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Abstract. In this paper, we introduce the concepts of (internal, ex-
ternal) IVI-octahedron sets, and study some of their properties and give
some examples. Also, we define Type i-order, Type i-intersection, Type
i-union (i = 1, 2, 3, 4) and obtain their some properties. Second, we de-
fine an IVI-octahedron point and deal with the characterizations of Type
i-union (Type i-intersection). Third, we define the image and preimage of
an IVI-octahedron set under a mapping and obtain some of their proper-
ties. Finally, we define i-IVIGP and i-IVILI [resp. i-IVIRI and i-IVII], and
investigate their some properties.
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1. Introduction

In the real world, we encounter with decision making circumstances involving
ambiguities and uncertainties. To overcome such problems, Zadeh [27] (1965) pro-
posed the notion of fuzzy sets as the generalization of crisp sets. After then, many
researchers have been trying to find a mathematical expression of ambiguities and
uncertainties which can be applied to enguneering, medicine, and social sciences,
etc. For examples, interval-valued fuzzy set theory Zadeh [28] (1975) (See [8]), intu-
itionistic fuzzy set theory Atanassov [3] (1983), interval-valued intuitionistic fuzzy
set theory Atanassov and Gargov [4] (1989), vague set theory Gau and Buchrer
[7] (1993), neutrosophic set theory Smarandache [25] (1998), bipolar fuzzy set the-
ory Zhang [29], rough set theory Pawlak [22] (1982), soft set theory Molodtsov [19]
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(1999), etc. Recently, Jun et al. [11] defined a cubic set as a pair of an interval-
valued fuzzy set and a fuzzy set and studied some of its properties. N. Abughazalah
and Yaqoob [1] applied cubic sets to subsystems of finite state machines. Yaqoob
and Abughazalah [26] dealt with Finite switchboard state machines based on cubic
sets. Smarandache et al. [12] extended the concept of cubic sets to neutrosophic
sets (called a neutrosophic cubic set) and investigated some of its properties. Ali et
al. [2] applied such concept to pattern recognitions. Moreover, Jun [10] defined a
cubic intuionistic set composed of an interval-valued intuitionistic fuzzy set and an
intuitionistic fuzzy set, and applied it to BCI/BCK-algebra. In particular, Kaur
and Garg [14] studied multi-attribute decision making problems based on cubic in-
tuionistic fuzzy sets. Also they [15] introduced cubic intuitionistic fuzzy aggregation
operators. Kim et al. [16] introduced the concept of octahedron sets composed of
three components: interval-valued fuzzy set, intuitionistic fuzzy set and fuzzy set,
which will provide more information about ambiguity and uncertainty common in
everyday life, and dealt with its various properties. Of course, the octahedron set
can reduce information loss about ambiguity and uncertainty than cubic sets and
cubic interval-valued intuitionistic fuzzy sets (See [11] and [13]).

Since the interval-valued intuionistic fuzzy set provides more ambiguity and un-
certainty than the interval-valued fuzzy set, a new concept (will be called an interval-
valued intuionistic fuzzy octahedron set) is needed to replace the first component of
the octahedron set, the interval-valued fuzzy set, with the interval-valued intuition-
istic fuzzy set. In particular, we expect this concept to be used as a tool to deal
with multi-attribute decision making problems. Then this paper is formed of the
followings: in Section 2, we list some definitions needed next sections: in Section
3, we define an IVI-octahedron set as a triple of interval-valued intuitionistic fuzzy
set, an intuitionistic fuzzy set and a fuzzy set, and studied some related properties
and give some examples; In Section 4, we introduce the octahedron point and the
level set of an IVI-octahedron set, and find some of their properties; In Section 5,
we define the image and preimage of an IVI-octahedron set under a mapping and
investigate some of their properties; In Section 6, we apply IVI-octahedron sets to
groupoid theory.

2. Preliminaries

In this section, we list some basic definitions needed in the next sections.

For a set X, let IX denotes the set of all fuzzy sets in X and members of IX

will write λ, µ, ν, etc., where I = [0, 1]. In particular, 0 and 1 denote the fuzzy
empty set and the fuzzy whole set in X, respectively (See [27]). Also, refer to [27] for
the inclusion, intersection, union of two fuzzy sets and the complement of a fuzzy set.

Each member of a set I⊕I = {(a∈, a6∈) : (a∈, a6∈) ∈ I×I and a∈+a6∈ ≤ 1} is called
an intuitionistic fuzzy number, and (0, 1) and (1, 0) are denoted by 0̄ and 1̄, respec-
tively (See [6]). We will denote intuitionistic fuzzy numbers (a∈, a6∈), (b∈, b6∈), (c∈, c6∈),
etc. as ā, b̄, c̄, etc. It is well-known (Theorem 2.1 in [6]) that (I⊕I,≤) is a complete
distributive lattice with the greatest element 1̄ and the least element 0̄ satisfying De-
Morgan’s laws.
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Definition 2.1 ([3]). For a nonempty set X, a mapping A : X → I ⊕ I is called
an intuitionistic fuzzy set (briefly, IF set) in X, where for each x ∈ X, A(x) =
(A∈(x), A6∈(x)), and A∈(x) and A 6∈(x) represent the degree of membership and the
degree of nonmembership of an element x to A, respectively. Let (I ⊕ I)X denote
the set of all IF sets in X and for each A ∈ (I ⊕ I)X , we write A = (A∈, A6∈). In
particular, 0̄ and 1̄ denote the IF empty set and the IF whole set in X defined by,
respectively: for each x ∈ X,

0̄(x) = 0̄ and 1̄(x) = 1̄.

Refer to [3] for the inclusion, intersection, union of two IF sets and the complement
of an IF set, and operators [ ]A,�A for an IF set A.

The set of all closed subintervals of I is denoted by [I], and members of [I]

are called interval numbers and denoted by ã, b̃, c̃, etc., where ã = [a−, a+] and
0 ≤ a− ≤ a+ ≤ 1. In particular, if a− = a+, then we write as ã = a (See [16]).

Definition 2.2 ([8, 20]). For a nonempty set X, a mapping A : X → [I] is called
an interval-valued fuzzy set (briefly, an IVF set) in X. Let [I]X denote the set of
all IVF sets in X. For each A ∈ [I]X and x ∈ X, A(x) = [A−(x), A+(x)] is called
the degree of membership of an element x to A, where A−, A+ ∈ IX are called a
lower fuzzy set and an upper fuzzy set in X, respectively. For each A ∈ [I]X , we

write A = [A−, A+]. In particular, 0̃ and 1̃ denote the interval-valued fuzzy empty
set and the interval-valued fuzzy empty whole set in X.

Also, refer to [8, 20] for the inclusion, intersection, union of two IVF sets and the
complement of an IVF set

Let [I]⊕ [I] = {(ã∈, ã6∈) : (ã∈, ã6∈) ∈ [I]× [I] and a∈,+ + a6∈,+ ≤ 1}, where

ã∈ = [a∈,−, a∈,+], ã6∈ = [a6∈,−, a6∈,+] ∈ [I].

Each member of [I]⊕ [I] is called an interval-valued intuitionistic fuzzy number. In

particular, we write as
˜̃
0 = (0,1) and

˜̃
1 = (1,0). We will interval-valued intuition-

istic fuzzy numbers (ã∈, ã6∈), (̃b∈, b̃ 6∈), (c̃∈, c̃6∈), etc. as ˜̃a, ˜̃b, ˜̃c, etc.

We define relations ≤ and = on [I]⊕ [I] as follows: for any ˜̃a, ˜̃b ∈ [I]⊕ [I],

˜̃a ≤ ˜̃b⇐⇒ a∈,− ≤ b∈,−, a∈,+ ≤ b∈,+ and a6∈,− ≥ b 6∈,−, a6∈,+ ≥ b 6∈,+,

˜̃a =
˜̃
b⇐⇒ ˜̃a ≤ ˜̃b and ˜̃a ≥ ˜̃b.

Let ( ˜̃aj)j∈J ⊂ [I] ⊕ [I]. Then its inf and sup, denoted by
∧
j∈J

˜̃aj and
∨
j∈J

˜̃aj ,
are defined as follows:∧

j∈J

˜̃aj = ([
∧
j∈J

a∈,−j ,
∧
j∈J

a∈,+j ], [
∨
j∈J

a6∈,−j ,
∨
j∈J

a6∈,+j ]),

∨
j∈J

˜̃aj = ([
∨
j ∈ Ja∈,−j ,

∨
j∈J

a∈,+j ], [
∧
j∈J

a 6∈,−j ,
∧
j∈J

a6∈,+j ]).

Definition 2.3 ([4]). Let X be a nonempty set. Then a mapping A = (A∈,A 6∈) :
X → [I]⊕ [I] is called an interval-valued intuitionistic fuzzy set (briefly, IVI set) in
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X, where for each x ∈ X, A∈ = [A∈,−(x), A∈,+(x)], A 6∈ = [A 6∈,−(x), A6∈,+(x)] and
A∈,+(x) +A 6∈,+(x) ≤ 1.

In particular,
˜̃
0 (resp.

˜̃
1) will be called an IVI empty set (resp. IVI whole set) in

X. We will denote the set of all IVI sets as ([I]⊕ [I])X .

The relations (⊂, =), operations (∪, ∩, c) and operators ([ ], �) on ([I] ⊕ [I])X

are defined as follows.

Definition 2.4 ([4]). Let A = (A∈,A 6∈), B = (B∈,B6∈) ∈ ([I] ⊕ [I])X and let
(Aj)j∈J = ((A∈j ,A

6∈)j)j∈J ⊂ ([I]⊕ [I])X . Then

(i) A ⊂ B⇐⇒ (∀x ∈ X)(A∈,−(x) ≤ B∈,−(x), A∈,+(x) ≤ B∈,+(x)
and A 6∈,−(x) ≥ B 6∈,−(x), A6∈,+(x) ≥ B 6∈,+(x)),

(ii) A = B⇐⇒ A ⊂ B and B ⊂ A,
(iii) Ac(x) = (A 6∈(x),A∈(x)) for each x ∈ X,
(iv) (A ∪B)(x) = ([A∈,−(x) ∨B∈,−(x), A∈,+(x) ∨B∈,+(x)],

[A 6∈,−(x) ∧B 6∈,−(x), A6∈,+(x) ∧B 6∈,+(x)]) for each x ∈ X,
(v) (A ∩B)(x) = ([A∈,−(x) ∧B∈,−(x), A∈,+(x) ∧B∈,+(x)],

[A 6∈,−(x) ∨B 6∈,−(x), A6∈,+(x) ∨B 6∈,+(x)]) for each x ∈ X,

(vi) (
⋃
j∈J Aj)(x) = ([

∨
j∈J A

∈,−
j (x),

∨
j∈J A

∈,+
j (x)],

[
∧
j∈J A

6∈,−
j (x),

∧
j∈J A

6∈,+
j (x)]) for each x ∈ X,

(vii) (
⋂
j∈J Aj)(x) = ([

∧
j∈J A

∈,−
j (x),

∧
j∈J A

∈,+
j (x)],

[
∨
j∈J A

6∈,−
j (x),

∨
j∈J A

6∈,+
j (x)]) for each x ∈ X,

(viii) [ ]A(x) = (A∈(x), [(A 6∈,−(x), 1−A∈,+(x)]) for each x ∈ X,
(ix) �A(x) = ([A∈,−(x), 1−A 6∈,+(x)],A 6∈(x)) for each x ∈ X.

Definition 2.5 ([16]). Let X be a nonempty set and let A = [A−, A+] ∈ [I]X , A =
(A∈, A6∈) ∈ (I⊕ I)X , λ ∈ IX . Then the triple A = 〈A, A, λ〉 is called an octahedron
set in X. In fact, A : X → [I]× (I ⊕ I)× I is a mapping.

In this case, 0̈ (resp. 1̈) is called an octahedron empty set (resp. octahedron
whole set) in X. We denote the set of all octahedron sets as O(X).

3. Interval-valued intuitionistic octahedron sets

Members of ([I]⊕ [I])× (I ⊕ I)× I are called interval-valued intuitionistic fuzzy
octahedron numbers (briefly, IVI-octahedron numbers) and we write them as

˜̄̃a =
〈˜̃a, ā, a〉 , ˜̄̃b =

〈˜̃
b, b̄, b

〉
, etc,

where ˜̃a = (ã∈, ã6∈) = ([a∈,−, a∈,+], [a6∈,−, a6∈,+]), ā = (a∈, a6∈). In particular,〈˜̃
0, 0̄, 0

〉
and

〈˜̃
1, 1̄, 1

〉
as
˜̄̃
0 and

˜̄̃
1, respectively.

We define relations ≤i (i = 1, 2, 3, 4) and = on ([I]⊕ [I])× (I⊕I)×I as follows:

for any ˜̄̃a, ˜̄̃b ∈ ([I]⊕ [I])× (I ⊕ I)× I,˜̄̃a ≤1
˜̄̃
b⇐⇒ ˜̃a ≤ ˜̃b, ā ≤ b̄, a ≤ b, ˜̄̃a ≤2

˜̄̃
b⇐⇒ ˜̃a ≤ ˜̃b, ā ≤ b̄, a ≥ b,

˜̄̃a ≤3
˜̄̃
b⇐⇒ ˜̃a ≤ ˜̃b, ā ≥ b̄, a ≤ b, ˜̄̃a ≤4

˜̄̃
b⇐⇒ ˜̃a ≤ ˜̃b, ā ≥ b̄, a ≥ b,
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˜̄̃a =
˜̄̃
b⇐⇒ ˜̄̃a ≤i ˜̄̃b, ˜̄̃b ≤i ˜̄̃a(i = 1, 2, 3, 4).

For any (˜̄̃aj)j∈J ⊂ ([I] ⊕ [I]) × (I ⊕ I) × I, its inf
∧i
j∈J

˜̄̃aj and sup
∨i
j∈J

˜̄̃aj
(i = 1, 2, 3, 4) are defined as follows:

1∧
j∈J

˜̄̃aj =

〈∧
j∈J

˜̃aj ,∧
j∈J

āj ,
∧
j∈J

aj

〉
,

2∧
j∈J

˜̄̃aj =

〈∧
j∈J

˜̃aj ,∧
j∈J

āj ,
∨
j∈J

aj

〉
,

3∧
j∈J

˜̄̃aj =

〈∧
j∈J

˜̃aj ,∨
j∈J

āj ,
∧
j∈J

aj

〉
,

4∧
j∈J

˜̄̃aj =

〈∧
j∈J

˜̃aj ,∨
j∈J

āj ,
∨
j∈J

aj

〉
,

1∨
j∈J

˜̄̃aj =

〈∨
j∈J

˜̃aj ,∨
j∈J

āj ,
∨
j∈J

aj

〉
,

2∨
j∈J

˜̄̃aj =

〈∨
j∈J

˜̃aj ,∨
j∈J

āj ,
∧
j∈J

aj

〉
,

3∨
j∈J

˜̄̃aj =

〈∨
j∈J

˜̃aj ,∧
j∈J

āj ,
∨
j∈J

aj

〉
,

4∨
j∈J

˜̄̃aj =

〈∨
j∈J

˜̃aj ,∧
j∈J

āj ,
∧
j∈J

aj

〉
.

Definition 3.1. LetX be a nonempty set and let A = ([A∈,−, A∈,+], [A 6∈,−, A6∈,+]) ∈
([I]⊕ [I])X , A = (A∈, A6∈) ∈ (I ⊕ I)X , λ ∈ IX . Then the triple A =< A, A, λ > is
called an interval-valued intuitionistic fuzzy octahedron set (briefly, IVI-octahedron
set) in X. In fact, A : X → ([I]⊕ [I])× (I ⊕ I)× I is a mapping.

We can consider following special IVI-octahedron sets in X:

<
˜̃
0, 0̄, 0 >= 0̈,

<
˜̃
0, 0̄, 1 >, <

˜̃
0, 1̄, 0 >, <

˜̃
1, 0̄, 0 >,

<
˜̃
0, 1̄, 1 >, <

˜̃
1, 0̄, 1 >, <

˜̃
1, 1̄, 0 >,

<
˜̃
1, 1̄, 1 >= 1̈.

In this case, 0̈ (resp. 1̈) will be called an IVI-octahedron empty set (resp. IVI-
octahedron whole set) in X. We will denote the set of all IVI-octahedron sets as
IV IO(X).

It is obvious that for eachA ∈ 2X , χA =< ([χA, χA], [χAc , χAc ]), (χA, χAc), χA >∈
IV IO(X) and then 2X ⊂ IV IOX, where 2X denotes the set of all subsets of X and
χA denotes the characteristic function of A.

Example 3.2. (1) Let X = {a, b, c} be a set and let A =< A, A, λ >: X →
([I]⊕ [I])× (I ⊕ I)× I be the mapping given by:

A(a) =< ([0.3, 0.6], [0.2, 0.3]), (0.7, 0.2), 0.5 >,

A(b) =< ([0.2, 0.4], [0.4, 0.5]), (0.6, 0.3), 0.7 >,

A(c) =< ([0.4, 0.7], [0.1, 0.2]), (0.5, 0.4), 0.3 > .

Then we can easily see that A is an IVI-octahedron set in X.
(2) Let X = I and let A =< A, A, λ >: X → ([I] ⊕ [I]) × (I ⊕ I) × I be the

mapping defined as follows: for each x ∈ X,

A(x) =< ([
x

4
,

1 + x

3
], [
x

5
,
x

4
]), (

x

3
,

1 + x

5
), x > .

Then we can easily calculate that A is an IVI-octahedron set in X.
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(3) Let A = ([A∈,−, A∈,+], [A 6∈,−, A6∈,+]) ∈ ([I]⊕ [I])X . Then clearly, < A, 0̄, 0 >
(resp. < A, 1̄, 0 >, < A, 0̄, 1 >, < A, 1̄, 1 >) is an IVI-octahedron set in X. In this
case, we will denote < A, 0̄, 0 > (resp. < A, 1̄, 0 >, < A, 0̄, 1 >, < A, 1̄, 1 >) as
IO0̄,0 (resp. IO1̄,0, IO0̄,1, IO1̄,1).

Now let us A : X → I ⊕ I and λ : X → I be the mappings defined as follows,
respectively: for each x ∈ X,

A(x) = (A∈(x), A6∈(x)) = (
A∈,−(x) +A∈,+(x)

2
,
A 6∈,−(x) +A 6∈,+(x)

2
),

λ(x) =
A∈,−(x) +A∈,+(x)

2
.

Then we can easily see that < A, A, λ > is an IVI-octahedron set in X. In this case,
< A, A, λ > will be called the IVI-octahedron set in X induced by A and will be
denoted by IOA.

(4) Let A = (A∈, A6∈) ∈ (I ⊕ I)X . Then clearly <
¯̃
0, A, 0 > (resp. <

¯̃
1, A, 0 >, <

¯̃
0, A, 1 >, <

¯̃
1, A, 1 >) is an IVI-octahedron set in X. In this case, <

¯̃
0, A, 0 >

(resp. <
¯̃
1, A, 0 >, <

¯̃
0, A, 1 >, <

¯̃
1, A, 1 >) will be denoted by IO¯̃

0,0
(resp.

IO¯̃
1,0

, IO¯̃
0,1

, IO¯̃
1,1

).

Now let us A : X → [I]⊕ [I] and λ : X → I be the mappings defined as follows,
respectively: for each x ∈ X,

A(x) = ([A∈(x), 1−A 6∈(x)], [A 6∈(x), 1−A∈(x)]),

λ(x) =
A∈(x) + 1−A 6∈(x)

2
.

Then clearly < A, A, λ > is an IVI-octahedron set in X. In this case, < A, A, λ >
will be called the IVI-octahedron set in X induced by A and will be denoted by
IOA.

(5) Let A =< A, A, λ > be an IVI-octahedron set in X. Then clearly, <
[ ]A, A, λ >, < A, [ ]A, λ >, < [ ]A, [ ]A, λ >, < �A, A, λ >, < A, �A, λ > and
< �A, �A, λ > are IVI-octahedron sets in X.

From orders of IVI-octahedron numbers, we can define the following.

Definition 3.3. Let X be a nonempty set and let A =< A, A, λ >, B =<
B, B, µ >∈ IV IO(X). Then we can define following order relations between A
and B:

(i) (Equality) A = B ⇔ A = B, A = B, λ = µ,
(ii) (Type 1-order) A ⊂1 B ⇔ A ⊂ B, A ⊂ B, λ ≤ µ,
(iii) (Type 2-order) A ⊂2 B ⇔ A ⊂ B, A ⊂ B, λ ≥ µ,
(iv) (Type 3-order) A ⊂3 B ⇔ A ⊂ B, A ⊃ B, λ ≤ µ,
(v) (Type 4-order) A ⊂4 B ⇔ A ⊂ B, A ⊃ B, λ ≥ µ.

Definition 3.4. Let X be a nonempty set and let (Aj)j∈J = (< Aj , Aj , λj >)j∈J
be a family of IVI-octahedron sets in X. Then the Type i-union ∪i and Type
i-intersection ∩i of (Aj)j∈J , (i = 1, 2, , 3, 4), are defined as follows, respectively:

(i) (Type i-union)
⋃1
j∈J Aj =<

⋃
j∈J Aj ,

⋃
j∈J Aj ,

⋃
j∈J λj >,⋃2

j∈J Aj =<
⋃
j∈J Aj ,

⋃
j∈J Aj ,

⋂
j∈J λj >,
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⋃3
j∈J Aj =<

⋃
j∈J Aj ,

⋂
j∈J Aj ,

⋃
j∈J λj >,⋃4

j∈J Aj =<
⋃
j∈J Aj ,

⋂
j∈J Aj ,

⋂
j∈J λj >,

(ii) (Type i-intersection)
⋂1
j∈J Aj =<

⋂
j∈J Aj ,

⋂
j∈J Aj ,

⋂
j∈J λj >,⋂2

j∈J Aj =<
⋂
j∈J Aj ,

⋂
j∈J Aj ,

⋃
j∈J λj >,⋂3

j∈J Aj =<
⋂
j∈J Aj ,

⋃
j∈J Aj ,

⋂
j∈J λj >,⋂4

j∈J Aj =<
⋂
j∈J Aj ,

⋃
j∈J Aj ,

⋃
j∈J λj >.

The followings are the immediate results of Definitions 3.3 and 3.4.

Proposition 3.5. Let X be a nonempty set and let A =< A, A, λA >, B =<
B, B, λB >, C =< C, C, λC > and D =< D, D, λD > be IVI-octahedron sets in X.
Then for each i = 1, 2, 3, 4,

(1) if A ⊂i B and B ⊂i C, then A ⊂i C,
(2) if A ⊂i B and A ⊂i C, then A ⊂i B ∩i C,
(3) if A ⊂i B and C ⊂i B, then A ∪i C ⊂i B, .
(4) if A ⊂i B and C ⊂i D, then A ∪i C ⊂i B ∪i D and A ∩i C ⊂i B ∩i D.

Definition 3.6. Let X be a nonempty set and let A =< A, A, λ > be an IVI-
octahedron set in X. Then the complement Ac, operators [ ] and � of A are defined
as follows, respectively: for each x ∈ X,

(i) Ac =< Ac, Ac, λc >,
(ii) [ ]A =< [ ]A, [ ]A, λ >,
(iii) �A =< �A, �A, λ >.

From the above Definition (i), we can easily see that the followings hold:
0̈c = 1̈, 1̈c = 0̈,

<
¯̃
0, 0̄, 1 >c=<

¯̃
1, 1̄, 0 >, <

¯̃
1, 1̄, 0 >c=<

¯̃
0, 0̄, 1 >,

<
¯̃
0, 1̄, 0 >c=<

¯̃
1, 0̄, 1 >, <

¯̃
1, 0̄, 1 >c=<

¯̃
0, 1̄, 0 >,

<
¯̃
1, 0̄, 0 >c=<

¯̃
0, 1̄, 1 >, <

¯̃
0, 1̄, 1 >c=<

¯̃
1, 0̄, 0 >,

<
¯̃
0, 1̄, 1 >c=<

¯̃
1, 0̄, 0 >, <

¯̃
1, 0̄, 0 >c=<

¯̃
0, 1̄, 1 >,

<
¯̃
1, 0̄, 1 >c=<

¯̃
0, 1̄, 0 >, <

¯̃
0, 1̄, 0 >c=<

¯̃
1, 0̄, 1 >,

<
¯̃
1, 1̄, 0 >c=<

¯̃
0, 0̄, 1 >, <

¯̃
0, 0̄, 1 >c=<

¯̃
1, 1̄, 0 > .

The followings are the immediate results of Definitions 3.3 and 3.6 (i).

Proposition 3.7. Let X be a nonempty set and let A =< A, A, λ > and B =<
B, B, µ > be IVI-octahedron sets in X. If A ⊂i B, then Bc ⊂i Ac, for each i =
1, 2, 3, 4.

The followings are the immediate results of Definitions 3.4 and 3.6 (i).

Proposition 3.8. Let A ∈ IV IO(X) and let (Aj)j∈J ⊂ IV IO(X). Then
(1) (Ac)c = A,
(2) for each i = 1, 2, 3, 4,

(

i⋃
j∈J
Aj)c =

i⋂
j∈J
Acj , (

i⋂
j∈J
Aj)c =

i⋃
j∈J
Acj .
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Remark 3.9. For any A =< A, A, λ >∈ IV IO(X) and each i = 1, 2, 3, 4, the
followings do not hold, in general:

A ∪i Ac = 1̈ and A ∩i Ac = 0̈.

Example 3.10. Consider the IVI set A, the IF set A and the fuzzy set λ in a
nonempty set X given by respectively: for each x ∈ X,

A(x) = ([0.5, 0.5], [0.5, 0.5]), A(x) = (0.5, 0.5) and λ = 0.5.

Then clearly, A =< A, A, λ > is an IVI-octahedron set in X. Moreover,

(A ∪i Ac)(x) =< ([0.5, 0.5], [0.5, 0.5]), (0.5, 0.5), 0.5 > 6= 1̈(x)

and

(A ∩i Ac)(x) =< [([0.5, 0.5], [0.5, 0.5]), (0.5, 0.5), 0.5 > 6= 0̈(x).

Thus A ∪i Ac 6= 1̈ and A ∩i Ac 6= 0̈.

The followings are the immediate results of Definition 3.4.

Proposition 3.11. Let X be a nonempty set, let A =< A, A, λA >, B =<
B, B, λB >, C =< C, C, λC >∈ OX and let (Aj)j∈J = (< Aj , Aj , λj >)j∈J ⊂ OX .
Then each i = 1, 2, 3, 4,

(1) A ∪i A = A, A ∩i A = A,
(2) A ∪i B = B ∪i A, A ∩i B = B ∩i A,
(3) A ∪i (B ∪i C) = (A ∪i B) ∪i C, A ∩i (B ∩i C) = (A ∩i B) ∩i C,
(4) A ∪i (B ∩i C) = (A ∪i B) ∩i (A ∪i C), A ∩i (B ∪i C) = (A ∩i B) ∪i (A ∩i C),
(4)
′ A ∪i (

⋂i
j∈J Aj) =

⋂i
j∈J(A ∪i Aj), A ∩i (

⋃i
j∈J Aj) =

⋃i
j∈J(A ∩i Aj).

From the above Propositions 3.8 and 3.11, we can see that (IV IO(X),∪i,∩i, 0̈, 1̈)
forms a Boolean algebra except the property of Remark 3.9.

From Definition 3.6, we have the similar results to Theorem 1 in [4].

Proposition 3.12. Let A =< A, A, λ > be an IVI-octahedron set in a nonempty
set X. Then

(1) ([ ]Ac)c = �A, (�Ac)c = [ ]A,
(2) [ ]A ⊂i A ⊂i �A for each i = 1, 2, 3, 4,
(3) [ ][ ]A = [ ]A,
(4) [ ] � A = �A,
(5) �[ ]A = [ ]A,
(6) � � A = �A.

Also, we obtain the similar results to Theorems 2 and 3 in [4].

Proposition 3.13. Let A =< A, A, λ > and B =< B, B, µ > be IVI-octahedron
sets in a nonempty set X and let i = 1, 2, 3, 4. Then

(1) (Ac ∪i Bc) = Ac ∩i Bc, (Ac ∩i Bc) = Ac ∪i Bc,
(2) [ ](A ∪i B) = [ ]A ∪i [ ]B, [ ](A ∩i B) = [ ]A ∩i [ ]B,
(3) �(A ∪i B) = �A ∪i �B, �(A ∩i B) = �A ∩i �B.
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Definition 3.14. Let X be a nonempty set and let A =< A, A, λ >∈ IV IO(X).
Then A is called:

(i) an internal IVI-octahedron set (briefly, IIVI-octahedron set) in X, if for each
x ∈ X,

A∈(x), λ(x) ∈ A∈(x) = [A∈,−(x), A∈,+(x)] andA 6∈(x) ∈ A 6∈(x) = [A 6∈,−(x), A6∈,+(x)],

(ii) a external IVI-octahedron set (briefly, EIVI-octahedron set) in X, if for each
x ∈ X,

A∈(x), λ(x) 6∈ (A∈,−(x), A∈,+(x)) and A 6∈(x) 6∈ (A 6∈,−(x), A6∈,+(x)).

Example 3.15. (1) Let A1 =< A1, A1, λ1 > be the IVI-octahedron set in I given
by: for each x ∈ I,

A1(x) =< ([
1 + x

6
,

1 + x

4
], [

1 + x

7
,

1 + x

5
]), (

1 + x

5
,

1 + x

6
),

1 + x

5
> .

Then we can easily calculate that A1 is an IIVI-octahedron set in X.
(2) Let A2 =< A6, A6, λ6 > be the IVI-octahedron set in I given by: for each

x ∈ I,

A2(x) =< ([
1 + x

6
,

1 + x

4
], [

1 + x

7
,

1 + x

5
]), (

1 + x

3
,

1 + x

8
),

1 + x

3
> .

Then we can easily see that A2 is an EIVI-octahedron set in X.

The following is the immediate result of Definition 3.14.

Proposition 3.16. Let X be a nonempty set and let A =< A, A, λ >∈ IV IO(X).
If A is not external, then there is x ∈ X such that A∈(x) ∈ A∈(x), λ(x) ∈ A∈(x)
or A 6∈(x) ∈ A 6∈(x).

For A =< A, A, λ >∈ IV IO(X), A is internal (resp. external) but Ac is not
internal (resp. external), in general as shown as the following examples.

Example 3.17. (1) Consider the IIVI-octahedron set A1 in X in Example 3.15
(1). Then we can easily calculate that 1 − λ1(x) = 4−x

5 > 1+x
5 . Thus 1 − λ1(x) 6∈

( 1+x
7 , 1+x

5 ) = (Ac)∈. So Ac1 is not internal.
(2) Consider the EIVI-octahedron set A2 in X in Example 3.15 (2). Then we can

easily see that 1+x
7 ≤ 1−λ2(x) = 2−x

3 ≤ 1+x
5 . Thus 1−λ2(x) ∈ [ 1+x

7 , 1+x
5 ] = (Ac)∈.

So Ac2 is not external.

Proposition 3.18. Let X be a nonempty set and let A =< A, A, λ >∈ IV IO(X).
If A is internal, then < [ ]A, A, λ > and < �A, A, λ > are internal.

Proof. Suppose A is internal and let x ∈ X. Then

A∈(x), λ(x) ∈ A∈(x) = [A∈,−(x), A∈,+(x)] andA 6∈(x) ∈ A 6∈(x) = [A 6∈,−(x), A6∈,+(x)].

Since [ ]A = ([A∈,−, A∈,+], [A 6∈,−, 1 − A∈,+]), ([ ]A)∈ = A∈. Thus A∈(x), λ(x) ∈
([ ]A)∈(x). Since A∈,+ + A 6∈,+ ≤ 1, A 6∈,+ ≤ 1 − A∈,+. So A 6∈ ⊂ ([ ]A) 6∈ =
[A 6∈,−, 1−A∈,+]. Hence A 6∈(x) ∈ ([ ]A)6∈(x). Therefore < [ ]A, A, λ > is internal.

The proof of the second part is similar. �

For A =< A, A, λ >∈ IV IO(X), A is internal but [ ]A and �A are not internal,
in general as shown as the following example.
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Example 3.19. Consider the IIVI-octahedron set A1 in X in Example 3.15 (1).
Then clearly,

[ ]A1 =< ([A∈,−1 , A∈,+1 ], [A 6∈,−1 , 1−A∈,+1 ]), (A∈1 , 1−A∈1 ), λ1 >
=< ([ 1+x

6 , 1+x
4 ], [ 1+x

7 , 1− 1+x
4 ]), ( 1+x

5 , 1− 1+x
5 ), 1+x

5 >,

�A1 =< ([A∈,−1 , 1−A 6∈,+1 ], [A 6∈,−1 , A6∈,+1 ]), (1−A 6∈1 , A
6∈
1 ), λ1 >

=< ([ 1+x
6 , 1− 1+x

5 ], [ 1+x
7 , 1+x

5 ]), (1− 1+x
6 , 1+x

6 ), 1+x
5 > .

Thus we have 1− 1+x
4 < 1− 1+x

5 and 1− 1+x
5 < 1− 1+x

6 . So ([ ]A1)6∈(x) 6∈ ([ ]A1) 6∈(x)
and (�A1)∈(x) 6∈ (�A1)∈(x). Hence [ ]A and �A are not internal.

Proposition 3.20. Let X be a nonempty set and let A =< A, A, λ >∈ IV IO(X).
< [ ]A, A, λ > and < �A, A, λ > are external.

Proof. (1) Suppose A is external and let x ∈ X. Then

A∈(x), λ(x) 6∈ (A∈,−(x), A∈,+(x)) and A 6∈(x) 6∈ (A 6∈,−(x), A6∈,+(x)).

Thus A∈(x), λ(x) 6∈ (([ ]A)∈,−(x), ([ ]A)∈,+(x)) = (A∈,−(x), A∈,+(x)). Moreover,

A 6∈(x) 6∈ (A 6∈,−(x), 1−A∈(x)) = (([ ]A)6∈,−(x), ([ ]A) 6∈,+(x)).

So < [ ]A, A, λ > is external.
The proof of the second part is similar. �

For any EIVI-octahedron set A =< A, A, λ > in a nonempty set X, [ ]A (resp.
�A) need not be external as shown in following example.

Example 3.21. Consider the EIVI-octahedron set A2 in Example 3.15 (2). Then

[ ]A2 =< ([
1 + x

6
,

1 + x

4
], [

1 + x

7
, 1− 1 + x

4
]), (

1 + x

3
, 1− 1 + x

3
),

1 + x

3
>,

�A =< ([
1 + x

6
, 1− 1 + x

5
], [

1 + x

7
,

1 + x

5
]), (1− 1 + x

8
,

1 + x

8
),

1 + x

3
> .

Thus we can easily calculate that

([ ]A) 6∈(x) ∈ [
1 + x

7
, 1− 1 + x

4
] = [([ ]A) 6∈,−(x), ([ ]A)6∈,+(x)]

and

(�A)∈(x) = 1− 1 + x

8
∈ [

1 + x

6
, 1− 1 + x

5
] = (�A)∈(x).

So [ ]A and �A are not external.

Proposition 3.22. Let X be a nonempty set and let (Aj)j∈J = (< Aj , Aj , λj >)j∈J
be a family of IVI-octahedron sets in X. If Aj is internal for each j ∈ J , then⋃1
j∈J Aj and

⋂1
j∈J Aj are internal.

Proof. Suppose Aj is internal for each j ∈ J and let x ∈ X. Then

A∈j (x), λ∈j (x) ∈ [A∈,−j (x), A∈,+j (x)] and A 6∈j (x) ∈ [A 6∈,−j (x), A6∈,+j (x)].

Thus ∨
j∈J

A∈j (x),
∨
j∈J

λj(x) ∈
∨
j∈J

A∈j (x) = (

1⋃
j∈J

A∈j )(x)
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and ∨
j∈J

A 6∈j (x) ∈
∨
j∈J

A 6∈j (x) = (

1⋃
j∈J

A 6∈j )(x).

So (
⋃
j∈J A

∈
j )(x), (

∨
j∈J λj)(x) ∈ (

⋃1
j∈J A∈j )(x) and

⋂
j∈J A

6∈
j )(x) ∈ (

⋃1
j∈J A 6∈j )(x).

Hence
⋃1
j∈J Aj is internal. �

We can see that Type i-union and Type i-intersection (i = 2, 3, 4) of IIVI-
octahedron set may not be IIVI-octahedron sets as shown in the following examples.

Example 3.23. Consider two IIVI-octahedron sets A =< A, A, λ > and B =<
B, B, µ > in I defined as follows: for each x ∈ I,

A(x) =< ([
1 + x

4
,

1 + x

2
], [

1 + x

7
,

1 + x

5
]), (

1 + x

3
,

1 + x

6
),

2 + x

5
>

and

B =< ([
x

5
,
x

3
], [

1 + x

6
,

1 + x

4
]), (

x

4
,
x

5
),
x

4
> .

Then we have the followings:

(3.1) (A ∪2 B)(x) =< ([
1 + x

4
,

1 + x

2
], [

1 + x

7
,

2 + x

4
]), (

1 + x

3
,
x

5
),
x

4
>,

(3.2) (A ∪3 B)(x) =< ([
1 + x

4
,

1 + x

2
], [

1 + x

7
,

1 + x

5
]), (

x

4
,

1 + x

6
),

2 + x

5
>,

(3.3) (A ∪4 B)(x) =< ([
1 + x

4
,

1 + x

2
], [

1 + x

7
,

1 + x

5
]), (

x

4
,

1 + x

6
),
x

4
>,

(3.4) (A ∩2 B)(x) =< ([
x

5
,
x

3
], [

1 + x

6
,

1 + x

4
]), (

x

4
,

1 + x

6
),

2 + x

5
>,

(3.5) A ∩3 B)(x) =< ([
x

5
,
x

3
], [

1 + x

6
,

1 + x

4
]), (

1 + x

3
,
x

4
),
x

4
>,

(3.6) (A ∩4 B)(x) =< [([
x

5
,
x

3
], [

1 + x

6
,

1 + x

4
]), (

1 + x

3
,
x

4
),

2 + x

5
> .

Thus we can see the followings.
In (3.1), (λ ∧ µ)(1) = 1

4 6∈ [ 1
2 , 1] = (A ∪B)∈(1).

In (3.2), (A ∩B)∈(1) = 1
4 6∈ [ 1

2 , 1] = (A ∪B)∈(1).

In (3.3), (A ∩B)∈(1) = 1
4 6∈ [ 1

2 , 1] = (A ∪B)∈(1).

In (3.4), (λ ∨ µ)(1) = 1
5 6∈ [ 1

5 ,
1
3 ] = (A ∩B)∈(1).

In (3.5), (A ∪B)6∈(1) = 1
4 6∈ [ 1

3 ,
1
2 ] = (A ∩B) 6∈(1).

In (3.6),(A ∪B)6∈(1) = 1
4 6∈ [ 1

3 ,
1
2 ] = (A ∩B) 6∈(1).

So A ∪i B and A ∩i B are not IIVI-octahedron set in I, for i = 2, 3, 4.

Remark 3.24. Type i-union and Type i-intersection (i = 1, 2, 3, 4) of two EIVI-
octahedron sets may not be external, in general.
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Example 3.25. Consider the EIVI-octahedron set A2 in Example 3.15 (2) given
by: for each x ∈ I,

A2(x) =< ([
1 + x

6
,

1 + x

4
], [

1 + x

7
,

1 + x

5
]), (

1 + x

3
,

1 + x

8
),

1 + x

3
> .

Let A =< A, A, λ > be the IVI-octahedron set in I defined as follows: for each
x ∈ I,

A(x) =< ([
1 + x

5
,

1 + x

3
], [

1 + x

6
,

1 + x

5
]), (

1 + x

6
,

1 + x

6
),

1 + x

2
> .

Then we can easily see that A is an EIVI-octahedron set in I.
(Case 1) Type 1-union and Type 1-intersection: for each x ∈ I,

(A ∪1 A2)(x) =< ([
1 + x

5
,

1 + x

3
], [

1 + x

7
,

1 + x

5
]), (

1 + x

3
,

1 + x

8
),

1 + x

2
>

and

(A ∩1 A2)(x) =< ([
1 + x

6
,

1 + x

4
], [

1 + x

6
,

1 + x

5
]), (

1 + x

6
,

1 + x

6
),

1 + x

3
> .

Then (A ∪A2)∈(x) = 1+x
3 ∈ [ 1+x

5 , 1+x
3 ] = (A ∪A2)∈(x)

and
(A ∩A2)6∈(x) = 1+x

6 ∈ [ 1+x
6 , 1+x

5 ] = (A ∩A2)6∈(x),

for each x ∈ I. Thus A ∪1 A2 and A ∩1 A2 are not EIVI-octahedron sets in I.
(Case 2) Type 2-union and Type 2-intersection: for each x ∈ I,

(A ∪2 A2)(x) =< ([
1 + x

5
,

1 + x

3
], [

1 + x

7
,

1 + x

5
]), (

1 + x

3
,

1 + x

8
),

1 + x

3
>

and

(A ∩2 A2)(x) =< ([
1 + x

6
,

1 + x

4
], [

1 + x

7
,

1 + x

5
]), (

1 + x

6
,

1 + x

6
),

1 + x

2
> .

Then we can easily calculate that A∪2A2 and A∩2A2 are not not EIVI-octahedron
sets in I.

Similarly, we can easily see that A∪3 A2, A∩4 A2, A∪4 A2 and A∩4 A2 are not
not EIVI-octahedron sets in I.

4. Interval-valued intuitionistic octahedron points and level sets

Definition 4.1 ([17]). A ∈ (I ⊕ I)X is called an intuitionistic fuzzy point (briefly,
an IF point) with the support x ∈ X and the value ā ∈ I ⊕ I with ā 6= 0̄, denoted
by A = xā, if for each y ∈ X,

xā(y) =

{
ā if y = x
0̄ otherwise.

The set of all IF points in X is denoted by IFP (X).
For each xā ∈ IFP (X) and A ∈ (I ⊕ I)X , xā is said to belong to A, denoted by

xā ∈ A, if a∈ ≤ A∈(x) and a6∈ ≥ A 6∈(x).
It is well-known (Theorem 2.4 in [17]) that A =

⋃
xā∈A xā, for each A ∈ (I⊕ I)X .
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Definition 4.2 ([21]). A ∈ ([I] ⊕ [I])X is called an interval-valued intuitionistic
fuzzy point (briefly, an IVI point) with the support x ∈ X and the value ¯̃a ∈ [I]⊕ [I]

with ¯̃a 6= ¯̃
0, denoted by A = x¯̃a, if for each y ∈ X,

x¯̃a(y) =

{ ¯̃a if y = x
¯̃
0 otherwise.

The set of all IVI points in X is denoted by IV IFP (X).
For each x¯̃a ∈ IV FP (X) and A ∈ ([I]⊕[I])X , x¯̃a is said to belong to A, denoted by

x¯̃a ∈ A, if a∈,− ≤ A∈,−(x), a∈,+ ≤ A∈,+(x), a6∈,− ≥ A 6∈,−(x) and a6∈,− ≥ A 6∈,−(x).
It is well-known (See Theorem 1.1 in [21]) that A =

⋃
x¯̃a∈A

x¯̃a, for each A ∈
([I]⊕ [I])X .

Definition 4.3. Let A =< A, A, λ >∈ IV IO(X) and let ˜̄̃a =
〈˜̃a, ā, a〉 be an

IVI-octahedron number such that ˜̃a 6= ˜̃
0, b̄ 6= 0̄ and a 6= 0. Then A is called an

interval-valued intuitionistic octahedron point (briefly, IVI-octahedron point) with

the support x ∈ X and the value ˜̄̃a, denoted by A = x˜̄̃a, if for each y ∈ X,

x˜̄̃a(y) =

{ ˜̄̃a if y = x

<
˜̃
0, 0̄, 0 > otherwise.

The set of IVI-octahedron points in X is denoted by IV IOP (X).

Definition 4.4. Let A =< A, A, λ >∈ IV IO(X) and let x˜̄̃a ∈ IV IOP (X). Then

x˜̄̃a is said to:

(i) belong to A with respect to Type 1-order, denoted by x˜̄̃a ∈1 A, if˜̃a ≤ A(x), ā ≤ A(x) and a ≤ λ(x), i.e., x˜̃a ∈ A, xā ∈ A and xa ∈ λ,
(ii) belong to A with respect to Type 2-order, denoted by x˜̃a ∈2 A, if˜̃a ≤ A(x), ā ≤ A(x) and a ≥ λ(x),
(iii) belong to A with respect to Type 3-order, denoted by x˜̃a ∈3 A, if˜̃a ≤ A(x), ā ≥ A(x) and a ≤ λ(x),
(iv) belong to A with respect to Type 4-order, denoted by x˜̄̃a ∈4 A, if˜̃a ≤ A(x), ā ≥ A(x) and a ≥ λ(x).

It is clear that A =
⋃i
x˜̃a∈iA x˜̃a (i = 1, 2, 3, 4), for each A ∈ IV IO(X).

Theorem 4.5. Let x˜̄̃a ∈ IV IOP (X), A =< A, A, λ > and B =< B, B, µ >∈
IV IO(X). Then for any i = 1, 2, 3, 4,

A ⊂i B if and only if x˜̄̃a ∈i B, for each x˜̄̃a ∈i A.
Proof. Suppose A ⊂1 B and let x˜̄̃a ∈1 A. Then˜̃a = ([a∈,−, a∈,+], [a6∈,−, a6∈,+]) ≤ ([A∈,−(x), A∈,+(x)], [A 6∈,−(x), A6∈,+(x)]) = A(x),

ā = (a∈, a6∈) ≤ (A∈(x), A6∈(x)) = A(x), a ≤ λ(x).

Since A ⊂1 B, A(x) ≤ B(x), A(x) ≤ B(x), λ(x) ≤ µ(x). Thus˜̃a ≤ B(x), ā ≤ B(x), a ≤ µ(x).
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So x˜̄̃a ∈1 B.

Conversely, suppose the necessary condition holds and Assume that A 6⊂1 B.
Then there is x˜̄̃a ∈ IV IOP (X) such that x˜̄̃a ∈1 A but x˜̄̃a 6∈1 B. Thus x˜̃a ∈ A,

xā ∈ A, xa ∈ λ but x˜̃a 6∈ B or xā 6∈ B or xa 6∈ µ. This is a contradiction. So
A ⊂1 B.

The remainders can be proved similarly. �

Proposition 4.6. Let A =< A, A, λ >, B =< B, B, µ >∈ IV IO(X), let (Aj)j∈J =
(< Aj , Aj , λj >)j∈J ⊂ IV IO(X), x˜̃a ∈ IV IOP (X) and let i = 1, 2, 3, 4.

(1) If x˜̃a ∈i A or x˜̃a ∈i B, then x˜̃a ∈i A ∪i B.
(2) If there is j ∈ J such that x˜̃a ∈i Aj, then x˜̃a ∈i ⋃ij∈J Aj.

Proof. The proofs are straightforward. �

The converse of Proposition 4.6 need not to be true in general as shown in the
following example.

Example 4.7. Let A =< A, A, λ > and B =< B, B, µ > be two IVI-octahedron
sets in I given as follows: for each x ∈ I,

A(x) =< ([
1 + x

6
,

1 + x

5
], [

1 + x

8
,

1 + x

4
]), (

1 + x

3
,

1− x
3

),
2 + x

5
>

and

B =< ([
x

3
,

1 + x

4
], [

1 + x

7
,

1 + x

6
]), (

x

3
,

2− x
5

),
x

4
> .

Then clearly, A∪1B =< ([ 1+x
6 , 1+x

4 ], [ 1+x
8 , 1+x

4 ], ( 1+x
3 , 2−x

5 ), 2+x
5 >. Let ˜̃a = ([ 1

5 ,
1
4 ], [ 1

4 ,
1
2 ],

ā = ( 1
3 ,

1
5 ), a = 1

3 and Consider octahedron point 0.5˜̃a. Then

(A ∪1 B)(0.5) =< ([
1

4
,

3

10
], [

3

16
,

3

8
], (

1

2
,

1

6
),

1

2
>,

A(0.5) =< ([
1

4
,

3

10
], [

3

14
,

1

4
]), (

1

6
,

3

8
),

1

8
>,

B(0.5) =< ([
1

5
,

1

4
], [

1

4
,

1

2
]), (

1

3
,

1

5
),

1

3
> .

Thus ˜̃a ≤1 (A ∪1 B)(0.5) but ā 6≤ B(0.5). So 0.5˜̃a ∈1 A ∪1 B but 0.5ā 6∈ B. Hence

0.5˜̃a ∈1 A ∪1 B but 0.5˜̃a 6∈1 B.

Similarly, we can calculate that for i = 2, 3, 4, 0.5˜̃a ∈i A ∪i B but 0.5˜̃a 6∈i A or
0.5˜̃a 6∈i B.

Theorem 4.8. Let A =< A, A, λ >, B =< B, B, µ >∈ IV IO(X), let (Aj)j∈J =
(< Aj , Aj , λj >)j∈J ⊂ IV IO(X), x˜̃a ∈ IV IOP (X)and let i = 1, 2, , 3, 4. Then

(1) x˜̃a ∈i A ∩i B if and only if x˜̃a ∈i A and x˜̃a ∈i B,
(2) x˜̃a ∈i ∩ij∈JAj if and only if x˜̃a ∈i Aj, for each j ∈ J .

Proof. (1) Suppose x˜̄̃a ∈1 A ∩1 B. Then x˜̃a ∈ A ∩B, xā ∈ A ∩ B and xa ∈ λ ∧ µ.

Thus ˜̃a = ([a∈,−, a∈,+], [a6∈,−, a6∈,+])
≤ (A ∩B)(x)
= ([A∈,−(x) ∧B∈,−(x), A∈,+(x) ∧B∈,+(x)],
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[A 6∈,−(x) ∨B 6∈,−(x), A6∈,+(x) ∨B 6∈,+(x)]),
ā = (a∈, a6∈) ≤ (A ∩B)(x) = (A∈(x) ∧B∈(x), A6∈(x) ∨B 6∈(x),
a ≤ (λ ∧ µ)(x) = λ(x) ∧ µ(x).

So x˜̃a ∈ A, xā ∈ A, xa ∈ λ and x˜̃a ∈ B, xā ∈ B, xa ∈ µ. Hence x˜̄̃a ∈1 A and
x˜̄̃a ∈1 B.

Conversely, suppose x˜̄̃a ∈1 A and x˜̄̃a ∈1 B. Then

[a∈,−(x), a∈,+(x)] ≤ A∈(x), [a6∈,−(x), a6∈,+(x)] ≥ A 6∈(x),

a∈ ≤ A∈(x), a6∈ ≥ A 6∈(x), a ≤ λ(x),

[a∈,−(x), a∈,+(x)] ≤ B∈(x), [a6∈,−(x), a6∈,+(x)] ≥ B6∈(x),

a∈ ≤ B∈(x), a6∈ ≥ B 6∈(x), a ≤ µ(x).

Thus

[a∈,−(x), a∈,+(x)] ≤ (A ∩B)∈(x), [a6∈,−(x), a6∈,+(x)] ≥ (A ∩B)6∈(x),

a∈ ≤ A∈(x) ∧B∈(x) = (A ∩B)∈(x), a6∈ ≥ A 6∈(x) ∨B 6∈(x) = (A ∩B)6∈(x),

a ≤ λ(x) ∧ µ(x) = (λ ∧ µ)(x).

So x˜̃a ∈ A ∩B, xā ∈ A ∩B and xa ∈ λ ∧ µ. Hence x˜̄̃a ∈1 A ∩1 B.

For i = 2, 3, 4, the proofs is similar. �

From the definition of orders of IVI-octahedron numbers, we have the following
definition.

Definition 4.9. Let X be a nonempty set, let ˜̄̃a ∈ ([I]⊕ [I])× (I ⊕ I)× I and let
A =< A, A, λ >∈ IV IO(X). Then two subsets [A]˜̄̃a and [A]∗˜̄̃a of X are defined as

follows:
[A]˜̄̃a = {x ∈ X : A(x) ≥ ˜̃a, A(x) ≥ ā, λ(x) ≥ a},

[A] ∗˜̄̃a = {x ∈ X : A(x) > ˜̃a, A(x) > ā, λ(x) > a}.

In this case, [A]˜̄̃a is called an ˜̄̃a-level set of A and [A] ∗˜̄̃a is called a strong ˜̄̃a-level set

of A.

Example 4.10. Consider the IVI-octahedron set in I given by: for each x ∈ I,

A =< ([
1 + x

5
,

1 + x

3
], [

1 + x

7
,

1 + x

6
]), (

1 + x

2
,
x

5
),

1 + x

4
> .

Let ˜̃a = ([ 1
5 ,

1
3 ], [ 1

6 ,
1
5 ], ā = ( 2

7 ,
5
7 ), a = 1

4 . Then

[A]˜̄̃
0

= {x ∈ I : [ 1+x
5 , 1+x

3 ] ≥ 0, [ 1+x
7 , 1+x

6 ] ≤ 1, ( 1+x
2 , x5 ) ≥ 0̄, 1+x

4 ≥ 0}
= I,

[A]∗˜̄̃
0

= {x ∈ I : [ 1+x
5 , 1+x

3 ] > 0, [ 1+x
7 , 1+x

6 ] < 1, ( 1+x
2 , x5 ) > 0̄, 1+x

4 > 0}
= I \ {1},

[A]˜̄̃
1

= {x ∈ I : [ 1+x
5 , 1+x

3 ] ≥ 1, [ 1+x
7 , 1+x

6 ] ≤ 0, ( 1+x
2 , x5 ) ≥ 1̄, 1+x

4 ≥ 1}
= φ = [A]∗˜̄̃

1
,

[A]˜̄̃a = {x ∈ I : ([ 1+x
5 , 1+x

3 ], [ 1+x
7 , 1+x

6 ]) ≥ ¯̃a, ( 1+x
2 , x5 ) ≥ b̄, 1+x

4 ≥ α}
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= [0, 1
7 ],

[A]∗˜̄̃a = {x ∈ I : ([ 1+x
5 , 1+x

3 ], [ 1+x
7 , 1+x

6 ]) > ¯̃a, ( 1+x
2 , x5 ) > b̄, 1+x

4 > α}
= (0, 1

7 ).

It is obvious that that for each ˜̄̃a ∈ ([I]⊕ [I])×(I⊕I)×I and each A ∈ IV IO(X),
[A]∗˜̄̃a ⊂ [A]˜̄̃a.
Proposition 4.11. Let A ∈ IV IO(X) and let ˜̄̃a, ˜̄̃b ∈ ([I]⊕ [I])× (I ⊕ I)× I. Then
have the following properties:

(1) if ˜̄̃a ≤1
˜̄̃
b, then [A]̃̃

b̄
⊂ [A]˜̄̃a,

(2) [A]˜̄̃a =
⋂

˜̄̃
b<1

˜̄̃a
[A]̃̃

b̄
, where ˜̃a 6= ˜̃0, b̄ 6= 0̄, a 6= 0,

(1)
′
if ˜̄̃a ≤1

˜̄̃
b, then [A]∗˜̄̃

b
⊂ [A]∗˜̄̃a,

(2)
′

[A]∗˜̄̃a =
⋃

˜̄̃
b>1

˜̄̃a
[A]∗˜̄̃

b
, where ˜̃a 6= ˜̃1, b̄ 6= 0̄, α 6= 0.

Proof. (1) The proof is obvious from Definition 4.9.
(2) From (1), it is obvious that ([A]˜̄̃a)˜̄̃a∈(([I]⊕[I])×(I⊕I)×I)\{˜̄̃0} is a descending fam-

ily of subsets of X. Then clearly, for each ˜̄̃a >∈ (([I]⊕ [I])× (I ⊕ I)× I) \ {˜̄̃0},
[A]˜̄̃a ⊂

⋂
˜̄̃
bh<1

˜̄̃a
[A]̃̃

b̄
.

Assume that x /∈ [A]˜̄̃a. Then A(x) <1
˜̄̃a. Thus

∃
˜̄̃
b ∈ (([I]⊕ [I])× (I ⊕ I)× I) \ {˜̄̃0}

such that A(x) <1
˜̄̃
b <1

˜̄̃a. So for some
˜̄̃
b ∈ (([I] ⊕ [I]) × (I ⊕ I) × I) \ {˜̄̃0} such

that
˜̄̃
b <1<

˜̄̃a, x 6∈ [A]̃̃
b̄
, i.e., x /∈

⋂
˜̄̃
b<1

˜̄̃a
[A]̃̃

b̄
. Hence

⋂
˜̄̃
b<1

˜̄̃a
[A]̃̃

b̄
⊂ [A]˜̄̃a. Therefore

[A]˜̄̃a =
⋂

˜̄̃
b<1

˜̄̃a
[A]̃̃

b̄
.

(2)
′

The proof is similar to (2). �

5. Mappings of IVI-octahedron set

Definition 5.1 ([5]). Let X, Y be two sets, let f : X → Y be a mapping and let
A ∈ (I ⊕ I)X , B ∈ (I ⊕ I)Y .

(i) The preimage of B under f , denoted by f−1(B), is the IF set in X defined as
follows: for each x ∈ X,

f−1(B)(x) = (B∈(f(x)), B 6∈(f(x))) = ((B∈ ◦ f)(x), (B 6∈ ◦ f)(x)).
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(ii) The image of A under f , denoted by f(A) = (f(A∈), f−(A 6∈)), is the IF set
in Y defined as follows: for each y ∈ Y ,

f(A∈)(y) =

{ ∨
x∈f−1(y)A

∈(x) if f−1(y) 6= φ

0̄ otherwise,

f−(A 6∈)(y) = (1− f(1−A 6∈))(y) =

{ ∧
x∈f−1(y)A

6∈,−(x) if f−1(y) 6= φ

1̄ otherwise.

Definition 5.2 ([21]). Let X, Y be two sets, let f : X → Y be a mapping and let
A ∈ ([I]⊕ [I])X , B ∈ ([I]⊕ [I])Y .

(i) The preimage of B under f , denoted by f−1(B), is the IVI set in X defined
as follows: for each x ∈ X,

f−1(B)(x) = (B∈(f(x)), B 6∈(f(x))) = ((B∈ ◦ f)(x)), (B 6∈ ◦ f)(x)), where

B∈(f(x)) = [B∈,−(f(x)), B∈,+(f(x))] and B 6∈(f(x)) = [B 6∈,−(f(x)), B 6∈,+(f(x))].
(ii) The image of A under f , denoted by f(A) = (f(A∈), f(A 6∈)), is the IVI set

in Y defined as follows: for each y ∈ Y ,

f(A∈)(y) =

{
[
∨
x∈f−1(y)A

∈,−(x),
∨
x∈f−1(y)A

∈,+(x)] if f−1(y) 6= φ

0 otherwise,

f(A 6∈)(y) =

{
[
∧
x∈f−1(y)A

6∈,−(x),
∧
x∈f−1(y)A

6∈,+(x)] if f−1(y) 6= φ

1 otherwise.

Definition 5.3. Let X, Y be two sets, let f : X → Y be a mapping and let
A =< A, A, λ >∈ IV IO(X), B =< B, B, µ >∈ IV IO(Y ).

(i) The preimage of B under f , denoted by f−1(B) =< f−1(B), f−1(B), f−1(µ) >,
is an IVI-octahedron set in X defined as follows: for each x ∈ X,

f−1(B)(x) =< ([(B∈,− ◦ f)(x), (B∈,+ ◦ f)(x))], [(B 6∈,− ◦ f)(x), (B 6∈,+ ◦ f)(x))])
, ((B∈ ◦ f)(x), (B 6∈ ◦ f)(x)), (µ ◦ f)(x) > .

(ii) The image of A under f , denoted by f(A) =< f(A), f(A), f(λ) >, is an
IVI-octahedron set in Y defined as follows: for each y ∈ Y ,

f(A∈)(y) =

{
[
∨
x∈f−1(y)A

∈,−(x),
∨
x∈f−1(y)A

∈,+(x)] if f−1(y) 6= φ

0 otherwise,

f(A 6∈)(y) =

{
[
∧
x∈f−1(y)A

6∈,−(x),
∧
x∈f−1(y)A

6∈,+(x)] if f−1(y) 6= φ

1 otherwise,

f(A)(y) =

{
(
∨
x∈f−1(y)A

∈(x),
∧
x∈f−1(y)A

6∈(x)) if f−1(y) 6= φ

0̄ otherwise,

f(λ)(y) =

{ ∨
x∈f−1(y) λ(x) if f−1(y) 6= φ

0 otherwise.

It is obvious that f(x<ã,b̄,α>) = [f(x)]<ã,b̄,α>, for each x<ã,b̄,α> ∈ OP (X).

Example 5.4. Let X = {x, y, z}, Y = {a, b, c, d} and let f : X → Y be the mapping
defined by: f(x) = f(y) = a, f(z) = c.
Let A =< A, A, λ > be the IVI-octahedron set in X and let B =< B, B, µ > be the
octahedron set in Y defined by the following Table:
Then f(A∈)(a) = [

∨
t∈f−1(a)A

∈,−(t),
∧
t∈f−1(a)A

∈,+(t)]
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X A(t) A(t) λ(t)
x ([0.2, 0.6], [0.1, 0.3]) (0.6, 0.3) 0.7
y ([0.3, 0.5], [0.3, 0.4]) (0.5, 0.2) 0.6
z ([0.4, 0.7], [0.2, 0.2]) (0.7, 0.2) 0.8

Table 5.1

= [A∈,−(x) ∨A∈,−(y), A∈,+(x) ∨A∈,+(y)]
= [0.3, 0.6],

f(A 6∈)(a) = [
∧
t∈f−1(a)A

6∈,−(t),
∨
t∈f−1(a)A

6∈,+(t)]

= [A 6∈,−(x) ∧A 6∈,−(y), A6∈,+(x) ∧A 6∈,+(y)])
= [0.1, 0.3],

f(A)(b) = f(A)(d) =
¯̃
0, f(A)(c) = ([0.4, 0.7], [0.2, 0.2]),

f(A)(a) = (
∨
t∈f−1(a)A

∈(t),
∧
t∈f−1(a)A

6∈(t))

= (A∈(x) ∨A∈(y), A6∈(x) ∧A 6∈(y)
= (0.6, 0.2),

f(A)(b) = f(A)(d) = 0̄, f(A)(c) = (0.7, 0.2),
f(λ)(a) =

∨
t∈f−1(a) λ(t)

= λ(x) ∨ λ(y) = 0.7,
f(λ)(b) = f(λ)(d) = 0, f(λ)(c) = 0.8.

Thus we have Table 5.2 for f(A):

Y f(A)(x) f(A)(x) f(λ)(x)
a ([0.3, 0.6], [0.1, 0.3]) (0.6, 0.2) 0.7

b
¯̃
0 0̃ 0

c ([0.4, 0.7], [0.2, 0.2]) (0.7, 0.2) 0.8

d
¯̃
0 0̃ 0

Table 5.2

Now let B =< B, B, µ > be the IVI-octahedron set in Y defined by Table 5.3:

Y B(x) B(x) µ(x)
a ([0.3, 0.5], [0.2, 0.4]) (0.5, 0.4) 0.6
b ([0.2, 0.6], [0.3, 0.3]) (0.7, 0.2) 0.8
c ([0.4, 0.7], [0.1, 0.2]) (0.6, 0.3) 0.7
d ([0.2, 0.5], [0.3, 0.4]) (0.4, 0.5) 0.5

Table 5.3

Then f−1(B∈)(x) = [B∈,−(f(x)), B∈,+(f(x))]
= [B∈,−(a), B∈,+(a)]
= [0.3, 0.5]
= f−1(B∈)(y),

f−1(B6∈)(x) = [B 6∈,−(f(x)), B 6∈,+(f(x))]
= [B 6∈,−(a), B 6∈,+(a)]
= [0.2, 0.4]
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= f−1(B6∈)(y).
Similarly, we can calculate the followings:

f−1(B)(z) = ([0.4, 0.7], [0.1, 0.2]),
f−1(B)(x) = f−1(B)(y) = (0.5, 0.4), f−1(B)(z) = (0.6, 0.3),
f−1(µ)(x) = f−1(µ)(y) = 0.6, f−1(µ)(z) = 0.7.

So we have Table 5.4 for f−1(B):

X f−1(B)(t) f−1(B)(t) f−1(µ)(t)
x ([0.3, 0.5], [0.2, 0.4]) (0.5, 0.4) 0.6
y ([0.3, 0.5], [0.2, 0.4]) (0.5, 0.4) 0.6
z ([0.4, 0.7], [0.1, 0.2]) (0.6, 0.3) 0.7

Table 5.4

Proposition 5.5. Let A =< A, A, λ >, A1 =< A1, A1, λ1 >, A2 =< A2, A2, λ2 >∈
IV IO(X), (Aj)j∈J = (< Aj , Aj , λj >)j∈J ⊂ IV IO(X), let B =< B, B, µ >
, B1 =< B1, B1, µ1 >, B2 =< B2, B2, µ2 >∈ IV IO(Y ), (Bj)j∈J = (< Bj , Bj , µj >
)j∈J ⊂ IV IO(Y ) and let f : X → Y be a mapping. Then for each i = 1, 2, 3, 4,

(1) if A1 ⊂i A2, then f(A1) ⊂i f(A2),
(2) if B1 ⊂i B2, then f

−1(B1) ⊂i f−1(B2),
(3) A ⊂1 f

−1(f(A)) and if f is injective, then A = f−1(f(A)),
(4) f(f−1(B)) ⊂1 B and if f is surjective, f(f−1(B)) = B,
(5) f−1(

⋃i
j∈J Bj) =

⋃i
j∈J f

−1(Bj),
(6) f−1(

⋂i
j∈J Bj) =

⋂i
j∈J f

−1(Bj),
(7) f(

⋃1
j∈J Aj) =

⋃1
j∈J f(Aj),

(8) f(
⋂i
j∈J Aj) ⊂i

⋂i
j∈J f(Aj) and if f is injective, then f(

⋂i
j∈J Aj) =

⋂i
j∈J f(Aj),

(9) if f is surjective, then f(A)c ⊂1 f(Ac).
(10) f−1(Bc) = f−1(B)c.

(11) f−1(0̈) = 0̈, f−1(1̈) = 1̈, f−1(<
˜̃
0, 0̄, 1 >) =<

˜̃
0, 0̄, 1 >,

f−1(<
˜̃
0, 1̄, 0 >) =<

˜̃
0, 1̄, 0 >, f−1(<

˜̃
1, 0̄, 0 >) =<

˜̃
1, 0̄, 0 >,

f−1(<
˜̃
0, 1̄, 1 >) =<

˜̃
0, 1̄, 1 >, f−1(<

˜̃
1, 0̄, 1 >) =<

˜̃
1, 0̄, 1 >,

f−1(<
˜̃
1, 1̄, 0 >) =<

˜̃
1, 1̄, 0 >.

(12) f(0̈) = 0̈ and if f is surjective, then the following hold:

f(<
˜̃
0, 0̄, 1 >) =<

˜̃
0, 0̄, 1 >, f(<

˜̃
0, 1̄, 0 >) =<

˜̃
0, 1̄, 0 >,

f(<
˜̃
1, 0̄, 0 >) =<

˜̃
1, 0̄, 0 >, f(<

˜̃
0, 1̄, 1 >) =<

˜̃
0, 1̄, 1 >,

f(<
˜̃
1, 0̄, 1 >) =<

˜̃
1, 0̄, 1 >, f(<

˜̃
1, 1̄, 0 >) =<

˜̃
1, 1̄, 0 >, f(1̈) = 1̈.

Proof. The proofs are straightforward. �

Example 5.6. Let f be the mapping and let A be the IVI-octahedron set in X
given in Example 5.4. Then f−1(f(A))(x) =< ([0.3, 0.6], [0.1, 0.3]), (0.6, 0.2), 0.7 >≥
A(x), f−1(f(A))(y) =< ([0.3, 0.6], [0.1, 0.3]), (0.6, 0.2), 0.7 >≥ A(y) and f−1(f(A))(z) =
A(z). Then A ⊂1 f

−1(f(A)). Moreover, A 6= f−1(f(A)). On the other hand, we
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can easily calculate that f(f−1(B)) = B. Thus we can confirm that Proposition 5.5
(3) and (4) hold. Note that f is surjective but not injective.

Remark 5.7. f(
⋃i
j∈J Aj) 6=

⋃i
j∈J f(Aj) for i = 2, 4, 4, in general.

Example 5.8. Let X = {x, y, z}, Y = {a, b, c}, let A1 =< A1, A1, λ1 > and
A2 =< A2, A2, λ2 > be two IVI-octahedron set in X given by:

A1(x) =< ([0.3, 0.6], [0.2, 0.3]), (0.6, 0.3), 0.6 >,
A1(y) =< ([0.2, 0.7], [0.1, 0.2]), (0.7, 0.2), 0.7 >,
A1(z) =< ([0.5, 0.6], [0.3, 0.3]), (0.7, 0.1), 0.5 >,
A2(x) =< ([0.4, 0.5], [0.3, 0.4]), (0.7, 0.2), 0.7 >,
A2(y) =< ([0.3, 0.4], [0.4, 0.5])), (0.6, 0.3), 0.6 >,
A2(z) =< ([0.3, 0.8], [0.1, 0.1]), (0.5, 0.3), 0.7 > .

Let f : X → Y be the mapping defined by f(x) = f(y) = a, f(z) = c. Then

f(λ1 ∧ λ2)(a) = 0.6 6= 0.7 = (f(λ1) ∧ f(λ2))(a)

and

f(A1 ∩A2)(a) = (0.6, 0.3) 6= (0.7, 0.2) = (f(A1) ∩ f(A2).

Thus f(A1∪2A2)(a) 6= (f(A1)∪2f(A1))(a), f(A1∪3A2)(a) 6= (f(A1)4f(A1))(a) and

f(A1∪4A2)(a) 6= (f(A1)∪4f(A1))(a). So f(
⋃i
j∈J Aj) 6=

⋃i
j∈J f(Aj) for i = 2, 3, 4.

The following is an immediate result of Definition 5.3 (i).

Proposition 5.9. If g : Y → Z is a mapping, then (g ◦ f)−1(C) = f−1(g−1(C)),
for each C ∈ IV IO(X), where g ◦ f is the composition of f and g.

6. IVI-octahedron groupoids

In this section, we introduce the concept of IVI-octahedron groupoids and study
some of its properties.

Throughout this section and next sections, for an octahedron set A = 〈A, A, λ〉
in a set X, A 6= 0̈ [resp.

〈˜̃
0, 0̄, 1

〉
,
〈˜̃

0, 1̄, 0
〉

and
〈˜̃

0, 1̄, 1
〉

] means that

A 6= ˜̃0, A 6= 0̄, λ 6= 0

[resp. A 6= ˜̃0, A 6= 0̄, λ 6= 1, A 6= ˜̃0, A 6= 1̄, λ 6= 0 and A 6= ˜̃0, A 6= 1̄, λ 6= 1].

Definition 6.1 ([18]). Let (X, ·) be a groupoid and let λ, µ ∈ IX . Then the product
of λ and µ, denoted by λ◦F µ, is a fuzzy set in X defined as follows: for each x ∈ X,

(λ ◦F µ)(x) =

{ ∨
yz=x, y, z∈X [λ(y) ∧ µ(z)] if yz = x

0 otherwise.

Definition 6.2 ([9]). Let (X, ·) be a groupoid and let A, B ∈ (I ⊕ I)X . Then the
product of A and B, denoted by A ◦IF B, is an IF set in X defined as follows: for
each x ∈ X,

(A ◦IF B)(x)

=

{
(
∨
yz=x, y, z∈X [A∈(y) ∧B∈(z)],

∧
yz=x, y, z∈X [A 6∈(y) ∧B 6∈(z)] if yz = x

(0, 1) otherwise.
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Definition 6.3. Let (X, ·) be a groupoid and let A, B ∈ ([I] ⊕ [I])X . Then the
product of A and B, denoted by A ◦IV I B, is an IVI set in X defined as follows: for
each x ∈ X,

(A ◦IV I B)(x)

=

{
[
∨
yz=x, y, z∈X [A∈(y) ∧B∈(z)],

∧
yz=x, y, z∈X [A 6∈(y) ∧B6∈(z)] if yz = x˜̃

0 otherwise,

where A∈(y) = [A∈,−(y), A∈,+(y)] and A 6∈(y) = [A 6∈,−(y), A6∈,+(y)].

Proposition 6.4. Let (X, ·) be a groupoid and let A, B ∈ (I ⊕ I)X . Then

A ◦IV I B =
⋃

x˜̃a∈A, x˜̃
b
∈B

x˜̃a ◦ x˜̃b.

Proof. The proof follows from Proposition 2.2 (2) in [9]. �

By using the definitions the inf and the sup of IVI-octahedron numbers, we can
find the product of two IVI-octahedron sets as follows.

Definition 6.5. Let (X, ·) be a groupoid and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
IV IO(X). Then the i-product of A and B, denoted by A ◦i B (i = 1, 2, , 3, 4), is
an IVI-octahedron set in X defined as follows: for each x ∈ X,

(A ◦1 B)(x) =

{ ∨1
yz=x, y, z∈X [A(y) ∧1 B(z)] if yz = x˜̄̃

0 otherwise,

(A ◦2 B)(x) =

{ ∨2
yz=x, y, z∈X [A(y) ∧2 B(z)] if yz = x〈˜̃
0, 0̄, 1

〉
otherwise,

(A ◦3 B)(x) =

{ ∨3
yz=x, y, z∈X [A(y) ∧3 B(z)] if yz = x〈˜̃
0, 1̄, 0

〉
otherwise,

(A ◦4 B)(x) =

{ ∨4
yz=x, y, z∈X [A(y) ∧4 B(z)] if yz = x〈˜̃
0, 1̄, 1

〉
otherwise.

Remark 6.6. From Definitions 6.1, 6.2 and 6.3, we can easily see that followings
hold:

(1) A ◦1 B = 〈A ◦IV I B, A ◦IF B, λ ◦F µ〉 ,
(2) A ◦1 B = 〈A ◦IV I B, A ◦IF B, λ ◦2 µ〉 , where

(λ ◦2 µ)(x) =

{ ∧
yz=x, y, z∈X [λ(y) ∨ µ(z)] if yz = x

1 otherwise,

(3) A ◦3 B = 〈A ◦IV I B, A ◦3 B, λ ◦F µ〉 , where

(A◦3B)(x) =

{
(
∧
yz=x, y, z∈X [A∈(y) ∨B∈(z)],

∨
yz=x, y, z∈X [A 6∈(y) ∧B 6∈(z)] if yz = x

(1, 0) otherwise,

(4) A ◦4 B = 〈A ◦IV I B, A ◦3 B, λ ◦2 µ〉 .
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· a b c
a a a a
b b a b
c c c a

Table 6.1

Example 6.7. Let X = {a, b, c} be the groupoid with the following Cayley table:
Consider two octahedron sets A and B in X, respectively given by:

A(a) = 〈([0.3, 0.6], [0.2, 0.3]), (0.7, 0.2), 0.5〉 ,

A(b) = 〈([0.2, 0.4], [0.4, 0.5]), (0.6, 0.3), 0.7〉 ,

A(c) = 〈([0.4, 0.7], [0.1, 0.2]), (0.5, 0.4), 0.3〉 ,

B(a) = 〈([0.2, 0.6], [0.2, 0.3]), (0.6, 0.3), 0.7〉 ,

B(b) = 〈([0.3, 0.5], [0.2, 0.4]), (0.5, 0.2), 0.6〉 ,

B(c) = 〈([0.4, 0.7], [0.1, 0.3]), (0.7, 0.2), 0.8〉 .
Then we can easily calculate A ◦i B having Tables 6.2 and 6.3:

(A ◦1 B)(t) (A ◦2 B)(t)
a 〈([0.4, 0.7], [0.1, 0.3]), (0.5, 0.2), 0.6〉 〈([0.4, 0.7], [0.1, 0.3]), (0.5, 0.2), 0.6〉
b 〈([0.2, 0.4], [0.4, 0.5]), (0.6, 0.3), 0.7〉 〈([0.2, 0.4], [0.4, 0.5]), (0.6, 0.3), 0.7〉
c 〈([0.3, 0.6], [0.2, 0.3]), (0.5, 0.4), 0.3〉 〈([0.3, 0.6], [0.2, 0.3]), (0.5, 0.4), 0.7〉

Table 6.2

(A ◦3 B)(t) (A ◦4 B)(t)
a 〈([0.4, 0.7], [0.1, 0.3]), (0.6, 0.2), 0.6〉 〈([0.4, 0.7], [0.1, 0.3]), (0.6, 0.2), 0.6〉
b 〈([0.2, 0.4], [0.4, 0.5]), (0.6, 0.2), 0.7〉 〈([0.2, 0.4], [0.4, 0.5]), (0.6, 0.2), 0.7〉
c 〈([0.3, 0.6], [0.2, 0.3]), (0.6, 0.3), 0.3〉 〈([0.3, 0.6], [0.2, 0.3]), (0.6, 0.3), 0.7〉

Table 6.3

Proposition 6.8. Let (X, ·) be a groupoid, let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
IV IO(X) and let x˜̄̃a, y˜̄̃b ∈ IV IOP (X). Then we have

(1) x˜̄̃a ◦i y˜̄̃b = (xy)˜̄̃a∧i
˜̄̃
b
, for i = 1, 2, 3, 4, i.e.,

x˜̄̃a ◦1 y˜̄̃b =
〈

(xy)˜̃a∧˜̃b, (xy)ā∧b̄, (xy)a∧b

〉
, x˜̄̃a ◦2 y˜̄̃b =

〈
(xy)˜̃a∧˜̃b, (xy)ā∧b̄, (xy)a∨b

〉
,

x˜̄̃a ◦3 y˜̄̃b =
〈

(xy)˜̃a∧˜̃b, (xy)ā∨b̄, (xy)a∧b

〉
, x˜̄̃a ◦4 y˜̄̃b =

〈
(xy)˜̃a∧˜̃b, (xy)ā∨b̄, (xy)a∨b

〉
,

(2) A ◦i B =
⋃i
x˜̄̃a∈iA, y˜̄̃

b
∈iB x˜̄̃a ◦i y˜̄̃b, for i = 1, 2, 3, 4.
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Proof. (1) The proofs are obvious from Definition 6.5.
(2) Case 1: Suppose i = 1. Then the proof follows from Proposition 1.1 [18],

Proposition 2.2 [9] and Proposition 6.4.
Case 2: Suppose i = 2. From Remark 6.6 (2), it is sufficient to prove that

λ ◦2 µ =
⋂
xa∈2λ, yb∈2µ

xa ◦2 yb. Let C =
⋂
xa∈2λ,yb∈2µ

xa ◦2 yb. For each z ∈ X, we
may suppose that there are u, v ∈ X such that uv = z, xa 6= 1 and yb 6= 1 without
loss of generality. Then

(λ ◦2 µ)(z) =
∧
z=uv[λ(u) ∨ µ(v)]

≤
∧
z=uv(

∧
xa∈2λ, yb∈2µ

[xa(u) ∨ yb(v)])

=
∧
xa∈2λ, yb∈2µ

(
∧
z=uv[xa(u) ∨ yb(v)])

= (
⋂
xa∈2λ, yb∈2µ

xa ◦2 yb)(z)
= C.

Since uλ(u) ∈2 λ and vµ(v) ∈2 µ,
(
⋂
xa∈2λ, yb∈2µ

xa ◦2 yb)(z) =
∧
xa∈2λ, yb∈2µ

∧
z=uv[xa(u) ∨ yb(v)]

≤
∧
z=uv[uλ(u)(u) ∨ vµ(v)(v)]

=
∧
z=uv[λ(u) ∨ µ(v)]

= (λ ◦2 µ)(z).

Thus (λ ◦2 µ)(z) = C(z). So A ◦2 B =
⋃2
x˜̄̃a∈2A, y˜̄̃

b
∈2B x˜̄̃a ◦2 y˜̄̃b.

Case 3: Suppose i = 3. From Remark 6.6 (3), it is sufficient to prove that

A ◦3 B = (
⋂

xa∈3A, yb∈3B

xa ◦3 yb,
⋃

xa∈3A, yb∈3B

xa ◦3 yb),

where (A ◦3 B)∈ =
⋂
xa∈3A, yb∈3B

xa ◦3 yb and (A ◦3 B)6∈ =
⋃
xa∈3A, yb∈3B

xa ◦3 yb.
Let z ∈ X. Then from the proof of Case 2 and Proposition 1.1 [18] (ii), we have

(A ◦3 B)∈(z) = (
⋂

xā∈3A, yb̄∈3B

xā ◦3 yb̄)(z), (A ◦3 B)6∈(z) = (
⋃

xā∈3A, yb̄∈3B

xā ◦3 yb̄)(z).

Thus A ◦3 B =
⋃3
x˜̄̃a∈3A, y˜̄̃

b
∈3B x˜̄̃a ◦3 y˜̄̃b.

Case 4: Suppose i = 4. Then from Cases 2 and 3, the proof is obvious. �

The followings are immediate results of Definition 6.5.

Proposition 6.9. Let (X, ·) be a groupoid and let i = 1, 2, 3, 4.
(1) If “·” is associative [resp. commutative] in X, then so is “◦i” in IV IO(X).
(2) If “·” has an identity e ∈ X, then we have

(2a) e1̈ ∈ IV IOP (X) is an identity of “◦1” in IV IO(X), i.e.,
A ◦ e1̈ = e1̈ ◦ A = A, for each A ∈ IV IO(X),

(2b) e〈˜̃
1,1̄,0

〉 ∈ IV IOP (X) is an identity of “◦2” in IV IO(X), i.e.,

A ◦2 e〈˜̃
1,1̄,0

〉 = e〈˜̃
1,1̄,0

〉 ◦2 A = A, for each A ∈ IV IO(X),

(2c) e〈˜̃
1,0̄,1

〉 ∈ OP (X) is an identity of “◦3” in IV IO(X), i.e.,

A ◦3 e〈˜̃
1,0̄,1

〉 = e〈˜̃
1,0̄,1

〉 ◦3 A = A, for each A ∈ IV IO(X),

(2d) e〈˜̃
1,0̄,0

〉 ∈ IV IOP (X) is an identity of “◦4” in IV IO(X), i.e.,

A ◦4 e〈˜̃
1,0̄,0

〉 = e〈˜̃
1,0̄,0

〉 ◦4 A = A, for each A ∈ IV IO(X).
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Definition 6.10. Let (X, ·) be a groupoid and let A = 〈A, A, λ〉 ∈ IV IO(X). Then
(i) 0̈ 6= A is called a 1-octahedron subgroupoid in X, if A ◦1 A ⊂1 A, i.e.,

A ◦IV I A ⊂ A, A ◦IF A ⊂ A, λ ◦F λ ⊂ λ,

(ii)
〈˜̃

0, 0̄, 1
〉
6= A is called a 2-octahedron subgroupoid in X, if A◦2A ⊂2 A, i.e.,

A ◦IV I A ⊂ A, A ◦IF A ⊂ A, λ ◦2 λ ⊃ λ,

(iii)
〈˜̃

0, 1̄, 0
〉
6= A is called a 3-octahedron subgroupoid in X, if A◦3A ⊂3 A, i.e.,

A ◦IV I A ⊂ A, A ◦3 A ⊃ A, λ ◦F λ ⊂ λ,

(iv)
〈˜̃

0, 1̄, 1
〉
6= A is called a 4-octahedron subgroupoid in X, if A◦4A ⊂4 A, i.e.,

A ◦IV I A ⊂ A, A ◦3 A ⊃ A, λ ◦2 λ ⊃ λ.
We will denote the set of all i-IVIGPs in X as IV IOGPi(X) (i = 1, 2, 3, 4).

In (i), if A◦IV I A ⊂ A, then A will be called an interval-valued intuionistic fuzzy
subgroupoid (briefly, IVIGP) in X. We will denote the set of all IVIGPs in X as
IV IGP (X).

Let us denote the set of all fuzzy [resp. intuitionistic fuzzy] subgroupoids in
a groupoid X in the sense of Liu [18] [resp. Hur et al. [9]] as FGP (X) [resp.
IFGP (X)].

Remark 6.11. Let (X, ·) be a groupoid and let A = 〈A, A, λ〉 ∈ IV IO(X). Then
(1) A ∈ IV IOGP1(X) if and only if A ∈ IV IGP (X), A ∈ IFGP (X), λ ∈

FGP (X),
(2) A ∈ IV IOGP2(X) if and only if A ∈ IV IGP (X), A ∈ IFGP (X), λ◦2λ ⊃ λ,
(3) A ∈ IV IOGP3(X) if and only if A ∈ IV IGP (X), A◦3A ⊃ A, λ ∈ FGP (X),
(4) A ∈ IV IOGP3(X) if and only if A ∈ IV IGP (X), A ◦3 A ⊃ A, λ ◦2 λ ⊃ λ.

Example 6.12. (1) Let (x, ·) be the subgroupoid and let A be the IVI-octahedron
set in X given in Example 6.7. Then we can easily calculate that

(A ◦IV I A)(a) = ([0.4, 0.7], [0.1, 0.3]) 6≤ ([0.3, 0.6], [0.2, 0.3]) = A(a),

(λ ◦2 λ)(a) = 0.3 6≥ 0.5 = λ(a),

(A ◦3 A)(a) = (0.5, 0.4) 6≥ (0.7, 0.2) = A(a).

Thus A 6∈ IV IOGPi(X), for i = 1, 2, 3, 4.
(2) Let X = {a, b, c} be the groupoid with the following Cayley table:

· a b c
a a a a
b b a b
c c c c

Table 6.4

Consider the IVI-octahedron sets A, B, C, D in X defined as follows:

A(a) = 〈([0.3, 0.6], [0.2, 0.3]), (0.7, 0.2), 0.8〉 ,
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A(b) = 〈([0.2, 0.4], [0.4, 0.5]), (0.6, 0.3), 0.7〉 ,
A(c) = 〈([0.4, 0.7], [0.1, 0.2]), (0.5, 0.4), 0.6〉 ,
B(a) = 〈([0.3, 0.6], [0.2, 0.3]), (0.7, 0.2), 0.6〉 ,
B(b) = 〈([0.2, 0.4], [0.4, 0.5]), (0.6, 0.3), 0.7〉 ,
B(c) = 〈([0.4, 0.7], [0.1, 0.2]), (0.5, 0.4), 0.8〉 ,
C(a) = 〈([0.3, 0.6], [0.2, 0.3]), (0.5, 0.4), 0.8〉 ,
C(b) = 〈([0.2, 0.4], [0.4, 0.5]), (0.6, 0.3), 0.7〉 ,
C(c) = 〈([0.4, 0.7], [0.1, 0.2]), (0.7, 0.2), 0.6〉 ,
D(a) = 〈([0.3, 0.6], [0.2, 0.3]), (0.5, 0.4), 0.6〉 ,
D(b) = 〈([0.2, 0.4], [0.4, 0.5]), (0.6, 0.3), 0.7〉 ,
D(c) = 〈([0.4, 0.7], [0.1, 0.2]), (0.7, 0.2), 0.8〉 .

Then we can easily see thatA ∈ IV IOGP1(X), B ∈ IV IOGP2(X), C ∈ IV IOGP3(X)
and D ∈ IV IOGP4(X).

(3) Let (X, ·) be a groupoid and let A ∈ IV IGP (X). Then clearly, IOA ∈
IV IOGP1(X), where IOA is the IVI-octahedron set in X induced by A (See Ex-
ample 3.2 (3)).

(4) Let (X, ·) be a groupoid and let A ∈ IFGP (X). Then clearly, IOA ∈
IV IOGP1(X), where IOA is the IVI-octahedron set in X induced by A (See Ex-
ample 3.2 (4)).

The followings are immediate results of Definitions 6.5, 6.10, Proposition 6.9 (1)
and Remark 6.11 (1).

Proposition 6.13. Let (X, ·) be a groupoid and let 0̈ 6= A = 〈A, A, λ〉 ∈ IV IO(X).
Then the followings are equivalent:

(1) A ∈ IV IOGP1(X),
(2) for any x˜̄̃a, y˜̄̃b ∈1 A, x˜̄̃a ◦1 y˜̄̃b ∈1 A, i.e., (A, ◦1) is a groupoid,

(3) for any x, y ∈ X, A(xy) ≥1 A(x) ∧1 A(y), i.e.,
(i) A∈,−(xy) ≥ A∈,−(x) ∧A∈,−(y), A∈,+(xy) ≥ A∈,+(x) ∧A∈,+(y),

A 6∈,−(xy) ≤ A 6∈,−(x) ∨A 6∈,−(y), A 6∈,+(xy) ≤ A 6∈,+(x) ∨A 6∈,+(y),
(ii) A∈(xy) ≥ A∈(x) ∧A∈(y), A 6∈(xy) ≤ A 6∈(x) ∨A 6∈(y),
(iii) λ(xy) ≥ λ(x) ∧ λ(y).

In fact, from the above Proposition, we can easily see that A ∈ IV IOGP1(X) if
and only if A ∈ IV IGP (X), A ∈ IFGP (X) and λ ∈ FGP (X).

From Remark 6.11 (1) and the above Proposition, it is obvious that (A, ◦1) is a
groupoid if and only if (A, ◦IV I), (A, ◦IF ) and (λ, ◦F ) are groupoids.

Proposition 6.14. Let (X, ·) be a groupoid and let A = 〈A, A, λ〉 ∈ IV IOGP1(X).
(1) If “·” is associative in X, then so is “◦1” in A, i.e., for any x˜̄̃a, y˜̄̃b, z˜̃̄c ∈1 A,

(x˜̄̃a ◦1 y˜̄̃b) ◦1 z˜̃̄c = x˜̄̃a ◦1 (y˜̄̃
b
◦1 z˜̃̄c),

(2) If “·” is commutative in X, then so is “◦1” in A, i.e., for any x˜̄̃a, y˜̄̃b ∈1 A,
x˜̄̃a ◦1 y˜̄̃b = y˜̄̃

b
◦1 x˜̄̃a,
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(3) If “·” has an identity e ∈ X, then for each x˜̄̃a ∈1 A,

e1̈ ◦1 x˜̄̃a = x˜̄̃a = x˜̄̃a ◦1 e1̈.

The followings are immediate results of Definitions 6.5, 6.10, Proposition 6.9 (2)
and Remark 6.11 (2).

Proposition 6.15. Let (X, ·) be a groupoid and let
〈

0̃, 0̄, 1
〉
6= A = 〈A, A, λ〉 ∈

IV IO(X). Then the followings are equivalent:
(1) A ∈ IV IOGP2(X),
(2) for any x˜̄̃a, y˜̄̃b ∈2 A, x˜̄̃a ◦2 y˜̄̃b ∈2 A, i.e., (A, ◦2) is a groupoid,

(3) for any x, y ∈ X, A(xy) ≥2 A(x) ∧2 A(y), i.e.,
(i) A∈,−(xy) ≥ A∈,−(x) ∧A∈,−(y), A∈,+(xy) ≥ A∈,+(x) ∧A∈,+(y),

A 6∈,−(xy) ≤ A 6∈,−(x) ∨A 6∈,−(y), A 6∈,+(xy) ≤ A 6∈,+(x) ∨A 6∈,+(y),
(ii) A∈(xy) ≥ A∈(x) ∧A∈(y), A 6∈(xy) ≤ A 6∈(x) ∨A 6∈(y),
(iii) λ(xy) ≤ λ(x) ∨ λ(y).

In fact, from the above Proposition, it is obvious that A ∈ IV IOGP2(X) if and
only if A ∈ IV IOGP1(X) if and only if A ∈ IV IGP (X), A ∈ IFGP (X) and λ
satisfies the condition (iii).

Proposition 6.16. Let (X, ·) be a groupoid and let A = 〈A, A, λ〉 ∈ IV IOGP2(X).
(1) If “·” is associative in X, then so is “◦2” in A, i.e., for any x˜̄̃a, y˜̄̃b, z˜̃̄c ∈2 A,

(x˜̄̃a ◦2 y˜̄̃b) ◦2 z˜̃̄c = x˜̄̃a ◦2 (y˜̄̃
b
◦2 z˜̃̄c),

(2) If “·” is commutative in X, then so is “◦2” in A, i.e., for any x˜̄̃a, y˜̄̃b ∈2 A,

x˜̄̃a ◦2 y˜̄̃b = y˜̄̃
b
◦2 x˜̄̃a,

(3) If “·” has an identity e ∈ X, then for each x˜̄̃a ∈2 A,

e〈1̃,1̄,0〉 ◦2 x˜̄̃a = x˜̄̃a = x˜̄̃a ◦2 e〈1̃,1̄,0〉.
The followings are immediate results of Definitions 6.5, 6.10, Proposition 6.9 (3)

and Remark 6.11 (3).

Proposition 6.17. Let (X, ·) be a groupoid and let
〈

0̃, 1̄, 0
〉
6= A = 〈A, A, λ〉 ∈

IV IO(X). Then the followings are equivalent:
(1) A ∈ IV IOGP3(X),
(2) for any x˜̄̃a, y˜̄̃b ∈3 A, x˜̄̃a ◦3 y˜̄̃b ∈3 A, i.e., (A, ◦3) is a groupoid,

(3) for any x, y ∈ X, A(xy) ≥3 A(x) ∧3 A(y), i.e.,
(i) A∈,−(xy) ≥ A∈,−(x) ∧A∈,−(y), A∈,+(xy) ≥ A∈,+(x) ∧A∈,+(y),

A 6∈,−(xy) ≤ A 6∈,−(x) ∨A 6∈,−(y), A 6∈,+(xy) ≤ A 6∈,+(x) ∨A 6∈,+(y),
(ii) A∈(xy) ≤ A∈(x) ∨A∈(y), A 6∈(xy) ≥ A 6∈(x) ∧A 6∈(y),
(iii) λ(xy) ≥ λ(x) ∧ λ(y).

In fact, from the above Proposition, it is obvious that A ∈ IV IOGP3(X) if and
only if A ∈ IV IOGP1(X) if and only if A ∈ IV IGP (X), λ ∈ IGP (X) and A
satisfies the condition (ii).
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Proposition 6.18. Let (X, ·) be a groupoid and let A = 〈A, A, λ〉 ∈ IV IOGP3(X).
(1) If “·” is associative in X, then so is “◦3” in A, i.e., for any x˜̄̃a, y˜̄̃b, z˜̃̄c ∈3 A,

(x˜̄̃a ◦3 y˜̄̃b) ◦3 z˜̃̄c = x˜̄̃a ◦3 (y˜̄̃
b
◦3 z˜̃̄c),

(2) If “·” is commutative in X, then so is “◦3” in A, i.e., for any x˜̄̃a, y˜̄̃b ∈3 A,

x˜̄̃a ◦3 y˜̄̃b = y˜̄̃
b
◦3 x˜̄̃a,

(3) If “·” has an identity e ∈ X, then for each x˜̄̃a ∈3 A,

e〈1̃,0̄,1〉 ◦3 x˜̄̃a = x˜̄̃a = x˜̄̃a ◦3 e〈1̃,0̄,1〉.
The followings are immediate results of Definitions 6.5, 6.10, Proposition 6.9 (4)

and Remark 6.11 (4).

Proposition 6.19. Let (X, ·) be a groupoid and let
〈

0̃, 1̄, 1
〉
6= A = 〈A, A, λ〉 ∈

IV IO(X). Then the followings are equivalent:
(1) A ∈ IV IOGP4(X),
(2) for any x˜̄̃a, y˜̄̃b ∈4 A, x˜̄̃a ◦4 y˜̄̃b ∈4 A, i.e., (A, ◦4) is a groupoid,

(3) for any x, y ∈ X, A(xy) ≥4 A(x) ∧4 A(y), i.e.,
(i) A∈,−(xy) ≥ A∈,−(x) ∧A∈,−(y), A∈,+(xy) ≥ A∈,+(x) ∧A∈,+(y),

A 6∈,−(xy) ≤ A 6∈,−(x) ∨A 6∈,−(y), A 6∈,+(xy) ≤ A 6∈,+(x) ∨A 6∈,+(y),
(ii) A∈(xy) ≤ A∈(x) ∨A∈(y), A 6∈(xy) ≥ A 6∈(x) ∧A 6∈(y),
(iii) λ(xy) ≤ λ(x) ∨ λ(y).

In fact, from the above Proposition, it is obvious that A ∈ IV IOGP4(X) if and
only if A ∈ IV IOGP1(X) if and only if A ∈ IV IGP (X), A satisfies the condition
(ii) and λ satisfies the condition (iii).

From Propositions 6.13, 6.15, 6.17 and 6.19, Note that for any A ∈ IV IOGPi(X)
(i = 1, 2, 3, 4), we have: for each x ∈ X,

A(xn) ≥i A(x), i.e.,

where xn is any composite of x′s.

Proposition 6.20. Let (X, ·) be a groupoid and let A = 〈A, A, λ〉 ∈ IV IOGP4(X).
(1) If “·” is associative in X, then so is “◦4” in A, i.e., for any x˜̄̃a, y˜̄̃b, z˜̃̄c ∈4 A,

(x˜̄̃a ◦4 y˜̄̃b) ◦4 z˜̃̄c = x˜̄̃a ◦4 (y˜̄̃
b
◦4 z˜̃̄c),

(2) If “·” is commutative in X, then so is “◦4” in A, i.e., for any x˜̄̃a, y˜̄̃b ∈4 A,

x˜̄̃a ◦4 y˜̄̃b = y˜̄̃
b
◦4 x˜̄̃a,

(3) If “·” has an identity e ∈ X, then for each x˜̄̃a ∈4 A,

e〈1̃,0̄,0〉 ◦3 x˜̄̃a = x˜̄̃a = x˜̄̃a ◦4 e〈1̃,0̄,0〉.
Remark 6.21. Let (X, ·) be a groupoid and let A ∈ 2X . Then we have

χA ∈ IV IOGP1(X) ⇐⇒ A is a subgroupoid of X.
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Definition 6.22. Let (X, ·) be a groupoid, A ∈ IV IO(X) and let i = 1, 2, 3, 4.
Then A is called a:

(i) i-IVI octahedron left ideal (simply, i-IVIOLI) of X, if for any x, y ∈ X,

A(xy) ≥i A(y),

(ii) i-IVI octahedron right ideal (simply, i-IVIORI) of X, if for any x, y ∈ X,

A(xy) ≥i A(x),

(iii) i-IVI octahedron ideal (simply, i-IVIOI) of X, if it is both a i-IVIOLI and a
i-IVIORI of X.

In this case, we will denote the set of all i-IVIOIs [resp. i-IVIOLIs and i-IVIORIs]
of X as IV IOIi(X) [resp. IV IOLIi(X) and IV IORIi(X)].

For a groupoid (X, ·), let us denote the set of all fuzzy ideals [resp. left ideals and
right ideals] (See [24]) and the set of all IFIs [resp. IFLIs, IFRIs] (See [9]) of X as
FI(X) [resp. FLI(X) and FRL(X)].

Remark 6.23. From Definition 6.22, we have the followings:
(1) A ∈ IV IOLI1(X)⇐⇒ for any x, y ∈ X,

A(xy) ≥ A(y), A(xy) ≥ A(y), λ(xy) ≥ λ(y), i.e.,

(6.1) A∈,−(xy) ≥ A∈,−(y), A∈,+(xy) ≥ A∈,+(y),

(6.2) A 6∈,−(xy) ≤ A 6∈,−(y), A 6∈,+(xy) ≤ A 6∈,+(y),

(6.3) A∈(xy) ≥ A∈(y), A6∈(xy) ≤ A 6∈(y),

(6.4) λ(xy) ≥ λ(y),

consequently, A ∈ IV IOLI1(X) ⇐⇒ A ∈ IV ILI(X), A ∈ IFLI(x), λ ∈ FLI(X)
(See 6.24 (2)),

A ∈ IV IOLI2(X)⇐⇒ A ∈ IV ILI(X), A ∈ IFLI(x) and it satisfies the condi-
tion 6.5,

(6.5) λ(xy) ≤ λ(y) for any x, y ∈ X,

A ∈ IV IOLI3(X)⇐⇒ A ∈ IV ILI(X), λ ∈ FLI(x) and it satisfies the condition
6.6,

(6.6) A∈(xy) ≤ A∈(y), A 6∈(xy) ≥ A 6∈(y) for any x, y ∈ X,

A ∈ IV IOLI4(X)⇐⇒ A ∈ IV ILI(X), and it satisfies the conditions 6.5 and 6.6,

(2) A ∈ IV IORI1(X)⇐⇒ for any x, y ∈ X,

A(xy) ≥ A(x), A(xy) ≥ A(x), λ(xy) ≥ λ(x), i.e.,

(6.7) A∈,−(xy) ≥ A∈,−(x), A∈,+(xy) ≥ A∈,+(x),
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(6.8) A 6∈,−(xy) ≤ A 6∈,−(x), A 6∈,+(xy) ≤ A 6∈,+(x),

(6.9) A∈(xy) ≥ A∈(x), A6∈(xy) ≤ A 6∈(x),

(6.10) λ(xy) ≥ λ(x),

consequently, A ∈ IV IORI1(X) ⇐⇒ A ∈ IV IRI(X), A ∈ IFRI(X), λ ∈
FRI(X) (See 6.24 (2)),

A ∈ IV IORI2(X) ⇐⇒ A ∈ IV IRI(X), A ∈ IFRI(X) and it satisfies the
condition 6.11,

(6.11) λ(xy) ≤ λ(x) for any x, y ∈ X,

A ∈ IV IORI3(X)⇐⇒ A ∈ IV IRI(X), A ∈ FRI(X) and it satisfies the condi-
tion 6.12,

(6.12) A∈(xy) ≤ A∈(x), A6∈(xy) ≥ A 6∈(x),

A ∈ IV IOLI4(X)⇐⇒ A ∈ IV IRI(X), A ∈ FRI(X) and it satisfies the condi-
tion 6.12, it satisfies the conditions 6.11 and 6.12,

(3) A ∈ IV IOI1(X)⇐⇒ for any x, y ∈ X,

A(xy) ≥ A(x) ∨A(y), A(xy) ≥ A(x) ∨A(y), λ(xy) ≥ λ(x) ∨ λ(y), i.e.,

(6.13) A∈,−(xy) ≥ A∈,−(x) ∨A∈,−(y), A∈,+(xy) ≥ A∈,+(x) ∨A∈,+(y),

(6.14) A 6∈,−(xy) ≤ A 6∈,−(x) ∧A 6∈,−(y), A 6∈,+(xy) ≤ A 6∈,+(x) ∧A 6∈,+(y),

(6.15) A∈(xy) ≥ A∈(x) ∨A∈(y), A 6∈(xy) ≤ A 6∈(x) ∧A 6∈(x),

(6.16) λ(xy) ≥ λ(x) ∨ λ(y),

consequently, A ∈ IV IORI1(X)⇐⇒ A ∈ IV II(X), A ∈ IFI(X), λ ∈ FI(X) (See
6.24 (2)),

A ∈ IV IOI2(X) ⇐⇒ A ∈ IV II(X), A ∈ IFI(X) and it satisfies the condition
6.17,

(6.17) λ(xy) ≤ λ(x) ∧ λ(y),

A ∈ IV IOI3(X) ⇐⇒ A ∈ IV II(X), λ ∈ IFI(X) and it satisfies the condition
6.18,

(6.18) A∈(xy) ≤ A∈(x) ∧A∈(y), A 6∈(xy) ≥ A 6∈(x) ∨A 6∈(x),

185



Kim et al./Ann. Fuzzy Math. Inform. 20 (2020), No. 2, 157–195

A ∈ IV IOLI4(X) ⇐⇒ A ∈ IV II(X), and it satisfies the conditions 6.17 and
6.18,

Remark 6.24. (1) A i-IVIOLI [resp. IVIORI and IVIOI] in a semigroup S, a group
G and a ring G is defined as Definition 6.22.

(2) An interval-valued intuitionistic fuzzy set A in a groupoid (X, ·) satisfying
the conditions 6.1, 6.2 [resp. 6.7, 6.8 and 6.13, 6.14] will be called an interval-valued
intuitionistic fuzzy left ideal (briefly, IVILI) [resp. right ideal (briefly, IVIRI) and
ideal (briefly, IVII)] in X and the set of all IVILIs [resp. IVIRIs and IVIIs] in X as
IV ILI(X) [resp. IV IRI(X) and IV II(X)].

(3) It is obvious thatA ∈ IV IOGPi(X), for eachA ∈ IV IOIi(X) [resp. IV IOLIi(X)
and IV IORIi(X)] (i = 1, 2, 3, 4) but the converse is not true in general (See Ex-
ample 6.25 (1)).

Example 6.25. (1) Let (X, ·) be the groupoid and A ∈ IV IOGP1(X) given in
Example 6.12 (2). Then clearly, λ(ab) = 0.5 6≥ 0.7 = λ(b). Thus λ 6∈ FLI(X). So
A 6∈ IV IOLI1(X).

(2) Let X = {a, b, c} be the groupoid with the following Cayley table:

· a b c
a a a a
b a a c
c a b c

Table 6.5

Consider two IVI-octahedron sets A and B in X given by:

A(a) = 〈([0.4, 0.8], [0.1, 0.2]), (0.5, 0.2), 0.8〉 ,
A(b) = 〈([0.3, 0.7], [0.2, 0.2]), (0.6, 0.3), 0.7〉 ,
A(c) = 〈([0.2, 0.6], [0.2, 0.3]), (0.7, 0.4), 0.5〉 ,
B(a) = 〈([0.4, 0.8], [0.1, 0.2]), (0.5, 0.2), 0.5〉 ,
B(b) = 〈([0.3, 0.7], [0.2, 0.2]), (0.6, 0.3), 0.7〉 ,
B(c) = 〈([0.2, 0.6], [0.2, 0.3]), (0.7, 0.4), 0.8〉 .

Then we can easily calculate that A ∈ IV IOLI1(X) and B ∈ IV IOLI2(X). But
A∈,−(bc) = B∈,−(bc) = 0.2 6≥ 0.3 = A∈,−(b) = B∈,−(b). Thus A, B 6∈ IV IRI(X).
So A 6∈ IV IORI1(X) and B 6∈ IV IORI2(X).

(3) Let X = {a, b, c} be the groupoid with the following Cayley table:

· a b c
a a a a
b b b a
c c a c

Table 6.6

Consider two IVI-octahedron sets A and B in X given by:

A(a) = 〈([0.4, 0.8], [0.1, 0.2]), (0.7, 0.2), 0.9〉 ,
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A(b) = 〈([0.3, 0.7], [0.2, 0.2]), (0.6, 0.3), 0.7〉 ,
A(c) = 〈([0.2, 0.6], [0.2, 0.3]), (0.5, 0.4), 0.8〉 ,
B(a) = 〈([0.4, 0.8], [0.1, 0.2]), (0.7, 0.2), 0.9〉 ,
B(b) = 〈([0.3, 0.7], [0.2, 0.2]), (0.6, 0.3), 0.7〉 ,
B(c) = 〈([0.2, 0.6], [0.2, 0.3]), (0.5, 0.4), 0.8〉 .

Then we can easily calculate that A ∈ IV IORI1(X) and B ∈ IV IORI2(X).
But A∈,−(ba) = B∈,−(ba) = 0.3 6≥ 0.4 = A∈,−(a) = B∈,−(a). Thus A, B 6∈
IV IOLI(X). So A 6∈ IV IOLI1(X) and B 6∈ IV IOLI2(X).

From Proposition 3.2 in [24], we have the following result.

Theorem 6.26. Let (X, ·) be a groupoid and let A ∈ 2X . Then χA ∈ IV IOLI1(X)
[resp. IV IORI1(X) and IV IOI1(X)] if and only if A is a left ideal [resp. a right
ideal and an ideal] of X.

The following is an immediate result of Proposition 6.13 and Definitions 6.10 and
6.22.

Proposition 6.27. Let (X, ·) be a groupoid and let A = 〈A, A, λ〉 ∈ IV IO(X). If
A ∈ IV IOGP1(X) or A ∈ IV IOLI1(X) [resp. IV IORI1(X) and IV IOI1(X)],
then [A]˜̄̃a is a subgroupoid or a left ideal [resp. a right ideal and an ideal] of X, for

each ˜̄̃a ∈ ([I]⊕ [I])× (I ⊕ I)× I.

Proposition 6.28. Let (X, ·) be a groupoid. If (Aj)j∈J = (〈Aj , Aj , λj〉)j∈J ⊂
IV IOGPi(X), then

⋂i
j∈J Aj ∈ IV IOGPi(X), where J denotes an index set and

j − 1, 2, 3, 4.

Proof. Case 1: Let i = 1. Then it is obvious that
⋂
j∈J Aj ∈ IFGP (X) by Proposi-

tion 3.9 in [9] and
⋂
j∈J λj ∈ FGP (X) by Proposition 3.1 in [24]. Thus it is sufficient

to prove that
⋂
j∈J Aj ∈ IV GP (X). Let x, y ∈ X. Since Aj ∈ IV GP (X) for each

j ∈ J , we have

A∈,−j (xy) ≥ A∈,−j (x) ∧A∈,−j (y), A∈,+j (xy) ≥ A∈,+j (x) ∧A∈,+j (y),

A 6∈,−j (xy) ≤ A 6∈,−j (x) ∨A 6∈,−j (y), A 6∈,+j (xy) ≤ A 6∈,+j (x) ∨A 6∈,+j (y),

for each j ∈ J . Thus∧
j∈J

A∈,−j (xy) ≥
∧
j∈J

(A∈,−j (x) ∧A∈,−j (y)) =
∧
j∈J

A 6∈,−j (x) ∧
∧
j∈J

A 6∈,−j (y).

Similarly, we have ∧
j∈J

A∈,+j (xy) ≥
∧
j∈J

A∈,+j (x) ∧
∧
j∈J

A∈,+j (y),

∨
j∈J

A 6∈,−j (xy) ≤
∨
j∈J

A 6∈,−j (x) ∨
∨
j∈J

A 6∈,+j (y),

∨
j∈J

A 6∈,+j (xy) ≤
∨
j∈J

A 6∈,+j (x) ∨
∨
j∈J

A 6∈,+j (y).

So
⋂
j∈J Aj ∈ IV GP (X). Hence by Proposition 6.13,

⋂1
j∈J Aj ∈ IV IOGP1(X).

187



Kim et al./Ann. Fuzzy Math. Inform. 20 (2020), No. 2, 157–195

Case 2: Since
⋂
j∈J Aj ∈ IV GP (X) and

⋂
j∈J Aj ∈ IFGP (X) from Case 1, it is

sufficient to show that
∨
j∈J λj(xy) ≤

∨
j∈J λj(x) ∨

∨
j∈J λj(y), for any x, y ∈ X.

Since Aj ∈ IV IOGP2(X) for each j ∈ J , by Proposition 6.15 (iii),

λj(xy) ≤ λj(x) ∨ λj(y) for each j ∈ J.

Then
∨
j∈J λj(xy) ≤

∨
j∈J(λj(x) ∨ λj(y)) =

∨
j∈J λj(x) ∨

∨
j∈J λj(y). Thus by

Proposition 6.15,
⋂2
j∈J Aj ∈ IV IOGP2(X).

Case 3: Since
⋂
j∈J Aj ∈ IV GP (X) and

⋂
j∈J λj ∈ FGP (X) from Case 1, it is

sufficient to show that for any x, y ∈ X,

(6.19)
∨
j∈J

A∈j (xy) ≤
∨
j∈J

A∈j (x) ∨
∨
j∈J

A∈j (y),
∧
j∈J

A 6∈j (xy) ≥
∧
j∈J

A 6∈j (x) ∧
∧
j∈J

A 6∈j (y).

Since Aj ∈ IV IOGP3(X) for each j ∈ J , by Proposition 6.17 (iii),

A∈j (xy) ≤ A∈j (x) ∨A∈j (y), A 6∈j (xy) ≥ A 6∈j (x) ∧A 6∈j (y) for each j ∈ J.

Then we can easily see that (6.19) holds. Thus by Proposition 6.17,
⋂3
j∈J Aj ∈

IV IOGP3(X).
Case 4: The proof follows from Cases 1, 2 and 3. �

Remark 6.29. For any A, B ∈ IV IOGP1(X), A∪1 B 6∈ IV IOGP1(X) in general.

Example 6.30. Let (X, ·) be the groupoid and A ∈ OGP (X) given in Example
6.12 (2). Consider the octahedron subgroupoid in X given by:

B(a) = B(b) = B(c) = 〈([0.1, 0.7], [0.1, 0.2]), (0.5, 0.4), 0.6〉 .

Then (A ∪B)(ab) = (0.7, 0.4) 6≥ (0.6, 0.3) = (A ∪B)(a) ∧ (A ∪B)(b). Thus A ∪B 6∈
IFGP (X). So A ∪ B 6∈ IV IOGP1(X).

Remark 6.31. Let (X, ·) be a groupoid and let (Aj)j∈J = (〈Aj , Aj , λj〉)j∈J ⊂
IV IOGP1(X). Then from Proposition 6.28, we can easily see that

1⋂
{A ∈ IV IOGP1(X) :

1⋃
j∈J
Aj ⊂1 A} ∈ IV IOGP1(X).

In this case, we will denote
⋂1{A ∈ IV IOGP1(X) :

⋃1
j∈J Aj ⊂1 A} as

∨
j∈J Aj .

It is obvious that (IV IOGP1(X),⊂1) is a complete lattice with the least element
0̈ and the greatest element 1̈, where for each (Aj)j∈J ⊂ IV IOGP1(X), the inf and

the sup of (Aj)j∈J are infj∈JAj =
⋂1
j∈J Aj and supj∈JAj =

∨
j∈J Aj .

The following is an immediate result of Proposition 6.28.

Corollary 6.32. Let (X, ·) be the groupoid, A ∈ IV IO(X) and let

(A) =

1⋂
{B ∈ IV IOGP1(X) : A ⊂1 B}.

Then (A) ∈ IV IOGP1(X).
In this case, (A) is called the interval-valued intuitionistic octahedron subgroupoid

in X generated by A.
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Proposition 6.33. Let (X, ·) be a groupoid, and let (A) be the subgroupoid generated
by A and χ(A) =

〈
[χ(A), χ(A)], (χ(A), χ(Ac)), χ(A)

〉
for each A ∈ 2X . Then

(χA) = χ(A).

Proof. From Remark 6.21 and Corollary 6.32, it is obvious that χ(A) ∈ IV IOGP1(X).
Let B ∈ IV IOGP1(X) such that B ⊃1 χA. Then clearly,

B(x) = 〈[1, 1], (1, 0), 1〉 , for each x ∈ A.
Since B ∈ IV IOGP1(X), B(xy) = 〈[1, 1], (1, 0), 1〉 for any x, y ∈ A. Thus B ⊃1 χ(A).
So

χ(A) ⊂1

⋂
{B ∈ IV IOGP1(X) : B ⊃1 χA} = (χA).

We can easily prove that (χA) ⊂1 χ(A). Hence (χA) = χ(A). �

From the above Proposition, the subgoupoid lattice of X can be regarded as a
sublattice of the interval-valued intuitionistic octahedron subgroupoid lattice of X.

Proposition 6.34. Let (X, ·) be a groupoid. Then the i-intersection and the i-union
of any i-IVIOLIs [resp. i-IVIORIs and i-IVIOIs] is an i-IVIOLI [resp. i-IVIORI
and i-IVIOI], for i = 1, 2, 3, 4.

Proof. Let (Aj)j∈J ⊂ IV IOLI(X) [resp. IV IORI(X) and IV IOI(X)], where

Aj = 〈Aj , Aj , λj〉 . Let A =
⋂1
j∈J Aj , let B =

⋃1
j∈J Aj and let us prove only that

A, B ∈ IV IOLI1(X). The remainder’s proofs are omitted. Clearly,

A =

1⋂
j∈J
Aj =

〈⋂
j∈J

Aj ,
⋂
j∈J

Aj ,
⋂
j∈J

λj

〉
and

B =

1⋃
j∈J
Aj =

〈⋃
j∈J

Aj ,
⋃
j∈J

Aj ,
⋃
j∈J

λj

〉
.

Then from Proposition 3.3 in [24] and 3.10 in [9],⋂
j∈J

Aj ∈ FLI(X),
⋂
j∈J

Aj ∈ IFLI(X)

and ⋃
j∈J

Aj ∈ FLI(X),
⋃
j∈J

Aj ∈ IFLI(X).

Now we prove that
⋂
j∈J Aj ∈ IV LI(X) and

⋃
j∈J Aj ∈ IV LI(X). Let x, y ∈ X.

Then
(
⋂
j∈J Aj)

∈(xy) = [
∧
j∈J A

∈,−
j (xy),

∧
j∈J A

∈,+
j (xy)]

≥ [
∧
j∈J A

∈,−
j (y),

∧
j∈J A

∈,+
j (y)] [Since Aj ∈ IV ILI(X)]

= (
⋂
j∈J Aj)

∈(y),

(
⋂
j∈J Aj)

6∈(xy) = [
∨
j∈J A

6∈,−
j (xy),

∨
j∈J A

6∈,+
j (xy)]

≤ [
∨
j∈J A

6∈,−
j (y),

∨
j∈J A

6∈,+
j (y)] [Since Aj ∈ IV ILI(X)]

= (
⋂
j∈J Aj)

6∈(y),

(
⋃
j∈J Aj)

∈(xy) = [
∨
j∈J A

∈,−
j (xy),

∨
j∈J A

∈,+
j (xy)]
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≥ [
∨
j∈J A

∈,−
j (y),

∨
j∈J A

∈,+
j (y)] [Since Aj ∈ IV ILI(X)]

= (
⋃
j∈J Aj)

∈(y),

(
⋃
j∈J Aj)

6∈(xy) = [
∧
j∈J A

6∈,−
j (xy),

∧
j∈J A

6∈,+
j (xy)]

≤ [
∧
j∈J A

6∈,−
j (y),

∧
j∈J A

6∈,+
j (y)] [Since Aj ∈ IV ILI(X)]

= (
⋃
j∈J Aj)

6∈(y).

Thus A ∈ IV iLI(X) and A ∈ IV ILI(X). So by Remark 6.23 (1), A, B ∈
IV IOLI(X). �

Proposition 6.35. Let f : X → Y be a groupoid homomorphism, let B = 〈B, B, µ〉 ∈
IV IO(Y ) and let i = 1, 2, 3, 4.

(1) If B ∈ IV IOGPi(Y ), then f−1(B) ∈ IV IOGPi(X).
(2) If B ∈ IV IOLIi(Y ) [resp. IV IORIi(Y ) and IV IOIi(Y )], then f−1(B) ∈

IV IOLIi(X) [resp. IV IORIi(X) and IV IOIi(X)].

Proof. (1) Case 1: Let i = 1. From Propositions 4.1 in [24] and 4.1 (1) in [9],
f−1(µ) ∈ FGP (X) and f−1(B) ∈ IFGP (X). It is sufficient to prove that f−1(B) ∈
IV IGP (X). Let x, y ∈ X. Then

f−1(B∈)(xy) = [(B∈,− ◦f)(xy), (B∈,+ ◦f)(xy)] = [B∈,−(f(xy)), B∈,+(f(xy))]
= [B∈,−(f(x)f(y)), B∈,+(f(x)f(y))]

[Since f is a groupoid homomorphism]
≥ [B∈,−(f(x)) ∧B∈,−(f(y)), B∈,+(f(x)) ∧B∈,+(f(y))]

[Since B ∈ IV IGP (Y )]
= [B∈,−(f(x)), B∈,+(f(x))] ∧ [B∈,−(f(y)), B∈,+(f(y))]
= f−1(B∈)(x) ∧ f−1(B∈)(y).

Similarly, we can see that f−1(B6∈)(xy) ≤ f−1(B6∈)(x)∨f−1(B6∈)(y). Thus f−1(B) ∈
IV IGP (X). So by Proposition 6.13, f−1(B) ∈ IV IOGP1(X).

Case 2: Let i = 2. By Case 1, it is clear that f−1(A ∈ IV IGP (X) and f−1(A) ∈
IFGP (X). It is sufficient to show that for any x, y ∈ X,

f−1(µ)(xy) ≤ f−1(µ)(x) ∨ f−1(µ)(y).

Let x, y ∈ X. Then
f−1(µ)(xy) = µ(f(xy))

= µ(f(x)f(y)) [Since f is a groupoid homomorphism]
≤ µ(f(x)) ∨ µ(f(y)) [Since B ∈ IV IOGP2(X)]
= f−1(µ)(x) ∨ f−1(µ)(y).

Thus by Proposition 6.15, f−1(B) ∈ IV IOGP2(X).
Case 3: Let i = 3. Then from Case 1, it is obvious that f−1(A ∈ IV IGP (X) and

f−1(µ) ∈ FGP (X). Thus it is sufficient to prove that f−1(B) satisfies Proposition
6.19 (3) (ii). Let x, y ∈ X. Then

f−1(A∈)(xy) = A∈(f(xy))
= A∈(f(x)f(y)) [Since f is a groupoid homomorphism]
≤ A∈(f(x)) ∨A∈(f(y)) [Since B ∈ IV IOGP3(X)]
= f−1(A∈)(x) ∨ f−1(A∈)(y).

Similarly, we have f−1(A 6∈)(xy) ≥ f−1(A 6∈)(x)∨f−1(A 6∈)(y). Thus f−1(B) ∈ IV IOGP3(X).
Case 4: Let i = 4. Then the proof is obvious.
(2) Case 1: Let i = 1. Then from Propositions 4.1 in [24] and 4.1 (2) in [9],

f−1(µ) ∈ FLI(X) [resp. FRI(X) and FI(X)] and f−1(B) ∈ IFLI(X) [resp.
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IFRI(X) and IFI(X)]. Thus we prove only that f−1(B) ∈ IV ILI(X) and the
remainder’s proofs are omitted. Let x, y ∈ X. Then

f−1(B∈)(xy) = [B∈,−(f(x)f(y)), B∈,+(f(x)f(y))]
≥ [B∈,−(f(y)), B∈,+(f(y))] [Since B ∈ IV ILI(Y )]
= f−1(B∈)(y).

Similarly, we have f−1(B6∈)(xy) ≤ f−1(B6∈)(y). Thus f−1(B) ∈ IV ILI(X). So
f−1(B) ∈ IV IOLI(X).

Case 2: Let i = 2. Then by Case 1, f−1(B) ∈ IV ILI(X) and f−1(B) ∈
IFLI(X). Thus it is sufficient to show that λ satisfies the condition (6.11). Let
x, y ∈ X. Then

f−1(µ)(xy) = µ(f(x)f(y))
≤ µ(f(y)) [Since B ∈ IV IOLI2(Y )]
= f−1(µ)(y).

Thus f−1(B) ∈ IV IOLI2(X).
Case 3: Let i = 3. Then from Case 1, it is obvious that f−1(B) ∈ IV ILI(X)

and f−1(µ) ∈ FLI(X). Thus it is sufficient to show that λ satisfies the condition
(6.12). Let x, y ∈ X. Then

f−1(B∈)(xy) = B∈(f(x)f(y))
≤ B∈(f(y)) [Since B ∈ IV IOLI3(Y )]
= f−1(B∈)(y).

Similarly, we have f−1(B 6∈)(xy) ≥ f−1(B 6∈)(y). Thus f−1(B) ∈ IV IOLI3(X).
Case 4: Let i = 4. Then the proof is clear. �

Definition 6.36. Let X be a nonempty set and let A = 〈A, A, λ〉 ∈ IV IO(X).
Then we say that A has the i-sup-property (i = 1, 2, 3, 4), if for each T ∈ 2X ,
there is t0 ∈ T such that

A(t0) =

i∨
t∈T
A(t), i.e.,

A(t0) =

1∨
t∈T
A(t) =

〈∨
t∈T

A(t),
∨
t∈T

A(t),
∨
t∈T

λ(t)

〉
,

A(t0) =

2∨
t∈T
A(t) =

〈∨
t∈T

A(t),
∨
t∈T

A(t),
∧
t∈T

λ(t)

〉
,

A(t0) =

3∨
t∈T
A(t) =

〈∨
t∈T

A(t),
∧
t∈T

A(t),
∨
t∈T

λ(t)

〉
,

A(t0) =

4∨
t∈T
A(t) =

〈∨
t∈T

A(t),
∧
t∈T

A(t),
∧
t∈T

λ(t)

〉
.

It is obvious that A ∈ IV IO(X) has the 1-sup-property if and only if A, A and
λ have the sup-property. Furthermore, if A takes on only finitely many values, then
it has the i-sup-property (i = 1, 2, 3, 4).

Proposition 6.37. Let f : X → Y be a groupoid homomorphism, let A = 〈A, A, λ〉 ∈
IV IO(X) has the i-sup-property, for i = 1, 2, 3, 4.

(1) If A ∈ IV IOGPi(X), then f(A) ∈ IV IOGPi(Y ).
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(2) If A ∈ IV IOLIi(X) [resp. IV IORIi(X) and IV IOIi(X)], then f(A) ∈
IV IOLIi(Y ) [resp. IV IORIi(Y ) and IV IOIi(Y )].

Proof. (1) Case 1: Let i = 1. Then from Propositions 4.2 in [24] and 4.4 (1) in
[9], f(A) ∈ FGP (X) and f(A) ∈ IFGP (X). Thus it is sufficient to prove that

f(A) ∈ IV IGP (X). Let y, y
′ ∈ Y . Then we can consider the followings:

(a) f−1(y) 6= ∅ and f−1(y
′
) 6= ∅, (b) f−1(y) 6= ∅ and f−1(y

′
)t = ∅,

(c) f−1(y) = ∅ and f−1(y
′
) 6= ∅, (d) f−1(y) = ∅ and f−1(y

′
) = ∅.

We prove only the case (a) and omit the remainders. Since A has the 1-sup-property,

there are x0 ∈ f−1(y) and x
′

0 ∈ f−1(y
′
) such that

A(x0) =

1∨
t∈f−1(y)

A(x) and A(x
′

0) =

1∨
t′∈f−1(y′ )

A(t
′
).

Then
f(A∈)(yy

′
) = [

∨
z∈f−1(yy′ )A

∈,−(z),
∨
z∈f−1(yy′ )A

∈,+(z)]

≥ [A∈,−(x0x
′

0), A∈,+(x0x
′

0)] [Since f(x0x
′

0) = f(x0)f(x
′

0) = yy
′
]

≥ [A∈,−(x0) ∧A∈,−(x
′

0), A∈,+(x0) ∧A∈,+(x
′

0)]
[Since A ∈ IV IGP (X)]

=
∨
t∈f−1(y)A

∈(t) ∧
∨
t′∈f−1(y′ )A

∈(t
′
)

= f(A∈)(y) ∧ f(A∈)(y
′
).

Similarly, we have f(A 6∈)(yy
′
) ≤ f(A 6∈)(y) ∨ f(A 6∈)(y

′
). Thus f(A) ∈ IV IGP (Y ).

So f(A) ∈ IV IOGP1(Y ).
Case 2: Let i = 2. Then by Case 1, f(A) ∈ IV IGP (Y ) and f(A) ∈ IFGP (Y ).

Thus is is sufficient to show that f(λ) satisfies the condition (iii) of Proposition
6.15. Let x, y ∈ X. Since A has the 1-sup-property, there are x0 ∈ f−1(y) and

x
′

0 ∈ f−1(y
′
) such that

A(x0) =

2∨
t∈f−1(y)

A(x) and A(x
′

0) =

2∨
t′∈f−1(y′ )

A(t
′
).

Then
f(λ)(yy

′
) =

∧
z∈f−1(yy′ ) λ(z) [Since A ∈ IV IOGP2(X)]

≤ λ(x0x
′

0) [Since f(x0x
′

0) = f(x0)f(x
′

0) = yy
′
]

≤ λ(x0) ∨ λ(x
′

0) [By Proposition 6.15 (iii)]

=
∧
t∈f−1(y) λ(t) ∨

∧
t′∈f−1(y′ ) λ(t

′
)

= f(λ)(y) ∨ f(λ)(y
′
).

Thus f(A) ∈ IV IOGP2(Y ).
Case 3: Let i = 2. Then by Case 1, f(A) ∈ IV IGP (Y ) and f(λ) ∈ FGP (Y ).

Thus is is sufficient to show that f(A) satisfies the condition (ii) of Proposition
6.17. Let x, y ∈ X. Since A has the 1-sup-property, there are x0 ∈ f−1(y) and

x
′

0 ∈ f−1(y
′
) such that

A(x0) =

3∨
t∈f−1(y)

A(x) and A(x
′

0) =

3∨
t′∈f−1(y′ )

A(t
′
).
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Then
f(A∈)(yy

′
) =

∧
z∈f−1(yy′ )A

∈(z) [Since A ∈ IV IOGP3(X)]

≤ A∈(x0x
′

0) [Since f(x0x
′

0) = f(x0)f(x
′

0) = yy
′
]

≤ A∈(x0) ∨A∈(x
′

0) [By Proposition 6.17 (ii)]

=
∧
t∈f−1(y)A

∈(t) ∨
∧
t′∈f−1(y′ )A

∈(t
′
)

= f(A∈)(y) ∨ f(A∈)(y
′
).

Similarly, we have f(A 6∈)(yy
′
) ≥ f(A 6∈)(y)∧f(A 6∈)(y

′
). Thus f(A) ∈ IV IOGP3(Y ).

Case 4: Let i = 4. The the proof is obvious.
(2) Since the proof is similar to (1)l it is omitted. �

Definition 6.38. LetX, Y be sets, f : X → Y be a mapping and letA ∈ IV IO(X).
Then A is said to be f -invariant, if for any x, y ∈ X, f(x) = f(y) implies A(x) =
A(y).

It is obvious that A is f -invariant if and only if A, A and λ are f -invariant.
Moreover, we can easily see that if A is f -invariant, then f−1(f(A)) = A.

Example 6.39. Let X = {a, b, c}, Y = {x, y} be sets and f : X → Y be the
mapping defined by f(a) = f(b) = x and f(c) = y. Consider two IVI-octahedron
sets A, A in X given by:

A(a) = 〈([0.4, 0.8], [0.1, 0.2]), (0.5, 0.2), 0.8〉 ,

A(b) = 〈([0.4, 0.8], [0.1, 0.2]), (0.5, 0.2), 0.8〉 ,

A(c) = 〈([0.2, 0.6], [0.2, 0.3]), (0.7, 0.4), 0.5〉 ,

B(a) = 〈([0.4, 0.8], [0.1, 0.2]), (0.5, 0.2), 0.5〉 ,

B(b) = 〈([0.3, 0.7], [0.2, 0.2]), (0.6, 0.3), 0.7〉 ,

B(c) = 〈([0.2, 0.6], [0.2, 0.3]), (0.7, 0.4), 0.8〉 .
Then we can easily check that A is invariant but B is not invariant. Moreover, we
can easily confirm that f−1(f(A)) = A.

We have the similar result to Theorem 18.4 in [23].

Proposition 6.40. Let X, Y be sets, let f : X → Y be a mapping and let

Ω = {A ∈ IV IO(X) : A is f-invariant}.

Then there is a one-to-one correspondence between Ω and IV IO(Imf), where Imf
denotes the image of f .

Also, we obtain the similar result to Theorem 26.5 in [23].

Proposition 6.41. Let f : X → Y be a groupoid homomorphism and let

Φi = {A ∈ IV IOGPi(X) : A is f-invariant and has the i-sup-property}.

Then there is a one-to-one correspondence between Φi and IV IOGPi(Imf), for
i = 1, 2, 3, 3.
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7. Conclusions

We defined an (internal, external) IVI-octahedron set, and discussed some re-
lated properties. Also, we defined an IVI-octahedron point and the level set, and
obtained some their properties including the characterizations of Type i-union (Type
i-intersection). Moreover, we defined the image and preimage of an IVI-octahedron
set under a mapping and studied some of their properties. Finally, we introduced
the concepts of an IVIOGP and an IVIOLI [resp. IVIORI and IVIOI] of type i
(i = 1, 2, 3, 4), and dealt with their some properties. In the future, we expect that
one applies IVI-octahedron sets to group and ring theories, BCI/BCK-algebras,
topologies, category theory and decision-making, etc. Also, we will introduce a new
concept in which the neutrosophic set of each of the first, second and third compo-
nents of the IVI-octahedron set is changed, and research for its properties.

Funding: This research was supported by the Basic Science Research Program
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