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Abstract. In this paper, we define an interval-valued set and an
interval-valued (vanishing) point, and study some of their properties. In
particular, we get the characterization of inclusions, intersections and
unions of interval-valued sets. Also, we deal with some properties of the
images and the preimages under a mapping. Moreover, we introduce the
concept of interval-valued ideals and some of its properties. Next, we define
an interval-valued topology, an interval-valued base [rep. subbase] and an
interval-valued neighborhood, and find their various properties. Finally,
we define an Interval-valued closure [resp. interior] and obtain some of
each properties. Moreover, we show that that there is a unique IVT for
interval-valued interior [resp. closure] operators.
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1. Introduction

In 1983, Atanassove [1] define an intuitionisic fuzzy set as the generalization
of fuzzy sets (the generalization of classical sets) introduced by Zadeh [18]. In
1996, Çoker [5] introduced the notion of intuitionistic sets as the generalization
of classical sets and the special case of intuitionistic fuzzy sets. After that time,
many researchers [2, 3, 4, 6, 7, 8, 15, 16] applied it to topologies. Lee and Chu [13]
formed the category ITop and studied some relationships between ITop and Top.
Recently, Kim et al. [10] investigated the category ISet composed of intuitionistic
sets and morphisms between them in the sense of a topological universe. Also, Kim
et al. [11] defined an intuitionistic topology, intuitionistic interior and closure, and
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studied some of their properties. Furthermore, Kim et al. [12] discussed intuitinistic
hyperspaces based on intuitionistic topological spaces.

Yao [17] defined an interval set (which will called an interval-valued set by us)
giving a tool for approximating undefinable or complex concepts and discussed their
algebraic structures. We can easily see that this concept is the generalization of
classical sets and the special case of interval-valued fuzzy sets proposed by Zadeh
[19]. One motivation for the introduction of these sets is to provide a point-set
based setting for the classical sets and for these sets to apply to topology. In order
to accomplish our research, this paper is composed of six sections. In Section 2,
we recall some definitions of intuitionistic sets introduced by Çoker [5]. In Section
3, we list some definitions and results for algebraic structures of interval-valued set
who Yao has dealt with. Also, we define interval-valued points of two types and
discuss with the characterizations of inclusions, intersections and unions of interval-
valued sets. Furthermore, we introduce the concept of interval-valued ideals and
obtain some of its properties. In Section 4, we define an interval-valued topology,
an interval-valued base and subbase, and investigate some of their properties. In
Section 5, we introduce the notions of interval-valued neighborhoods of two types
and find some of their properties. In particular, we show that there is an IVT
under the hypothesis satisfying some properties of interval-valued neighborhoods.
In Section 6, We define interval-valued interiors and closures an obtain some of their
properties. Also, we prove that there is a unique IVT for interval-valued interior
[resp. closure] operators.

2. Preliminaries

In this section, we recall the concepts of an intuitionistic set, an intuitionistic
point, an intuitionistic vanishing point and intuitionistic topological space.

Definition 2.1 ([5]). Let X be a non-empty set. Then A is called an intuitionistic
set (briefly, IS) of X, if it is an object having the form

A = (A∈, A6∈),

such that A∈ ∩ A 6∈ = ∅, where A∈ [resp. A 6∈] represents the set of memberships
[resp. non-memberships] of elements of X to A. In fact, A∈ [resp. A 6∈] is a subset
of X agreeing or approving [resp. refusing or opposing] for a certain opinion, view,
suggestion or policy. The intuitionistic empty set [resp. the intuitionistic whole set]
of X, denoted by ∅̄ [resp. X̄], is defined by ∅̄ = (∅, X) [resp. X̄ = (X,∅)].

We will denote the set of all ISs of X as IS(X). The inclusion, the equality,
the intersection and the union of ISs, the complement of an IS, and the operations
intersection [ ] and < > on IS(X) refer to [5].

It is obvious that A = (A, φ) ∈ IS(X) for each ordinary subset A of X. Then we
can consider an IS of X as the generalization of an ordinary subset of X.

Remark 2.2. Let X be a set and let A ∈ IS(X). We define the mappings µ, ν :
X → [0, 1] as follows: for each x ∈ X,

µ(x) = χ
A∈

(x), ν(x) = χ
A6∈

(x).
274
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Then we can easily see that (µ, ν) is an intuitionistic fuzzy set in X introduced by
Atanassov [1]. Thus by identifying A with (µ, ν), we can consider an intuitionistic
set A in X as the specilization of an intuitionistic fuzzy set in X.

Definition 2.3 ([5]). Let X be a non-empty set, a ∈ X and let A ∈ IS(X).
(i) The form ({a}, {a}c) [resp. (φ, {a}c)]is called an intuitionistic point [resp.

vanishing point] of X and denoted by a
I

[resp. a
IV

].
(ii) We say that a

I
[resp. a

IV
] is contained in A, denoted by a

I
∈ A [resp.

a
IV
∈ A], if a ∈ A∈ [resp. a /∈ A 6∈].

It is clear that for each A ∈ IS(X) and each x ∈ X, x
I
∈ A ⇔ x

I
⊂ A and

x
IV
∈ A⇔ x

IV
⊂ A.

We will denote the set of all intuitionistic points and intuitionistic vanishing points
in X as IP (X).

Definition 2.4 ([6, 11]). Let X be a non-empty set and let τ ⊂ IS(X). Then τ
is called an intuitionistic topology (in short IT) on X, if it satisfies the following
axioms:

(i) ∅̄, X̄ ∈ τ,
(ii) A ∩B ∈ τ, for any A,B ∈ τ,
(iii)

⋃
j∈J Aj ∈ τ, for each (Aj)j∈J ⊂ τ .

In this case, the pair (X, τ) is called an intuitionistic topological space (in short,
ITS) and each member O of τ is called an intuitionistic open set (in short, IOS) in
X. An IS F of X is called an intuitionistic closed set (in short, ICS) in X, if F c ∈ τ.

It is obvious that {∅̄, X̄} is the smallest IT on X and will be called the intuition-
istic indiscreet topology and denoted by τI,0. Also IS(X) is the greatest IT on X
and will be called the intuitionistic discreet topology and denoted by τI,1. The pair
(X, τI,0) [resp. (X, τI,1)] will be called the intuitionistic indiscreet [resp. discreet]
space.

We will denote the set of all ITs on X as IT (X). For an ITS X, we will denote
the set of all IOSs [resp. ICSs] on X as IO(X) [resp. IC(X)].

3. Interval-valued sets

In this section, we list some definitions and some results interval-valued sets who
Yao has proposed and has obtained. Next, We define interval-valued points of two
types and obtain the characterizations of inclusions, intersections and unions of
interval-valued sets. Also, we deal with properties for the images and preimages
under a mapping. finally, we introduce the concept of interval-valued ideals and
study some of their properties.

Definition 3.1 (See [17]). Let X be an non-empty set. Then the form

[A−, A+] = {B ⊂ X : A− ⊂ B ⊂ A+}
is called an interval-valued set (briefly, IVS) or interval set in X, if A−, A+ ⊂ X
and A− ⊂ A+. In this case, A− [resp. A+] represents the set of minimum [resp.
maximum] memberships of elements of X to A. In fact, A− [resp. A+] is a minimum
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[resp. maximum] subset of X agreeing or approving for a certain opinion, view,
suggestion or policy. [∅,∅] [resp. [X,X]] is called the interval-valued empty [resp.

whole] set in X and denoted by ∅̃ [resp. X̃]. We will denote the set of all IVSs in
X as IV S(X).

It is obvious that [A,A] ∈ IV S(X) for classical subset A of X. Then we can
consider an IVS in X as the generalization of a classical subset of X. Furthermore,
if A = [A−, A+] ∈ IV S(X), then

χ
A

= [χ
A−
, χ

A+ ]

is an interval-valued fuzzy set in X introduced by Zadeh [19]. Thus we can consider
an interval-valued fuzzy set as the generalization of an IVS.

Example 3.2. Let X = {a, b, c}. Then
IV S(X) = {∅̃, [∅, {a}], [∅, {b}], [∅, {c}], [∅, {a, b}], [∅, {b, c}], [∅, {a, c}], [∅, X],

[{a}, {a}], [{a}, {a, b}], [{a}, {a, c}], [{a}, X], , [{b}, {a, b}], [{b}, {b, c}],
[{b}, X], [{c}, {a, c}], [{c}, {b, c}], [{c}, X], [{a, b}, {a, b}], [{a, b}, X],

[{a, c}, {a, c}], [{a, c}, X], [{b, c}, {b, c}], [{b, c}, X], X̃}.

Definition 3.3 (See [17]). Let X be a non-empty set and let A, B ∈ IV S(X).
Then

(i) we say that A contained in B, denoted by A ⊂ B, if A− ⊂ B− and A+ ⊂ B+,
(ii) we say that A equal to B, denoted by A = B, if A ⊂ B and B ⊂ A,
(iii) the complement of A, denoted Ac, is an interval-valued set in X defined by:

Ac = [(A+)c, (A−)c],

(iv) the union of A and B, denoted by A∪B, is an interval-valued set in X defined
by:

A ∪B = [A− ∪B−, A+ ∪B+],

(v) the intersection of A and B, denoted by A∩B, is an interval-valued set in X
defined by:

A ∩B = [A− ∩B−, A+ ∩B+].

Example 3.4. Let X = {a, b, c}. Consider A = [{a}, {a, b}], B = [{b}, {b, c}] ∈
IV S(X). Then clearly we have

Ac = [{c}, {b, c}], A ∪B = [{a, b}, X], A ∩B = [∅, {b}].

The followings are (i1), (i2), (i3), (k1), (k2) and (k3) in [17].

Result 3.5. Let X be a non-empty set and let A, B, C ∈ IV S(X). Then

(1) ∅̃ ⊂ A ⊂ X̃,
(2) if A ⊂ B and B ⊂ C, then A ⊂ C,
(3) A ⊂ A ∪B and B ⊂ A ∪B,
(4) A ∩B ⊂ A and A ∩B ⊂ B,
(5) A ⊂ B if and only if A ∩B = A,
(6) A ⊂ B if and only if A ∪B = B.

The followings are (I1)–(I8) in [17].
276



J. Kim et al./Ann. Fuzzy Math. Inform. 20 (2020), No. 3, 273–295

Result 3.6. Let X be a non-empty set and let A, B, C ∈ IV S(X). Then
(1) (Idempotent laws) A ∪A = A, A ∩A = A,
(2) (Commutative laws) A ∪B = B ∪A, A ∩B = B ∩A,
(3) (Associative laws) A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C,
(4) (Distributive laws) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
(5) (Absorption laws) A ∪ (A ∩B) = A, A ∩ (A ∪B) = A,
(6) (DeMorgan’s laws) (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc,
(7) (Ac)c = A,
(8) (8a) A ∪ ∅̃ = A, A ∩ ∅̃ = ∅̃,

(8b) A ∪ X̃ = X̃, A ∩ X̃ = A,

(8c) X̃
c = ∅̃, ∅̃c = X̃,

(8d) A ∪Ac 6= X̃, A ∩Ac 6= ∅̃ in general (See Example 3.7).

Example 3.7. Let X = {a, b, c}. Consider A = [{a}, {a, b}] ∈ IV S(X). Then

clearly, Ac = [{c}, {b, c}]. Thus A∩Ac = [∅, {b}] 6= ∅̃ and A∪Ac = [{a, c}, X] 6= X̃.

Definition 3.8. Let (Aj)j∈J be a family of members of IV S(X). Then
(i) the intersection of (Aj)j∈J , denoted by

⋂
j∈J Aj , is an IVS in X defined by:⋂

j∈J
Aj = [

⋂
j∈J

A−j ,
⋂
j∈J

A+
j ],

(ii) the union of (Aj)j∈J , denoted by
⋃
j∈J Ãj , is an IVS in X defined by:⋃

j∈J
Aj = [

⋃
j∈J

A−j ,
⋃
j∈J

A+
j ].

The following is the immediate result of Definition 3.8.

Proposition 3.9. Let A ∈ [X] and let (Aj)j∈J be a family of members of IV S(X).
Then

(1) (
⋂
j∈J Aj)

c =
⋃
j∈J A

c
j , (

⋃
j∈J Aj)

c =
⋂
j∈J A

c
j ,

(2) A ∩ (
⋃
j∈J Aj) =

⋃
j∈J(A ∩Aj), A ∪ (

⋂
j∈J Aj) =

⋂
j∈J(A ∪Aj).

Definition 3.10. Let X be a non-empty set, let a ∈ X and let A ∈ IV S(X). Then
the form [{a}, {a}] [resp. [∅, {a}]] is called an interval-valued [resp. vanishing] point
in X and denoted by a

IV P
[resp. a

IV V P
]. We will denote the set of all interval-valued

points in X as IVP (X).
(i) We say that a

IV P
belongs to A, denoted by a

IV P
∈ A, if a ∈ A−.

(ii) We say that a
IV V P

belongs to A, denoted by a
IV V P

∈ A, if a ∈ A+.

Proposition 3.11. Let X be a non-empty set and let A ∈ IV S(X). Then

A = A
IV P
∪A

IV V P
,

where A
IV P

=
⋃
a
IV P
∈A aIV P and A

IV V P
=

⋃
a
IV V P

∈A aIV V P .

In fact, A
IV P

= [A−, A−] and A
IV V P

= [∅, A+]

Proof. From Definition 3.10 and the definitions of A
IV P

and A
IV V P

, we have

A
IV P

= [
⋃

a
IV P
∈A
{a},

⋃
a
IV P
∈A
{a}] and A

IV V P
= [∅,

⋃
a
IV V P

∈A
{a}].
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Thus A
IV P

= [A−, A−] and A
IV V P

= [∅, A+]. So A = A
IV P
∪A

IV V P
. �

Example 3.12. LetX = {a, b, c, d, e, f, g, h, i}. ConsiderA = [{a, b, c, d}, {a, b, c, d, e, f}].
Then clearly, a, b, c, d ∈ A− and e, f ∈ A+ \A−. Thus we have

a
IV P

, b
IV
, c

IV P
, d

IV P
∈ A

and

a
IV V P

, b
IV V P

, c
IV V P

, d
IV V P

, e
IV V P

, f
IV V P

∈ A.
So A

IV P
= [{a, b, c, d}, {a, b, c, d}] = [A−, A−] and A

IV V P
= [∅, {a, b, c, d, e, f}] =

[∅, A+]. Hence we can confirm that Proposition 3.11 holds.

Proposition 3.13. Let X be a non-empty set. We two mappings f : IS(X) →
IV S(X) and g : IV S(X) → IS(X), respectively as follows: for each (A∈, A6∈) ∈
IS(X) and [A−, A+] ∈ IV S(X),

f((A∈, A6∈)) = [A∈, A6∈
c
], g([A−, A+]) = (A−, A+c).

Then g ◦ f = idIS(X) and f ◦ g = idIV S(X) such that f(a
I
) = a

IV P
, f(a

IV
) = a

IV V P

and g(a
IV P

) = a
I
, g(a

IV V P
) = a

IV
for each a ∈ X.

Proof. Straightforward. �

Theorem 3.14. Let (Aj)j∈J ⊂ IV S(X) and let a ∈ X.
(1) a

IV P
∈

⋂
Aj [resp. a

IV V P
∈

⋂
Aj] if and only if a

IV P
∈ Aj [resp. a

IV V P
∈

Aj], for each j ∈ J .
(2) a

IV P
∈
⋃
Aj [resp. a

IV V P
∈
⋃
Aj] if and only if there exists j ∈ J such that

a
IV P
∈ Aj [resp. a

IV V P
∈ Aj.

Proof. Straightforward. �

Theorem 3.15. Let A,B ∈ IV S(X). Then
(1) A ⊂ B if and only if a

IV P
∈ A⇒ a

IV P
∈ B [resp. a

IV V P
∈ A⇒ a

IV V P
∈ B]

for each a ∈ X.
(2) A = B if and only if a

IV P
∈ A⇔ a

IV P
∈ B [resp. a

IV V P
∈ A⇔ a

IV V P
∈ B]

for each a ∈ X.

Proof. Straightforward. �

Definition 3.16. Let X, Y be two non-empty sets, let f : X → Y be a mapping
and let A ∈ IV S(X), B ∈ IV S(Y ).

(i) The image of A under f , denoted by f(A), is an IVS in Y defined as:

f(A) = [f(A−), f(A+)].

(ii) The preimage of B under f , denoted by f−1(B), is an IVS in X defined as:

f−1(B) = [f−1(B−), f−1(B+)].

It is obvious that f(a
IV P

) = f(a)
IV P

and f(a
IV V P

) = f(a)
IV V P

for each a ∈ X.

Proposition 3.17. Let X, Y be two non-empty sets, let f : X → Y be a mapping,
let A, A1, A2 ∈ IV S(X), (Aj)j∈J ⊂ IV S(X) and let B, B1, B2 ∈ IV S(Y ), (Aj)j∈J ⊂
IV S(Y ). Then

(1) if A1 ⊂ A2, then f(A1) ⊂ f(A2),
278
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(2) if B1 ⊂ B2, then f−1(B1) ⊂ f−1(B2),
(3) A ⊂ f−1(f(A)) and if f is injective, then A = f−1(f(A)),
(4) f(f−1(B)) ⊂ B and if f is surjective, f(f−1(B)) = B,
(5) f−1(

⋃
j∈J Bj) =

⋃
j∈J f

−1(Bj),

(6) f−1(
⋂
j∈J Bj) =

⋂
j∈J f

−1(Bj),

(7) f(
⋃
j∈J Aj) =

⋃
j∈J f(Aj),

(8) f(
⋂
j∈J Aj) ⊂

⋂
j∈J f(Aj) and if f is injective, then f(

⋂
j∈J Aj) =

⋂
j∈J f(Aj),

(9) if f is surjective, then f(A)c ⊂ f(Ac).
(10) f−1(Bc) = f−1(B)c.

(11) f−1(∅̃) = ∅̃, f−1(X̃) = X̃,

(12) f(∅̃) = ∅̃ and if f is surjective, then f(X̃) = X̃,
(13) if g : Y → Z is a mapping, then (g ◦ f)−1(C) = f−1(g−1(C)), for each

C ∈ IV S(Z).

Proof. The proofs are straightforward. �

Definition 3.18. Let X be a non-empty sets and let L be a non-empty family of
IVSs in X. Then L is called an interval-valued ideal (briefly, IVI) on X, provided
that it satisfies the following conditions: for any A, B ∈ IV S(X),

(i) (Heredity) if A ∈ L and B ⊂ A, then B ∈ L,
(ii) (Finite additivity) if A, B ∈ L, then A ∪B ∈ L.

An interval-valued ideal L is called a σ-interval-valued ideal (briefly, σ-IVI), pro-
vided that it satisfies the following condition:

(Countable additivity) if (An)n∈N ⊂ L, then
⋃
n∈NAn ∈ L.

In particular, an IVI L is said to be proper [resp. improper], if X̃ 6∈ L [resp.

X̃ ∈ L].

It is obvious that ∅̃ ∈ L and for each ∅̃ 6= A ∈ IV S(X),

{B ∈ IV S(X) : B ⊂ A}
is an IVI on X. In this case, We will write {B ∈ IV S(X) : B ⊂ A} = IV I(A) and
call it as the principal IVI of A, and A is called a base of IV I(A).

We will denote the interval-valued ideal of IVSs in X having finite [resp. count-
able] support of X as IV If [resp. IV Ic], and the set of all IVIs on X as IV I(X).

Remark 3.19. Let L be an IVI on X and let L− = {A− ⊂ X : A ∈ L}, L+ =
{A+ ⊂ X : A ∈ L}. Then L− and L+ are ordinary ideals on X. In this case, L−

[resp. L+] will be called the lower [resp. upper] interval-valued ideal of L.

Example 3.20. Let X = {a, b, c} and consider IVSs in X given by:

A = [{a}, {a}], B = [∅, {a}], C = [{a}, {a, b}],
D = [∅, {a, b}], E = [∅, {b}], F = [{c}, {c}],

G = [{c}, {a, c}], H = [{c}, {b, c}], I = [{a, c}, {a, c}], J = [{a, c}, X]

K = [∅, {c}], M = [∅, {a, c}], N = [∅, {b, c}], O = [∅, X].
279
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Let L = {∅̃, A,B,C,D,E, F,G,H, I, J,K,M,N,O}. Then we can easily check that
L is an IVI on X. Moreover, consider the following sets:
L− = {∅, {a}, {c}, {a, c}} and L+ = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}.

Then we can easily confirm that L− and L+ are ordinary ideals on X.

Definition 3.21. Let L1, L2 be two IVIs on a non-empty set X. Then
(i) L2 is said to be finer than L1 or L1 is coarser then L2, if L1 ⊂ L2,
(i) L2 is said to be strictly finer than L1 or L1 is strictly coarser then L2, if

L1 ⊂ L2 and L1 6= L2,
(iii) L1 and L2 are said to be comparable, if one is finer than the other.

It is clear that (IV I(X),⊂) is a poset. Furthermore, {∅̃} [resp. IV S(X)] is the
smallest [resp. largest] IVI on X.

The following is the immediate result of Definitions 3.3 and 3.18.

Proposition 3.22. Let X be a non-empty set and let (Lj)j∈J be a non-empty family
of IVIs on X. Then

⋂
j∈J Lj ,

⋃
j∈J Lj ∈ IV I(X).

In fact,
⋂
j∈J Lj = infj∈JLj and

⋃
j∈J Lj = supj∈JLj.

The following is the immediate result of Definition 3.18.

Theorem 3.23. Let X be a non-empty set, A ∈ IV S(X) and let L ∈ IV I(X).
Then A is a base of L if and only if B ⊂ A for each B ∈ L

Theorem 3.24. Let X be a non-empty set and A, B ∈ IV S(X). Let L1 be an IVI
on X with a base A and let L2 be an IVI on X with a base B. Then L1 is finer than
L2 if and only if B ⊂ A for each C ∈ IV S(X) such that C ⊂ B.

Proof. The proof is straightforward from Definition 3.21. �

The following is the immediate result of Theorem 3.24.

Corollary 3.25. Let X be a non-empty set and A, B ∈ IV S(X). Let L1 be an IVI
on X with a base A and let L2 be an IVI on X with a base B. Then A and B are
equivalent if and only if C ⊂ A for each C ∈ IV S(X) such that C ⊂ B and D ⊂ B
for each D ∈ IV (X) such that D ⊂ A.

Proposition 3.26. Let X be a non-empty set and let η = (Aj)j∈J be a non-empty
family of IVSs on X. Then there is an IVI L(η) on X, where

L(η) = {A ∈ IV (X) : A ⊂
⋃
j∈J

Aj , J is finite}.

Proof. The proof is straightforward from Definition 3.18. �

4. Interval-valued topological spaces

In this section, we define an interval-valued topology on a non-empty set X, and
study some of its properties and an interval-valued intuitionistic set combined by
an intuitionistic set and an interval-valued set, and give some examples. Also, we
introduce the concepts of an interval-valued base and subbase , and a family of IVSs
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gets the necessary and sufficient conditions to become IVB and gives some examples.
Moreover, we define some interval-valued interval in R.

Definition 4.1. Let X be a non-empty set and let τ be a non-empty family of IVSs
on X. Then τ is called an interval-valued topology (briefly, IVT) on X, if it satisfies
the following axioms:

(IVO1) ∅̃, X̃ ∈ τ ,
(IVO2) A ∩B ∈ τ for any A, B ∈ τ ,
(IVO3)

⋃
j∈J Aj ∈ τ for any family (Aj)j∈J of members of τ .

In this case, the pair (X, τ) is called an interval-valued topological space (briefly,
IVTS) and each member of τ is called an interval-valued open set (briefly, IVOS) in
X. A IVS A is called an interval-valued closed set (briefly, IVCS) in X, if Ac ∈ τ .

It is obvious that {∅̃, X̃} is an IVT on X, and will be called the interval-valued
indiscrete topology on X and denoted by τ

IV,0
. Also IV S(X) is an IVT on X, and

will be called the interval-valued discrete topology on X and denoted by τ
IV,1

. The
pair (X, τ

IV,0
) [resp. (X, τ

IV,1
)] will be called the interval-valued indiscrete [resp.

discrete] space.

We will denote the set of all IVTs on X as IV T (X). for an IVTS X, we will
denote the set of all IVOs [resp. IVCSs] in X as IV O(X) [resp. IV C(X)].

We can easily see that for each τ ∈ IV T (X), the family

χ
τ

= {χ
A

: χ
A

= [χ
A−
, χ

A+ ], A ∈ τ}

is an interval-valued fuzzy topology on X proposed by Mondal and Samanta [14].
Then an IVT is a special case of an an interval-valued fuzzy topology on X.

Remark 4.2. (1) For each τ ∈ IV T (X), consider two families of subsets of X:

τ− = {A− ⊂ X : A ∈ τ} and τ+ = {A+ ⊂ X : A ∈ τ}.

Then we can easily check that τ− and τ+ are ordinary topologies on X.
In this case, τ− [resp. τ+] will be called the lower [resp. upper] topology of τ and

we will write τ = (τ−, τ+). In fact, we can consider (X, τ−, τ+) as a bitopological
space on X introduced by Kelly [9]. Then an IVT is a generalization of a classical
topology on X.

(2) Let (X, τ) be an ordinary topological space such that τ is not indiscrete. Then
there are two IVTs on X given by:

τ1 = {∅̃, X̃}
⋃
{[G,G] : G ∈ τ}, τ2 = {∅̃, X̃}

⋃
{[∅, G] : G ∈ τ}.

(3) Let (X, τI) be an intuitionistic topological space and consider the family τ of
IVSs in X defined as follows:

τ = {[A∈, A6∈c] : A = (A∈, A6∈) ∈ τI}.

Then we can easily see that τIV is an IVTS from Proposition 3.13 and Definition
4.1.
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Example 4.3. (1) Let X = {a, b}. Then clearly, we have

τ
IV,1

= {∅̃, a
IV P

, b
IV P

, a
IV V P

, b
IV V P

, [∅, X], [{a}, X], [{b}, X], X̃}.

(2) Let X be a set and let A ∈ IV S(X). Then A is said to be finite, if A+ is
finite. Consider the family τ = {U ∈ IV (X) : U = ∅̃ or U c is finite}. Then we can
easily check that τ ∈ IV T (X).

In this case, τ will be called an interval-valued cofinite topology (briefly, IVCFT)
on X and denoted by IV Cof(X).

(3) Let X be a set and let A ∈ IV S(X). Then A is said to be countable, if A+

is countable. Consider the family τ = {U ∈ IV (X) : U = ∅̃ or U c is countable}.
Then we can easily prove that τ ∈ IV T (X).

In this case, τ will be called an interval-valued cocountable topology (briefly,
IVCCT) on X and denoted by IV Coc(X).

The following is the immediate result of Definition 4.1

Proposition 4.4. Let X be an IVTS. Then

(1) ∅̃, X̃ ∈ IV C(X),
(2) A ∪B ∈ IV C(X) for any A, B ∈ IV C(X),
(3)

⋂
j∈J Aj ∈ IV C(X) for any (Aj)j∈J ⊂ IV C(X).

Definition 4.5. Let X be a non-empty set and let τ1, τ2 ∈ IV T (X). Then we say
that τ1 is contained in τ2 or τ1 is coarser than τ2 or τ2 is finer than τ1, if τ1 ⊂ τ2,
i.e., A ∈ τ2 for each A ∈ τ1.

It is obvious that τIV,0 ⊂ τ ⊂ τIV,1 for each τ ∈ IV T (X).
The following is the immediate result of Definitions 3.8 and 4.1.

Proposition 4.6. Let (τj)j∈J ⊂ IV T (X). Then
⋂
j∈J τj ∈ IV T (X).

In fact,
⋂
j∈J τj is the coarsest IVT on X containing each τj.

Proposition 4.7. Let τ, γ ∈ IV T (X). We define τ ∧ γ and τ ∨ γ as follows:

τ ∧ γ = {W : W ∈ τ, W ∈ γ},

τ ∨ γ = {W : W = U ∪ V, U ∈ τ, V ∈ γ}.
Then we have

(1) τ ∧ γ is an IVT on X which is the finest IVT coarser than both τ and γ,
(2) τ ∨ γ is an IVT on X which is the coarsest IVT finer than both τ and γ,

Proof. (1) It is clear that τ ∧ γ ∈ IV T (X). Let η be any IVT on X which is coarser
than both τ and γ, and let W ∈ η. Then clearly, W ∈ τ and W ∈ γ. Thus W ∈ τ∧γ.
So η is coarser than τ ∧ γ.

(2) The proof is similar to (1). �

Definition 4.8. Let (X, τ) be an IVTS.
(i) A subfamily β of τ is called an interval-valued base (briefly, IVB) for τ , if for

each A ∈ τ , A = ∅̃ or there is β
′ ⊂ β such that A =

⋃
β
′
.

(ii) A subfamily σ of τ is called an interval-valued subbase (briefly, IVSB) for τ ,

if the family β = {
⋂
σ
′

: σ
′

is a finite subset of σ} is an IVB for τ .
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Remark 4.9. (1) Let β be an IVB for an IVT τ on a non-empty set X and let
β− = {A− : A ∈ β}, β+ = {A+ : A ∈ β}. Then β− is an ordinary base for τ− and
β+ is an ordinary base for τ+.

(2) Let σ be an IVSB for an IVT τ on a non-empty set X and let σ− = {A− ⊂
X : A ∈ σ}, σ+ = {A+ ⊂ X : A ∈ σ}. Then σ− is an ordinary subbase for τ− and
σ+ is an ordinary subbase for τ+.

Example 4.10. (1) Let σ = {[(a, b), (a,∞)] : a, b ∈ R} be the family of IVSs in R.
Then σ generates an IVT τ on R which will be called the “usual left interval-valued
topology (briefly, ULIVT)” on R. In fact, the IVB β for τ can be written in the
form:

β = {R̃} ∪ {∩γ∈ΓSγ : Sγ ∈ σ, Γ is finite}
and τ consists of the following IVSs in R:

τ = {∅̃, R̃, [∪(aj , bj), (c,∞)], [∪(ak, bk),R]},

where aj , bj , c ∈ R, {aj : j ∈ J} is bounded from below, c < inf{aj : j ∈ J} and
ak, bk ∈ R, {ak : k ∈ K} is not bounded from below.

Similarly, one can define the “usual right interval-valued topology (briefly, URIVT)”
on R using an analogue construction.

(2) Consider the family σ of IVSs in R

σ = {[(a, b), (a1,∞) ∩ (−∞, b1)] : a, b, a1, b1 ∈ R, a1 ≤ a, b1 ≥ b}.

Then σ generates an IVT τ on R which will be called the “usual interval-valued
topology (briefly, UIVT)” on R. In fact, the IVB β for τ can be written in the form:

β = {R̃} ∪ {∩γ∈ΓSγ : Sγ ∈ σ, Γ is finite}

and the elements of τ can be easily written down as in (1).
(3) Consider the family σ[0,1] of IVSs in R

σ[0,1] = {[[a, b], [a,∞) ∩ (−∞, b]] : a, b ∈ R and 0 ≤ a ≤ b ≤ 1}.

Then σ[0,1] generates an IVT τ[0,1] on R which will be called the “usual unit closed
interval interval-valued topology” on R. In fact, the IVB β[0,1] for τ[0,1] can be
written in the form:

β[0,1] = {R̃} ∪ {∩γ∈ΓSγ : Sγ ∈ σ[0,1], Γ is finite}

and the elements of τ can be easily written down as in (1).
In this case, ([0, 1], τ[0,1]) is called the “interval-valued usual unit closed interval”

and will be denoted by [0, 1]IV I , where [0, 1]IV I = [[0, 1], [0,∞) ∪ (−∞, 1]].
(4) Let X be a non-empty set and let β = {a

IV P
: a ∈ X} ∪ {a

IV V P
: a ∈ X}.

Then β is an IVB for the interval-valued discrete topology τ
IV,1

on X.

(5) Let X = {a, b, c} and let β = {[{a, b}, X], [{b, c}, X], X̃}. Assume that β
is an IVB for an IVT τ on X. Then by the definition of base, β ⊂ τ . Thus
[{a, b}, X], [{b, c}, X] ∈ τ . So [{a, b}, X] ∩ [{b, c}, X] = [{b}, X] ∈ τ . But for any

β
′ ⊂ β, [{b}, X] 6=

⋃
β
′
. Hence β is not an IVB for an IVT on X.

From (1), (2) and (3) in Example 4.10, we can define interval-valued intervals as
following.
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Definition 4.11. Let a, b ∈ R such that a ≤ b. Then
(i) (the closed interval) [a, b]IV I = [[a, b], [a,−∞) ∩ (−∞, b]],
(ii) (the open interval) (a, b)IV I = [(a, b), (a,−∞) ∩ (−∞, b)],
(iii) (the half open interval or the half closed interval)

(a, b]IV I = [(a, b], (a,−∞) ∩ (−∞, b]], [a, b)IV I = [[a, b), [a,−∞) ∩ (−∞, b)],

(iv) (the half interval-valued real line)

(−∞, a]IV I = [(−∞, a], (−∞, a]], (−∞, a)IV I = [(−∞, a), (−∞, a)],

[a,∞)IV I = [[a,∞), [a,∞)], (a,∞)IV I = [(a,∞), (a,∞)],

(v) (the interval-valued real line) (−∞,∞)IV I = [(−∞,∞), (−∞,∞)] = R̃.

Theorem 4.12. Let X be a non-empty set and let β ⊂ IV S(X). Then β is an IVB
for an IVT τ on X if and only if it satisfies the followings:

(1) X̃ =
⋃
β,

(2) if B1, B2 ∈ β and a
IV P
∈ B1 ∩ B2 [resp. a

IV V P
∈ B1 ∩ B2], then there exists

B ∈ β such that a
IV P
∈ B ⊂ B1 ∩B2 [resp. a

IV V P
∈ B ⊂ B1 ∩B2].

Proof. The proof is the same as one in ordinary topological spaces. �

Example 4.13. LetX = {a, b, c} and let β = {[{a}, {a}], [{a, b}, {a, b}], [{a, c}, {a, c}]}.
Then clearly, β satisfies two conditions of Theorem 4.12. Thus β is an IVB for an

IVT τ on X. Furthermore, τ = {∅̃, [{a}, {a}], [{a, b}, {a, b}], [{a, c}, {a, c}], X̃}.

Proposition 4.14. Let X be a non-empty set and let σ ⊂ IV S(X) such that X̃ =⋃
σ. Then there exists a unique IVT τ on X such that σ is an IVSB for τ .

Proof. Let β = {B ∈ IV S(X) : B =
⋃n
i=1 Si and Si ∈ σ}. Let τ = {U ∈ IV S(X) :

U = ∅̃ or there is a subcollection β
′

of β such that U =
⋃
β
′}. Then we can show

that τ is the unique IVT on X such that σ is an IVSB for τ . �

In Proposition 4.14, τ is called the IVT on X generated by σ.

Example 4.15. Let X = {a, b, c, d, e} and let

σ = {[{a}, {a}], [{a, b, c}, {a, b, c}], [{b, c, e}, {b, c, e}], [{c, d}, {c, d}]}.

Then clearly,
⋃
σ = X̃. Let β be the collection of all finite intersections of members

of σ. Then
β = {∅̃, [{a}, {a}], [{c}, {c}], [{b, c}, {b, c}], [{a, b, c}, {a, b, c}],

[{b, c, e}, {b, c, e}], [{c, d}, {c, d}]}.
Thus the generated IVT τ by σ is

τ = {∅̃, [{a}, {a}], [{c}, {c}], [{a, c}, {a, c}], [{b, c}, {b, c}],
[{c, d}, {c, d}], [{a, b, c}, {a, b, c}], [{b, c, d}, {b, c, d}],
[{b, c, e}, {b, c, e}], [{a, b, c, e}, {a, b, c, e}], X̃}.

In fact, τ− = {∅, {a}, {c}, {a, c}, {b, c}, {c, d}, {a, b, c},
{b, c, d}, {b, c, e}, {a, b, c, e}, X}

= τ+.
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5. Interval-valued neighborhoods

In this section, we introduce the concept of interval-valued neighborhoods of IVPs
of two types, and find their various properties and give some examples.

Definition 5.1. Let X be an IVTS, a ∈ X and let N ∈ IV S(X). Then
(i) N is called an interval-valued neighborhood (briefly, IVN) of a

IV P
, if there

exists a U ∈ IV O(X) such that

a
IV P
∈ U ⊂ N, i.e., a ∈ U− ⊂ N−,

(ii) N is called an interval-valued vanishing neighborhood (briefly, IVVN) of
a
IV V P

, if there exists a U ∈ IV O(X) such that

a
IV V P

∈ U ⊂ N, i.e., a ∈ U+ ⊂ N+.

We will denote the set of all IVNs [resp. IVVNs] of a
IV P

[resp. a
IV V P

] by N(a
IV P

)
[resp. N(a

IV V P
)].

Example 5.2. Let X = {a, b, c, d} and let τ be the IVT on X given by:
τ = {∅̃, [∅, {a}], [{a}, {a}], [{b}, {b}], [{b}, {a, b}], [{a, b}, {a, b}],

[{b, c}, {b, c, d}], [{a, b, c}, X], X̃},
where A1 = [∅, {a}], A2 = [{a}, {a}], A3 = [{b}, {b}], A4 = [{b}, {a, b}],

A5 = [{a, b}, {a, b}], A6 = [{b, c}, {b, c, d}], A7 = [{a, b, c}, X].
Let N = [{a, b}, {a, b, d}]. Then we can easily see that

N ∈ N(a
IV P

) ∩N(a
IV V P

), N ∈ N(b
IV P

) ∩N(b
IV V P

), N ∈ N(d
IV V P

).

Proposition 5.3. Let X be an IVTS and let a ∈ X.
[IVN1] If N ∈ N(a

IV P
), then a

IV P
∈ N .

[IVN2] If N ∈ N(a
IV P

) and N ⊂M , then M ∈ N(a
IV P

).
[IVN3] If N,M ∈ N(a

IV P
), then N ∩M ∈ N(a

IV P
).

[IVN4] If N ∈ N(a
IV P

), then there exists M ∈ N(a
IV P

) such that N ∈ N(b
IV P

)
for each b

IV P
∈M .

Proof. From Definition 5.1, the proofs of [IVN1] and [IVN2] are easy.
[IVN3] Suppose N,M ∈ N(a

IV P
). Then there are U, V ∈ IV O(X) such that

a
IV P
∈ U ⊂ N and a

IV P
∈ V ⊂M.

Let W = U ∩ V . Then clearly, W ∈ IV O(X) and a
IV P
∈ W ⊂ N ∩M . Thus

N ∩M ∈ N(a
IV P

).
[IVN4] The proof is obvious from Definition 5.1 and the condition [IVN1]. �

Proposition 5.4. Let X be an IVTS and let a ∈ X.
[IVVN1] If N ∈ N(a

IV V P
), then a

IV V P
∈ N .

[IVVN2] If N ∈ N(a
IV V P

) and N ⊂M , then M ∈ N(a
IV V P

).
[IVVN3] If N,M ∈ N(a

IV V P
), then N ∩M ∈ N(a

IV V P
).

[IVVN4] If N ∈ N(a
IV V P

), then there exists M ∈ N(a
IV V P

) such that N ∈
N(b

IV V P
) for each b

IV V P
∈M .

Proof. The proof is similar to one of Proposition 5.3. �
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Proposition 5.5. Let (X, τ) be an IVTS and let us define two families:

τ
IV P

= {U ∈ IV S(X) : U ∈ N(a
IV P

) for each a
IV P
∈ U}

and
τ
IV V P

= {U ∈ IV S(X) : U ∈ N(a
IV V P

) for each a
IV V P

∈ U}.
Then we have

(1) τ
IV P

, τ
IV V P

∈ IV T (X),
(2) τ ⊂ τ

IV P
and τ ⊂ τ

IV V P
.

Proof. (1) We only prove that τ
IV V P

∈ IV T (X).

(IVO1) From the definition of τ
IV V P

, we have ∅̃, X̃ ∈ τ
IV V P

.
(IVO2) Let U , V ∈ IV S(X) such that U , V ∈ τ

IV V P
and let a

IV V P
∈ U∩V. Then

clearly, U, V ∈ N(a
IV V P

). Thus by [IVVN3], U ∩V ∈ N(a
IV V P

). So U ∩V ∈ τ
IV V P

.
(IVO3) Let (Uj)j∈J be any family of IVSs in τ

IV V P
, let U =

⋃
j∈J Uj and let

a
IV V P

∈ U . Then by Theorem 3.14 (2), there is j0 ∈ J such that a
IV V P

∈ Uj0 .
Since Uj0 ∈ τ

IV V P
, Uj0 ∈ N(a

IV V P
) by the definition of τ

IV V P
. Since Uj0 ⊂ U ,

U ∈ N(a
IV V P

) by [IVVN2]. So by the definition of τ
IV V P

, U ∈ τ
IV V P

.
(2) Let U ∈ τ . Then clearly, U ∈ N(a

IV P
) and U ∈ N(a

IV V P
) for each a

IV P
∈ G

and a
IV V P

∈ G, respectively. Thus U ∈ τ
IV P

and U ∈ τ
IV V P

. So the results hold. �

Remark 5.6. (1) From the definitions of τIV P and τ
IV V P

, we can easily have:

τ
IV P

= τ ∪ {[U−, S] ∈ IV S(X) : U+ ⊂ S, U ∈ τ}
and

τ
IV V P

= τ ∪ {S ∈ IV S(X) : ∅ 6= S− ⊂ X \U+, S+ = S− ∪U+, U = [∅, U+] ∈ τ}.
In fact, if U− 6= ∅ for each U ∈ τ , then τ

IV V P
= τ .

(2) For any IVT τ on a set X, we can have four ordinary topologies on X given
by:

τ−
IV P

= {U− ⊂ X : U ∈ τ
IV P
}, τ+

IV P
= {U+ ⊂ X : U ∈ τ

IV P
}

and
τ−
IV V P

= {U− ⊂ X : U ∈ τ
IV V P

}, τ+
IV V P

= {U+ ⊂ X : U ∈ τ
IV V P

}.

Example 5.7. (1) Let X = {a, b, c, d} and consider the family τ of IVSs in X given
by:

τ = {∅̃, X̃, A1, A2, A3, A4, A5, A6, A7},
where A1 = [{a, b}, {a, b, c}], A2 = [{c}, {b, c}], A3 = [∅, {a, c}],

A4 = [{a, b, c}, {a, b, c}], A5 = [∅, {b, c}], A6 = [∅, {c}], A7 = [{c}, {a, b, c}].
Then we can easily check that (X, τ) is an IVTS. Thus we have

τ
IV P

= τ ∪ {A8, A9, A10},
where A8 = [{a, b}, X], A9 = [{c}, X], A10 = [{a, b, c}, X].

Also, we have

τ
IV V P

= τ ∪ {A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22},
where A11 = [{b}, {a, b, c}], A12 = [{d}, {a, c, d}], A13 = [{b, d}, X],

A14 = [{a}, {a, b, c}], A15 = [{d}, {b, c, d}], A16 = [{b, d}, X],
A17 = [{a}, {a, c}], A18 = [{b}, {b, c}], A19 = [{d}, {c, d}],
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A20 = [{a, d}, {a, c, d}], A21 = [{b, d}, {b, c, d}], A22 = [{a, b, d}, X].
So we can confirm that Proposition 5.5 holds.

Furthermore, we obtain six ordinary topologies on X for the IVT τ :

τ− = {∅, X, {c}, {a, b}, {a, b, c}},
τ+ = {∅, X, {c}, {a, c}, {b, c}, {a, b, c}},
τ−
IV

= {∅, X, {c}, {a, b}, {a, b, c}} = τ−,

τ+
IV

= {∅, X, {c}, {a, c}, {b, c}, {a, b, c}} = τ+,

τ−
IV V

= {∅, X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}},
τ+
IV V

= {∅, X, {c}, {a, c}, {b, c}, {c, d}, {a, b, c}, {a, c, d}, {b, c, d}}.
(2) X = {a, b, c, d} and η be the IVT on X given by:

η = {∅̃, X̃, A1, A2, A3, A4},
whereA1 = [{b}, {b, c}], A2 = [{a, b}, {a, b, c}], A3 = [{b, c}, {b, c, d}], A3 = [{a, b, c}, X].
Then we easily check that η

IV V
= η.

The following is the immediate result of Proposition 5.5 (2).

Corollary 5.8. Let (X, τ) be an IVTS and let IV Cτ [resp. IV Cτ
IV P

and IV Cτ
IV V P

]

be the set of all IVCSs w.r.t. τ [resp. τ
IV P

and τ
IV V P

]. Then

IV Cτ ⊂ IV Cτ
IV P

, and IV Cτ ⊂ IV Cτ
IV V P

.

Example 5.9. Let (X, τ) be the IVTS given in Example 5.7. Then we have:

IV Cτ = {∅̃, X̃, Ac1, Ac2, Ac3, Ac4, Ac5, Ac6, Ac7, Ac8},
IV Cτ

IV P
= IV Cτ ∪ {Ac8, Ac9, Ac10},

IV Cτ
IV V P

= IV Cτ ∪ {Ac11, A
c
12, A

c
13, A

c
14, A

c
15, A

c
16, A

c
17, A

c
18, A

c
19, A

c
20, A

c
21, A

c
22},

where Ac1 = [{d}, {c, d}], Ac2 = [{a, b}, {a, b, d}], Ac3 = [{b, d}, X],
Ac4 = [{d}, {d}], Ac5 = [{a, d}, X], Ac6 = [{a, b, d}, X],
Ac7 = [{d}, {a, b, d}], Ac8 = [∅, {c, d}], Ac9 = [∅, {a, b, d}],
Ac10 = [∅, {d}], Ac11 = [{d}, {a, c, d}], Ac12 = [{b}, {a, b, c}], Ac13 = [∅, {a, c}],
Ac14 = [{d}, {b, c, d}], Ac15 = [{a}, {a, b, c}], Ac16 = [∅, {a, c}],
Ac17 = [{b, d}, {b, c, d}], Ac18 = [{a, d}, {a, c, d}], Ac19 = [{a, b}, {a, b, c}],
Ac20 = [{b}, {a, b, c}], Ac21 = [{a}, {a, c}], Ac22 = [∅, {c}].

Thus we can confirm that Corollary 5.8 holds.

Now let us consider the converses of Propositions 5.3 and 5.4.

Proposition 5.10. Let X be a non-empty set. Suppose to each a ∈ X, there corre-
sponds a set N∗(a

IV V P
) of IVSs in X satisfying the conditions [IVVN1], [IVVN2],

[IVVN3] and [IVVN4] in Proposition 5.4. Then there is an IVT on X such that
N∗(a

IV V P
) is the set of all IVVNs of a

IV V P
in this IVT for each a ∈ X.

Proof. Let

τ
IV V P

= {U ∈ IV S(X) : U ∈ N(a
IV V P

) for each a
IV V P

∈ U},
where N(a

IV V P
) denotes the set of all IVVNs in τ .

Then clearly, τ
IV V P

∈ IV T (X) by Proposition 5.4. we will prove that N∗(a
IV V P

) is
the set of all IVVNs of a

IV V P
in τ

IV V P
for each a ∈ X.
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Let V ∈ IV S(X) such that V ∈ N∗(a
IV V P

) and let U be the union of all the
IVVPs b

IV V P
in X such that U ∈ N∗(a

IV V P
). If we can prove that

a
IV V P

∈ U ⊂ V and U ∈ τ
IV V P

,

then the proof will be complete.
Since V ∈ N∗(a

IV V P
), a

IV V P
∈ U by the definition of U . Moreover, U ⊂ V .

Suppose b
IV V P

∈ U . Then by [IVVN4], there is an IVS W ∈ N∗(b
IV V P

) such that
V ∈ N∗(c

IV V P )) for each c
IV V P

∈ W . Thus c
IV V P

∈ U . By Theorem 3.15, W ⊂ U .
So by [IVVN2], U ∈ N∗(b

IV V P
) for each b

IV V P
∈ U . Hence by the definition of τ

IV V
,

U ∈ τ
IV V

. This completes the proof. �

Proposition 5.11. Let X be a non-empty set. Suppose to each a ∈ X, there corre-
sponds a set N∗(a

IV P
) of IVSs in X satisfying the conditions [IVN1], [IVN2], [IVN3]

and [IVN4] in Proposition 5.3. Then there is an IVT on X such that N∗(a
IV P

) is
the set of all IVNs of a

IV P
in this IVT for each a ∈ X.

Proof. The proof is similar to Proposition 5.10. �

Theorem 5.12. Let (X, τ) be an IVTS and let A ∈ IV S(X). Then A ∈ τ if and
only if A ∈ N(a

IV P
) and A ∈ N(a

IV V P
) for each a

IV P
, a

IV V P
∈ A.

Proof. Suppose A ∈ N(a
IV P

) and A ∈ N(a
IV V P

) for each a
IV P

, a
IV V P

∈ A. Then
there are Ua

IV P
, Va

IV V P
∈ τ such that a

IV P
∈ Ua

IV P
⊂ A and a

IV V P
∈ Va

IV V P
⊂ A.

Thus

A = (
⋃

a
IV P
∈A

a
IV P

) ∪ (
⋃

a
IV V P

∈A
a
IV V P

) ⊂ (
⋃

a
IV P
∈A

Ua
IV P

) ∪ (
⋃

a
IV V P

∈A
Va

IV V P
) ⊂ A.

So A = (
⋃
a
IV P
∈A UaIV P ) ∪ (

⋃
a
IV V P

∈A VaIV V P ). Since Ua
IV P

, Va
IV V P

∈ τ , A ∈ τ .

The proof of the necessary condition is easy. �

Now we will give the relation among three IVTs, τ , τ
IV P

and τ
IV V P

.

Proposition 5.13. τ = τ
IV P
∩ τ

IV V P
.

Proof. From Proposition 5.5 (2), it is clear that τ ⊂ τ
IV P
∩ τ

IV V P
.

Conversely, let U ∈ τ
IV P
∩τ

IV V P
. Then clearly, U ∈ τ

IV P
and U ∈ τ

IV V P
. Thus U is

an IVN of each of its IVPs a
IV P

and an IVVN of each of its IVVPs a
IV V P

. Thus there
are Ua

IV P
, Ua

IV V P
∈ τ such that a

IV P
∈ Ua

IV P
⊂ U and a

IV V P
∈ Ua

IV V P
⊂ U . So

we have
UIV P =

⋃
a
IV P
∈U

a
IV P
⊂

⋃
a
IV P
∈U

Ua
IV P
⊂ U

and
UIV V P =

⋃
a
IV V P

∈U
a
IV V P

⊂
⋃

a
IV V P

∈U
Ua

IV V P
⊂ U.

By Proposition 3.11, we get

U = UIV P ∪ UIV V P ⊂ (
⋃

a
IV P
∈U

Ua
IV P

) ∪ (
⋃

a
IV V P

∈U
Ua

IV V P
) ⊂ U, i.e.,

U = (
⋃

a
IV P
∈U

Ua
IV P

) ∪ (
⋃

a
IV V P

∈U
Ua

IV V P
).
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It is obvious that (
⋃
a
IV P
∈U UaIV P )∪ (

⋃
a
IV V P

∈U UaIV V P ) ∈ τ. Hence U ∈ τ. There-

fore τ
IV P
∩ τ

IV V P
⊂ τ. This completes the proof. �

The following is the immediate result of Proposition 5.13.

Corollary 5.14. Let (X, τ) be an IVTS. Then

IV Cτ = IV Cτ
IV P
∩ IV Cτ

IV V P
.

Example 5.15. In Example 5.7, we can easily check that Corollary 5.14 holds.

6. Interiors and closures of IVSs

In this section, we define interval-valued interiors and closures, and investigate
some of their properties and give some examples. In particular, we will show that
there is a unique IVT on a set X from the interval-valued closure [resp. interior]
operator.

Definition 6.1. Let (X, τ) be an IVTS and let A ∈ IV S(X).
(i) The interval-valued closure of A w.r.t. τ , denoted by IV cl(A), is an IVS in X

defined as:

IV cl(A) =
⋂
{K : Kc ∈ τ and A ⊂ K}.

(ii) The interval-valued interior of A w.r.t. τ , denoted by IV int(A), is an IVS in
X defined as:

IV int(A) =
⋃
{G : G ∈ τ and G ⊂ A}.

(iii) The interval-valued closure of A w.r.t. τ
IV P

, denoted by cl
IV P

(A), is an IVS
in X defined as:

cl
IV P

(A) =
⋂
{K : Kc ∈ τ

IV P
and A ⊂ K}.

(iv) The interval-valued interior of A w.r.t. τ
IV P

, denoted by int
IV P

(A), is an
IVS in X defined as:

int
IV P

(A) =
⋃
{G : G ∈ τ

IV P
and G ⊂ A}.

(v) The interval-valued closure of A w.r.t. τ
IV V P

, denoted by cl
IV V P

(A), is an
IVS in X defined as:

cl
IV V P

(A) =
⋂
{K : Kc ∈ τ

IV V P
and A ⊂ K}.

(vi) The interval-valued interior of A w.r.t. τ
IV V P

, denoted by int
IV V P

(A), is an
IVS in X defined as:

int
IV V P

(A) =
⋃
{G : G ∈ τ

IV V P
and G ⊂ A}.

Remark 6.2. From the above definition, it is obvious that the followings hold:

IV int(A) ⊂ int
IV P

(A), IV int(A) ⊂ int
IV V P

(A)

and

cl
IV P

(A) ⊂ IV cl(A), cl
IV V P

(A) ⊂ IV cl(A).
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Example 6.3. Let (X, τ) be the IVTS given in Example 5.7. Consider two IVSs
A = [{a, c}, {a, b, c}] and B = [{d}, {b, d}] in X. Then

IV int(A) =
⋃
{G ∈ τ : G ⊂ A} = A2 ∪A7 = [{c}, {a, b, c}],

int
IV P

(A) =
⋃
{G ∈ τIV P : G ⊂ A} = [{c}, {a, b, c}],

int
IV V P

(A) =
⋃
{G ∈ τIV V P : G ⊂ A}

= A2 ∪A7 ∪A14 ∪A17 = [{a, c}, {a, b, c}]
and

IV cl(B) =
⋂
{F : F c ∈ τ, B ⊂ F} = Ac3 ∩Ac5 ∩Ac6 ∩Ac7 = [{d}, {a, b, d}],

cl
IV P

(B) =
⋂
{F : F c ∈ τIV , B ⊂ F} = Ac3 ∩Ac5 ∩Ac6 ∩Ac7 = [{d}, {a, b, d}],

cl
IV V P

(B) =
⋂
{F : F c ∈ τIV V , B ⊂ F}

= Ac3 ∩Ac5 ∩Ac6 ∩Ac7 ∩Ac11 ∩Ac14 ∩Ac17 = [{d}, {b, d}].
Thus, we can confirm that Remark 6.2 holds.

Proposition 6.4. Let (X, τ) be an IVTS and let A ∈ IV S(X). Then

IV int(Ac) = (IV cl(A))c and IV cl(Ac) = (IV int(A))c.

Proof. IV int(Ac) =
⋃
{U ∈ τ : U ⊂ Ac}

=
⋃
{U ∈ τ : U− ⊂ A+c, U+ ⊂ A−c}

=
⋃
{U ∈ τ : A+ ⊂ U−c, A− ⊂ U+c}

= (
⋂
{U c : U ∈ τ,A ⊂ U c})c

= (IV cl(A))c.
Similarly, we can show that IV cl(Ac) = (IV int(A))c. �

Proposition 6.5. Let (X, τ) be an IVTS and let A ∈ IV S(X). Then

IV int(A) = int
IV P

(A) ∩ int
IV V P

(A).

Proof. The proof is straightforward from Proposition 5.13 and Definition 6.1. �

The following is the immediate result of Definition 6.1, and Propositions 6.4 and
6.5.

Corollary 6.6. Let (X, τ) be an IVTS and let A ∈ IV S(X). Then

IV cl(A) = cl
IV P

(A) ∪ cl
IV V P

(A).

Example 6.7. Consider two IVSs A = [{a, c}, {a, b, c}] and B = [{d}, {b, d}] in X
given in Example 6.3. Then from Example 6.3, we have:

IV int(A) = [{c}, {a, b, c}] = int
IV P

(A), int
IV V P

(A) = [{a, c}, {a, b, c}]
and

IV cl(B) = [{d}, {a, b, d} = cl
IV P

(B), cl
IV V P

(B) = [{d}, {b, d}].
Thus int

IV P
(A) ∩ int

IV V P
(A) = [{c}, {a, b, c}] = IV int(A)

and
cl
IV P

(B) ∪ cl
IV V P

(B) = [{d}, {a, b, d} = IV cl(B).

Theorem 6.8. Let X be an IVTS and let A ∈ IV S(X). Then
(1) A ∈ IV C(X) if and only if A = IV cl(A),
(2) A ∈ IV O(X) if and only if A = IV int(A).

Proof. Straightforward. �
290



J. Kim et al./Ann. Fuzzy Math. Inform. 20 (2020), No. 3, 273–295

Proposition 6.9 (Kuratowski Closure Axioms). Let X be an IVTS and let A,B ∈
IV S(X). Then

[IVK0] if A ⊂ B, then IV cl(A) ⊂ IV cl(B),
[IVK1] IV cl(∅̃) = ∅̃,
[IVK2] A ⊂ IV cl(A),
[IVK3] IV cl(IV cl(A)) = IV cl(A),
[IVK4] IV cl(A ∪B) = IV cl(A) ∪ IV cl(A).

Proof. Straightforward. �

Let IV cl∗ : IV S(X)→ IV S(X) be the mapping satisfying the properties [IVK1],
[IVK2],[IVK3] and [IVK4]. Then we will call the mapping IV cl∗ as the interval-
valued closure operator(briefly, IVCO) on X.

Proposition 6.10. Let IV cl∗ be the IVCO on X. Then there exists a unique IVT τ
on X such that IV cl∗(A) = IV cl(A), for each A ∈ IV S(X), where IV cl(A) denotes
the interval-valued closure of A in the IVTS (X, τ). In fact,

τ = {Ac ∈ IV S(X) : IV cl∗(A) = A}.
Proof. The proof is almost similar to the case of ordinary topological spaces. �

Proposition 6.11. Let X be an IVTS and let A,B ∈ IV S(X). Then
[IVI0] if A ⊂ B, then IV int(A) ⊂ IV int(B),

[IVI1] IV int(X̃) = X̃,
[IVI2] IV int(A) ⊂ A,
[IVI3] IV int(IV int(A)) = IV int(A),
[IVI4] IV int(A ∩B) = IV int(A) ∩ IV int(A).

Proof. Straightforward. �

Let IV int∗ : IV S(X)→ IV S(X) be the mapping satisfying the properties [IVI1],
[IVI2],[IVI3] and [IVI4]. Then we will call the mapping IV int∗ as the interval-valued
interior operator (briefly, IVIO) on X.

Proposition 6.12. Let IV int∗ be the IVIO on X. Then there exists a unique IVT
τ on X such that IV int∗(A) = IV int(A), for each A ∈ IV S(X), where IV int(A)
denotes the interval-valued interior of A in the IVTS (X, τ). In fact,

τ = {A ∈ IV S(X) : IV int∗(A) = A}.
Proof. The proof is similar to one of Proposition 6.10. �

Definition 6.13. Let (X, τ) be an IVTS, a ∈ X and let A ∈ IV S(X). Then
(i) a

IV P
∈ A is called a τ

IV P
-interior point of A, if A ∈ N(a

IV P
),

(ii) a
IV V P

∈ A is called a τ
IV V P

-interior point of A, if A ∈ N(a
IV V P

).
We will denote the union of all τ

IV P
-interior points [resp. τ

IV V P
-interior points]

of A as τ
IV P
− int(A) [resp. τ

IV V P
− int(A)]. It is clear that

τ
IV P
− int(A) =

⋃
{a

IV P
: A ∈ N(a

IV P
)}

[resp. τ
IV V P

− int(A) =
⋃
{a

IV V P
: A ∈ N(a

IV V P
)}].

Theorem 6.14. Let (X, τ) be an IVTS and let A ∈ IV S(X).
(1) A ∈ τ

IV P
if and only if AIV P = τ

IV P
− int(A).

(2) A ∈ τ
IV V P

if and only if AIV V P = τ
IV V P

− int(A).
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Proof. (1) Suppose A ∈ τ
IV P

and let a
IV P
∈ AIV P . Then by the definition of AIV P ,

a
IV P
∈ A. Thus by the definition of τ

IV P
, A ∈ N(a

IV P
). So a

IV P
∈ τ

IV P
− int(A),

i.e., AIV P ⊂ τIV P − int(A).
Now let a

IV P
∈ τ

IV P
− int(A). Then A ∈ N(a

IV P
). Thus a

IV P
∈ A. So a

IV P
∈

AIV P , i.e., τ
IV P
− int(A) ⊂ AIV P . Hence AIV P = τ

IV P
− int(A).

Conversely, suppose the necessary condition holds and let a
IV P
∈ A. Then a

IV P
∈

AIV P . Thus by the hypothesis, a
IV P
∈ τ

IV P
− int(A). So A ∈ N(a

IV P
). Hence by

the definition of τ
IV P

, A ∈ τ
IV P

.
(2) The proof is similar to that of (1). �

Proposition 6.15. Let X be a non-empty set, (Aj)j∈J ⊂ IV S(X) and let A =⋃
j∈J Aj. Then

(1) AIV P =
⋃
j∈J Aj,IV P ,

(2) AIV V P =
⋃
j∈J Aj,IV V P .

Proof. (1) For each j ∈ J , let Aj = [A−j , A
+
j ]. Then clearly, we have

A =
⋃
j∈J

Aj = [
⋃
j∈J

A−j ,
⋃
j∈J

A+
j ].

Now let a
IV P
∈ A. Then a

IV P
∈

⋃
j∈J Aj . Thus a ∈

⋃
j∈J A

−
j . So there is j0 ∈ J

such that a ∈ A−j0 . Hence a
IV P
∈ Aj0,IV P , i.e., a

IV P
∈
⋃
j∈J Aj,IV P .

Conversely, suppose a
IV P
∈
⋃
j∈J Aj,IV P . Then there is j0 ∈ J such that a

IV P
∈

Aj0,IV P . Thus a ∈ A−j0 . So a ∈
⋃
j∈J A

−
j . Hence a

IV P
∈ AIV P . Therefore AIV P =⋃

j∈J Aj,IV .

(2) The proof is similar to that of (1). �

Proposition 6.16. Let (X, τ) be an IVTS and let A ∈ IV S(X). Then
(1) τ

IV P
− int(A) =

⋃
G⊂A, G∈τ

IV P
GIV P ,

(2) τ
IV V P

− int(A) =
⋃
G⊂A, G∈τ

IV V P
GIV V P .

Proof. Suppose a
IV P
∈
⋃
G⊂A, G∈τ

IV P
GIV P . Then there is G ∈ τ

IV P
such that

G ⊂ A and a
IV P
∈ GIV P .

Thus a
IV P
∈ G. Since G ∈ τ

IV P
, G ∈ N(a

IV P
). So A ∈ N(a

IV P
). Hence a

IV P
∈

τ
IV P
− int(A).

Conversely, suppose a
IV P
∈ τ

IV P
-int(A). Then there is G ∈ τ such that

a
IV P
∈ G ⊂ A.

Moreover, a
IV P
∈ GIV P and G ∈ τ

IV P
. Thus a

IV P
∈

⋃
G⊂A, G∈τ

IV P
GIV P . So the

result holds.
(2) The proof is similar to that of (1). �

Remark 6.17. From Definitions 6.1 and 6.13, we have the following inclusions:

τ
IV P
− int(A) ⊂ int

IV P
(A), τ

IV V P
− int(A) ⊂ int

IV V P
(A).

But the reverse inclusions do not hold in general (See Example 6.18).
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Example 6.18. Let X = {a, b, c, d, e} and consider the IVTS (X, τ) given by:

τ = {∅̃, X̃, A1, A2, A3, A4, A5, A5, A7, A8},

where A1 = [{a, b}, {a, b, c}], A2 = [{a, d}, {a, b, d}], A3 = [{d, e}, X].
A4 = [∅, {a, b, c}]}, A5 = [{a}, {a, b}]}, A6 = [{d}, {a, b, d}],
A7 = [{a, b, d}, X], A8 = [{a, c, d, e}, X]}.

Then by Remark 5.6 (1), we have
τ
IV P

= τ
⋃
{A9, A10, A11, A12, A13, A14, A15, A16,
A17, A18, A19A20, A21, A22, A23, A24}

and

τ
IV V P

= τ
⋃
{A25, A26, A27, A28, A29, A30},

where A9 = [{a, b}, {a, b, c, d}], A10 = [{a, b}, {a, b, c, e}], A11 = [{a, b}, X],
A12 = [{a, d}, {a, b, c, d}], A13 = [{a, d}, {a, b, d, e}], A14 = [{a, d}, X],
A15 = [{a}, {a, b, c}], A16 = [{a}, {a, b, d}], A17 = [{a}, {a, b, e}],
A18 = [{a}, {a, b, c, d}], A19 = [{a}, {a, b, c, e}], A20 = [{a}, {a, b, d, e}],
A21 = [{a}, X], A22 = [{d}, {a, b, c, d}], A23 = [{d}, {a, b, d, e}],
A24 = [{d}, X], A25 = [{b}, {a, b, c}], A26 = [{c}, {a, b, c}],
A27 = [{a, b}, {a, b, c}], A28 = [{b, c}, {a, b, c}],
A29 = [{a, c}, {a, b, c}], A30 = [{a, b, c}, {a, b, c}].

Now let us consider the IVS B = [{a, b, c}, {a, b, c, d}] in X. Then

int
IV P

(B) = [{a, b}, {a, b, c, d}], int
IV V P

(B) = [{a, b, c}, {a, b, c}].

On the other hand, by Propositions 3.11 and 6.16, we have

τ
IV P
− int(B) = [{a, b}, {a, b}], τ

IV V P
− int(B) = [∅, {a, b, c}].

Thus we can confirm Remark 6.17.

Remark 6.19. From Example 6.18, we have the following strict inclusions:

τ
IV P
− int(A) ⊂ int

IV P
(A), τ

IV P
− int(A) 6= int

IV P
(A),

τ
IV V P

− int(A) ⊂ int
IV V P

(A), τ
IV V P

− int(A) 6= int
IV V P

(A).

Proposition 6.20. Let (X, τ) be an IVTS and let A, B ∈ IV S(X). Then
(1) τ

IV P
− int(A) ⊂ AIV P , τ

IV V P
− int(A) ⊂ AIV V P ,

(2) if A ⊂ B, then τ
IV P
−int(A) ⊂ τ

IV P
−int(B), τ

IV V P
−int(A) ⊂ τ

IV V P
−int(B),

(3) τ
IV P
− int(A ∩B) = τ

IV P
− int(A) ∩ τ

IV P
− int(B),

τ
IV V P

− int(A ∩B) = τ
IV V P

− int(A) ∩ τ
IV V P

− int(B),

(4) τ
IV P
− int(X̃) = X̃, τ

IV V P
− int(X̃) = [∅, X].

Proof. From Definition 6.13 and Proposition 6.16, the proofs of (1) and (2) are
obvious. Also, the proof of (4) is clear from Proposition 6.16. we will prove only (3).

Let a
IV P
∈ τ

IV P
−int(A∩B). Then clearly, A∩B ∈ N(a

IV P
). Thus A ∈ N(a

IV P
)

and B ∈ N(a
IV P

). So a
IV P
∈ τ

IV P
− int(A) and a

IV P
∈ τ

IV P
− int(B), i.e.,

a
IV P
∈ τ

IV P
− int(A) ∩ τ

IV P
− int(B).

Hence τ
IV P
− int(A ∩B) ⊂ τ

IV P
− int(A) ∩ τ

IV P
− int(B).
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Conversely, suppose a
IV P
∈ τ

IV P
− int(A) ∩ τ

IV P
− int(B). Then A ∈ N(a

IV P
)

and B ∈ N(a
IV P

). Thus A∩B ∈ N(a
IV P

). So a
IV P

is a τ
IV P

-interior point of A∩B,
i.e.,

a
IV P
∈ τ

IV P
− int(A ∩B).

Hence τ
IV P
− int(A) ∩ τ

IV P
− int(B) ⊂ τ

IV P
− int(A ∩ B). Therefore the equality

holds.
The proof of the second part is similar to that of the first part. �

Remark 6.21. The equalities τ
IV P
−int(τ

IV P
−int(A)) = τ

IV P
−int(A) and τ

IV V P
−

int(τ
IV V P

− int(A)) = τ
IV V P

− int(A) do not hold in general (See Example 6.22)

Example 6.22. Let (X, τ) be the IVTS and let B be the IVS in X given in Example
6.18. Then we can easily check that

τ
IV P
− int(B) = [{a, b}, {a, b}] and τ

IV P
− int(τ

IV P
− int(B)) = [{a}, {a, b}].

Thus τ
IV P
− int(B) 6= τ

IV P
− int(τ

IV P
− int(B)).

7. Conclusions

By using the notion of interval-valued sets introduced by Yao [17], we defined an
interval-valued (vanishing) point and obtained some of its properties. Also, we de-
fined an interval-valued ideal and studied some of its properties. Next, we introduced
the notion of interval-valued topological spaces which are considered as a bitopo-
logical space proposed by Kelly [9]. Moreover, we defined an interval-valued base
and subbase and found the characterization of an interval-valued base. Finally, we
introduced the concept of interval-valued neighborhoods and obtained some similar
properties to classical neighborhoods. Furthermore, we defined an interval-valued
closure and interior and dealt with their some properties. In the future, we ex-
pect that one can apply the notion of interval-valued sets to group and ring theory,
BCK-algebra and category theory, etc.
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