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ABSTRACT. In this paper, we introduce the new notion of interval-
valued intuitionistic sets providing a tool for approximating undefinable
or complex concepts. First, we deal with some of its algebraic structures.
Also, we define an interval-valued intuitionistic (vanishing) point and ob-
tain some of its properties. Next, we define an interval-valued intuitionistic
topology, base (subbase), neighborhood and interior (closure), respectively
and study some of each properties, and give some examples.

2020 AMS Classification: 54A10

Keywords: Interval-valued intutionistic set, Interval-valued intutionistic (vanish-
ing) point, Interval-valued intutionistic topological space, Interval-valued intution-
istic base, Interval-valued intutionistic neighborhood, Interval-valued intutionistic
closure, Interval-valued intutionistic interior.

Corresponding Author: J. Kim (junhikim@wku.ac.kr)

1. INTRODUCTION

In 1996, Coker [1] proposed the concept of an intuitionistic set as the generalza-
tion of an ordinary set and the specialization of an intuitionistic fuzzy set introduced

by Atanassove [2]. After then, many researchers [3, 4, 5, , , 12,
applied the notion to topology and category theory. Recently, Klm et al [14] dealt
with some properties of interval-valued sets (by introduced bu Yao [15]) as the gen-

eralization of classical sets and the special case of interval-valued fuzzy set proposed
by Zadeh [16] and applied it to topological structures.

In order to provide a tool for modelling and processing partially known con-
cepts, we propose a new notion of interval-valued intuitionistic sets by combining
interval-valued sets with intuitionistic sets. Furthermore, we apply this concept to
topology. To accomplish such research, this paper is composed of six sections. In
Section 2, we recall some definitions of intuitionistic sets introduced by Coker [1]
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and interval-valued sets proposed by Yao [15], and Kim et al. [14]. In Section 3,
we introduce the new concept of interval-valued intuitionistic set and obtain some
of its algebraic structures. Also, we define interval-valued intuitionistic points of
two types and discuss with the characterizations of inclusions, intersections and
unions of interval-valued intuitionistic sets. Furthermore, we introduce the concept
of interval-valued intuitionistic ideals and obtain some of its properties. In Section 4,
we define an interval-valued intuitionistic topology, an interval-valued intuitionistic
base and subbase, and study some of their properties. In Section 5, we introduce
the notions of interval-valued neighborhoods of two types and find some of their
properties. In particular, we show that there is an IVIT under the hypothesis satis-
fying some properties of interval-valued intuitionistic neighborhoods. In Section 6,
we define an interval-valued interior and closure and obtain some of their properties.
Also, we prove that there is a unique IVIT for interval-valued intuitionistic interior
[resp. closure] operators.

2. PRELIMINARIES

In this section, we recall the concepts of intuitionistic sets and intuitionistc points
introduced by [1]. Also, we recall the notions of interval-valued sets and interval-
valued points proposed by [14, 15].

Definition 2.1 ([1]). Let X be a non-empty set. Then A is called an intuitionistic set
(briefly, IS) of X, if it is an object having the form

A= (AS A%,

such that ASNA% = @, where A€ [resp. A%] represents the set of memberships [resp.
non-memberships| of elements of X to A. In fact, A€ [resp. A%] is a subset of X
agreeing or approving [resp. refusing or opposing] for a certain opinion, suggestion
or policy.

The intuitionistic empty set [resp. the intuitionistic whole set] of X, denoted by
@ [resp. X], is defined by @ = (&, X) [resp. X = (X, @)]. We will denote the set
of all ISs of X as IS(X). Note that for each A € IS(X), A€ U A% # X in general.
The inclusion, the equality, the intersection and the union of ISs, the complement
of an IS, and the operations intersection [ ] and < > on IS(X) refer to [1].

It is obvious that A = (A, @) € I5(X) for each ordinary subset A of X. Then we
can consider an IS of X as the generalization of an ordinary subset of X.

Remark 2.2. Let X be a set and let A € I5(X). Then we can easily see that
Xa = (Xaer X g)

is an intuitionistic fuzzy set in X introduced by Atanassov [2]. Thus we can consider
an intuitionistic set A in X as the specialization of an intuitionistic fuzzy set in X.

Definition 2.3 ([1]). Let X be a non-empty set, a € X and let A € IS(X).
(i) The form ({a},{a}®) [resp. (&, {a}?)] is called an intuitionistic point [resp.
vanishing point] of X and denoted by a, [resp. a,,].
(ii) We say that a, [resp. a,,] is contained in A, denoted by a, € A [resp.
a,, € A, if a € A€ [resp. a ¢ A%].
2
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We will denote the set of all intuitionistic points and intuitionistic vanishing points
in X as Ip(X).

Result 2.4 ([1], Proposition 3.6). Let A € IS(X). Then
A=A UAy,

where Ap = UaIGA a, and Ay = aneA a,y . In fact, Ay = (A5, AS°) and Ary =
(@, A%).

Definition 2.5 ([14, 15]). Let X be an non-empty set. Then the form

[A=,AT]={B: A~ CBcCA'"}

is called an interval-valued set (briefly, IVS) in X, if A=, AT C X and A~ C A™.
where A=, AT C X and A~ C AT. In this case, A~ [resp. A™] represents the
set of minimum [resp. maximum| memberships of elements of X to A. In fact, A~
[resp. AT] is a minimum [resp. maximum] subset of X agreeing or approving for
a certain opinion, suggestion or policy. [&, @] [resp. [X, X]] is called the interval-
valued empty [resp. whole] set in X and denoted by @ [resp. X ]. We will denote
the set of all IVSs in X as IV S(X).

It is obvious that [A, A] € TVS(X) for classical subset A of X. Then we can
consider an IVS in X as the generalization of a classical subset of X. Furthermore,
if A=[A",A"] € [X], then

Xa =X, Xt ]
is an interval-valued fuzzy set in X introduced by Zadeh [16]. Thus we can con-
sider an interval-valued fuzzy set as the generalization of an IVS. The inclusion, the

equality, the intersection and the union of IVSs and the complement of an IVS refer
to [14, 15].

Definition 2.6 ([14]). Let X be a non-empty set, let a € X and let A € IVS(X).
Then the form [{a}, {a}] [resp. [, {a}]] is called an interval-valued [resp. vanishing]
point in X and denoted by a,,,, [resp. a,,,]. We will denote the set of all interval-
valued points in X as I'Vp(X).

(i) We say that a,, , belongs to A, denoted by a,, ., € A, ifa € A™.

(i) We say that a,,., belongs to A, denoted by a,,,, € A, ifa € AT.

Result 2.7 ([14], Proposition 3.11). Let X be a non-empty set and let A € IV.S(X).
Then
A=AypUAvvpe,

where AIVP = UaIVPEA Ay, and A[vvp = UaIVVP
In fact, Ajyp =[A", A7) and Ajyvp = [@,AJ"]

€A Aryyp:

3. INTERVAL-VALUED INTUITIONISTIC SETS

In this section, we introduce the notion of interval-valued intuitionistic sets and
study some of its properties. Also, we define an ideal of interval-valued intuitionistic
sets and obtain some of its properties.

3



G.-B. Chae et al./Ann. Fuzzy Math. Inform. 21 (2021), No. 1, 1-28

Definition 3.1. Let X be a non-empty set. Then the form
A= ([AQ—’ A67+]7 [A%_? A€7+])
is called an interval-valued intuitionistic set (briefly, IVIS) in X, if it satisfies the
following conditions:
[AS ™, AST], [AD, A%F] € IVS(X) and AST N AT = 2.

In this case, [AS—, AST] [resp. [A%~, A% 7] represents the interval-valued set of
memberships [resp. non-memberships| of elements of X to A. In fact, [AS—, AST)
[resp. [A%~, A%T]] is an interval-valued set in X agreeing or approving [resp. re-
fusing or opposing] for a certain opinion, suggestion or policy. (&, X ) [resp. ()Z' , D))
is called the interval-valued intuitionistic empty [resp. whole] set in X and denoted
by & [resp. X]. We will denote the set of all IVISs in X as IVIS(X).

It is clear that AS~ N A%~ = @ for each A € IVIS(X).

It is obvious that ([4, A], [A¢, A°]) € IVIS(X) for a classical subset A of X. Then
we can consider an IVIS in X as the generalization of a classical subset of X. If
A= ([AS—,AST] [A%~, A%T]) € IVIS(X), then

Xa = ([XAe,— ) XAe,+]7 [XAg,f ) XAQ,+])
is an interval-valued intuitionistic fuzzy set in X (See [17]). Thus we can consider an
interval-valued intuitionistic fuzzy set as the generalization of an IVIS. Furthermore,
for any IS A = (A€, A%) and any IVS B = [B~, BT] in a set X, we may write
A = ([AS, A%°],[A%, AS°]) and B = ([B~, B*],[B*", B~ ).

So we can consider an IVIS as the generalization of both an IS and an IVS. Hence
we have the following Figure 1:

Interval-valued intuitionistic fuzzy set

Interval-valued intuitionistic set

Classical Interval-valued

set set

FIGURE 1.



G.-B. Chae et al./Ann. Fuzzy Math. Inform. 21 (2021), No. 1, 1-28

Example 3.2. Let X = {a,b,c}. Then we can easily check that

([2,{a}], (2, {b}]), ({a};{a,0}],[{c} {c}]), ([0}, {b}]; [{c}, {a, c}]) € IVIS(X).

Definition 3.3. Let X be a non-empty set and let A, B € IVIS(X). Then

(i) we say that A contained in B, denoted by A C B, if it satisfies the following
conditions: AS~ Cc BS~, ASt C BS*, A%~ 5 B%~ and A% T O B%T,

(ii) we say that A equal to B, denoted by A = B, if AC B and B C A,

(iii) the complement of A, denoted A€, is an interval-valued set in X defined by:

A= ([Ag’ivAéHr]v [Ae’ia Ae’+])a

(iv) the union of A and B, denoted by AUB, is an interval-valued set in X defined
by:
AUB = ([ASTUAS T AST U AST] [A%7 N A%~ AT 0 A%T]),
(v) the intersection of A and B, denoted by AN B, is an interval-valued set in X
defined by:

ANB = ([AS™NAST AST N AST] [A%~ U A%~ AT U ADT)).
(vi) the operations [ ] and ( ) on IV IS(X) define as follows: for each A € IVS(X),
[1A= ([AE,—’ A€7+]7 [A6’+07AE7_C])v (YA= ([A€7+C7A€’_c]v [AQ,—’ A%-‘r]).

Example 3.4. Let X = {a,b, c}. Consider two IVISs A = ([{a}, {a,b}], [{c},{c}]), B =
([{b},{b}], [{a},{a,c}]). Then clearly we have

A¢ = ([{c}, {c}], Ha}, {a, b}]), AUB = ([{a,b},{a,b}], [, {c}]),

AN B = ([2,{b}],[{a, ¢}, {a, c}]), []A = ([{a},{a,b}], [{c}, {b, c}]),

() A= ([{a,b},{a,b}], {c}, {c}]).

The followings are immediate results of Definition 3.3.

Proposition 3.5 (See [13], Proposition 3.5). Let X be a non-empty set and let
A, B, CelIVIS(X). Then
(1) g cAcCX,
(2) if AC B and B C C, then A C C,
(3 ACAUB and BC AU B,
(4) ANBCAand ANB C B,
(5) AC B ifand only if ANB = A,
(6) AC B if and only if AUB = B.

Proposition 3.6 (See [13], Proposition 3.6). Let X be a non-empty set and let
A, B, C € IVIS(X). Then
(1) (Idempotent laws) AUA=A, ANA=A,

(2) (Commutative laws) AUB=BUA, ANB=BnNA,

(3) (Associative laws) AU(BUC)=(AUB)UC, AnN(BNC)=(ANB)NC,

(4) (Distributive laws) AU(BNC)=(AUB)N(AUC),
AN(BUC)=(ANnB)U((ANCQO),

) (Absorption laws) AU(ANB)=A, AN(AUB) = A,

) (DeMorgan’s laws) (AU B)¢ = A°N B¢, (ANB)®= A°U B¢,

) (A%)° = 4,

) (
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(&) AUX =X, ANX = A,
8) X =8, 8 =X,
(84) AUA® £ X, AN A° + Z in general (See Example 3.7).
Example 3.7. Let X = {a,b,c}. Consider an IVIS A = ([{a}, {a,b}],[{c},{c}]) €
[X]. Then clearly, A° = ([{c},{c}], [{a},{a,b}]). Thus we have
ANA° = ([9,2],[{a,c}, X]) # @ and AU A° = ([{a,c}, X], (@, 2]) # X.

Definition 3.8. Let (A;),cs be a family of members of IVIS(X). Then
(i) the intersection of (A;);e., denoted by (;c; Aj, is an interval-valued set in

X defined by:
N4 =N A5 A7 1L IU AP U 45D,
j€J jeJ jed jeJ jeJ
(ii) the union of (A;);es, denoted by ;e ; gj, is an interval-valued set in X
defined by:
U4 =aUJas— UAy LN Ay N 45 .
jeJ jeJ jes jeJ jeJ

The following is the immediate result of Definition 3.8.

Proposition 3.9 (See [13], Proposition 3.7). Let A € IVIS(X) and let (A;);jes be
a family of members of IVIS(X). Then

(1) (ﬂjeJ AJ’)C = UjeJ A§7 (UjeJ AJ’)C = ﬂjeJ A§7

(2) AN (UjEJ Aj) = UjeJ(A N Aj)v AU (ﬂjeJ Aj) = ﬂjeJ(A U Aj)-

From Propositions 3.6 and 3.9, we can easily see that (IVIS(X),U,N,°, 57)?)
forms a Boolian algebra except the property (8;).

Definition 3.10. Let X be a non-empty set, let a € X and let A € IVIS(X). Then
the form ([{a}, {a}],[{a}, {a}?]) [resp. ([&,{a}],[{a}", {a}])] is called an interval-
valued intuitionistic [resp. vanishing] point in X and denoted by a,,, [resp. a
We will denote the set of all interval-valued points in X as IVIP(X).

(i) We say that a,,, belongs to A, denoted by a,,, € A, if a € AS~.

(ii) We say that a,,,, belongs to A, denoted by a,,,, € A, if a ¢ A+,

€ A, then a ¢ A%+ and if a,,, € A, then a € AS+.

Proposition 3.11. Let X be a non-empty set and let A € IVIS(X). Then
A=AvrUAvrv,

IVIV]'

It is obvious that if a

VIV IvI

where Aryr = UU‘IVIGA a,,, and Arvry = UG‘IVIVEA Ay -
In fact, A[V[ = ([AE,—’ AE’_L [A€’+, A€’+]) and AIVIV = ([@, A€’+], [AQ,—7 A€’+D.
Proof. From Definition 3.10 and the definitions of Ayy; and Ay v, we have
AIVI = UaIVIeA Qry
— (U eab U, cdadliNe cadad®N, cadal))

= ([Uaeae{a}t, Useac—{a}], Nacac. {0} Naeae.-{a}])
= ([Useae - {a}, Uscac.~{a}]s [Nagae + {0} Nagae.+ {a}])
6
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= ([AS7, AS7], [A%+, A7)

and
AIVIV = Uazvzv cA Aryryv
= ([97 UG‘IVIV EA{G’}]’ [maIVIV GA{G‘}C’ maIVIV EA{G‘}C])
= (2, Uscac+{a}]: Nagae.-{a}, Nagae.+ {a}])
= ([@, AG’JFL [A€’77 A€’+])'
TheIlA:A[V[UA[Vjv. O

Example 3.12. Let X = {a,b,c,d,e, f,g,h,i}. Consider an IVIS
A = ([{a’ b? C}, {a7 b7 C? d? e}]? [{f7 g}’ {f7 g7 h}]'

Then clearly, we have

a’IVI? bIVI’CIVI € A and a’[VIV? bIVIV7 CIVIV’ dIVIV7 eIVIV’ ZIVIV EA

Thus we can easily calculate the followings:

AIVI = ([{CI,, b7 C}v {avb’ CH, [{fﬁgvh}v {faga h}] = ([Ae’_HAe_]v [A€7+7A€7+])

and

AIVIV = ([Qa {a7 b, c, da 6}], [{f7 9}7 {fa g, h}]) = ([@’ AE’+]7 [A€7_7 A€7+])
So we can confirm that Proposition 3.11 holds.

Theorem 3.13. Let (A;)jes CIVIS(X) and let a € X.

(1) ayy, € Njes Ay [resp- av,y € Njes Ajl if and only if a,,, € Aj [resp.
Qv € Ajf for each j € J.

(2) ayv; € Ujes Aj [resp. ayy,y € Ujey Ajf if and only if there exists j € J such
that a,,,, € A; [resp. a,,,, € A,].

Proof. Straightforward. O

Theorem 3.14. Let A,B € IVIS(X). Then

(1) AC B if and only if a,,, € A= a,,, € B [resp. a,,,, € A= a,,,, € B/
for each a € X.

(2) A= B if and only if a,,, € A< a,,, € B [resp. a,,,, € A< a,,,, € BJ
for each a € X.

Proof. Straightforward. O

Definition 3.15. Let X, Y be two non-empty sets, let f : X — Y be a mapping
and let A € IVIS(X), B € IVIS(Y).
(i) The image of A under f, denoted by f(A), is an interval set in Y defined as:

FA) = ([F(A7), FAS T [F(A%7), F(AZT)]).

(ii) The preimage of B under f, denoted by f~1(B), is an interval set in X defined
as:
F7HB) = ((FHBET), I BENLIHBE), fH(BET)),
It is obvious that f(aryr) = f(a)rvr and f(arvrv) = f(a)rvry for each a € X.
7
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Proposition 3.16. Let X, Y be two non-empty sets, let f : X — Y be a map-
ping, let A, A, Ay € IVIS(X), (Aj)jej - IVIS(X) and let B, By, By €
IVIS(Y), (Aj)jes CIVIS(Y). Then

(1) if A1 C A, then f(A1) C f(A2),

(2) if By C Ba, then f~Y(By) C f~Y(B1)

(3) AC f~Yf(A)) and if f is injective, then A = f~1(f(A)),
(4) f(f~Y(B)) C B and if f is surjective, f(f~*(B)) = B,
(5) f_l(UjeJ Bj) = UjGJ f_l(Bj);

(6) f~HNjes Bi) =Njes 1By,

(1) F(Ujes A5) = Ujes F(4)),

(8) f(Mjes Aj) € Njey f(A)) and if f is injective, then f((;c; Aj) = ;e f(4;),
(9) if [ is surjective, then f(A)° C f(A°).

(10) f=H(B°) = f~H(B)".

(1) f~4@) =2, 71(X) =X,

(12) f(2) = @ and if f is surjective, then f()?) = )Z',

(13) if g : Y — Z is a mapping, then (go f)~1(C) = f~1(g~1(C)), for each
CelVIS(Z).

Proof. The proofs are straightforward. O

Definition 3.17. Let X be a non-empty sets and let L be a non-empty family of
IVISs in X. Then L? is called an interval-valued intuitionistic ideal (briefly, IVII)
on X, provided that it satisfies the following conditions: for any A, B € IVIS(X),
(i) (Heredity) ifA € L and B C A, then B € L,
(ii) (Finite additivity) if A, B € L, then AU B € L.

An IVII L is called a o-interval-valued intuitionistic ideal (briefly, o-IVII), pro-
vided that it satisfies the following condition:

(Countable additivity) if (A, )nen C L, then |, .y An € L.

neN

_ In particular, an IVIT L is said to be proper [resp. improper], if X ¢ L [resp.
X el

It is obvious that & € L and for each & #AelIVIS(X),

(B eIVIS(X): B C A}

is an IVII on X. In this case, we will write {B € IVIS(X): B C A} = IVII(A)
and call it as the principal IVII of A, and A is called a base of IVII(A).

We will denote the IVII of IVISs in X having finite [resp. countable] support of
X, as IVII [resp. IVII.] and the set of all IVIIs on X as IVII(X).

Example 3.18. Let X = {a,b, ¢} and consider the collection of IVISs L in X given
by:

L ={A, Ay, Az, Ay, A5, Ag, A7, Ag, Ag, Ao, A11, A2, Ar3, A1, Ars, Ars, Air, Ars},
8
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where Ay = ([{a},{a,b}], [{c}, {c}]), A2 = ([{a},{a,b}],[2,{c}]),
As = ({a},{a,b}],[2,2]), As = ([{a},{a}],[{c}.{c}]),
As = ({a}, {a}], [2,{c}]), As = ([{a},{a}],[2,2]),
A7 = ([2,{a,b}], [{c}, {c}]), As = ([2,{a,b}],[2,{c}]),
Ay = ([2,{a,b}],[2,2]), A1o = ([9,{a}], [{c},{c}]),

An = ([@, {a}]v [Q’ {C}Dv Arp = ([@) {a}]v [@, @})7
Az = ([®7 {b}]7 [{C}, {C}D7 Ay = ([®7 {b}]7 [@, {C}]),
Ars = ([Qv {b}]7 [Q’ @]), Arg = ([Qa Q]v [{C}’ {C}])v’:
Az = ([2,2],[2,{c}]), Ais=([2,2],[2,2]) = 2.
Then we can easily check that L is an IVII on X.
Definition 3.19. Let Ly, Ly be two IVIIs on a non-empty set X. Then
(i) we say that Lo is finer than Ly or Ly is coarser than Lo, if Ly C Lo,
(ii) we say that Lo is strictly finer than Ly, or L, is strictly coarser than Lo, if
L1 C Ly and L4 7é Lo,
(iii) Ly and Lo are said to be comparable, if one is finer than the other.

It is clear that (IVII(X),C) is a poset. Furthermore, {5} [resp. IVII(X)] is
the smallest [resp. largest] IVIT on X.

The following is the immediate result of Definitions 3.3 and 3.17.

Proposition 3.20. Let X be a non-empty set and let (L;);jcs be a non-empty family
of IVIIs on X. Then (\;c; Lj, Ujes Ly € IVII(X).

In fact, (e, Lj = infjesLj and U;c; Lj = supje s L;.

The following is the immediate result of Definition 3.17.

Theorem 3.21. Let X be a non-empty set, A € IVIS(X) and let L € IVII(X).
Then A is a base of L if and only if B C A for each B € L

Theorem 3.22. Let X be a non-empty set and A, B € IVIS(X). Let Ly be an
IVII on X with a base A and let Ly be an IVII on X with a base B. Then L1 is
finer than Lo if and only if B C A for each C € IVII(X) such that C C B.

Proof. The proof is straightforward from Definition 3.19 0
The following is the immediate result of Theorem 3.22.

Corollary 3.23. Let X be a non-empty set and A, B € IVIS(X). Let Ly be an
IVII on X with a base A and let Lo be an IVII on X with a base B. Then A and
B are equivalent if and only if C C A for each C € IVIS(X) such that C C B and
D C B for each D € IVIS(X) such that D C A.

Proposition 3.24. Let X be a non-empty set and let n = (A;);cs be a non-empty
family of IVISs in X. Then there is an IVII L(n) on X, where
Ln) ={Ae€IVIS(X): Ac | A;, J is finite}.
jeJ
Proof. The proof is straightforward from Definition 3.19 O
9



G.-B. Chae et al./Ann. Fuzzy Math. Inform. 21 (2021), No. 1, 1-28

4. INTERVAL-VALUED INTUITIONISTIC TOPOLOGICAL SPACES

In this section, we define an interval-valued intuitionistic topology on a non-empty
set X, and study some of its properties, and give some examples. Also, we introduce
the concepts of an interval-valued intuitionistic base and subbase, and a family of
IVISs obtains the necessary and sufficient conditions to become an IVIB, and gives
some examples.

Definition 4.1 ([4, 11]). Let X be a non-empty set and let 7 C I5(X). Then 7 is
called an intuitionistic topology (briefly, IT) on X, it satisfies the following axioms:
(I04) 9, X €,

(I02) ANB e T, for any A, B € T,

(103) U;es Aj € 7, for each (A;)jes C 7.

In this case, the pair (X, 1) is called an intuitionistic topological space (briefly,
ITS) and each member O of 7 is called an intuitionistic open set (briefly, IOS) in X.
An IS F of X is called an intuitionistic closed set (briefly, ICS) in X, if F¢ € 7.

It is obvious that {¢r, X1} is the smallest IT on X and will be called the intuition-
istic indiscreet topology and denoted by 77. Also IS(X) is the greatest IT on X
and will be called the intuitionistic discreet topology and denoted by 77;. The pair
(X,71,0) [resp. (X, 7r,1)] will be called the intuitionistic indiscrete [resp. discreet]
space.

We will denote the set of all ITs on X as IT(X). For an ITS X, we will denote
the set of all IOSs [resp. ICSs] on X as IO(X) [resp. IC(X)].

Definition 4.2 ([14]). Let X be a non-empty set and let 7 be a non-empty family
of IVSs on X. Then 7 is called an interval-valued topology (briefly, IVT) on X, if it
satisfies the following axioms:

(IVO,) &, X €T,

(IVO3) AnNB e€e 7 for any A, B €€ 7,

(IVO3) Uje s 4j €€ 7 for any family (A;);es of members of 7.

In this case, the pair (X, 7) is called an interval-valued topological space (briefly,
IVTS) and each member of 7 is called an interval-valued open set (briefly, IVOS) in
X. ATVS A is called an interval-valued closed set (briefly, IVCS) in X, if A¢ € 7.

It is obvious that {&, X} is an IVT on X, and will be called the interval-valued
indiscrete topology on X and denoted by 7rv,0. Also IV.S(X) is an IVT on X, and
will be called the interval-valued discrete topology on X and denoted by 7rv,1. The
pair (X, 7rv) [resp. (X, 7rv1)] will be called the interval-valued indiscrete [resp.
discrete] space.

We will denote the set of all IVTs on X as IVT(X). for an IVTS X, we will
denote the set of all IVOSs [resp. IVCSs| in X as IVO(X) [resp. IVC(X)].

Definition 4.3. Let X be a non-empty set and let 7 be a non-empty family of IVISs
on X. Then 7 is called an interval-valued intuitionistic topology (briefly, IVIT) on
X, if it satisfies the following axioms:

10
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(IVIO,) &, X e,

(IVIO3) AN B €€ 7 for any A, B €€ 7,

(IVIO3) U;e s Aj €€ 7 for any family (A;);es of members of 7.

In this case, the pair (X, 7) is called an interval-valued intuitionistic topological
space (briefly, IVITS) and each member of 7 is called an interval-valued intuitionistic
open set (briefly, IVIOS) in X. A IVIS A is called an interval-valued intuitionistic
closed set (briefly, IVICS) in X, if A® € 7.

It is obvious that {&, X} is an IVIT on X, and will be called the interval-valued
intuitionistic indiscrete topology on X and denoted by 7y r0. Also IVIS(X) is an
IVIT on X, and will be called the interval-valued intuitionistic discrete topology on
X and denoted by 77vr,1. The pair (X, 7rvro) [resp. (X, 7rvr1)] will be called the
interval-valued intuitionistic indiscrete [resp. discrete] space.

We will denote the set of all IVITs on X as IVIT(X). For an IVITS X, we will
denote the set of all IVIOSs [resp. IVICSs] in X as IVIO(X) [resp. IVIC(X)].

We can easily see that for each 7 € IVIT(X), the family

X = X = (X e s X e b IXGe s X ey ), AETH
is an interval-valued intuitionistic fuzzy topology on X introduced by Samanta and
Mondal [18].

Remark 4.4. (1) For each 7 € IVIT(X), consider two families of ISs and two
families of IVSs in X, respectively given by:
7T ={(AST, A% ) e IS(X): Ac T}, 7t = {(AST AP e IS(X): Ae T}
and
€ = {[AST, AT e IVS(X) 1 Ae 7}, 77 = {[ADF°, A% ] € IVS(X) : A e 7).
Then we can easily check that 7=, 7+ € IT(X) and 7€, 7% € IVT(X).
In this case, the pair (77, 77) [resp. (7€, 7%)] will be called an intuitionistic [resp.
interval-valued] bitopology on X (See [19]).
Now let us consider the following families of subsets of X given by:
€T ={AST CcX:AeT}, T ={AST Cc X: A e}
8T ={AP " cX:Aer), Et={A9T " cX:AeT})
Then clearly, 7€~ [resp. 7%, 7%~ and 7% 7] forms an ordinary topology on X.

(2) Let (X, 7) be an ordinary topological space such that 7 is not indiscrete. Then
there are two IVITs on X given by:

™ ={([G,G),[G*,G)) e IVIS(X) : G € 7},
7 = {2, X} Jl(12.G),[2,G°)) € IVIS(X) : G € 7).
(3) Let 7, be an intuitionistic topology on a set X in the sense of Coker [1]. Then
we can easily see that the following families are IVITs on X:
7. ={([AS, A], [A% A¥]) € IVIS(X) : A€ 7,},

Tra = {([A"E’AQC], [A€7A€]) S IVIS(X) = 7'1}7
11
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7. = {([AS, A% [A%, AS)) € IVIS(X): A€ 1}
(4) Let 7,,, be an interval-valued topology on a set X in the sense of Kim et al.
[14]. Then we can easily see that the following families are IVITs on X:

Ty = {([A7,AT][AT A ) e IVIS(X) : Ae T, },
Trv,e = {([Aia A+]7 [A+67A+C]) € IVIS(X) tAe TIV}’
Trvs = {[AT, AT [A™ A ) € IVIS(X) : Ae T, }.
(5) Let (X, 7) be an IVITS and consider two families of IVISs in given by:
[J[T={[]A:Ae7}, ()7={()A: AeT}
Then we can easily check that [ |7, ()7 € IVIT(X).
From Remark 4.4, we have the following Figure 2:

Interval-valued intuitionistic fuzzy topology

Interval-valued intuitionistic topology

Classical Interval-valued

Intuitionistic topology topology topology

FIGURE 2.

Example 4.5. (1) Let X = {a,b}. Then clearly, we have

TIVI,I = {@7 a’IVI7 bIVI7 aIVIV7 bIVIV’ ([{a}7 X]’ g)’ X}'

(2) Let X be a set and let A € IVIS(X). Then A is said to be finite, if AST
is finite. Consider the family 7 = {U € IVIS(X): U = & or U°® is finite}. Then we
can easily check that 7 € IVIT(X). In this case, 7 will be called an interval-valued
intuitionistic cofinite topology (briefly, IVICFT) on X.

(3) Let X be a set and let A € IV(X). Then A is said to be countable, if AST
is countable. Consider the family 7 = {U € IV(X) : U = @ or U° is countable}.
Then we can easily prove that 7 € IVIT(X). In this case, 7 will be called an
interval-valued intuitionistic cocountable topology (briefly, IVICCT) on X.

(4) Let X ={a,b,c,d,e, f,g,h} and the consider the family 7 of IVISs in X given
by:

T =1{2, A1, Az, Az, Ay, X},

where A; = ([{a}7 {a’ b}]’ [{f}7 {f,g}])v AiQZ (Hav = d}’ {a7 b,c, d}]7 [{fa h}’ {fvga h}])7
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Az = ([{a}v {avb}]» [{fvh}v {faga hH)v Ay = ([{a107 d}v {a,b, ¢ d}}’ [{f}7 {fvg}D

Then we can easily check that 7 is an IVIT on X.
The following is the immediate result of Definition 4.3

Proposition 4.6. Let X be an IVITS. Then
(1) @, X e IVIC(X),
(2) AUB € IVIC(X) for any A, B € IVIC(X),
(3) Njes Aj € IVIC(X) for any (A;j)jes C IVIC(X).

Definition 4.7. Let X be a non-empty set and let 71, 7 € IVIT(X). Then we say
that 7 is contained in 5 or T is coarser than 1o or 79 is finer than 1, if 7 C 79,
i.e., A € 75 for each A € 7.

It is obvious that 77vr0 C 7 C 7yyp,1 for each 7 € IVIT(X).
The following is the immediate result of Definitions 3.8 and 4.3.

Proposition 4.8. Let (7j)jes C IVIT(X). Then (\;c;7; € IVIT(X).
In fact, ﬂjGJ’Tj is the coarsest IVIT on X containing each ;.

Proposition 4.9. Let 7, v € IVIT(X). We define 7 Ay and 7V v as follows:
TAy={W :Wer, Wen},

TVy={W :W=UUV, Uer, Venqg}
Then we have
(1) 7 Ay is an IVIT on X which is the finest IVIT coarser than both T and 7y,
(2) TV v is an IVIT on X which is the coarsest IVIT finer than both T and ~,

Proof. (1) Tt is clear that 7 Ay € IVT(X). Let n be any IVIT on X which is coarser
than both 7 and v, and let W € 7. Then clearly, W € 7 and W € . Thus W € 7A~.
So 7 is coarser than T A .

(2) The proof is similar to (1). O

Definition 4.10. Let (X, 7) be an IVITS.

(i) A subfamily 3 of 7 is called an interval-valued intuitionistic base (briefly, IVIB)

for 7, if for each A € 7, A = & or there is 5/ C B such that A = UB/.
(ii) A subfamily o of 7 is called an interval-valued intuitionistic subbase (briefly,

IVISB) for 7, if the family 8 = {()o : o is a finite subset of o} is an IVIB for 7.
Remark 4.11. (1) Let 8 be an IVIB for an IVIT 7 on a non-empty set X and

consider the families of intuitionistic [resp. interval-valued] sets in X given by:

B = {(AS", A%") € IS(X) : A € B}, B+ = {(AS+, ASF) € IS(X) : A € B}
and
BE ={[AST,ASF] e IVS(X): Ae B}, % = {[AF+°, A% | e IVS(X): A e B}
Then we can easily see that 3~ [resp. 7] is an IB for 7~ [resp. 7] and 3€ [resp.
€] is an IVB for 7€ [resp. T%].

Now let us consider the following families of subsets of X given by:

BET ={A®ST CX:A€eB}, ST ={AST Cc X : A€ B},
13
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BET ={A*"CX:Acp), pET ={AFT CX:Acp)
Then clearly, 3~ [resp. ST, 3%~ and %] is an ordinary base for the ordinary
topology 7€~ [resp. 7€, 7%~ and 7% 7).
(2) Let o be an IVISB for an IVIT 7 on a non-empty set X and consider the
families of intuitionistic [resp. interval-valued] sets in X given by:

0" ={(AS, A% ) e IS(X): A€o}, o = {(AST, AST) c IS(X): Ac o}
and
o€ = {[AST ASF e IVS(X): Aec o}, of = {[A%+°, A% e IVS(X): A€ o}.
Then we can easily see that o~ [resp. o] is an ISB for 7~ [resp. 7] and o€ [resp.

0€] is an IVSB for 7€ [resp. 7%].
Now let us consider the following families of subsets of X given by:

oS ={AST CcX:A€o}, oS ={AT C X: A€},

of " ={A% " cX:Aco}, ot = {AFT Cc X :Aco).

Then clearly, 0€~ [resp. ¢S7T, 0%~ and o%*] is an ordinary subbase for the
ordinary topology 7€~ [resp. 7€, 7%~ and 7% 7).

Example 4.12. (1) Let o = {([(a,b), (a,00)], [(=00, a],(—00,d]]) : a, b € R, a < b}
be the family of IVISs in R. Then o generates an IVIT 7 on R which will be called
the usual left interval-valued intuitionistic topology (briefly, ULIVIT) on R. In fact,
the IVIB S for 7 can be written in the form:

8= {B:Q} U{NyerSy : Sy € o, T is finite}
and 7 consists of the following IVISs in R:
T= {57 Iﬁ@ﬂ ([U(aj’ bj)? (Cv OO)]v [(—007 CL (_007 C]]), ([U(akv bk)v R}v ]R)}v

where aj,b;,¢ € R, {a; : j € J} is bounded from below, ¢ < inf{a; : j € J} and
ak, by, € R, {ay : k € K} is not bounded from below.

Similarly, one can define the usual right interval-valued topology (briefly, URIVT)
on R using an analogue construction.

(2) Consider the family o of IVISs in R given by:

g = {([(aa b)’ (alv OO) N (—OO, bl)}v [(—OO, al] U [blv OO)’ (_OO’ al] U [bl’ OO)])
ca, b, a1, by €R, a; <a, by >b}.

Then o generates an IVIT 7 on R which will be called the usual interval-valued
intuitionistic topology (briefly, UIVIT) on R. In fact, the IVIB § for 7 can be
written in the form:

8= {f&} U{NyerSy : Sy € o, T is finite}

and the elements of 7 can be easily written down as in (1).
(3) Consider the family o, , of IVISs in R given by:
00y = {([lasbl, [0, 6], [(~00, @) U (b, 50), (—00, @) U (b, 50)])
ca,beRand 0<a<b< 1}
Then o, , generates an IVIT 7., on R, which will be called the usual unit closed
14
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interval-valued intuitionistic topology on R. In fact, the IVIB S[g 1) for 7 1) can be
written in the form:

Bro1) = {@} U{NyerSy : Sy € opp,1), T is finite}

and the elements of 7 can be easily written down as in (1).
In this case, ([0,1],7,,,) is called the interval-valued intuitionistic usual unit
closed interval and will be denoted by [0, 1]y 17, where

[07 ”IVII - (([Oa 1]7 [07 1“7 [(7007 0) U (13 OO), (70070) U (1a OO)D)
(4) Let X be a non-empty set and let = {a,,, : a € X} U{a,,,, : a € X}.
Then g is an IVIB for the interval-valued discrete topology 7 on X. ~
(5) Let X = {a,b,c} and let § = {([{a,b},X],[@,@]),([{b,c},X],[@,@]),)N(}.
Assume that § is an IVIB for an IVIT 7 on X. Then by the definition of base,
B C 1. Thus ([{a,b}, X], (&, 2]), ([{b,c}, X],[<,9]) € 7. So [{a, b}, X]N[{b,c}, X] =

([{b}, X],[@,@]) € 7. But for any 8 C 8, ([{b}, X],[@,2]) # UB . Hence 3 is not
an IVIB for an IVIT on X.

From (1), (2) and (3) in Example 4.12, we can define interval-valued intervals as
following.

Definition 4.13. Let a, b € R such that a < b. Then
(i) (the closed interval)

[a, ] rvir = ({[a, 0], [a, b]], [(=00, @) U (b, 00), (=00, a) U (b, 00)]),
(ii) (the open interval)
(@, 0)rvir = ([(a,0), (@, )], [(=00,a] U [b, 00), (=00, a] U [b, 00)]),
(iil) (the half open interval or the half closed interval)
(@, blrvir = ([(a, 0], (a, b]], [(=00,a] U (b, 00), (=00, a] U (b, o0)]),
[a, ) rvir = ({[a,0), [a, b)), [(—00,a) U [b, 0), (=00, a) U b, 00))),
(iv) (the half interval-valued real line)
(=00, alrvir = ([(=00,a], (00, a]], [(a, 0), (a, 20)]),
(=00, a)rvir = [(=00,a), (=00, )], [[a, 0), [a, 00)]),
[a,00)rv i1 = [[a, OO) [a, 00)] [( ,a), (=00, a)])
all

(@;00)rvir = [(a,00), (a,00)], (=00, a], (=00, al]),

(v) (the interval-valued real line)

I

(=00,00) 171 = ([(=00,00), (00, 00)], [2, 2]) = R.

Theorem 4.14. Let X be a non-empty set and let B C IVIS(X). Then (8 is an
1VIB for an IVIT T on X if and only if it satisfies the followings:

(1) X = Uﬁ7

(2) if B1,Bs € 8 and ajyy € By N By [resp. aryrv € By N By, then there exists
B € 8 such that ajyr € B C B1 N By [resp. ajyry € B C By N By

Proof. The proof is the same as one in ordinary topological spaces. O
15
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Example 4.15. Let X = {a,b,c} and consider the family 8 of IVISs in X given by:
B ={({a}.{a}],[{b,c}, {b.c}]), (Ha, b}, {a, b}, [{c}. {c}]), ({a, ¢}, {a, c}], {b}, {b}])}-

Then clearly, 3 satisfies two conditions of Theorem 4.14. Thus § is an IVIB for an
IVIT 7 on X. Furthermore, we can easily check that 7 is the family of IVISs in X
given by:

7= {2, ({a}, {a}], [{b; ¢}, {b, ¢}]), ([{a, b}, {a, b}], [{c}, {c}]),

({a, c}, {a, e}, [{b}, {0}]), X}
Proposition 4.16. Let X be a non-empty set and let o C IVIS(X) such that
X =Uo. Then there exists a unique IVIT T on X such that o is an IVISB for .

Proof. Let 8 = {B € IVIS(X) : B = |, S and S; € o}. Let 7 = {U ¢
IVIS(X):U = @ or there is a subcollection 8 of 8 such that U = [J'}. Then we
can prove that 7 is the unique IVIT on X such that ¢ is an IVISB for 7. 0

In Proposition 4.16, 7 is called the IVIT on X generated by o.

Example 4.17. Let X = {a,b,¢,d, e} and let us consider the family of IVISs in X
given by:
o ={([{a},{a}], [{b,c,d,e},{b, c,d,e}]), ([{a,b, c}, {a,b,c}], [{d, e}, {d, e}]),
([{b; ¢, e}, {b, ¢, e}, [{a, d}, {a, d}]), ([{e,d}, {e, d}]; [{a, b, e}, {a, b, e}]) }-
Then clearly, | Jo = X. Let 8 be the collection of all finite intersections of members
of 0. Then

B =12, ([{a}.{a}],[{b,c,d, e}, {b,c.d. e}]), ([{c}, {c}]. [{a, . d, e}, {a,b.d, e}]),
([{b; ¢}, {b,¢}], [{a, d, e}, {a, d, e}]), ([{a, b, ¢}, {a, b, c}], [{d, e}, {d; e}]),
([{b; ¢, e}, {b, ¢, e}], [{a, d}, {a, d}]), ([{c, d}, {c, d}], [{a, b, e}, {a, b, e}]) }-

Thus the generated IVIT 7 by o is
7 ={2, ({a}, {a}]. [{b, c.d. e}, {b,c,d, e})), ([{c} {c}], [{a. b, d, e}, {a,b,d, e}]),
; ([[{b, ct, {b, et [{a. d, e}, {a,d, e}]),
(

Q]

({a;c},{a, c}], [{b, d, e}, {b, d; e}]
({e,d} {e, d}], {a, b, e}, {a, b, e}]), ([{a, b, ¢}, {a, b, c}], [{d, e}, {d, e}]),
([{b, ¢, d}, {b, ¢, d}], [{a, e}, {a, e}]), ([{b, ¢, e}, {b, ¢, e}], [{a, d}, {a, d}]),
(I }

{a,b,c,e},{a,b,c,e}], [{d}, {d}

5. INTERVAL-VALUED INTUITIONISTIC NEIGHBORHOODS

—_ — o —

X1

In this section, we introduce the concept of interval-valued intuitionistic neigh-
borhoods of IVIPs of two types, and find their various properties and give some
examples.

Definition 5.1 ([3]). Let X be an ITS, p € X and let N € IS(X). Then
(i) N is called an intuitionistic neighborhood (briefly, IN) of p,, if there exists an
IOS G in X such that

p, €GCN, ie, pe GS C N€ and G O N¥,
(ii) N is called an intuitionistic vanishing neighborhood (briefly, IVN) of p,,,, if
there exists an IOS G in X such that
p,, € GCN, ie., G¢ C N€ and p & N¥ c GZ.
16
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We will denote the set of all neighborhoods of p, [resp. p,,] by N(p,) [resp.

NP )]-

Definition 5.2 ([14]). Let X be an IVTS, a € X and let N € IV S(X). Then
(i) N is called an interval-valued neighborhood (briefly, IVN) of a if there
exists a U € IVO(X) such that

ceUCN, ie,acU CN,

(ii) N is called an interval-valued vanishing neighborhood (briefly, IVVN) of a, . .,
if there exists a U € IVO(X) such that

a,yyp EUCN, ie,acU" CNT.

We will denote the set of all IVNs [resp. IVVNs] of a,,,,, [resp. a,, ] by N(a,, )
[resp. N(a

IVP)

IVP

IVVP)]'

Definition 5.3. Let X be an IVITS, a € X and let N € IVIS(X). Then
(i) N is called an interval-valued intuitionistic neighborhood (briefly, IVIN) of
if there exists a U € IVIO(X) such that
a,,, EUCN, ie, acUS™ C N©™,
(ii) N is called an interval-valued intuitionistic vanishing neighborhood (briefly,
IVIVN) of a,,,, , if there exists a U € IVIO(X) such that
4y EUCN, ie., ag N&+ C U,
We will denote the set of all IVINs [resp. IVIVNs| of a,,,, [resp. a,,,, ] by N(a,,,)
[resp. N(a,y 1y )]-
Remark 5.4. (1) Let (X, 7) be an IVITS and let N € N(ary) [resp. N(arvrv).
Consider two ISs and two IVSs in X, respectively given by:

T =(AST A7), NT = (AS T A%T)

IVI7

and
€ = [AS—, ASH], N¥ = [A€,+07A§Z7—c].

Then we can easily check that N~ € N(a,) [resp. N(a,,)] in the ITS (X,77),
N* € N(a,) [resp. N(a,, )] in the ITS (X,7") and N€ € N(a,,,) [resp. N(a,,vp)]
in the IVTS (X, 7€), N¥ € N(a,,,) [resp. N(a,,,,)] in the IVTS (X,7%).

(2) Let (X,7) be an IVITS and and let N € N(a,,,) [resp. N(a,,,,)]. Then
clearly, [ I[N € N(a,,,) [resp. N(a,,,,)] in IVITS (X,[]r) and () N € N(a,,,)
[resp. N(a,,,, )] in IVITS (X, () 7).

Example 5.5. Let X = {a,b,c,d} and let 7 be the IVIT on X given by:
T = {’%a Alv A27 A3a A47 A5, A67 A77 AS) A97 ):(:}a

where Ay = ([@,{a}], [{c},{c,d}]), A2 = ([{a},{a}],[{c} {c,d}]),
As = ([{b}. {0}, [{c}, {aac’ d}]), Ay = ([{b,c},{b,c,d}], [, {a}]),
= ([{b, ¢}, X1, [2,2]), 46 = ([{a,b, ¢}, X], (2, 2]),
([{b C} {b G, d}] [ ])7 Ag = ([@,@]7 [{CL,C},{CLC, d}])7
A9 — (12.2). [{c}.{a,c, d})).

Let N = ([{a, b} {a,b,d}], [{c},{c}]).- Then we can easily see that
N e N(a N N(a NeN(@® NN
7

IVI) IVIV)’ IVI) IVIV)'
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Proposition 5.6. Let X be an IVITS and let a € X.
[IVIN1] If N € N(a,,,), then a,,, € N.
[IVIN2] If N € N(a,,,) and N C M, then M € N(a
[IVINS] If N, M € N(a,,,), then NN\ M € N(a,,,).
[IVIN4] If N € N(a,,,), then there exists M € N(a,,,) such that N € N(b
for each b,,,, € M.

Proof. The proofs of [IVIN1], [[VIN2] and [IVIN4] are easy.
[IVIN3] Suppose N, M € N(a,,,). Then there are U, V € IVIO(X) such that
a,,, €UCN and a

VI IvI EVCM'

Let W = UNV. Then clearly, W € IVIO(X) and a,,, € W C NN M. Thus
NNMe N(a O

IVI)'

IvI IVI)

IVI)'

Proposition 5.7. Let X be an IVITS and let a € X.
[IVIVN1] If N € N(a,,,,), then a,,,, € N.
[IVIVN2] If N € N(a,,,,) and N C M, then M € N(a,,,,)-
[IVIVN3] If N, M € N(a,,,,), then NN M € N(a,,,, ).
[IVIVN4] If N € N(a,,,,), then there exists M € N(a
N(b,,, ) for each b,,,, € M.

) such that N €

VIV

Proof. The proofs are similar to these of Proposition 5.6. O

Proposition 5.8. Let (X, 1) be an IVITS and let us define two families:
T,v; ={U € IVIS(X) :U € N(a,,,) for each a,,, € U}

and
Ty =0 € IVS(X) : U € N(a,,,, ) for each a,,,, € U}.

Then we have
(1) 70, T e IVIT(X),

IVIV
(2) T C Ty and T C Ty py -

Proof. (1) We only prove that 7,,,, € IVIT(X).
(IVIO;) From the definition of 7 we have @, Xer

IVIV) IVIV:®

(IVIO2) Let U ,V € IVIS(X) such that U ,V € 7,,,, and let a,,,, € UNV.
Then clearly, U, V € N(a,,,, ). Thus by IVIVN3], UNV € N(a,,,,)- SoUNV €
TIVIV'

(IVIO3) Let (Uj)jes be any family of IVISs in 7,,,,, let U = [J;c;U; and let
@,y € U. Then by Theorem 3.13 (2), there is jo € J such that a,,,, € Uj,.
Since Uj, € T,v1v, Ujo € N(a,y,y ) by the definition of 7,,,,. Since U;, C U,
U € N(a,,,,) by IVIVN2]. So by the definition of 7,,,,,, U € 7,y -

(2) Let U € 7. Then clearly, U € N(a,,,) and U € N(a,,,, ) for each a,,, € G

and a,,,, € G, respectively. Thus U € 7,,,, and U € 7,,,,,,. So the results hold. [

Remark 5.9. (1) From the definitions of 7,,, and 7,,,,, we can easily have:
T =TU{U € IVIS(X) : U = ([VE~, 8], [VE—,VEH]), VE~ #£ 2,
Vet cScX, SNVET =g for some V € 7}
and
=7U{Ue€lIVIS(X):U = ([V&~, VS [UE~,U%T)),
18
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U=, U%F] C [VE~,VET] for some V € 7}.
In fact, it is clear that if V&'~ = & for each V € 7, then 1,,,, = 7.
(2) For any IVIT 7 on a set X, we can have eight ordinary topologies on X given
by:
S ={UcX:Uer,}, of={UTcx:Uer,,},

- ={U%“cX:Uer,,}, 5T ={Ut cXx:Uer,,,}

IVI IvI
and

rfw‘v ={U-cX:Uery,}, 5l ={UtcX:Uer,,,},
8 = U9 CX:Uer,,}, 8t ={U** " cX:Uer,,,}
From Remark 4.4 (1) and the above (1), we can see that

Z— _ &~ &+ — &+ €= _—_ L€~ €+ _ &+
Trve =T v Trvr =T » Trvry — T v Trvrvy — T '

Example 5.10. Let X = {a,b,¢,d} and consider the family 7 of IVISs in X given
by:
T = {é,y,Al,Ag,Ag,Azl},
where Ay = ([{a}, {a,b}], [{c}, {c}]), A2 = ({b}.{b}], [{a}, {a,c}]),
Az = ([@,{b}], l{a, ¢}, {a, c}]), As = ([{a,b},{a,b}],[@,{c}]).

Then we can easily check that (X, 7) is an IVITS. Thus we have:
T,vy =T U{As, Ag, A7, As}
and
Trvry =T U{Ag, Arg, A1, A1z, A13, A1a, Ais, Are, Air, Ars, Aig, Aso, Ao, Ao},

where A5 = ([{a}, {a,b,d}], [{c}, {c}]), A¢ = ([{b}, {b,d}], [{a}, {a,c}]),

A7 = ([{a,b},{a,b,d}}, [2,{c}]), As = ({a,b,d}, {a,b,d}], [2,{c}]),
Ag = ([{a},{a,b}],[2,{c}]), Aro = ([{a}.{a,b}],[2,2]),

A = ([{o}, {b}], [{a}, {a}]), Arz = ([{b},{b}],[@,{a}]),

Arz = ([{0}, {0}, [, {c}]), Aua = ([{b}, {0}], (@, {a, c}]),

Ay = ([{0}, {b}],[@, @]), A = ([2,{b}],[{a}, {a,c}]),

vz = (12, (0}],[{e} fa, c}]), Aus = (12, (D)), [{a}. {a})).

Ay = ([2,{b}],[9,{a}]), Az = ([2,{b}];[,{c}]),

Ay = ([2,{b}],[@,{a,c}]), Az = ([{a,b},{a,b}],[2,2]).
So we can confirm that Proposition 5.8 holds.
Furthermore, we obtain six ordinary topologies on X for the IVT 7:

R {@7X7 {a}v {b}, {a»b}}a
& = {®7Xa {b}7 {a’ b}}7
- ={9,X,{a,b,d},{b,c,d}, {b,d}},
€+—{@ X, {a,b,d},{b,d}},

T = 19, X {a}, {0} {a, b} {a,b,d}},
i = {@ X, {b},{a,b},{b,d},{a,b,d}},
mh =19, X {a}. {c}. {a,c}}.
5l =19, X, {c} {a,c}}.

IVIV

The following is the immediate result of Proposition 5.8 (2).
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Corollary 5.11. Let (X,7) be an IVITS and let IVIC; [resp. IVIC.  and
IVIC: ] bethe set of all IVICSs w.r.t. T [resp. T,

IviIiv ] Then
IVIC, C IVIC, , and IVIC, C IVIC, .
IvVI1 IVIivV

and T
Example 5.12. Let (X, 7) be the IVITS given in Example 5.10. Then we have:
IVIC, = {2, X, A%, A5, A, A5},
IVICTIVI =IVIC; U{Ag, Ag, A%, A},
IVCTIV - IVCTU{AEC% fOﬂ Ail? A§27 A(1:37 A§4, i‘n A§67 A(1:77 A{IESﬂ A§97 A507 Agh A§2}7
where = ({c}, {c}], Ha}, {a,b}]), A5 = ([{a}, {a, c}], [{b}, {b}]),
A§ = ({a, ¢} {a, c}], [@,{b}]), Af = ([2,{c}],[{a,b} {a,b}])
= ([{c},{c}]; [{a},{a,b,d}]), AG = ([{a},{a,c}],[{b},{b,d}]),
= ([2,{c}]. [{a,b},{a,b,d}]), A§ = ([@,{c}],[{a,b,d},{a,b,d}]),
= ([@ {C}]= [{a}7 {a'7 b}])7 f0 = ([®7 ®]7 [{a}, {av b}])7
A% = ([{a}, {a}], [{b}, {b}]), Afs = ([@,{a}], [{b}, {b}]),
Atz = ([2,{c}], {0}, {b}]), ALy = ([9,{a,c}], [{b}, {b}]),
A‘f5 = ([, 2], [{b},{b}]), Afs = ({a},{a,c}], [2,{b}]),
Af; = ([{C} {a,c}], [2,{b}]), Als = ({a},{a}], [, {b}]),
Afy = (2,{a}], [2,{b}]), A% = ([@,{c}], [, {b}]),
Agl - ([Qa {a7 C}]’ [®> {b}])v A§2 = ([Q’ ®]7 Hav b}’ {a’ b}D

Thus we can confirm that Corollary 5.11 holds.
Now let us the converses of Propositions 5.6 and 5

Proposition 5.13. Let X be a non-empty set. Suppose to each a € X, there corre-
sponds a set N.(a,.) of IVSs in X satisfying the conditions [[VIVNI], [IVIVNZ],
[IVIVN3] and [IVIVN4] in Proposition 5.7. Then there is an IVIT on X such that
N.(a,y,y,) is the set of all IVINs of a,,, in this IVIT for each a € X.

Proof. Let
Trvry =10 € IVIS(X) : U € N(a,,,, ) for each a,,,, € U},

where N(a,,,, ) denotes the set of all IVIVNs of a,,,,,, in 7.
Then clearly, 7,,,,, € IVIT(X) by Proposition 5.7. we will prove that N.(a
is the set of all IVIVNs of @, in 7,,,, for each a € X.

Let V € IVIS(X) such that V € N,(a,,,,) and let U be the union of all the
IVIVPs b,,,, in X such that U € N, (a If we can prove that

G,,,v, €EUCVandUerT,,,,,

IVIV))

IVIV)

then the proof will be complete.

Since V' € Ni(a,y,v), ¢;v;v € U by the definition of U. Moreover, U C V.
Suppose b, € U. Then by [IVIVN4], there is an IVIS W € N, (b,,,,,) such that
V' € N.(c;y,y,) for each ¢y, € W. Thus ¢,,,, € U. By Proposition 7?7, W C U.
So by [IVIVN2], U € N.(,,,,) for each b,,,,, € U. Hence by the deﬁnltlon of T, v s
Uer,,,, . This completes the proof. O

Proposition 5.14. Let X be a non-empty set. Suppose to each a € X, there
corresponds a set N, (a 1v1>) of IVISs in X satisfying the conditions [IVIN1], [[VIN2],
[IVIN3] and [IVINJ] in Proposition 5.6. Then there is an IVIT on X such that
N.(a 1s the set of all IVINs of a,,,, in this IVT for each a € X.

20
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Proof. The proof is similar to Proposition 5.13. O

Theorem 5.15. Let (X, 7) be an IVITS and let A € IVIS(X). Then A € 7 if and
only if A€ N(a,,,) and A € N(a,,,,) for each a a €A

VI VIV

Proof. Suppose A € N(a,,,) and A € N(a,,,,) for each a,,,, a,,,, € A. Then

there are U, , Vo, € 7suchthata,,, €U,  CAanda,,,, €V,  CA
Thus
A:( U aIVI)U( U aIVIV)C( U UaIVI)U( V;VIV)CA'
ary €A aryry €A apy €A aryry €A
So A= (UG’IVIEA Uag,, ) U (anzveA Va,, . )-SinceU, ., Vo €7, A€T.
The proof of the necessary condition is easy. O
Now we will give the relation among three IVITs, 7, 7., and 7, .
Proposition 5.16. 7 =1,,, N7, -
Proof. From Proposition 5.8 (2), it is clear that 7 C 7,,, N7, -

Conversely, let U € 7,,,, N7, . Then clearly, U € 7,,,, and U € 7,,,,,,. Thus U is
an IVIN of each of its IVIPs a and an IVIVN of each of its IVIVPs a Thus

VI IVIV:®

there are U, ,,, Ua,,,, € Tsuch that a,,, €U, CUanda,,,, €U, CU.
So we have
Uryr = U a,;,, C Ualvr cU
ary €U ary €U
and

U[v]v = U Ay C U UaIVIV cU.

arviv €U

By Proposition 3.11, we get

U=UiyiUUpyv C ( U Ualvz) U( U Ualvzv) c U, i.e.,

ary €U aryrv €U
U= ( U Uu’IVI) U ( U Uazvzv )
aryr €U aryry €U

It is obvious that (Ua,VIeU Uazvz)U(Ua,V,VeU Ua,,,,) € 7-Hence U € 7. Therefore
Ty NT, C 7. This completes the proof. g

wviIv
The following is the immediate result of Proposition 5.16.

Corollary 5.17. Let (X, 7) be an IVITS. Then
IvICc, =1viICc; NIVIC: .

Example 5.18. In Example 5.12, we can easily check that Corollary 5.17 holds.
21
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6. INTERIORS AND CLOSURES OF IVISs

In this section, we define interval-valued intuitionistic interiors and closures, and
study some of their properties and give some examples. In particular, we will show
that there is a unique IVIT on a set X from the interval-valued intuitionistic closure
[resp. interior| operator.

Definition 6.1. Let (X, 7) be an IVITS and let A € IVIS(X).
(i) The interval-valued intuitionistic closure of A w.r.t. T, denoted by IVIcl(A),
is an IVIS in X defined as:

IVIc(A)=(|{K:K°€rand AC K}.
(ii) The interval-valued intuitionistic interior of A w.r.t. T, denoted by IV Iint(A),
is an IVIS in X defined as:
IVIint(A) = {G: G € 7 and G C A}.

(iil) The interval-valued intuitionistic closure of A w.r.t. T,,,, denoted by ¢l,,,, (4),
is an IVIS in X defined as:
ey, (A)=({K:K°€r,, and AC K}.
(iv) The interval-valued intuitionistic interior of A w.r.t. 7,,,, denoted by int,,, (A),

is an IVIS in X defined as:
int,,,(A) = {G:G er,, and G C A}.

(v) The interval-valued intuitionistic closure of A w.r.t. 7,,,, ,denoted by cl,, ., (4),
is an IVS in X defined as:
(A =K : K€, and AC K}.
(vi) The interval-valued intuitionistic interior of A w.r.t. 7,,,,, denoted by

int (A), is an IVS in X defined as:

ity (A= {G:Ger,,, and G C A}.

IVIV

Remark 6.2. From the above definition, it is obvious that the followings hold:
IVIint(A) Cint,,,(A), IVIint(A) C int,,,, (A)

and
cl

A) C IVIcl(A), d A) C IVIcl(A).

Example 6.3. Let (X, 7) be the IVTS given in Example 5.12. Consider two IVISs
A= ([{v},{b.d}], [2,{c}]) and B = ([, {c}], [{a,b},{a,b,d}]) in X. Then
IVIint(A)=U{GeT:GC A} = Ay U A3 = A,,
int[vz(A) = U{G € Tryr * G C A} = A2 U AG = A67
Nty (A) = U{G € Trvrv * GC A}
= Ay UA13U A4 UA16UA17 UAy U Ay = Asg

IVI( IVIV(

and
IVId(B)=(\{F:Fcer, BCF}=A{NnA5N A5N A5 = Aj,
c,,(By=({F:F°er,,,, BCF}=A5NA;NAZNAS = AL,
ciy(B)=F:F€r,,,, BCF}
22
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= AJNA5NAS; N AT, N ASs N AT, NASy N AS, = AS.
Thus we can confirm that Remark 6.2 holds.

Proposition 6.4. Let (X,7) be an IVITS and let A € IVIS(X). Then
IVIint(A°) = (IVIcl(A))° and IVIC(A®) = (IVIint(A))°.

Proof. IVint(A€)
= {Uer:UcC A}
= {Uer:US™ C A%~, UST Cc A%+, U%~ D AS—, U%+ 5 AST)
= {U er: A5~ cU%~, AST CcU%t, A%~ D US—, A%+t > U%}
=(W{U:Uer,ACU}
= IVIcl(A).
Similarly, we can show that IVIcl(A®) = (IVIint(A))°. O
Proposition 6.5. Let (X,7) be an IVITS and let A € IVIS(X). Then
IVIint(A) = int,,,(A) Nint,, ., (4).
Proof. The proof is straightforward from Proposition 5.16 and Definition 6.1. 0

The following is the immediate result of Definition 6.1, and Propositions 6.4 and
6.5.

Corollary 6.6. Let (X,7) be an IVITS and let A € IVIS(X). Then
IVIc(A) =d,,,(A)Ud,,,, (4).
Example 6.7. Consider two IVISs A and B in X given in Example 6.3:

A= ([{b}’ {b’ d}]v [@7 {C}]) and B = ([@7 {C}]v [{a’ b}’ {CL, b, d}])

Then we have:

IVI(

IV Iint(A) = Ay = ([{b}, {b}], {a}. {a, c}]),
int,,, (A) = Ag = ([{b}7 {b’ d}]7 [{a}v {av C}])’
ity oy (A) = A3 = ([{b}v {b}]’ [®7 {C}])
and
IVICZ(B) = Aécl = ([@7 {C}], [{a’ b}’ {a" b}Dv
cyy (B) = A7 = [2,{c}], {a, b}, {a, b, d}]),

vy (B) = Af = ([, {c}], [{a, b}, {a, b}]).
ThO}llS intyy, (A) Nvintypy (A) = ({0}, {0}], {a}, {a, ¢}]) = IV Iint(A)

CZIVI (B) U CZIVIV (B) = ([®7 {C}]a [{a7 b}7 {av b}]) = IVICZ(B)
So we can confirm that Proposition 6.5 and Corollary 6.6 hold.

Theorem 6.8. Let X be an IVITS and let A € IVIS(X). Then
(1) Ae IVIC(X) if and only if A= IVIcl(A),
(2) A € IVIO(X) if and only if A = IV Iint(A).

Proof. Straightforward. O
23
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Proposition 6.9 (Kuratowski Closure Axioms). Let X be an IVTIS and let A, B €
IVIS(X). Then

[IVIKO] if A C B, then IVIcl(A) C IVIcl(B),

[IVIK1] IVIcl(9) = 2,

[IVIK2] A C IVIcl(A),

[IVIK3] IVIcl(IVIcl(A)) = IVIcl(A),

[IVIK4] IVIcl(AU B) = IVIcl(A) UIVIcl(A).

Proof. Straightforward. O

Let IVel* : IVIS(X) — IVIS(X) be the mapping satisfying the properties
[IVIK1], [IVIK2],[IVIK3] and [IVIK4]. Then we will call the mapping I'VIcl* as the
interval-valued intuitionitic closure operator (briefly, IVICO) on X.

Proposition 6.10. Let IV Icl* be the IVICO on X. Then there exists a unique
IVIT 7 on X such that IVIcl*(A) = IVIcl(A), for each A € IVIS(X), where
IVIcl(A) denotes the interval-valued intuitionistic closure of A in the IVTS (X, T).
In fact,

T={A°€IVIS(X): IVIcl*(A) = A}.

Proof. The proof is almost similar to the case of classical topological spaces. O

Proposition 6.11. Let X be an IVITS and let A, B € IVIS(X). Then
[IVIIO] if A C B, then IVImt(A) C IVIint(B),

[IVIN] IV Iint(X) = X,

[IVII2] IV Iint(A) C A,

[IVII3] IVint(IVint(A)) = IVint(A),

(IVII4] IVIint(AN B) = IVIint(A) N IVIint(A).

Proof. Straightforward. O

Let IVIint* : IVIS(X) — IVIS(X) be the mapping satisfying the properties
[IVII1], [IVII2],[IVII3] and [IVI4]. Then we will call the mapping IVint* as the
interval-valued intuitionistic interior operator (briefly, IVIIO) on X.

Proposition 6.12. Let IV Iint* be the IVIIO on X. Then there exists a unique
IVIT 7 on X such that IVIint*(A) = IVIint(A), for each A € IVIS(X), where
IV Iint(A) denotes the interval-valued intuitionistic interior of A in the IVITS
(X, 7). In fact,

T={A€IVIS(X): IVIint*(A) = A}.

Proof. The proof is similar to one of Proposition 6.10. 0

Definition 6.13. Let (X, 7) be an IVITS, a € X and let A € IVIS(X). Then
(i) a,,, € A is called a 7,,,-interior point of A, if A € N(a,,,),
(ii) a,,,, € A is called a 7,,,,, -interior point of A, if A € N(a
We will denote the union of all 7, ,-interior points [resp. T,

VI
A as 1,,, —int(A) [resp. 7,,,, —int(A)]. It is clear that
T

v Znt(A) = U{aIVI tA e N(aIVI)}

[resp IVIV Znt(A) = U{aIVIV : A € N(G‘IVIV)}]'
24
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Theorem 6.14. Let (X, 7) be an IVITS and let A € IVIS(X).
(1) Aer,,, if and only if Apyr = 7,,, — int(A).
(2) A€y, if and only if Arviv = 7, — int(A).

Proof. (1) Suppose A € 7,,,, and let a,,,, € Aryy. Then by the definition of Ajyy,
a,,, € A. Thus by the definition of 7,,,, A € N(a,,,). So a,,, € 7,,, — int(A),
i.e., Aryr C Trvr — mt(A)

Now let a,,, € 7,,, —int(A). Then A € N(a,,,). Thus a,,, € A. So a,,, €
Arvr, e, 1, —int(A) C Aryr. Hence Apyr = 7, — int(A).

Conversely, suppose the necessary condition holds and let a,,,, € A. Then a,,,, €
Aryi. Thus by the hypothesis, a,,, € 7,,, —int(A). So A € N(a,,,). Hence by
the definition of 7,,,, A€ 7

IvVI®

(2) The proof is similar to that of (1). O

VI

Proposition 6.15. Let X be a non-empty set, (A;)jes C IVIS(X) and let A =
Ujes Aj. Then

(1) Arvi =Ujes Ajrvr,

(2) Arviv =Ujes 4jviv.

Proof. (1) For each j € J, let A; = ([Af’f,Af#], [A;Z’f,A;Z”L]). Then clearly, we

have
— R €= €+ & — Z,+
jed jed = jeJ jeJ
Now let a,,, € A. Then a,,, € U;c; A;j. Thusa € U, Af’f. So there is jo € J
such that a € Afo’f. Hence a,,, € Aj,1vr, e, a,y, € Ujes Ajrvr.

Conversely, suppose a,,,; € U;c; A4jrvi. Then there is jo € J such that a,,, €
Ajo.rvi. Thus a € Afo’_. So a € UjGJAf’_. Hence a,,, € Aryr. Therefore
Arvr =Ujes 4jvr

(2) The proof is similar to that of (1). O

Proposition 6.16. Let (X, 7) be an IVITS and let A € IVIS(X). Then

(1) Tivi — mt(A) = UGCA, GGTIVI G[V[,

(2) Trviv — int(A) = UGCA, GET 1y Grvriv.

Proof. Suppose a,,, € Ugca, Ger,y, Grvr. Then there is G € 1,,,, such that
G C A and A, € Grvr.

Thus a,,, € G. Since G € 7,,,, G € N(a,,,). So A € N(a,,,). Hence a,,, €
T,y — int(A).

Conversely, suppose a,,, € 7,,, —int(A). Then there is G € T such that
a,,, €GCA.

Moreover, a,,, € Gryr and G € 7,,,. Thus qa,,, € UGcA, Gery, Grvr. So the
result holds.
(2) The proof is similar to that of (1). O
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Remark 6.17. From Definitions 6.1 and 6.13, we have the following inclusions:
Trvi — Znt(A) - intzvz (A)7 Trviv — Znt(A) C int1v1v<A)'
But the reverse inclusions do not hold in general (See Example 6.18).

Example 6.18. Let (X, 7) be the IVITS given in Example 5.10 and consider the
IVIS A = ([{b},{b,d}],[@, {c}]). Then clearly, we have

intIVI (A) = A = ([{b}ﬂ {ba d}]7 [{a}a {aa C}])
and

Nty (A) =A = ([{b}a {b}]7 [{CL}, {av C}D

On the other hand, by Propositions 3.11 and 6.16, we have

Trvr — int(A) = ([{b}, {b}}, [{a, C}v {a’ C}])v Trvrv — int(A) = ([@7 {b}]v [{a}v {av C}])
Thus we can confirm Remark 6.17.
Remark 6.19. From Example 6.18, we have the following strict inclusions:

Trvr — int(A) Cint,y, (A)7 Trvr — int(A) # intyy, (A)’

Trviv — Zﬂt(A) - intlvzv (A)7 Trviv — Znt(A) 7é intlvzv (A)

Proposition 6.20. Let (X,7) be an IVITS and let A, B € IVIS(X). Then
(1) Trve — mt(A) C A[V[, Tiviv — mt(A) (- A]V[\/,
(2) if A C B, then 1,,,, —int(A) C 7,,, —int(B), T,,,, —int(A) C 7,1 —int(B),
(3) 7,, —int(ANB) =1,,, —int(A)N1,,, —int(B),
Trviv — mYZ(A N Bi) =Trviv — Zné(A) N Trviv — int(B)’
4) 7

IVI_int()?):)?’ T —int()?):([Q,X],@).

vIiv

Proof. From Definition 6.13 and Proposition 6.16, the proofs of (1) and (2) are
obvious. Also, the proof of (4) is clear from Proposition 6.16. We will prove only
(3).

Let a,,,; € 7,,,; —int(AN B). Then clearly, ANB € N(a,,,). Thus A € N(a,,,)
and B € N(a So a —int(A) and a —int(B), i.e.,

IvI € TIVI

—int(B).

IVI)' IviI 67-IVI

a,y, €T, —int(A)NT

IvI

Hence 7,,, —int(AN B) C 7,,, —int(A) N 1,,, —int(B).
Conversely, suppose a,,,, € 7,,, —int(A)N7,,, —int(B). Then A € N(a,,,) and
B e N(a,,,). Thus ANB € N(a,,,). So a,,, is a 7,,,-interior point of AN B, i.e.,

IVI) IVI) v IviI

a,,, €T, —int(ANB).
Hence 7

IvVI
holds.
The proof of the second part is similar to that of the first part. O

—int(A)Nr,,, —int(B) C 1,,, —int(AN B). Therefore the equality

Remark 6.21. The equalities 7,,,, —int(r,,, —int(A)) = 7,,., —int(A) and 7,,,,,, —
int(7,,,, — int(A)) = 7, — int(A) do not hold in general (See Example 6.22)
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Example 6.22. Let (X, 7) be the IVITS given in Example 5.10 and let A be the
IVIS in X given in Example 6.18. Then we can easily check that

Trvr — int(A) = ({b}, {b}], [{a, ¢}, {a, c}])
and
Trvr — int(TIVI - Znt<A)) = (@, [{aa C}a {a’v C}])
Thus 7,,, — int(A) # 7,,, —int(1,,, —int(A)).

7. CONCLUSIONS

We introduced the new concept of interval-valued intuitinistic sets which are the
generalization of classical sets and the special case of interval-valued intuitionistic
fuzzy sets, and obtained its various properties. Also, we defined an interval-valued
intuitionistic ideal and studied some of its properties. Next, we introduced the no-
tion of interval-valued intuitionistic topological spaces which are considered as a
bitopological space proposed by Kelly [19]. Moreover, we defined an interval-valued
intuitionistic base and subbase and found the characterization of an interval-valued
intuitionistic base. Finally, we introduced the concept of interval-valued intuitionis-
tic neighborhoods and obtained some similar properties to classical neighborhoods.
Furthermore, we defined an interval-valued intuitionistic closure and interior and
dealt with their some properties. In the future, we expect that one can apply the
concept of interval-valued intuitionistic sets to group and ring theory, BC K-algebra
and category theory, etc.
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