∨ γ is an IVIT on X which is the coarsest IVIT finer than both τ and γ,

Proof. (1) It is clear that τ ∧γ ∈ IV T (X). Let η be any IVIT on X which is coarser
than both τ and γ, and let W ∈ η. Then clearly, W ∈ τ and W ∈ γ. Thus W ∈ τ∧γ.
So η is coarser than τ ∧ γ.

(2) The proof is similar to (1). �

Definition 4.10. Let (X, τ) be an IVITS.
(i) A subfamily β of τ is called an interval-valued intuitionistic base (briefly, IVIB)

for τ , if for each A ∈ τ , A = ¯̃∅ or there is β
′ ⊂ β such that A =

⋃
β
′
.

(ii) A subfamily σ of τ is called an interval-valued intuitionistic subbase (briefly,

IVISB) for τ , if the family β = {
⋂
σ
′

: σ
′

is a finite subset of σ} is an IVIB for τ .

Remark 4.11. (1) Let β be an IVIB for an IVIT τ on a non-empty set X and
consider the families of intuitionistic [resp. interval-valued] sets in X given by:

β− = {(A∈,−, A6∈,−) ∈ IS(X) : A ∈ β}, β+ = {(A∈,+, A∈,+) ∈ IS(X) : A ∈ β}
and

β∈ = {[A∈,−, A∈,+] ∈ IV S(X) : A ∈ β}, β 6∈ = {[A 6∈,+c, A6∈,−c] ∈ IV S(X) : A ∈ β}.
Then we can easily see that β− [resp. β+] is an IB for τ− [resp. τ+] and β∈ [resp.
β∈] is an IVB for τ∈ [resp. τ 6∈].

Now let us consider the following families of subsets of X given by:

β∈,− = {A∈,− ⊂ X : A ∈ β}, β∈,+ = {A∈,+ ⊂ X : A ∈ β},
13
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β 6∈,− = {A 6∈,−c ⊂ X : A ∈ β}, β 6∈,+ = {A 6∈,+c ⊂ X : A ∈ β}.
Then clearly, β∈,− [resp. β∈,+, β 6∈,− and β 6∈,+] is an ordinary base for the ordinary
topology τ∈,− [resp. τ∈,+, τ 6∈,− and τ 6∈,+].

(2) Let σ be an IVISB for an IVIT τ on a non-empty set X and consider the
families of intuitionistic [resp. interval-valued] sets in X given by:

σ− = {(A∈,−, A6∈,−) ∈ IS(X) : A ∈ σ}, σ+ = {(A∈,+, A∈,+) ∈ IS(X) : A ∈ σ}

and

σ∈ = {[A∈,−, A∈,+] ∈ IV S(X) : A ∈ σ}, σ 6∈ = {[A 6∈,+c, A6∈,−c] ∈ IV S(X) : A ∈ σ}.

Then we can easily see that σ− [resp. σ+] is an ISB for τ− [resp. τ+] and σ∈ [resp.
σ∈] is an IVSB for τ∈ [resp. τ 6∈].

Now let us consider the following families of subsets of X given by:

σ∈,− = {A∈,− ⊂ X : A ∈ σ}, σ∈,+ = {A∈,+ ⊂ X : A ∈ σ},

σ 6∈,− = {A 6∈,−c ⊂ X : A ∈ σ}, σ 6∈,+ = {A 6∈,+c ⊂ X : A ∈ σ}.
Then clearly, σ∈,− [resp. σ∈,+, σ 6∈,− and σ 6∈,+] is an ordinary subbase for the
ordinary topology τ∈,− [resp. τ∈,+, τ 6∈,− and τ 6∈,+].

Example 4.12. (1) Let σ = {([(a, b), (a,∞)], [(−∞, a], (−∞, a]]) : a, b ∈ R, a ≤ b}
be the family of IVISs in R. Then σ generates an IVIT τ on R which will be called
the usual left interval-valued intuitionistic topology (briefly, ULIVIT) on R. In fact,
the IVIB β for τ can be written in the form:

β = { ¯̃R} ∪ {∩γ∈ΓSγ : Sγ ∈ σ, Γ is finite}

and τ consists of the following IVISs in R:

τ = { ¯̃∅, ¯̃R, ([∪(aj , bj), (c,∞)], [(−∞, c], (−∞, c]]), ([∪(ak, bk),R], R̃)},

where aj , bj , c ∈ R, {aj : j ∈ J} is bounded from below, c < inf{aj : j ∈ J} and
ak, bk ∈ R, {ak : k ∈ K} is not bounded from below.

Similarly, one can define the usual right interval-valued topology (briefly, URIVT)
on R using an analogue construction.

(2) Consider the family σ of IVISs in R given by:
σ = {([(a, b), (a1,∞) ∩ (−∞, b1)], [(−∞, a1] ∪ [b1,∞), (−∞, a1] ∪ [b1,∞)])

: a, b, a1, b1 ∈ R, a1 ≤ a, b1 ≥ b}.
Then σ generates an IVIT τ on R which will be called the usual interval-valued
intuitionistic topology (briefly, UIVIT) on R. In fact, the IVIB β for τ can be
written in the form:

β = { ¯̃R} ∪ {∩γ∈ΓSγ : Sγ ∈ σ, Γ is finite}

and the elements of τ can be easily written down as in (1).
(3) Consider the family σ

[0,1]
of IVISs in R given by:

σ
[0,1]

= {([[a, b], [a, b]], [(−∞, a) ∪ (b,∞), (−∞, a) ∪ (b,∞)])

: a, b ∈ R and 0 ≤ a ≤ b ≤ 1}.
Then σ

[0,1]
generates an IVIT τ

[0,1]
on R, which will be called the usual unit closed

14
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interval-valued intuitionistic topology on R. In fact, the IVIB β[0,1] for τ [0,1] can be
written in the form:

β[0,1] = {R̃} ∪ {∩γ∈ΓSγ : Sγ ∈ σ[0,1], Γ is finite}
and the elements of τ can be easily written down as in (1).

In this case, ([0, 1], τ
[0,1]

) is called the interval-valued intuitionistic usual unit

closed interval and will be denoted by [0, 1]IV II , where

[0, 1]IV II = (([0, 1], [0, 1]], [(−∞, 0) ∪ (1,∞), (−∞, 0) ∪ (1,∞)])).

(4) Let X be a non-empty set and let β = {a
IV I

: a ∈ X} ∪ {a
IV IV

: a ∈ X}.
Then β is an IVIB for the interval-valued discrete topology τ1 on X.

(5) Let X = {a, b, c} and let β = {([{a, b}, X], [∅,∅]), ([{b, c}, X], [∅,∅]),
¯̃
X}.

Assume that β is an IVIB for an IVIT τ on X. Then by the definition of base,
β ⊂ τ . Thus ([{a, b}, X], [∅,∅]), ([{b, c}, X], [∅,∅]) ∈ τ . So [{a, b}, X]∩[{b, c}, X] =

([{b}, X], [∅,∅]) ∈ τ . But for any β
′ ⊂ β, ([{b}, X], [∅,∅]) 6=

⋃
β
′
. Hence β is not

an IVIB for an IVIT on X.

From (1), (2) and (3) in Example 4.12, we can define interval-valued intervals as
following.

Definition 4.13. Let a, b ∈ R such that a ≤ b. Then
(i) (the closed interval)

[a, b]IV II = ([[a, b], [a, b]], [(−∞, a) ∪ (b,∞), (−∞, a) ∪ (b,∞)]),

(ii) (the open interval)

(a, b)IV II = ([(a, b), (a, b)], [(−∞, a] ∪ [b,∞), (−∞, a] ∪ [b,∞)]),

(iii) (the half open interval or the half closed interval)

(a, b]IV II = ([(a, b], (a, b]], [(−∞, a] ∪ (b,∞), (−∞, a] ∪ (b,∞)]),

[a, b)IV II = ([[a, b), [a, b)], [(−∞, a) ∪ [b,∞), (−∞, a) ∪ [b,∞)]),

(iv) (the half interval-valued real line)

(−∞, a]IV II = ([(−∞, a], (−∞, a]], [(a,∞), (a,∞)]),

(−∞, a)IV II = [(−∞, a), (−∞, a)], [[a,∞), [a,∞)]),

[a,∞)IV II = [[a,∞), [a,∞)], [(−∞, a), (−∞, a)]),

(a,∞)IV II = [(a,∞), (a,∞)], [(−∞, a], (−∞, a]]),

(v) (the interval-valued real line)

(−∞,∞)IV I = ([(−∞,∞), (−∞,∞)], [∅,∅]) =
¯̃R.

Theorem 4.14. Let X be a non-empty set and let β ⊂ IV IS(X). Then β is an
IVIB for an IVIT τ on X if and only if it satisfies the followings:

(1)
¯̃
X =

⋃
β,

(2) if B1, B2 ∈ β and aIV I ∈ B1 ∩B2 [resp. aIV IV ∈ B1 ∩B2], then there exists
B ∈ β such that aIV I ∈ B ⊂ B1 ∩B2 [resp. aIV IV ∈ B ⊂ B1 ∩B2].

Proof. The proof is the same as one in ordinary topological spaces. �
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Example 4.15. Let X = {a, b, c} and consider the family β of IVISs in X given by:

β = {([{a}, {a}], [{b, c}, {b, c}]), ([{a, b}, {a, b}], [{c}, {c}]), ([{a, c}, {a, c}], [{b}, {b}])}.
Then clearly, β satisfies two conditions of Theorem 4.14. Thus β is an IVIB for an
IVIT τ on X. Furthermore, we can easily check that τ is the family of IVISs in X
given by:

τ = { ¯̃∅, ([{a}, {a}], [{b, c}, {b, c}]), ([{a, b}, {a, b}], [{c}, {c}]),
([{a, c}, {a, c}], [{b}, {b}]), ¯̃

X}.

Proposition 4.16. Let X be a non-empty set and let σ ⊂ IV IS(X) such that
¯̃
X =

⋃
σ. Then there exists a unique IVIT τ on X such that σ is an IVISB for τ .

Proof. Let β = {B ∈ IV IS(X) : B =
⋃n
i=1 Si and Si ∈ σ}. Let τ = {U ∈

IV IS(X) : U = ¯̃∅ or there is a subcollection β
′

of β such that U =
⋃
β
′}. Then we

can prove that τ is the unique IVIT on X such that σ is an IVISB for τ . �

In Proposition 4.16, τ is called the IVIT on X generated by σ.

Example 4.17. Let X = {a, b, c, d, e} and let us consider the family of IVISs in X
given by:

σ = {([{a}, {a}], [{b, c, d, e}, {b, c, d, e}]), ([{a, b, c}, {a, b, c}], [{d, e}, {d, e}]),
([{b, c, e}, {b, c, e}], [{a, d}, {a, d}]), ([{c, d}, {c, d}], [{a, b, e}, {a, b, e}])}.

Then clearly,
⋃
σ =

¯̃
X. Let β be the collection of all finite intersections of members

of σ. Then
β = { ¯̃∅, ([{a}, {a}], [{b, c, d, e}, {b, c, d, e}]), ([{c}, {c}], [{a, b, d, e}, {a, b, d, e}]),

([{b, c}, {b, c}], [{a, d, e}, {a, d, e}]), ([{a, b, c}, {a, b, c}], [{d, e}, {d, e}]),
([{b, c, e}, {b, c, e}], [{a, d}, {a, d}]), ([{c, d}, {c, d}], [{a, b, e}, {a, b, e}])}.

Thus the generated IVIT τ by σ is

τ = { ¯̃∅, ([{a}, {a}], [{b, c, d, e}, {b, c, d, e}]), ([{c}, {c}], [{a, b, d, e}, {a, b, d, e}]),
([{a, c}, {a, c}], [{b, d, e}, {b, d, e}]), ([{b, c}, {b, c}], [{a, d, e}, {a, d, e}]),
([{c, d}, {c, d}], {a, b, e}, {a, b, e}]), ([{a, b, c}, {a, b, c}], [{d, e}, {d, e}]),
([{b, c, d}, {b, c, d}], [{a, e}, {a, e}]), ([{b, c, e}, {b, c, e}], [{a, d}, {a, d}]),
([{a, b, c, e}, {a, b, c, e}], [{d}, {d}]), ¯̃

X}.

5. Interval-valued intuitionistic neighborhoods

In this section, we introduce the concept of interval-valued intuitionistic neigh-
borhoods of IVIPs of two types, and find their various properties and give some
examples.

Definition 5.1 ([3]). Let X be an ITS, p ∈ X and let N ∈ IS(X). Then
(i) N is called an intuitionistic neighborhood (briefly, IN) of p

I
, if there exists an

IOS G in X such that

p
I
∈ G ⊂ N, i.e., p ∈ G∈ ⊂ N∈ and G6∈ ⊃ N 6∈,

(ii) N is called an intuitionistic vanishing neighborhood (briefly, IVN) of p
IV

, if
there exists an IOS G in X such that

p
IV
∈ G ⊂ N, i.e., G∈ ⊂ N∈ and p 6∈ N 6∈ ⊂ G6∈.
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We will denote the set of all neighborhoods of p
I

[resp. p
IV

] by N(p
I
) [resp.

N(p
IV

)].

Definition 5.2 ([14]). Let X be an IVTS, a ∈ X and let N ∈ IV S(X). Then
(i) N is called an interval-valued neighborhood (briefly, IVN) of a

IV P
, if there

exists a U ∈ IV O(X) such that

a
IV P
∈ U ⊂ N, i.e., a ∈ U− ⊂ N−,

(ii) N is called an interval-valued vanishing neighborhood (briefly, IVVN) of a
IV V P

,
if there exists a U ∈ IV O(X) such that

a
IV V P

∈ U ⊂ N, i.e., a ∈ U+ ⊂ N+.

We will denote the set of all IVNs [resp. IVVNs] of a
IV P

[resp. a
IV V P

] by N(a
IV P

)
[resp. N(a

IV V P
)].

Definition 5.3. Let X be an IVITS, a ∈ X and let N ∈ IV IS(X). Then
(i) N is called an interval-valued intuitionistic neighborhood (briefly, IVIN) of

a
IV I

, if there exists a U ∈ IV IO(X) such that

a
IV I
∈ U ⊂ N, i.e., a ∈ U∈,− ⊂ N∈,−,

(ii) N is called an interval-valued intuitionistic vanishing neighborhood (briefly,
IVIVN) of a

IV IV
, if there exists a U ∈ IV IO(X) such that

a
IV IV

∈ U ⊂ N, i.e., a 6∈ N 6∈,+ ⊂ U 6∈,+.
We will denote the set of all IVINs [resp. IVIVNs] of a

IV I
[resp. a

IV IV
] by N(a

IV I
)

[resp. N(a
IV IV

)].

Remark 5.4. (1) Let (X, τ) be an IVITS and let N ∈ N(aIV I) [resp. N(aIV IV ).
Consider two ISs and two IVSs in X, respectively given by:

N− = (A∈,−, A6∈,−), N+ = (A∈,+, A6∈,+)

and
N∈ = [A∈,−, A∈,+], N 6∈ = [A 6∈,+

c
, A6∈,−

c
].

Then we can easily check that N− ∈ N(a
I
) [resp. N(a

IV
)] in the ITS (X, τ−),

N+ ∈ N(a
I
) [resp. N(a

IV
)] in the ITS (X, τ+) and N∈ ∈ N(a

IV P
) [resp. N(a

IV V P
)]

in the IVTS (X, τ∈), N 6∈ ∈ N(a
IV P

) [resp. N(a
IV V P

)] in the IVTS (X, τ 6∈).
(2) Let (X, τ) be an IVITS and and let N ∈ N(a

IV I
) [resp. N(a

IV IV
)]. Then

clearly, [ ]N ∈ N(a
IV I

) [resp. N(a
IV IV

)] in IVITS (X, [ ]τ) and 〈 〉N ∈ N(a
IV I

)
[resp. N(a

IV IV
)] in IVITS (X, 〈 〉 τ).

Example 5.5. Let X = {a, b, c, d} and let τ be the IVIT on X given by:

τ = { ¯̃∅, A1, A2, A3, A4, A5, A6, A7, A8, A9,
¯̃
X},

where A1 = ([∅, {a}], [{c}, {c, d}]), A2 = ([{a}, {a}], [{c}, {c, d}]),
A3 = ([{b}, {b}], [{c}, {a, c, d}]), A4 = ([{b, c}, {b, c, d}], [∅, {a}]),
A5 = ([{b, c}, X], [∅,∅]), A6 = ([{a, b, c}, X], [∅,∅]),
A7 = ([{b, c}, {b, c, d}], [∅,∅]), A8 = ([∅,∅], [{a, c}, {a, c, d}]),
A9 = ([∅,∅], [{c}, {a, c, d}]).

Let N = ([{a, b}, {a, b, d}], [{c}, {c}]). Then we can easily see that

N ∈ N(a
IV I

) ∩N(a
IV IV

), N ∈ N(b
IV I

) ∩N(b
IV IV

).
17
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Proposition 5.6. Let X be an IVITS and let a ∈ X.
[IVIN1] If N ∈ N(a

IV I
), then a

IV I
∈ N .

[IVIN2] If N ∈ N(a
IV I

) and N ⊂M , then M ∈ N(a
IV I

).
[IVIN3] If N,M ∈ N(a

IV I
), then N ∩M ∈ N(a

IV I
).

[IVIN4] If N ∈ N(a
IV I

), then there exists M ∈ N(a
IV I

) such that N ∈ N(b
IV I

)
for each b

IV I
∈M .

Proof. The proofs of [IVIN1], [IVIN2] and [IVIN4] are easy.
[IVIN3] Suppose N,M ∈ N(a

IV I
). Then there are U, V ∈ IV IO(X) such that

a
IV I
∈ U ⊂ N and a

IV I
∈ V ⊂M.

Let W = U ∩ V . Then clearly, W ∈ IV IO(X) and a
IV I
∈ W ⊂ N ∩M . Thus

N ∩M ∈ N(a
IV I

). �

Proposition 5.7. Let X be an IVITS and let a ∈ X.
[IVIVN1] If N ∈ N(a

IV IV
), then a

IV IV
∈ N .

[IVIVN2] If N ∈ N(a
IV IV

) and N ⊂M , then M ∈ N(a
IV IV

).
[IVIVN3] If N,M ∈ N(a

IV IV
), then N ∩M ∈ N(a

IV IV
).

[IVIVN4] If N ∈ N(a
IV IV

), then there exists M ∈ N(a
IV IV

) such that N ∈
N(b

IV IV
) for each b

IV IV
∈M .

Proof. The proofs are similar to these of Proposition 5.6. �

Proposition 5.8. Let (X, τ) be an IVITS and let us define two families:

τ
IV I

= {U ∈ IV IS(X) : U ∈ N(a
IV I

) for each a
IV I
∈ U}

and

τ
IV IV

= {U ∈ IV S(X) : U ∈ N(a
IV IV

) for each a
IV IV

∈ U}.
Then we have

(1) τ
IV I

, τ
IV IV

∈ IV IT (X),
(2) τ ⊂ τ

IV I
and τ ⊂ τ

IV IV
.

Proof. (1) We only prove that τ
IV IV

∈ IV IT (X).

(IVIO1) From the definition of τ
IV IV

, we have ¯̃∅, ¯̃
X ∈ τ

IV IV
.

(IVIO2) Let U , V ∈ IV IS(X) such that U , V ∈ τ
IV IV

and let a
IV IV

∈ U ∩ V.
Then clearly, U, V ∈ N(a

IV IV
). Thus by [IVIVN3], U ∩ V ∈ N(a

IV IV
). So U ∩ V ∈

τ
IV IV

.
(IVIO3) Let (Uj)j∈J be any family of IVISs in τ

IV IV
, let U =

⋃
j∈J Uj and let

a
IV IV

∈ U . Then by Theorem 3.13 (2), there is j0 ∈ J such that a
IV IV

∈ Uj0 .
Since Uj0 ∈ τ

IV IV
, Uj0 ∈ N(a

IV IV
) by the definition of τ

IV IV
. Since Uj0 ⊂ U ,

U ∈ N(a
IV IV

) by [IVIVN2]. So by the definition of τ
IV IV

, U ∈ τ
IV IV

.
(2) Let U ∈ τ . Then clearly, U ∈ N(a

IV I
) and U ∈ N(a

IV IV
) for each a

IV I
∈ G

and a
IV IV

∈ G, respectively. Thus U ∈ τ
IV I

and U ∈ τ
IV IV

. So the results hold. �

Remark 5.9. (1) From the definitions of τ
IV I

and τ
IV IV

, we can easily have:
τ
IV I

= τ ∪ {U ∈ IV IS(X) : U = ([V ∈,−, S], [V 6∈,−, V 6∈,+]), V ∈,− 6= ∅,
V ∈,+ ⊂ S ⊂ X, S ∩ V 6∈,+ = ∅ for some V ∈ τ}

and
τ
IV IV

= τ ∪ {U ∈ IV IS(X) : U = ([V ∈,−, V ∈,+], [U 6∈,−, U 6∈,+]),
18
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[U 6∈,−, U 6∈,+] ⊂ [V 6∈,−, V 6∈,+] for some V ∈ τ}.
In fact, it is clear that if V ∈,− = ∅ for each V ∈ τ , then τ

IV I
= τ .

(2) For any IVIT τ on a set X, we can have eight ordinary topologies on X given
by:

τ∈,−
IV I

= {U− ⊂ X : U ∈ τ
IV I
}, τ∈,+

IV I
= {U+ ⊂ X : U ∈ τ

IV I
},

τ 6∈,−
IV I

= {U 6∈,−c ⊂ X : U ∈ τ
IV I
}, τ 6∈,+

IV I
= {U 6∈,+c ⊂ X : U ∈ τ

IV I
},

and
τ∈,−
IV IV

= {U− ⊂ X : U ∈ τ
IV IV
}, τ∈,+

IV IV
= {U+ ⊂ X : U ∈ τ

IV IV
},

τ 6∈,−
IV IV

= {U 6∈,− ⊂ X : U ∈ τ
IV IV
}, τ 6∈,+

IV IV
= {U 6∈,+c ⊂ X : U ∈ τ

IV IV
}.

From Remark 4.4 (1) and the above (1), we can see that

τ 6∈,−
IV I

= τ 6∈,−, τ 6∈,+
IV I

= τ 6∈,+, τ∈,−
IV IV

= τ∈,−, τ∈,+
IV IV

= τ∈,+.

Example 5.10. Let X = {a, b, c, d} and consider the family τ of IVISs in X given
by:

τ = {∅̃, X̃, A1, A2, A3, A4},
where A1 = ([{a}, {a, b}], [{c}, {c}]), A2 = ([{b}, {b}], [{a}, {a, c}]),

A3 = ([∅, {b}], [{a, c}, {a, c}]), A4 = ([{a, b}, {a, b}], [∅, {c}]).
Then we can easily check that (X, τ) is an IVITS. Thus we have:

τ
IV I

= τ ∪ {A5, A6, A7, A8}
and

τ
IV IV

= τ ∪ {A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22},
where A5 = ([{a}, {a, b, d}], [{c}, {c}]), A6 = ([{b}, {b, d}], [{a}, {a, c}]),

A7 = ([{a, b}, {a, b, d}], [∅, {c}]), A8 = ([{a, b, d}, {a, b, d}], [∅, {c}]),
A9 = ([{a}, {a, b}], [∅, {c}]), A10 = ([{a}, {a, b}], [∅,∅]),
A11 = ([{b}, {b}], [{a}, {a}]), A12 = ([{b}, {b}], [∅, {a}]),
A13 = ([{b}, {b}], [∅, {c}]), A14 = ([{b}, {b}], [∅, {a, c}]),
A15 = ([{b}, {b}], [∅,∅]), A16 = ([∅, {b}], [{a}, {a, c}]),
A17 = ([∅, {b}], [{c}, {a, c}]), A18 = ([∅, {b}], [{a}, {a}]),
A19 = ([∅, {b}], [∅, {a}]), A20 = ([∅, {b}], [∅, {c}]),
A21 = ([∅, {b}], [∅, {a, c}]), A22 = ([{a, b}, {a, b}], [∅,∅]).

So we can confirm that Proposition 5.8 holds.
Furthermore, we obtain six ordinary topologies on X for the IVT τ :

τ∈,− = {∅, X, {a}, {b}, {a, b}},
τ∈,+ = {∅, X, {b}, {a, b}},

τ 6∈,− = {∅, X, {a, b, d}, {b, c, d}, {b, d}},
τ 6∈,+ = {∅, X, {a, b, d}, {b, d}},

τ∈,−
IV I

= {∅, X, {a}, {b}, {a, b}, {a, b, d}},
τ∈,+
IV I

= {∅, X, {b}, {a, b}, {b, d}, {a, b, d}},
τ 6∈,−
IV IV

= {∅, X, {a}, {c}, {a, c}},
τ 6∈,+
IV IV

= {∅, X, {c}, {a, c}}.

The following is the immediate result of Proposition 5.8 (2).
19



G.-B. Chae et al./Ann. Fuzzy Math. Inform. 21 (2021), No. 1, 1–28

Corollary 5.11. Let (X, τ) be an IVITS and let IV ICτ [resp. IV ICτ
IV I

and

IV ICτ
IV IV

] be the set of all IVICSs w.r.t. τ [resp. τ
IV I

and τ
IV IV

]. Then

IV ICτ ⊂ IV ICτ
IV I

, and IV ICτ ⊂ IV ICτ
IV IV

.

Example 5.12. Let (X, τ) be the IVITS given in Example 5.10. Then we have:

IV ICτ = { ¯̃∅, ¯̃
X,Ac1, A

c
2, A

c
3, A

c
4},

IV ICτ
IV I

= IV ICτ ∪ {Ac5, Ac6, Ac7, Ac8},
IV Cτ

IV V
= IV Cτ∪{Ac9, Ac10, A

c
11, A

c
12, A

c
13, A

c
14, A

c
15, A

c
16, A

c
17, A

c
18, A

c
19, A

c
20, A

c
21, A

c
22},

where Ac1 = ([{c}, {c}], [{a}, {a, b}]), Ac2 = ([{a}, {a, c}], [{b}, {b}]),
Ac3 = ([{a, c}, {a, c}], [∅, {b}]), Ac4 = ([∅, {c}], [{a, b}, {a, b}])
Ac5 = ([{c}, {c}], [{a}, {a, b, d}]), Ac6 = ([{a}, {a, c}], [{b}, {b, d}]),
Ac7 = ([∅, {c}], [{a, b}, {a, b, d}]), Ac8 = ([∅, {c}], [{a, b, d}, {a, b, d}]),
Ac9 = ([∅, {c}], [{a}, {a, b}]), Ac10 = ([∅,∅], [{a}, {a, b}]),
Ac11 = ([{a}, {a}], [{b}, {b}]), Ac12 = ([∅, {a}], [{b}, {b}]),
Ac13 = ([∅, {c}], [{b}, {b}]), Ac14 = ([∅, {a, c}], [{b}, {b}]),
Ac15 = ([∅,∅], [{b}, {b}]), Ac16 = ([{a}, {a, c}], [∅, {b}]),
Ac17 = ([{c}, {a, c}], [∅, {b}]), Ac18 = ([{a}, {a}], [∅, {b}]),
Ac19 = (∅, {a}], [∅, {b}]), Ac20 = ([∅, {c}], [∅, {b}]),
Ac21 = ([∅, {a, c}], [∅, {b}]), Ac22 = ([∅,∅], [{a, b}, {a, b}]).

Thus we can confirm that Corollary 5.11 holds.

Now let us the converses of Propositions 5.6 and 5.7.

Proposition 5.13. Let X be a non-empty set. Suppose to each a ∈ X, there corre-
sponds a set N∗(aIV V )

) of IVSs in X satisfying the conditions [IVIVN1], [IVIVN2],

[IVIVN3] and [IVIVN4] in Proposition 5.7. Then there is an IVIT on X such that
N∗(aIV IV )

) is the set of all IVINs of a
IV IV

in this IVIT for each a ∈ X.

Proof. Let

τ
IV IV

= {U ∈ IV IS(X) : U ∈ N(a
IV IV

) for each a
IV IV

∈ U},
where N(a

IV IV
) denotes the set of all IVIVNs of a

IV IV
in τ .

Then clearly, τ
IV IV

∈ IV IT (X) by Proposition 5.7. we will prove that N∗(aIV IV )
)

is the set of all IVIVNs of a
IV IV )

in τ
IV IV

for each a ∈ X.

Let V ∈ IV IS(X) such that V ∈ N∗(aIV IV ) and let U be the union of all the
IVIVPs b

IV IV
in X such that U ∈ N∗(aIV IV ). If we can prove that

a
IV IV

∈ U ⊂ V and U ∈ τ
IV IV

,

then the proof will be complete.
Since V ∈ N∗(aIV IV ), a

IV IV
∈ U by the definition of U . Moreover, U ⊂ V .

Suppose b
IV IV

∈ U . Then by [IVIVN4], there is an IVIS W ∈ N∗(bIV IV ) such that
V ∈ N∗(cIV IV )

) for each c
IV IV

∈ W . Thus c
IV IV

∈ U . By Proposition ??, W ⊂ U .

So by [IVIVN2], U ∈ N∗(IV IV ) for each b
IV IV

∈ U . Hence by the definition of τ
IV IV

,
U ∈ τ

IV IV
. This completes the proof. �

Proposition 5.14. Let X be a non-empty set. Suppose to each a ∈ X, there
corresponds a set N∗(aIV I)) of IVISs in X satisfying the conditions [IVIN1], [IVIN2],

[IVIN3] and [IVIN4] in Proposition 5.6. Then there is an IVIT on X such that
N∗(aIV I)) is the set of all IVINs of a

IV I
in this IVT for each a ∈ X.
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Proof. The proof is similar to Proposition 5.13. �

Theorem 5.15. Let (X, τ) be an IVITS and let A ∈ IV IS(X). Then A ∈ τ if and
only if A ∈ N(a

IV I
) and A ∈ N(a

IV IV
) for each a

IV I
, a

IV IV
∈ A.

Proof. Suppose A ∈ N(a
IV I

) and A ∈ N(a
IV IV

) for each a
IV I

, a
IV IV

∈ A. Then
there are Ua

IV I
, Va

IV IV
∈ τ such that a

IV I
∈ Ua

IV I
⊂ A and a

IV IV
∈ Va

IV IV
⊂ A.

Thus

A = (
⋃

a
IV I
∈A

a
IV I

) ∪ (
⋃

a
IV IV

∈A
a
IV IV

) ⊂ (
⋃

a
IV I
∈A

Ua
IV I

) ∪ (
⋃

a
IV IV

∈A
V
IV IV

) ⊂ A.

So A = (
⋃
a
IV I
∈A UaIV I ) ∪ (

⋃
a
IV IV

∈A VaIV IV ). Since Ua
IV I

, Va
IV IV

∈ τ , A ∈ τ .

The proof of the necessary condition is easy. �

Now we will give the relation among three IVITs, τ , τ
IV I

and τ
IV IV

.

Proposition 5.16. τ = τ
IV I
∩ τ

IV IV
.

Proof. From Proposition 5.8 (2), it is clear that τ ⊂ τ
IV I
∩ τ

IV IV
.

Conversely, let U ∈ τ
IV I
∩τ

IV IV
. Then clearly, U ∈ τ

IV I
and U ∈ τ

IV IV
. Thus U is

an IVIN of each of its IVIPs a
IV I

and an IVIVN of each of its IVIVPs a
IV IV

. Thus
there are Ua

IV I
, Ua

IV IV
∈ τ such that a

IV I
∈ Ua

IV I
⊂ U and a

IV IV
∈ Ua

IV IV
⊂ U .

So we have

UIV I =
⋃

a
IV I
∈U

a
IV I
⊂

⋃
a
IV I
∈U

Ua
IV I
⊂ U

and

UIV IV =
⋃

a
IV IV

∈U
a
IV IV

⊂
⋃

a
IV IV

∈U
Ua

IV IV
⊂ U.

By Proposition 3.11, we get

U = UIV I ∪ UIV IV ⊂ (
⋃

a
IV I
∈U

Ua
IV I

) ∪ (
⋃

a
IV IV

∈U
Ua

IV IV
) ⊂ U, i.e.,

U = (
⋃

a
IV I
∈U

Ua
IV I

) ∪ (
⋃

a
IV IV

∈U
Ua

IV IV
).

It is obvious that (
⋃
a
IV I
∈U UaIV I )∪(

⋃
a
IV IV

∈U UaIV IV ) ∈ τ. Hence U ∈ τ. Therefore

τ
IV I
∩ τ

IV IV
⊂ τ. This completes the proof. �

The following is the immediate result of Proposition 5.16.

Corollary 5.17. Let (X, τ) be an IVITS. Then

IV ICτ = IV ICτ
IV I
∩ IV ICτ

IV IV
.

Example 5.18. In Example 5.12, we can easily check that Corollary 5.17 holds.
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6. Interiors and closures of IVISs

In this section, we define interval-valued intuitionistic interiors and closures, and
study some of their properties and give some examples. In particular, we will show
that there is a unique IVIT on a set X from the interval-valued intuitionistic closure
[resp. interior] operator.

Definition 6.1. Let (X, τ) be an IVITS and let A ∈ IV IS(X).
(i) The interval-valued intuitionistic closure of A w.r.t. τ , denoted by IV Icl(A),

is an IVIS in X defined as:

IV Icl(A) =
⋂
{K : Kc ∈ τ and A ⊂ K}.

(ii) The interval-valued intuitionistic interior of A w.r.t. τ , denoted by IV Iint(A),
is an IVIS in X defined as:

IV Iint(A) =
⋃
{G : G ∈ τ and G ⊂ A}.

(iii) The interval-valued intuitionistic closure of A w.r.t. τ
IV I

, denoted by cl
IV I

(A),
is an IVIS in X defined as:

cl
IV I

(A) =
⋂
{K : Kc ∈ τ

IV I
and A ⊂ K}.

(iv) The interval-valued intuitionistic interior of A w.r.t. τ
IV I

, denoted by int
IV I

(A),
is an IVIS in X defined as:

int
IV I

(A) =
⋃
{G : G ∈ τ

IV I
and G ⊂ A}.

(v) The interval-valued intuitionistic closure of A w.r.t. τ
IV IV

, denoted by cl
IV IV

(A),
is an IVS in X defined as:

cl
IV IV

(A) =
⋂
{K : Kc ∈ τ

IV IV
and A ⊂ K}.

(vi) The interval-valued intuitionistic interior of A w.r.t. τ
IV IV

, denoted by
int

IV IV
(A), is an IVS in X defined as:

int
IV IV

(A =
⋃
{G : G ∈ τ

IV IV
and G ⊂ A}.

Remark 6.2. From the above definition, it is obvious that the followings hold:

IV Iint(A) ⊂ int
IV I

(A), IV Iint(A) ⊂ int
IV IV

(A)

and

cl
IV I

(A) ⊂ IV Icl(A), cl
IV IV

(A) ⊂ IV Icl(A).

Example 6.3. Let (X, τ) be the IVTS given in Example 5.12. Consider two IVISs
A = ([{b}, {b, d}], [∅, {c}]) and B = ([∅, {c}], [{a, b}, {a, b, d}]) in X. Then

IV Iint(A) =
⋃
{G ∈ τ : G ⊂ A} = A2 ∪A3 = A2,

int
IV I

(A) =
⋃
{G ∈ τ

IV I
: G ⊂ A} = A2 ∪A6 = A6,

int
IV IV

(A) =
⋃
{G ∈ τ

IV IV
: G ⊂ A}

= A2 ∪A13 ∪A14 ∪A16 ∪A17 ∪A20 ∪A21 = A13

and
IV Icl(B) =

⋂
{F : F c ∈ τ, B ⊂ F} = Ac1 ∩Ac2 ∩Ac3 ∩Ac4 = Ac4,

cl
IV I

(B) =
⋂
{F : F c ∈ τ

IV I
, B ⊂ F} = Ac4 ∩Ac5 ∩Ac6 ∩Ac7 = Ac7,

cl
IV IV

(B) =
⋂
{F : F c ∈ τ

IV IV
, B ⊂ F}
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= Ac4 ∩Ac9 ∩Ac13 ∩Ac14 ∩Ac16 ∩Ac17 ∩Ac20 ∩Ac21 = Ac4.
Thus we can confirm that Remark 6.2 holds.

Proposition 6.4. Let (X, τ) be an IVITS and let A ∈ IV IS(X). Then

IV Iint(Ac) = (IV Icl(A))c and IV Icl(Ac) = (IV Iint(A))c.

Proof. IV int(Ac)
=

⋃
{U ∈ τ : U ⊂ Ac}

=
⋃
{U ∈ τ : U∈,− ⊂ A 6∈,−, U∈,+ ⊂ A 6∈,+, U 6∈,− ⊃ A∈,−, U 6∈,+ ⊃ A∈,+}

=
⋃
{U ∈ τ : A∈,− ⊂ U 6∈,−, A∈,+ ⊂ U 6∈,+, A6∈,− ⊃ U∈,−, A6∈,+ ⊃ U 6∈,−}

=
⋂
{U c : U ∈ τ,A ⊂ U c}

= IV Icl(A).
Similarly, we can show that IV Icl(Ac) = (IV Iint(A))c. �

Proposition 6.5. Let (X, τ) be an IVITS and let A ∈ IV IS(X). Then

IV Iint(A) = int
IV I

(A) ∩ int
IV IV

(A).

Proof. The proof is straightforward from Proposition 5.16 and Definition 6.1. �

The following is the immediate result of Definition 6.1, and Propositions 6.4 and
6.5.

Corollary 6.6. Let (X, τ) be an IVITS and let A ∈ IV IS(X). Then

IV Icl(A) = cl
IV I

(A) ∪ cl
IV IV

(A).

Example 6.7. Consider two IVISs A and B in X given in Example 6.3:

A = ([{b}, {b, d}], [∅, {c}]) and B = ([∅, {c}], [{a, b}, {a, b, d}]).

Then we have:

IV Iint(A) = A2 = ([{b}, {b}], [{a}, {a, c}]),

int
IV I

(A) = A6 = ([{b}, {b, d}], [{a}, {a, c}]),

int
IV IV

(A) = A13 = ([{b}, {b}], [∅, {c}])
and

IV Icl(B) = Ac4 = ([∅, {c}], [{a, b}, {a, b}]),

cl
IV I

(B) = Ac7 = [∅, {c}], [{a, b}, {a, b, d}]),

cl
IV IV

(B) = Ac4 = ([∅, {c}], [{a, b}, {a, b}]).
Thus int

IV I
(A) ∩ int

IV IV
(A) = ([{b}, {b}], [{a}, {a, c}]) = IV Iint(A)

and
cl
IV I

(B) ∪ cl
IV IV

(B) = ([∅, {c}], [{a, b}, {a, b}]) = IV Icl(B).
So we can confirm that Proposition 6.5 and Corollary 6.6 hold.

Theorem 6.8. Let X be an IVITS and let A ∈ IV IS(X). Then
(1) A ∈ IV IC(X) if and only if A = IV Icl(A),
(2) A ∈ IV IO(X) if and only if A = IV Iint(A).

Proof. Straightforward. �
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Proposition 6.9 (Kuratowski Closure Axioms). Let X be an IVTIS and let A,B ∈
IV IS(X). Then

[IVIK0] if A ⊂ B, then IV Icl(A) ⊂ IV Icl(B),

[IVIK1] IV Icl( ¯̃∅) = ¯̃∅,
[IVIK2] A ⊂ IV Icl(A),
[IVIK3] IV Icl(IV Icl(A)) = IV Icl(A),
[IVIK4] IV Icl(A ∪B) = IV Icl(A) ∪ IV Icl(A).

Proof. Straightforward. �

Let IV cl∗ : IV IS(X) → IV IS(X) be the mapping satisfying the properties
[IVIK1], [IVIK2],[IVIK3] and [IVIK4]. Then we will call the mapping IV Icl∗ as the
interval-valued intuitionitic closure operator (briefly, IVICO) on X.

Proposition 6.10. Let IV Icl∗ be the IVICO on X. Then there exists a unique
IVIT τ on X such that IV Icl∗(A) = IV Icl(A), for each A ∈ IV IS(X), where
IV Icl(A) denotes the interval-valued intuitionistic closure of A in the IVTS (X, τ).
In fact,

τ = {Ac ∈ IV IS(X) : IV Icl∗(A) = A}.

Proof. The proof is almost similar to the case of classical topological spaces. �

Proposition 6.11. Let X be an IVITS and let A,B ∈ IV IS(X). Then
[IVII0] if A ⊂ B, then IV Iint(A) ⊂ IV Iint(B),

[IVII1] IV Iint(
¯̃
X) =

¯̃
X,

[IVII2] IV Iint(A) ⊂ A,
[IVII3] IV int(IV int(A)) = IV int(A),
[IVII4] IV Iint(A ∩B) = IV Iint(A) ∩ IV Iint(A).

Proof. Straightforward. �

Let IV Iint∗ : IV IS(X) → IV IS(X) be the mapping satisfying the properties
[IVII1], [IVII2],[IVII3] and [IVI4]. Then we will call the mapping IV int∗ as the
interval-valued intuitionistic interior operator (briefly, IVIIO) on X.

Proposition 6.12. Let IV Iint∗ be the IVIIO on X. Then there exists a unique
IVIT τ on X such that IV Iint∗(A) = IV Iint(A), for each A ∈ IV IS(X), where
IV Iint(A) denotes the interval-valued intuitionistic interior of A in the IVITS
(X, τ). In fact,

τ = {A ∈ IV IS(X) : IV Iint∗(A) = A}.

Proof. The proof is similar to one of Proposition 6.10. �

Definition 6.13. Let (X, τ) be an IVITS, a ∈ X and let A ∈ IV IS(X). Then
(i) a

IV I
∈ A is called a τ

IV I
-interior point of A, if A ∈ N(a

IV I
),

(ii) a
IV IV

∈ A is called a τ
IV IV

-interior point of A, if A ∈ N(a
IV IV

).
We will denote the union of all τ

IV I
-interior points [resp. τ

IV IV
-interior points] of

A as τ
IV I
− int(A) [resp. τ

IV IV
− int(A)]. It is clear that

τ
IV I
− int(A) =

⋃
{a

IV I
: A ∈ N(a

IV I
)}

[resp. τ
IV IV

− int(A) =
⋃
{a

IV IV
: A ∈ N(a

IV IV
)}].
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Theorem 6.14. Let (X, τ) be an IVITS and let A ∈ IV IS(X).
(1) A ∈ τ

IV I
if and only if AIV I = τ

IV I
− int(A).

(2) A ∈ τ
IV IV

if and only if AIV IV = τ
IV IV

− int(A).

Proof. (1) Suppose A ∈ τ
IV I

and let a
IV I
∈ AIV I . Then by the definition of AIV I ,

a
IV I
∈ A. Thus by the definition of τ

IV I
, A ∈ N(a

IV I
). So a

IV I
∈ τ

IV I
− int(A),

i.e., AIV I ⊂ τIV I − int(A).
Now let a

IV I
∈ τ

IV I
− int(A). Then A ∈ N(a

IV I
). Thus a

IV I
∈ A. So a

IV I
∈

AIV I , i.e., τ
IV I
− int(A) ⊂ AIV I . Hence AIV I = τ

IV I
− int(A).

Conversely, suppose the necessary condition holds and let a
IV I
∈ A. Then a

IV I
∈

AIV I . Thus by the hypothesis, a
IV I
∈ τ

IV I
− int(A). So A ∈ N(a

IV I
). Hence by

the definition of τ
IV I

, A ∈ τ
IV I

.
(2) The proof is similar to that of (1). �

Proposition 6.15. Let X be a non-empty set, (Aj)j∈J ⊂ IV IS(X) and let A =⋃
j∈J Aj. Then

(1) AIV I =
⋃
j∈J Aj,IV I ,

(2) AIV IV =
⋃
j∈J Aj,IV IV .

Proof. (1) For each j ∈ J , let Aj = ([A∈,−j , A∈,+j ], [A 6∈,−j , A6∈,+j ]). Then clearly, we
have

A =
⋃
j∈J

Aj = ([
⋃
j∈J

A∈,−j ,
⋃
j∈J

A∈,+j ], [
⋂
j∈J

A 6∈,−j ,
⋂
j∈J

A 6∈,+j ]).

Now let a
IV I
∈ A. Then a

IV I
∈
⋃
j∈J Aj . Thus a ∈

⋃
j∈J A

∈,−
j . So there is j0 ∈ J

such that a ∈ A∈,−j0 . Hence a
IV I
∈ Aj0,IV I , i.e., a

IV I
∈
⋃
j∈J Aj,IV I .

Conversely, suppose a
IV I
∈

⋃
j∈J Aj,IV I . Then there is j0 ∈ J such that a

IV I
∈

Aj0,IV I . Thus a ∈ A∈,−j0 . So a ∈
⋃
j∈J A

∈,−
j . Hence a

IV I
∈ AIV I . Therefore

AIV I =
⋃
j∈J Aj,IV I .

(2) The proof is similar to that of (1). �

Proposition 6.16. Let (X, τ) be an IVITS and let A ∈ IV IS(X). Then
(1) τ

IV I
− int(A) =

⋃
G⊂A, G∈τ

IV I
GIV I ,

(2) τ
IV IV

− int(A) =
⋃
G⊂A, G∈τ

IV IV
GIV IV .

Proof. Suppose a
IV I
∈
⋃
G⊂A, G∈τ

IV I
GIV I . Then there is G ∈ τ

IV I
such that

G ⊂ A and a
IV I
∈ GIV I .

Thus a
IV I
∈ G. Since G ∈ τ

IV I
, G ∈ N(a

IV I
). So A ∈ N(a

IV I
). Hence a

IV I
∈

τ
IV I
− int(A).

Conversely, suppose a
IV I
∈ τ

IV I
− int(A). Then there is G ∈ τ such that

a
IV I
∈ G ⊂ A.

Moreover, a
IV I
∈ GIV I and G ∈ τ

IV I
. Thus a

IV I
∈

⋃
G⊂A, G∈τ

IV I
GIV I . So the

result holds.
(2) The proof is similar to that of (1). �
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Remark 6.17. From Definitions 6.1 and 6.13, we have the following inclusions:

τ
IV I
− int(A) ⊂ int

IV I
(A), τ

IV IV
− int(A) ⊂ int

IV IV
(A).

But the reverse inclusions do not hold in general (See Example 6.18).

Example 6.18. Let (X, τ) be the IVITS given in Example 5.10 and consider the
IVIS A = ([{b}, {b, d}], [∅, {c}]). Then clearly, we have

int
IV I

(A) = A6 = ([{b}, {b, d}], [{a}, {a, c}])

and

int
IV IV

(A) = A2 = ([{b}, {b}], [{a}, {a, c}]).
On the other hand, by Propositions 3.11 and 6.16, we have

τ
IV I
− int(A) = ([{b}, {b}], [{a, c}, {a, c}]), τ

IV IV
− int(A) = ([∅, {b}], [{a}, {a, c}]).

Thus we can confirm Remark 6.17.

Remark 6.19. From Example 6.18, we have the following strict inclusions:

τ
IV I
− int(A) ⊂ int

IV I
(A), τ

IV I
− int(A) 6= int

IV I
(A),

τ
IV IV

− int(A) ⊂ int
IV IV

(A), τ
IV IV

− int(A) 6= int
IV IV

(A).

Proposition 6.20. Let (X, τ) be an IVITS and let A, B ∈ IV IS(X). Then
(1) τ

IV I
− int(A) ⊂ AIV I , τ

IV IV
− int(A) ⊂ AIV IV ,

(2) if A ⊂ B, then τ
IV I
−int(A) ⊂ τ

IV I
−int(B), τ

IV IV
−int(A) ⊂ τ

IV IV
−int(B),

(3) τ
IV I
− int(A ∩B) = τ

IV I
− int(A) ∩ τ

IV I
− int(B),

τ
IV IV

− int(A ∩B) = τ
IV IV

− int(A) ∩ τ
IV IV

− int(B),

(4) τ
IV I
− int( ¯̃

X) =
¯̃
X, τ

IV IV
− int( ¯̃

X) = ([∅, X], ∅̄).

Proof. From Definition 6.13 and Proposition 6.16, the proofs of (1) and (2) are
obvious. Also, the proof of (4) is clear from Proposition 6.16. We will prove only
(3).

Let a
IV I
∈ τ

IV I
− int(A∩B). Then clearly, A∩B ∈ N(a

IV I
). Thus A ∈ N(a

IV I
)

and B ∈ N(a
IV I

). So a
IV I
∈ τ

IV I
− int(A) and a

IV I
∈ τ

IV I
− int(B), i.e.,

a
IV I
∈ τ

IV I
− int(A) ∩ τ

IV I
− int(B).

Hence τ
IV I
− int(A ∩B) ⊂ τ

IV I
− int(A) ∩ τ

IV I
− int(B).

Conversely, suppose a
IV I
∈ τ

IV I
− int(A)∩ τ

IV I
− int(B). Then A ∈ N(a

IV I
) and

B ∈ N(a
IV I

). Thus A∩B ∈ N(a
IV I

). So a
IV I

is a τ
IV I

-interior point of A∩B, i.e.,

a
IV I
∈ τ

IV I
− int(A ∩B).

Hence τ
IV I
− int(A) ∩ τ

IV I
− int(B) ⊂ τ

IV I
− int(A ∩ B). Therefore the equality

holds.
The proof of the second part is similar to that of the first part. �

Remark 6.21. The equalities τ
IV I
− int(τ

IV I
− int(A)) = τ

IV I
− int(A) and τ

IV IV
−

int(τ
IV IV

− int(A)) = τ
IV IV

− int(A) do not hold in general (See Example 6.22)
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Example 6.22. Let (X, τ) be the IVITS given in Example 5.10 and let A be the
IVIS in X given in Example 6.18. Then we can easily check that

τ
IV I
− int(A) = ([{b}, {b}], [{a, c}, {a, c}])

and

τ
IV I
− int(τ

IV I
− int(A)) = (∅̄, [{a, c}, {a, c}]).

Thus τ
IV I
− int(A) 6= τ

IV I
− int(τ

IV I
− int(A)).

7. Conclusions

We introduced the new concept of interval-valued intuitinistic sets which are the
generalization of classical sets and the special case of interval-valued intuitionistic
fuzzy sets, and obtained its various properties. Also, we defined an interval-valued
intuitionistic ideal and studied some of its properties. Next, we introduced the no-
tion of interval-valued intuitionistic topological spaces which are considered as a
bitopological space proposed by Kelly [19]. Moreover, we defined an interval-valued
intuitionistic base and subbase and found the characterization of an interval-valued
intuitionistic base. Finally, we introduced the concept of interval-valued intuitionis-
tic neighborhoods and obtained some similar properties to classical neighborhoods.
Furthermore, we defined an interval-valued intuitionistic closure and interior and
dealt with their some properties. In the future, we expect that one can apply the
concept of interval-valued intuitionistic sets to group and ring theory, BCK-algebra
and category theory, etc.
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