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1. Introduction

The French mathematician Maurice Frechet initiated the study of metric spaces
[27] in 1905. The fixed-point theorem, generally known as the Banach contraction

principle, appeared in explicit form in Banach
′
s thesis in 1922, where it was used

to establish the existence of a solution to an integral equation. A number of gen-
eralizations of the well-known Banach contraction theorem are obtained in various
directions(See [5, 6, 7, 8, 9, 22, 23, 25, 26]). In 1989, Bakhtin [4] introduced the
concept of b-metric space and gave the contraction mapping which was the gen-
eralization of the Banach Contraction Principle. In 1993, Czerwick [6] extended
this concept of b-metric spaces, whereas Shukla [28] introduced partial b-metric in
2014. As a further generalization for quasi-metric spaces and partial-metric spaces,
Karapinar [15] introduced the notion of quasi-partial metric space and discussed the
existence of fixed points of self-mappings T on quasi-partial metric spaces. Gupta
and Gautam [12] further, generalized quasi-partial metric spaces to the class of
quasi-partial b-metric spaces and proved some fixed point results in the setting of
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quasi-partial metric space (See [2, 4, 10, 11]). Jungck [13] extended the Banach
contraction mapping principle in different direction which stated as follows.

Let (X, d) be a complete metric space. Let S be a continuous self map on X
and T be any self map on X that commutes with S. Further let S and T satisfy
T (X) ⊂ S(X) and there exists a constant α ∈ (0, 1) such that for every x, y ∈ X,

d(Tx, Ty) ≤ αd(Sx, Sy)

for all x, y ∈ X. Then S and T have a unique common fixed point.
Many results exist in literature on common fixed points given by Kannan, Chat-

terjea and Zamfirescu contractive conditions have been recently obtained in Refs.
[1] and [5], respectively. Das and Naik [7] derived common fixed point result for

ĆirićÔÇÖs fixed point theorem which is stated as below.
Let (X, d) be a complete metric space. Let S be a continuous self map on X

and T be any self map on X that commutes with S. Further let S and T satisfy
T (X) ⊂ S(X). If there exists a constant h ∈ (0, 1) such that for every x, y ∈ X,

d(Tx, Ty) ≤ hM(x, y),

where, M(x, y) = max{(Sx, Sy), d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)}
then S and T have a unique common fixed point.

More research work related to this was mentioned in ([3, 15, 16, 17, 18, 19, 20, 24]).
In this paper, we have discussed the existence and uniqueness of common fixed

points for Ćirić-Reich-Rus mapping [21] when the underlying space is Complete.
Throughout this paper, N,R and R+ denote the set of all positive integers, set of
real numbers and the set of all non-negative real numbers respectively.

2. Preliminaries and basic properties

Definition 2.1 ([12]). A quasi-partial b-metric on a non-empty set X is a mapping
qpb : X ×X → R+ such that for some real numbers s ≥ 1 and for all x, y, z ∈ X,

(QPb1) qpb(x, x) = qpb(x, y) = qpb(y, y) implies x = y,
(QPb2) qpb(x, x) ≤ qpb(x, y),
(QPb3) qpb(x, x) ≤ qpb(y, x),
(QPb4) qpb(x, y) + qpb(z, z) ≤ s[qpb(x, y) + qpb(y, z)].
A quasi-partial b-metric space is a pair (X, qpb), where X is a non-empty space

and qpb is quasi-partial b-metric on X. The number s is called coefficient of (X, qpb).

Lemma 2.2 ([11]). Let (X, qpb) be a quasi-partial b-metric space. Then the follow-
ing holds:

(1) if qpb(x, y) = 0, then x = y,
(1) if x 6= y, then qpb(x, y) > 0 and qpb(y, x) > 0.

Definition 2.3 ([11]). Let (X, qpb) be a quasi-partial b-metric space.
(i) A sequence {xn} ⊂ X is said to converges to x ∈ X, if

qpb(x, x) = lim
n→∞

qpb(xn, x) = lim
n→∞

qpb(x, xn).

(ii) A sequence {xn} ⊂ X is called a Cauchy sequence, if

lim
n,m→∞

qpb(xn, xm) = lim
m,n→∞

qpb(xm, xn) exist and finite.
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(iii) The quasi-partial b-metric space (X, qpb) is said to be complete, if every
sequence {xn} ⊂ X converges with respect to τqpb to a point x ∈ X such that

qpb(x, x) = lim
n,m→∞

qpb(xn, xm) = lim
m,n→∞

qpb(xm, xn).

Lemma 2.4 ([8]). Let (X, qpb) be a quasi-partial b-metric space and {xn}∞n=1 be a
sequence in X. If xn → x, xn → y and qpb(x, x) = qpb(y, y) = 0, then x = y.

Definition 2.5. Let (X, qpb) be a quasi-partial b-metric space. A sequence {xn} ⊂
X is said to converges to x ∈ X, if for every ε > 0, there exists K(ε) ∈ N such that
xn ∈ B(x, ε), for all n ≥ K(ε).

The above definition is derived from Definition 2.3 (i) and by the definition of
Balls in qpb-metric space B(x, ε) = {y ∈ X|qpb(x, y) < ε and qpb(y, x) < ε}.

Definition 2.6 ([10]). A mapping f : X → X is said to be continuous at x0 ∈ X,
i, for every ε > 0, there exists δ(ε) > 0 such that f(B(x0, δ)) ⊂ B(f(x0), ε).

Lemma 2.7. (Sequential Criterion for continuity in qpb metric space) Let X be a
Quasi-Partial b-metric and A ⊆ X, f : A → X is a continuous function at a point
x0 ∈ A if and only if for every sequence (xn) in A that converges to x0, the sequence
(f(xn)) converges to f(x0).

Proof. Suppose f : A → X is a continuous function at a point x0 ∈ A and let (xn)
any sequence in A converging to x0. We need to prove that (f(xn)) converges to
f(x0). Let ε > 0 be given. Then by Definition 2.5, there exists δ(ε) > 0 such that

(2.1) (B(x0, δ)) ⊂ B(f(x0), ε).

Now, we apply the definition of convergent sequence corresponding to the given
δ to obtain a natural number k(δ) such that xn ∈ B(x, δ) for all n ≥ k(δ). Then by
(2.1), f(xn) ∈ B(f(x0), ε) for all n ≥ k(ε). Thus the sequence (f(xn)) converges to
f(x0).

Conversely, suppose the necessary condition holds and assume that f : A →
X is not continuous at x0. Then there exist ε0 > 0, for every δ > 0 such that
f(B(x0, δ)) 6⊂ B(f(x0), ε). Thus there exist ε0 > 0, for every δ > 0 there exist at least
one x ∈ B(x0, δ) such that f(x) 6∈ B(f(x0), ε). Choose δ = 1

n > 0. Then clearly,we

have a sequence xn ∈ B(x0,
1
n ) such that f(xn) 6∈ B(f(x0), ε). Since xn ∈ B(x0,

1
n )

equivalent to qpb(xn, x0) < 1
n and qpb(x0, xn) < 1

n , xn converges to x0 and f(xn) 6∈
B(f(x0), ε) equivalent to either qpb(f(xn), f(x0)) ≥ ε0 or qpb(f(x0), f(xn)) ≥ ε0 for
all n ∈ N . Thus, f(xn) does not converges to f(x0), which contradicts the fact that
for every sequence (xn) in A that converges to x0, the sequence (f(xn)) converges
to f(x0). So f is continuous function. �

Definition 2.8 ([1]). Let S and T be self maps of a nonempty set X. If there exists
x ∈ X such that Sx = Tx, then x is called a coincidence point of S and T , while
y = Sx = Tx is called a point of coincidence (or coincidence value) of S and T . If
Sx = Tx = x, then x is called a common fixed point of S and T .

Definition 2.9 ([14]). Let S and T be self maps of a nonempty set X. The pair
of mappings S and T is said to be weakly compatible, if they commute at their
coincidence points.
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3. Main result

In this section, common fixed point theorems for cyclic Ćirić-Reich-Rus contrac-
tion mapping is proved in the setting of quasi-partial b-metric space.

Theorem 3.1. Let (X, qpb) be a vomplete quasi-partial b-metric space. Let A and
T be continuous self-map on X that commutes and T (X) ⊂ A(X), further, let A
and T satisfy the following: for any x, y ∈ X,

(3.1) qpb(Tx, Ty) ≤ αqpb(Ax,Ay) + βqpb(Ax, Tx) + βqpb(Ay, Ty),

where α, β ∈ (0, 1) such that for s ≥ 1 and s(α + 2β) < 1, A and T have a unique
fixed point.

Proof. Let x0 ∈ X and consider a sequence xn ∈ X satisfying the following:

T (x0) = A(x1), T (x1) = A(x2), · · · , T (xn) = A(xn+1).

by considering condition (3.1), we have

qpb(Ax1, Ax2) = qpb(Tx0, Tx1) ≤ αqpb(Ax0, Ax1)+βqpb(Ax0, Tx0)+βqpb(Ax1, Tx1),

qpb(Ax1, Ax2) ≤ αqpb(Ax0, Ax1) + βqpb(Ax0, Ax1) + βqpb(Ax1, Ax2),

(1− β)qpb(Ax1, Ax2) ≤ (α+ β)qpb(Ax0, Ax1),

Then we get

(3.2) qpb(Ax1, Ax2) ≤ (α+ β)

(1− β)
qpb((Ax0, Ax1).

Thus from (3.2), we have

qpb(Ax2, Ax1) = qpb(Tx1, Tx2) ≤ αqpb(Ax1, Ax0)+βqpb(Ax1, Tx1)+βqpb(Ax0, Tx0),

qpb(Ax2, Ax1) ≤ αqpb(Ax1, Ax0) + βqpb(Ax1, Ax2) + βqpb(Ax0, Ax1),

qpb(Ax2, Ax1) ≤ αqpb(Ax1, Ax0) + β(
(α+ β)

1− β
)qpb(Ax0, Ax1) + βqpb(Ax0, Ax1).

Now Take h = Max{qpb(Ax1, Ax0), qpb(Ax0, Ax1)}. Then

qpb(Ax1, Ax2) ≤ (α+ β)

(1− β)
h and qpb(Ax2, Ax1) ≤ (α+ β)

(1− β)
h.

Similarly,

qpb(Ax2, Ax3) ≤ (
α+ β

1− β
)2h and qpb(Ax3, Ax2) ≤ (

α+ β

1− β
)2h.

Thus we have: for every n ∈ N ,

(3.3) qpb(Axn, Axn+1) ≤ (
α+ β

1− β
)nh and qpb(Axn+1, Axn) ≤ (

α+ β

1− β
)nh.

Let m,n ∈ N and m < n. Then by 3.3)and QPb4 , we have
qpb(Axn, Axm) ≤ s[qpb(Axn, Axm+1) + qpb(Axm+1, Axm)]

−qpb(Axm+1, Axm+1),
qpb(Axn, Axm) ≤ s[qpb(Axn, Axm+1) + qpb(Axm+1, Axm)],
qpb(Axn, Axm) ≤ s2qpb(Axn, Axm+2) + s2qpb(Axm+1, Axm+2)

+sqpb(Axm+1, Axm),
qpb(Axn, Axm) ≤ sn−mqpb(Axn, Axn−1) + · · ·+ s2qpb(Axm+2, Axm+1)

152



Mishra et al./Ann. Fuzzy Math. Inform. 20 (2020), No. 2, 149–156

+sqpb(Axm+1, Axm),

qpb(Axn, Axm) ≤ sn−m(α+β1−β )n−1h+ · · ·+ s(α+β1−β )mh.

Thus we get

(3.4) qpb(Axn, Axm) ≤ sh(
α+ β

1− β
)m(

1− ( s(α+β)1−β )n−m

1− s(α+β)
1−β

).

First, we will show s(α+β1−β ) < 1. Since s(α + 2β) < 1, sα + sβ + sβ < 1. Since

s ≥ 1, s(α + β) < 1 − sβ < 1 − β. As n,m → ∞ and using above inequality in
equation (3.4), we have the following:

lim
n,m→∞

qpb(Axn, Axm) = 0.

Similarly, limn,m→∞ qpb(Axm, Axn) = 0. Then {A(xn)}is a Cauchy Sequence in X.
Since X is a complete qpb metric space, there exist t ∈ X such that A(xn) converges
to t in qpb metric space. Thus

qpb(t, t) = limn→∞ qpb(Axn, t) = limn→∞ qpb(t, Axn) = 0
= limm,n→∞ qpb(Axn, Axm) = limn,m→∞ qpb(Axm, Axn).

Since T (xn) = A(xn+1), T (xn) converges to t in qpb metric space. So by Lemma
2.7, A(T (xn)) converges to A(t) and T (A(xn)) converges to T (t).

Next, we will show A(t) = T (t). It is sufficient to show that

qpb(A(t), T (t)) = 0.

Consider
qpb(A(T (xn)), T (t))

= qpb(T (A(xn)), T (t))
≤ αqpb(A(A(xn)), A(t)) + βqpb(A(A(xn)), T (A(xn))) + βqpb(A(t), T (t)).

As n→∞, we have

qpb(A(t), T (t)) ≤ αqpb(A(t), A(t)) + 2βqpb(A(t), T (t)),

qpb(A(t), T (t)) ≤ α

1− 2β
qpb(A(t), A(t)) ≤ α

1− 2β
qpb(A(t), T (t)).

By the hypothesis, (α + 2β) < 1
s ≤ 1, i.e., α + 2β < 1, i.e., α

1−2β < 1. By us-

ing this inequality, we have qpb(A(t), T (t)) ≤ 0 but qpb(A(t), T (t)) ≥ 0. Then
qpb(A(t), T (t)) = 0. Thus t is a coincidence point.

Now, we will show A(t) is a fixed point. Since A and T commutes, T (A(t)) =
A(T (t)) for all x ∈ X.
SinceA(t) = T (t), soA2(t) = T 2(t). Then it is sufficient to show qpb(A

2(t), A(t)) = 0
for A2(t) = A(t).

On the other hand,
qpb(A

2(t), A(t)) = qpb(T
2(t), T (t))

≤ αqpb(A(T (t)), A(t)) + βqpb(A(T (t)), T 2(t))
+βqpb(A(t), T (t)),

qpb(A
2(t), A(t)) ≤ αqpb(A2(t), A(t)) + βqpb(A

2(t), A2(t)) + βqpb(A(t), A(t)),
(1− α)qpb(A

2(t), A(t)) ≤ β[qpb(A
2(t), A2(t)) + qpb(A(t), A(t))],

(1− α)qpb(A
2(t), A(t)) ≤ β[qpb(A

2(t), A2(t)) + qpb(A
2(t), A(t))],

(1− α− 2β)qpb(A
2(t), A(t)) ≤ 0.

Since 1− α− 2β > 0, qpb(A
2(t), A(t)) = 0. Thus A(t) = T (t) is a fixed point.
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At last we need to show A(t) is a unique fixed point. Let w and v be two fixed
points, i.e., A(w) = T (w) = w and A(v) = T (v) = v. We have to show v = w.

Consider
qpb(v, v) = qpb(T (v), T (v))

≤ αqpb(A(v), A(v)) + 2βqpb(A(v), T (v))
= (α+ β)qpb(v, v).

Then (1−α−β)qpb(v, v) ≤ 0. Thus qpb(v, v) = 0. Similarly, we have qpb(w,w) = 0.
On the other hand,

qpb(v, w) = qpb(Tv, Tw)
≤ αqpb(A(v), A(w)) + βqpb(A(v), T (v)) + βqpb(A(w), T (w))
= αqpb(v, w) + βqpb(v, v) + βqpb(w,w).

So (1 − α)qpb(v, w) ≤ [qpb(v, v) + qpb(w,w)]. Since α < 1, qpb(v, w) = 0. Hence
v = w. �

Example 3.2. Let X = [0, 1] and let s ≥ 1. Define the quasi-partial b-metric as:

qpb(x, y) = |x− y|+ |x|.

Then we can easily see that (X, qpb) is a complete quasi-partial b-metric space. Also
T (x) = x

4 and A(x) = x
2 are continuous self maps on X that commutes. We will

check A and T satisfy the hypothesis of Theorem 3.1.
T (X) = [0, 14 ] ⊂ [0, 12 ] = A(X),
qpb(Tx, Ty) = qpb(x/4, y/4) = |x/4− y/4|+ |x/4|,
qpb(Ax,Ay) = qpb(x/2, y/2) = |x/2− y/2|+ |x/2|,
qpb(Ax, Tx) = qpb(x/2, x/4) = |x/2− x/4|+ |x/2| = 3x/4,
qpb(Ay, Ty) = qpb(y/2, y/4) = |y/2− y/4|+ |y/2| = 3y/4,
qpb(Tx, Ty) ≤ 1

2qpb(Ax,Ay),

qpb(Tx, Ty) ≤ 1
2qpb(Ax,Ay) + βqpb(Ax, Tx) + βqpb(Ay, Ty).

Choose β ≥ 0 such that ( 1
2 +2β) < 1/s. Then A and T have a unique common fixed

point, i.e., t = 0.

Corollary 3.3. Let (X, qpb) be a complete quasi-partial b-metric space. Let A and
T are continuous self-map on X that commutes and T (X) ⊂ A(X), further, let A
and T satisfy the following Kannan contraction condition: for all x, y ∈ X,

qpb(Tx, Ty) ≤ βqpb(Ax, Tx) + βqpb(Ay, Ty),

where β ∈ (0, 1/2) such that for s ≥ 1 and sβ < 1
2 .

Then A and T have a unique fixed point.

Proof. In Theorem 3.1, Taking α = 0 and A = identity map. Then we can easily
show that A and T have a unique fixed point. �

Corollary 3.4. Let (X, qpb) be a complete quasi-partial b-metric space. Let A and
T be continuous self-map on X that commutes and T (X) ⊂ A(X), further, let A
and T satisfy the following Banach contraction condition: for all x, y ∈ X,

qpb(Tx, Ty) ≤ αqpb(Ax,Ay),

where α ∈ (0, 1) such that for s ≥ 1 and sα < 1.
154
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Then A and T have a unique fixed point.

Proof. In Theorem 3.1, Taking
beta = 0 and A = identity map. Then we can easily prove that A and T have a
unique fixed point. �

Corollary 3.5. Let (X, qpb) be a Complete quasi-partial b-metric space and T :
X → X be a self-map satisfying,

qpb(Tx, Ty) ≤ αqpb(x, y) + βqpb(x, Tx) + βqpb(y, Ty)

for all x, y ∈ X, (α+ 2β) ∈ [0, 1). Then T has a unique fixed point in X.

Proof. In Theorem 3.1, Taking A = the identity map. Then we can easily check
that T has a unique fixed point in X. �

4. Conclusion

The main contribution of the paper is to ensure the existence of common fixed
points for Ćirić-Riech-Rus type contraction mappings of the quasi-partial b-metric
space concerned in its definition. The study of the uniqueness of fixed points for
these maps and their applications in the solution of nonlinear integral equations
would be interesting topics for future work. It will also pave way for study of fixed
points in Menger and fuzzy metric space.

Acknowledgements. The authors are grateful to the Editor for his comments
and to the anonymous reviewers for their suggestions which has helped in modifying
the paper.
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