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Ömer KİŞİ
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Abstract. In this paper, we investigate rough ∆I2-convergence as
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1. Introduction

Statistical convergence of a real number sequence was firstly originated by Fast
[18]. Theory of I-convergence has become an important working area after the
study of Kostyrko et al. [29]. Nuray and Ruckle [37] introduced the same concept
as generalized statistical convergence. A lot of improvement has been made in the
area of I-convergence after the studies of [5, 6, 10, 11, 17, 20, 30, 34, 35, 36, 42].

Rough convergence was firstly given by Phu [38, 39, 40] in finite dimensional
normed spaces. He denoted that the set LIMr

x is bounded, convex and closed and
he investigated the concept of rough Cauchy sequence. Aytar [4] examined of rough
statistical convergence and obtained the set of rough statistical limit points of a
sequence and showed two statistical convergence criteria related with this set. Also,
Aytar [3] obtained the rough limit set and the core of a real sequence. In [33], rough
statistical convergence of double sequences in finite dimensional normed linear spaces
was studied. Rough convergence of double sequences has been originated by Malik
and Maity [32] and some properties of this convergence were given. Dündar and
Çakan [15, 16] investigated the rough I-convergence and the set of rough I-limit
points of a sequence and also obtained the notion of rough convergence and the set
of rough limit points of a double sequence. Also, we refer ([1, 2, 12, 13, 14, 19, 21,
22, 23, 24, 25, 41, 43]) for details in the area of rough convergence.
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The concept of rough sets, fuzzy sets and intuitionistic fuzzy sets are closely
related. We benefit from some important studies to prepear our study (for details,
see [7, 8, 9, 26, 27, 28, 31]).

In view of the recent studies of rough convergence, it looks like very natural to
extend the interesting concept of rough ∆I2-convergence further by using ideals
which we mainly do here.

2. Definitions and notations

We recall some notations and basic definitions used in this paper.

Definition 2.1 ([29]). A family of sets I ⊆ 2N is called an ideal, if it satisfies the
following conditions:

(i) emptyset ∈ I,
(ii) for each P,R ∈ I, P ∪R ∈ I,
(iii) for each P ∈ I and each R ⊆ P, R ∈ I.

An ideal is called non-trivial, if N /∈ I and non-trivial ideal is called admissible,
if {n} ∈ I for each n ∈ N.

Definition 2.2 ([29]). A family of sets F ⊆ 2N is a filter in N, if it satisfies the
following conditions:

(i) ∅ /∈ F ,
(ii) for each P,R ∈ F , have P ∩R ∈ F ,
(iii) for each P ∈ F and each R ⊇ P, R ∈ F .

Lemma 2.3 ([29]). If I ⊆ 2N is a nontrivial ideal, then the family of sets

F (I) = {M ⊂ N : ∃A ∈ I :M = N \ A}

is a filter of N.
In this case, F (I) is called the filter associated with the ideal I.

Definition 2.4 ([20]). A real sequence x = (xk) is said to be ∆-ideal convergent to
x ∈ R, provided for each ε > 0,

{k ∈ N : |∆xk − x| ≥ ε} ∈ I.

Definition 2.5 ([6]). A nontrivial ideal I2 of N×N is called strongly admissible, if
{i} × N, N× {i} ∈ I2, for each i ∈ N.

It is obvious that a strongly admissible ideal is admissible also. We will take I2

as a strongly admissible ideal in N× N.

Definition 2.6 ([6]). A double sequence x = (xmn) in X is said to be I2-convergent
to L ∈ X, if for any ε > 0, we have

A(ε) = {(m,n) ∈ N× N : ρ(xmn, L) ≥ ε} ∈ I2.

In this case, we write

I2- lim
m,n→∞

xmn = L.
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Definition 2.7 ([38]). A sequence x = (xk) is said to be r-convergent to x∗, denoted

by xk
r−→ x∗ provided that

∀ε > 0 ∃iε ∈ N : k ≥ iε ⇒ ‖xk − x∗‖ < r + ε.

The set

LIMrx := {x∗ ∈ Rn : xk
r−→ x∗}

is called the r-limit set of the sequence x = (xk).

During the paper, let r > 0 and Rn demonstrate the real n-dimensional space
with the norm ‖.‖. Think x = (xk) ⊂ X = Rn.

Definition 2.8 ([15]). A sequence x = (xk) is said to be rough I-convergent (r-I-

convergent) to x∗ with the roughness degree r, denoted by xk
r−I−→ x∗, provided that

{k ∈ N : ‖xk − x∗‖ ≥ r + ε} ∈ I for every ε > 0 or equivalently, if the condition

I- lim sup ‖xk − x∗‖ ≤ r

holds. We can write xk
r−I−→ x∗ iff the inequality ‖xk − x∗‖ < r + ε holds for every

ε > 0 and almost all k.

Definition 2.9 ([15]). A double sequence x = (xmn) is called to be rough convergent
to x∗, provided that

∀ε > 0 ∃kε ∈ N : m,n ≥ kε ⇒ ‖xmn − x∗‖ < r + ε,

with the roughness degree r or equivalently, if

lim sup ‖xmn − x∗‖ ≤ r.

In this case, we write xmn
r−→ x∗.

Definition 2.10 ([16]). A double sequence x = (xmn) is called to be r-I2-convergent

to x∗ with the roughness degree r, denoted by xmn
r−I2−→ x∗, provided that

{(m,n) ∈ N× N : ‖xmn − x∗‖ ≥ r + ε} ∈ I2,

for every ε > 0; or equivalently, if the condition

I2- lim sup ‖xmn − x∗‖ ≤ r

is satisfied. In addition, we can write xmn
r−I2−→ x∗ iff the inequality ‖xmn−x∗‖ < r+ε

holds for every ε > 0 and almost all (m,n).

3. Main results

Definition 3.1. For some given real number r ≥ 0, a double sequence (∆xkl) is
called to be rough I2-convergent to x∗ with the roughness degree r, provided that

(3.1) {(k, l) ∈ N× N : ‖∆xkl − x∗‖ ≥ r + ε} ∈ I2,

for every ε > 0 or similarly, if the statement

(3.2) I2 − lim sup ‖∆xkl − x∗‖ ≤ r

is satisfied. In addition, we can write ∆x
r−I2−→ x∗ if the inequality ‖∆xkl − x∗‖ < r+ε

holds for every ε > 0 and for almost all (k, l).
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We obtain the concept of I2-cluster point of (∆xkl) and of I2-boundedness for a
double sequence (∆xkl).
c ∈ Rn is called a I2-cluster point of a double sequence (∆xkl) stated that

{(k, l) ∈ N× N : ‖∆xkl − c‖ < ε} /∈ I2

for every ε > 0. We demonstrate the set of all I2-cluster point of a double sequence
(∆xkl) by I2 (Γ∆x) .

A double sequence (∆xkl) is called to be I2-bounded ,if there exists M > 0 such
that

{(k, l) ∈ N× N : ‖∆xkl‖ ≥M} ∈ I2.

Remark 3.2. r-convergence implies r-∆I2-convergence according as the roughness
degree.

If we take r = 0, then we get the ordinary ∆I2-convergence of a double sequence.
Overall, the r-I2-limit of a double sequence might not be unique for the roughness

degree r. Hence, we should think the so-called rough I2-limit set of (∆xkl), which
is shown by

I2-LIMr∆x :=
{
x∗ ∈ Rn : ∆xkl

r−I2→ x∗

}
.

A double sequence (∆xkl) is called to be r-I2-convergent if I2-LIMr∆x 6= ∅.
As indicated above, we can’t say that the r-I2-limit of a double sequence is unique

for the roughness degree r > 0. The following theorem is related to this claim.

Theorem 3.3. For a sequence (∆xkl),

diam (I2-LIMr (∆xkl)) ≤ 2r.

In general, diam (I2-LIMr (∆xkl)) has no smaller bound.

Proof. Assume that

diam (I2-LIMr (∆xkl)) = sup {‖y − z‖ ; y, z ∈ I2-LIMr (∆xkl)} > 2r.

Then, there exist y, z ∈ I2-LIMr (∆xkl) such that ‖y − z‖ > 2r. Now, we select

ε > 0 so that ε < ‖y−z‖
2 − r. Since y, z ∈ I2-LIMr (∆xkl), for every ε > 0, we have

A1 (ε) = {(k, l) ∈ N× N : ‖∆xkl − y‖ ≥ r + ε} ∈ I2

and

A2 (ε) = {(k, l) ∈ N× N : ‖∆xkl − z‖ ≥ r + ε} ∈ I2.

In that case, we have

Ac
1 (ε) = {(k, l) ∈ N× N : ‖∆xkl − y‖ < r + ε} ∈ F (I2)

and

Ac
2 (ε) = {(k, l) ∈ N× N : ‖∆xkl − z‖ < r + ε} ∈ F (I2) .

Using the properties of F (I2), Ac
1 (ε) ∩ Ac

2 (ε) 6= ∅ and we getAc
1 (ε) ∩ Ac

2 (ε) ∈
F (I2) .

Thus, we can write

‖y − z‖ ≤ ‖∆xkl − y‖+ ‖∆xkl − z‖ < 2 (r + ε) < 2

(
r +
‖y − z‖

2
− r
)

= ‖y − z‖ ,
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for all (k, l) ∈ Ac
1 (ε) ∩Ac

2 (ε), which is contradiction. So

diam (I2-LIMr (∆xkl)) ≤ 2r.

For proof the second part of the theorem, take a double sequence (∆xkl) such
that I2-lim ∆xkl = x∗. Let ε > 0. Then, we can write

{(k, l) ∈ N× N : ‖∆xkl − x∗‖ ≥ ε} ∈ I2.

Thus, we have

‖∆xkl − y‖ ≤ ‖∆xkl − x∗‖+ ‖x∗ − y‖ ≤ ‖∆xkl − x∗‖+ r < r + ε

for each

y ∈ Br (x∗) = {y ∈ Rn : ‖y − x∗‖ ≤ r}
So, we get

‖∆xkl − y‖ < r + ε,

for each (k, l) ∈ {(k, l) ∈ N× N : ‖∆xkl − x∗‖ < ε}. Since the double sequence
(∆xkl) is I2-convergent to x∗, we have

{(k, l) ∈ N× N : ‖∆xkl − x∗‖ < ε} ∈ F (I2) .

Hence, we have y ∈ I2-LIMr (∆xkl) and as a result,

(3.3) I2-LIMr (∆xkl) = Br (x∗) .

This shows that in general upper bound 2r of the diameter of the set I2-LIMr (∆xkl)
can not be decreased any more. �

Now we give some geometrical and topological properties of the r-I2-limit set of
(∆xkl) .

Theorem 3.4. The set I2-LIMr (∆xkl) of a sequence (∆xkl) is a closed set.

Proof. If I2-LIMr (∆xkl) = ∅, then there is nothing to prove.
Assume that I2-LIMr 6= ∅. Now, consider a double sequence (∆ykl) in I2-

LIMr (∆xkl) with lim
k,l→∞

∆ykl = y∗. We must show that y∗ ∈ I2-LIMr (∆xkl).

Choose ε > 0. Since ∆ykl → y∗, there exists nε ∈ N such that

‖∆ykl − y∗‖ < ε,

for all k, l ≥ nε.
Now select an (k0, l0) ∈ N× N such that k ≥ k0, l ≥ l0. Then, we obtain

‖∆yk0l0 − y∗‖ < ε.

In other words, since (∆ykl) ⊆ I2-LIMr (∆xkl), we have (∆yk0l0) ∈ I2-LIMr (∆xkl),
that is,

(3.4) A (ε) = {(k, l) ∈ N× N : ‖∆xkl −∆yk0l0‖ ≥ r + ε} ∈ I2.

Now, let us denote that the inclusion

(3.5) Ac (ε) ⊆ Ac (2ε)

holds, where

A (2ε) = {(k, l) ∈ N× N : ‖∆xkl − y∗‖ ≥ r + 2ε}
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Put (p, q) ∈ Ac (ε). Then we obtain

‖∆xpq −∆yk0l0‖ < r + ε.

Thus

‖∆xpq − y∗‖ ≤ ‖∆xpq −∆yk0l0‖+ ‖∆yk0l0 − y∗‖ < r + 2ε,

that is, (p, q) ∈ Ac (2ε) , which gives (3.5). So, we prove A (2ε) ⊆ A (ε). Because of
A (ε) ∈ I2 by (3.4) (i.e., y∗ ∈ I2-LIMr (∆xkl)), which completes the proof. �

Theorem 3.5. The set I2-LIMr (∆xkl) of a double sequence (∆xkl) is convex.

Proof. Let y0, y1 ∈ I2-LIMr (∆xkl) and ε > 0 be given. Let

A0 (ε) = {(k, l) ∈ N× N : ‖∆xkl − y0‖ ≥ r + ε} ∈ I2

and

A1 (ε) = {(k, l) ∈ N× N : ‖∆xkl − y1‖ ≥ r + ε} ∈ I2.

Then, we have

‖∆xkl − [(1− λ) y0 + λy1]‖ = ‖(1− λ) (∆xkl − y0) + λ (∆xkl − y1)‖ < r + ε,

for each (k, l) ∈ Ac
0 (ε) ∩ Ac

1 (ε) and each λ ∈ [0, 1]. Because of (Ac
0 (ε) ∩Ac

1 (ε)) ∈
F (I2), by the property of F (I2) , we get

{(k, l) ∈ N× N : ‖∆xkl − [(1− λ) y0 + λy1]‖ ≥ r + ε} ∈ I2,

which shows that (1− λ) y0 + λy1 ∈ I2-LIMr (∆xkl) for any λ ∈ [0, 1]. Thus the set
I2-LIMr (∆xkl) is convex. �

Theorem 3.6. Let r > 0. Then, (∆xkl) is rough I2-convergent to x∗ iff there exists
(∆ykl) such that

(3.6) I2 − lim ∆ykl = x∗ and ‖∆xkl −∆ykl‖ ≤ r, for all (k, l) ∈ N× N.

Proof. Necessity: Let ∆x
r−I2−→ x∗. Then, we have

(3.7) I2 − lim sup ‖∆xkl − x∗‖ ≤ r.

Now, we define

∆ykl :=

{
x∗ if ‖∆xkl − x∗‖ ≤ r
∆xkl + r x∗−∆xkl

‖∆xkl−x∗‖ otherwise.

Then, we have

‖∆ykl − x∗‖ =

 0 if ‖∆xkl − x∗‖ ≤ r

‖∆xkl − x∗‖ − r otherwise,

by the definition of ∆ykl,

(3.8) ‖∆xkl −∆ykl‖ ≤ r

for all (k, l) ∈ N× N. By (3.7) and the definition of ∆ykl, we get

I2 − lim sup ‖∆ykl − x∗‖ = 0,

which implies that I2 − lim ∆ykl = x∗.
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Sufficiently: Assume that (3.6) holds. Because of I2 − lim ∆ykl = x∗, we have

A (ε) = {(k, l) ∈ N× N : ‖∆ykl − x∗‖ ≥ r + ε} ∈ I2,

for each ε > 0. Now we define the set

B (ε) = {(k, l) ∈ N× N : ‖∆xkl − x∗‖ ≥ r + ε} .

It is easy to understand that the inclusion

B (ε) ⊆ A (ε)

holds. Because of A (ε) ∈ I2, we get B (ε) ∈ I2. Hence (∆xkl) is rough I2-convergent
to x∗. �

Lemma 3.7. For an arbitrary c ∈ I2

(
Γ(∆xkl)

)
of a double sequence (∆xkl), we

have

‖x∗ − c‖ ≤ r for all x∗ ∈ I2-LIMr (∆xkl) .

Proof. If possible suppose that there exists c ∈ I2

(
Γ(∆xkl)

)
and x∗ ∈ I2-LIMr (∆xkl)

such that ‖x∗ − c‖ > r. Let ε = ‖x∗−c‖−r
2 . Then, we have

(3.9)
{(k, l) ∈ N× N : ‖∆xkl − c‖ ≥ r + ε} ⊆ {(k, l) ∈ N× N : ‖∆xkl − x∗‖ ≥ r + ε} .

Because of c ∈ I2

(
Γ(∆xkl)

)
, we get

{(k, l) ∈ N× N : ‖∆xkl − c‖ ≥ r + ε} /∈ I2.

By the definition of I2-convergence, since

{(k, l) ∈ N× N : ‖∆xkl − x∗‖ ≥ r + ε} ∈ I2,

so by (3.9), we have

{(k, l) ∈ N× N : ‖∆xkl − c‖ < ε} ∈ I2,

which contradicts with the fact c ∈ I2

(
Γ(∆xkl)

)
. �

Theorem 3.8. (1) If c ∈ I2

(
Γ(∆xkl)

)
, then

(3.10) I2-LIMr (∆xkl) ⊆ Br (c) .

(2)
(3.11)

I2-LIMr (∆xkl) =
⋂

c∈I2

(
Γ(∆xkl)

)Br (c) =
{
x∗ ∈ Rn : I2

(
Γ(∆xkl)

)
⊆ Br (x∗)

}
.

Proof. (1) If c ∈ I2

(
Γ(∆xkl)

)
, then by Lemma 3.7, we have ‖x∗ − c‖ ≤ r, for all

x∗ ∈ I2 − LIMr (∆xkl) .

Otherwise, we get

{(k, l) ∈ N× N : ‖∆xkl − x∗‖ ≥ r + ε} /∈ I2,

for ε := ‖x∗−c‖−r
3 . Because of c is an I2-cluster point of (∆xkl), this contradicts

with the fact that x∗ ∈ I2-LIMr (∆xkl) .
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(2) From (3.10), we have

(3.12) I2-LIMr (∆xkl) ⊆
⋂

c∈I2

(
Γ(∆xkl)

)Br (c) .

Let

y ∈
⋂

c∈I2

(
Γ(∆xkl)

)Br (c) .

Then, we have ‖y − c‖ ≤ r, for all c ∈ I2

(
Γ(∆xkl)

)
which is same as

I2

(
Γ(∆xkl)

)
⊆ Br (y) , i.e.,

(3.13)
⋂

c∈I2

(
Γ(∆xkl)

)Br (c) =
{
x∗ ∈ Rn : I2

(
Γ(∆xkl)

)
⊆ Br (x∗)

}
.

Now, let y /∈ I2-LIMr (∆xkl). Then there exists an ε > 0 such that

{(k, l) ∈ N× N : ‖∆xkl − y‖ ≥ r + ε} /∈ I2

which gives the existence of an I2-cluster point c of the sequence (∆xkl) with
‖y − c‖ ≥ r + ε, that is,

I2

(
Γ(∆xkl)

)
* Br (y) and y /∈

{
x∗ ∈ Rn : I2

(
Γ(∆xkl)

)
⊆ Br (x∗)

}
.

Thus, y ∈ I2-LIMr (∆xkl) obtains from y ∈
{
x∗ ∈ Rn : I2

(
Γ(∆xkl)

)
⊆ Br (x∗)

}
, i.e.,

(3.14)
{
x∗ ∈ Rn : I2

(
Γ(∆xkl)

)
⊆ Br (x∗)

}
⊆ I2-LIMr (∆xkl)

So, the relations (3.12)–(3.14) ensure that (3.11) holds, i.e.,

I2-LIMr (∆xkl) =
⋂

c∈I2

(
Γ(∆xkl)

)Br (c) =
{
x∗ ∈ Rn : I2

(
Γ(∆xkl)

)
⊆ Br (x∗)

}
.

�

Theorem 3.9. Let (∆xkl) be an I2-bounded sequences. If r ≥ diam
(
I2

(
Γ(∆xkl)

))
,

then we have I2

(
Γ(∆xkl)

)
⊆ I2-LIMr (∆xkl) .

Proof. Let c /∈ I2-LIMr (∆xkl). Then there exist an ε > 0 such that

(3.15) {(k, l) ∈ N× N : ‖∆xkl − c‖ ≥ r + ε} /∈ I2.

Since (∆xkl) is I2-bounded and from (3.15), there exists an I2-cluster point c1 such
that

‖c− c1‖ > r + ε1,

where ε1 := ε
2 . Thus, we get

diam
(
I2

(
Γ(∆xkl)

))
> r + ε1,

which proves the theorem.
Also, the converse of the theorem holds, i.e., if I2

(
Γ(∆xkl)

)
⊆ I2-LIMr (∆xkl),

then we have r ≥ diam
(
I2

(
Γ(∆xkl)

))
. �
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4. Conclusion

In the present paper, we have given a more general type of convergence for double
sequences, that is, rough ∆I2-convergence in a more general setting. This defini-
tion and results provide new tools to deal with the convergence problems of double
sequences occurring in many branches of science.

Acknowledgements. We thank the editor and referees for their careful reading,
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[13] N. Demir and H. Gümüş, Rough statistical convergence for difference sequences, under review.

[14] E. Dündar, On Rough I2-convergence, Numer. Funct. Anal. Optimiz. 37 (4) (2016) 480–491.
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L’İnstitut Mathématique 105 (119) (2019) 145–150.
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