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Abstract. We present a general scheme for defining families of fuzzy
languages and the related families of crisp languages. In particular, all the
varieties of regular fuzzy languages of T. Petković (2005) together with
their associated ?-varieties of S. Eilenberg (1976) and varieties of finite
monoids are obtained this way, but also pairs of more general families of
regular fuzzy and crisp languages can be defined. For the families that are
not varieties, we show how to get the greatest varieties contained in them.
As examples we consider the varieties of commutative fuzzy and crisp lan-
guages, the families of rotation invariant fuzzy and crisp regular languages,
which are not varieties, and the varieties of aperiodic fuzzy and crisp lan-
guages, which are ultimately defined by a sequence of identities.
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1. Introduction

In this paper we present a general scheme for defining families of fuzzy languages
and their associated families of crisp languages by certain identities. In particular,
all varieties of regular fuzzy languages as defined by Petković [21] and the associated
?-varieties of Eilenberg [11] as well as the corresponding varieties of finite monoids
(VFMs) are obtained this way. However, also pairs of more general families of regular
fuzzy and crisp languages can be defined. For the families that are not varieties, we
show how to get the greatest varieties contained in them.

As examples we consider three pairs of families of fuzzy and crisp languages. In [3],
Archana defined a fuzzy language λ to be commutative if (C) λ(suvt) = λ(svut) for
all words s, t, u and v over the given alphabet. Condition (C) may be turned into an
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identity of the kind our theory is about, and then it defines the fuzzy ?-variety FCom
of fuzzy commutative regular languages, the ?-variety Com of crisp commutative
regular languages, and the VFM Com of the commutative finite monoids. Archana
also proposed five generalizations (C1)-(C5) of condition (C), two of which define
the fuzzy and crisp languages that we call rotation invariant. The aperiodic fuzzy
languages introduced by Li [16], and considered by Archana [4], provide an example
of varieties ultimately defined by a sequence of word identities.

In Section 2, we recall some notions from the theory of finite automata. Section
3 introduces fuzzy deterministic finite recognizers (FDFRs) in which just the set
of final states is fuzzy while the transition function and the initial state are crisp.
As shown by Mateescu et al. [17] (cf. also [6]), every regular fuzzy language is
recognized by such an FDFR. Moreover, many facts about these recognizers can be
derived directly from the classical theory of Moore machines [19, 2, 7, 24, 25].

In Section 4, it is shown that Archana’s conditions (C1), (C2) and (C3) are
actually equivalent to condition (C), while (C4) and (C5) are weaker than (C) but
equivalent to each other. Hence, we are left with two families of regular fuzzy
languages, the family FCom of commutative regular fuzzy languages, and its proper
superfamily FRot of regular fuzzy languages which we call rotation invariant.

Section 5 introduces word identities and the families of crisp and fuzzy languages
defined by them. In a word identity u ≈ v, u and v are strings of word variables that
take as values words over the alphabet considered. It is shown that the family LI
of crisp regular languages satisfying such an identity (I) is closed under all Boolean
operations and inverse homomorphisms, but not necessarily under the quotient op-
erations. The corresponding results hold also for the family FI of regular fuzzy
languages that satisfy (I). Moreover, a fuzzy language belongs to FI if and only if
is a linear combination of the characteristic functions of some members of LI .

In Section 6, we first recall Eilenberg’s [11] ?-varieties and their fuzzy counterparts
considered by Petković [21]. Then we introduce flanked word identities, which are of
the form ξuπ ≈ ξvπ, where ξ and π are two distinct variables that do not appear in
the words u and v. For any flanked identity (J) ξuπ ≈ ξvπ, the families LJ and FJ
are closed also under the respective quotient operations, and hence LJ is a ?-variety
and FJ is the corresponding fuzzy ?-variety. Moreover, the identity (I) u ≈ v defines
the corresponding VFM. We also show that for any word identity (I) u ≈ v and the
corresponding flanked identity (J) ξuπ ≈ ξvπ, LJ is the greatest ?-variety contained
in the family LI , and FJ is the greatest fuzzy ?-variety contained in FI .

In Section 7, the results of Section 6 are extended to families of languages, families
of fuzzy languages, and VFMs ultimately defined by sequences word identities. In
particular, it is shown that a family of regular fuzzy languages is a fuzzy ?-variety
if and only if it is ultimately defined by a sequence of flanked word identities.

In the following three sections we illustrate the general results by three different
examples of families of fuzzy and crisp regular languages defined by word identities.
Archana [3] showed that the family FCom of commutative regular fuzzy languages
is a fuzzy ?-variety by proving that it has all the required closure properties. In
Section 8 we show that this result as well as the facts that FCom corresponds to the
?-variety Com of commutative regular languages and the VFM Com follow from
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the results of Section 6. Moreover, we note the fuzzy counterparts of some classical
characterizations of commutative regular languages.

In Section 9, we consider the families Rot and FRot of rotation invariant regular
crisp and fuzzy languages. Although they are not varieties, they are linked with each
other similarly as a ?-variety and the corresponding fuzzy ?-variety. In particular,
a fuzzy languages belongs to FRot if and only if it can be represented as a linear
combination of the characteristic functions of some members of Rot. We also present
some alternative characterizations of rotation invariant crisp and fuzzy languages
from which it follows that it is decidable whether a crisp or fuzzy regular language
is rotation invariant. We also prove that Com is the greatest ?-variety contained
in Rot and that FCom the greatest fuzzy ?-variety contained on FRot. Finally, in
Section 10, we consider the families of aperiodic regular fuzzy and crisp languages
as examples of varieties ultimately defined by a sequence of identities.

2. Finite automata and regular languages

For any nonnegative integer n, let n := {1, . . . , n}. For a relation θ ⊆ A×B, we
express (a, b) ∈ θ also by writing a θ b. For any a ∈ A, let aθ := {b ∈ B | a θ b}.
If an equivalence relation θ on a set A is known from the context, we may denote
the θ-class aθ of an element a ∈ A by [a]. The index of θ is the cardinality of the
quotient set A/θ := {[a] | a ∈ A}.

In what follows, X is always a finite nonempty alphabet. The set of all (finite)
words over X is denoted by X∗ and the empty word by ε. Subsets of X∗ are
called (crisp) languages. A family of languages L = {L(X)}X associates with each
alphabet X a set L(X) of languages over X.

A deterministic finite automaton (DFA)A = (A,X, δ) consists of a finite nonempty
set A of states, the input alphabet X, and a transition function δ : A × X → A.
As usual, δ is extended to a map δ∗ : A × X∗ → A by setting δ∗(a, ε) = a, and
δ∗(a, vx) = δ(δ∗(a, v), x) for all a ∈ A, v ∈ X∗ and x ∈ X. We may write δ∗(a,w)
as awA, or just aw. The maps wA : A → A, a 7→ δ∗(a,w), form with the product
uA · vA = (uv)A the transition monoid TM(A) of A. Its identity element is the
identity map 1A = εA.

A deterministic finite recognizer (DFR) A = (A,X, δ, a0, F ) consists of an under-
lying DFA A = (A,X, δ), an initial state a0 ∈ A, and a set of final states F ⊆ A.
The language recognized by A is L(A) := {w ∈ X∗ | a0w ∈ F}. A language is
recognizable or regular, if it is recognized by a DFR. Let Rec = {RecX)}X be the
family of all regular languages.

A state a ∈ A of a DFR A = (A,X, δ, a0, F ) is accessible, if a = a0w for some
w ∈ X∗, and two states a, b ∈ A are equivalent, if for every w ∈ X∗, aw ∈ F if and
only if bw ∈ F . The DFR A is connected its every state is accessible, it is reduced, if
no two distinct states are equivalent, and it is minimal, if it connected and reduced.
The transition monoid TM(A) of A is the transition monoid of its underlying DFA.

The syntactic congruence σL of a language L ⊆ X∗ is defined by

uσL v ⇐⇒ (∀s, t ∈ X∗)(sut ∈ L⇔ svt ∈ L) (u, v ∈ X∗),

and SM(L) := X∗/σL is its syntactic monoid and ϕL : X∗ → SM(L), w 7→ [w] its
syntactic homomorphism. By Myhill’s theorem, L is regular if and only if the index
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of σL is finite, i.e., SM(L) is finite. Moreover, if A is a minimal DFR recognizing L,
then SM(L) is isomorphic to TM(A).

A Moore machine A = (A,X, Y, δ, a0, µ), introduced by Moore [19], consists of a
DFA (A,X, δ), an output alphabet Y , an initial state a0 ∈ A, and an output map
µ : A→ Y . The mapping fA : X∗ → Y realized by A is defined by fA(w) := µ(a0w)
(w ∈ X∗). A mapping f : X∗ → Y is said to be finite-state (computable), if
f = fA, for some Moore machine A. Two states a, b ∈ A of a Moore machine
A = (A,X, Y, δ, a0, µ) are equivalent, if µ(aw) = µ(bw), for every w ∈ X∗, and A is
minimal, if all states are accessible and no two distinct states are equivalent.

Presentations of the classical theory of finite automata and regular languages can
be found, for example, in [2, 7, 10, 11, 13, 14, 24, 25].

3. Fuzzy languages and automata

A fuzzy language is a mapping λ : X∗ → D, where D is a given set of degrees
of membership. In the literature several kinds of algebraic structures D have been
used, but adopting Zadeh’s [29] original definition of fuzzy sets, we let D be the real
unit interval [0, 1] ordered by the usual ≤-relation and equipped with the operations
c ∨ d = max(c, d) and c ∧ d = min(c, d).

For any fuzzy language λ : X∗ → [0, 1], the support is the language supp(λ) :=
{w ∈ X∗ | λ(w) > 0}, the range is the set ran(λ) := {λ(w) | w ∈ X∗}, and the kernel
is the equivalence ker(λ) := {(u, v) | u, v ∈ X∗, λ(u) = λ(v)} on X∗. If supp(λ) is
a finite set {w1, . . . , wn}, we may give λ in the form {w1/λ(w1), . . . , wn/λ(wn}. If
ran(λ) ⊆ {0, 1}, then λ is said to be crisp. The characteristic function of a language
L ⊆ X∗ is the crisp fuzzy language Lχ such that Lχ(w) = 1 for w ∈ L, and
Lχ(w) = 0 for w ∈ X∗ \ L. On the other hand, each crisp fuzzy language λ is the
characteristic function of the language supp(λ), and hence it is customary to call
ordinary languages crisp languages. A family of fuzzy languages F = {F(X)}X
assigns to each alphabet X a set F(X) of fuzzy languages over X.

Many types of fuzzy automata have been considered (cf. [5, 20, 23], for example).
In the fuzzy recognizers to be used here just the set of final states is fuzzy while the
initial state and the transition function are crisp, but all regular fuzzy languages are
recognized by them [17, 6].

A fuzzy deterministic finite recognizer (FDFR) F = (A,X, δ, a0, ω) consists of
a DFA A = (A,X, δ), an initial state a0 ∈ A and a fuzzy set ω : A → [0, 1] of
final states. The fuzzy language λF : X∗ → [0, 1] recognized by F is defined by
λF(w) = ω(a0w) (w ∈ X∗). A fuzzy language is said to be regular or recognizable,
if it is recognized by a FDFR. Let FRec = {FRec(X)}X be the family of regular
fuzzy languages.

As noted already in [17], such recognizers resemble Moore machines. Indeed, a
FDFR F = (A,X, δ, a0, ω) may be seen as a Moore machine in which the output
alphabet is the finite set Y := {ω(a) | a ∈ A} of the possible degrees of acceptance
(treated as output symbols). Thus F can be minimized similarly as a Moore machine
by eliminating the inaccessible states and then merging all pairs of equivalent states
(cf. [2], [7] or [25], for example). Furthermore, if the Nerode (right) congruence ρλ
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of a fuzzy language λ : X∗ → [0, 1], defined by

u ρλ v ⇐⇒ (∀w ∈ X∗)λ(uw) = λ(vw) (u, v ∈ X∗),

is of finite index, then λ is regular and Fλ = (X∗/ρλ, X, δλ, [ε], ωλ), where δλ and ωλ
are defined by δλ([w], x) = [wx] and ωλ([w]) = λ(w) (w ∈ X∗, x ∈ X), is a minimal
FDFR for λ (unique up to isomorphism). The syntactic congruence σλ (or Myhill
congruence) of λ is defined by

uσλ v ⇐⇒ (∀s, t ∈ X∗)λ(sut) = λ(svt) (u, v ∈ X∗),

and the quotient monoid SM(λ) := X∗/σλ is the syntactic monoid of λ. The tran-
sition monoid TM(F) of F is defined as the transition monoid of the DFA A. For
a fuzzy language “finite-state computable” means regularity, and hence we get the
following facts directly from the theory of Moore machines and finite-state maps
[2, 7, 10, 13, 24, 25].

Proposition 3.1. For any fuzzy language λ : X∗ → [0, 1], the following conditions
are equivalent to each other:

(1) λ ∈ FRec(X),
(2) ρλ is of finite index,
(3) σλ is of finite index, i.e., SM(λ) is finite.
Moreover, for any regular λ,
(4) Fλ is the minimal FDFR recognizing λ,
(5) SM(λ) is isomorphic to the transition monoid TM(Fλ).

For any fuzzy languages κ, λ : X∗ → [0, 1], any c ∈ [0, 1] and any homomorphism
ϕ : Y ∗ → X∗, the complement λ, the union κ ∪ λ, the intersection κ ∩ λ, the scalar
product cλ, the fuzzy c-cut λ[c), the fuzzy quotient languages κ−1λ and λκ−1, and

ϕ−1(λ) : Y ∗ → [0, 1] are defined as follows (w ∈ X∗, s ∈ Y ∗):
(i) λ(w) = 1− λ(w), (κ ∪ λ)(w) = κ(w) ∨ λ(w), (κ ∩ λ)(w) = κ(w) ∧ λ(w),
(ii) (cλ)(w) = c · λ(w),
(iii) λ[c)(w) = 1 if λ(w) ≥ c, and λ[c)(w) = 0 if λ(w) < c,

(iv) (κ−1λ)(w) =
∨
{κ(v) ∧ λ(vw) | v ∈ X∗},

(v) (λκ−1)(w) =
∨
{λ(wv) ∧ κ(v) | v ∈ X∗},

(vi) ϕ−1(λ)(s) = λ(sϕ).
We shall need the following facts (cf. [17, 20, 21, 27]).

Proposition 3.2. The family FRec = {FRec(X)}X is closed under the operations
λ, κ ∪ λ, κ ∩ λ, cλ, λ[c), κ−1λ, λκ−1, and ϕ−1(λ) defined above.

Next we note some links between Rec and FRec (cf. [17, 20, 27]).

Lemma 3.3. (1) A language L ⊆ X∗ is regular if and only if Lχ is regular.
(2) If a fuzzy language λ : X∗ → [0, 1] is regular, then so is supp(λ).

As noted in [17], for example, any recognizable fuzzy language can be written as a
finite union c1L

χ
1∪· · ·∪cnLχn, where c1, . . . , cn ∈ [0, 1] and L1, . . . , Ln are recognizable

languages. Weighted languages similarly represented are called recognizable step-
functions [9].
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Proposition 3.4. A fuzzy language λ : X∗ → [0, 1] is regular if and only if it can
be expressed in the form λ = c1L

χ
1 ∪ . . . ∪ cnLχn, where n ≥ 1, c1, . . . , cn ∈ [0, 1],

and L1, . . . , Ln ∈ Rec(X). Moreover, if λ ∈ FRec(X), then the constants ci may be
chosen to be pairwise distinct and the languages Li to be pairwise disjoint.

Proof. We present a proof for later reference. If λ = c1L
χ
1 ∪ . . . ∪ cnLχn as in the

proposition, then λ ∈ FRec(X) by Lemma 3.3 and Proposition 3.2.
Assume then that λ ∈ FRec(X), and consider a minimal FDFR F = (A,X, δ, a0, ω)

recognizing λ. Obviously, L(A) ∈ Rec(X) for every DFR A = (A,X, δ, a0, F ) ob-
tained by any choice of F ⊆ A. Let ran(λ) = ω(A) = {c1, . . . , cn} (F is con-
nected!). If Ai = (A,X, δ, a0, ω

−1(ci)) and Li := L(Ai) for each i ∈ n, then
λ = c1L

χ
1 ∪ . . . ∪ cnLχn is a representation as required. �

4. Commutative and rotation invariant fuzzy languages

We shall now introduce two families of fuzzy languages that will serve as our main
examples. In [3] Archana presented the following six commutativity conditions for
a fuzzy language λ : X∗ → [0, 1]:

(C) λ(suvt) = λ(svut) for all s, t, u, v ∈ X∗,
(C1) λ(uvw) = λ(vuw) for all u, v, w ∈ X∗,
(C2) λ(uvw) = λ(uwv) for all u, v, w ∈ X∗,
(C3) λ(uvw) = λ(wvu) for all u, v, w ∈ X∗,
(C4) λ(uvw) = λ(vwu) for all u, v, w ∈ X∗,
(C5) λ(uvw) = λ(wuv) for all u, v, w ∈ X∗.
A fuzzy language satisfying (C) was said to be commutative, and conditions (C1)–

(C5) were proposed as generalizations of (C). The conditions should hold also when
some of the subwords are empty. For example, (C4) yields λ(uv) = λ(vu) for w = ε.

We underlined adjacent subwords whose concatenation is viewed as one subword.

Proposition 4.1. (1) Conditions (C), (C1), (C2) and (C3) are equivalent.
(2) Conditions (C4) and (C5) are equivalent.

Proof. Let λ : X∗ → [0, 1] be a fuzzy language and s, t, u, v, w ∈ X∗.
(C)⇒ (C1) : λ(uvw) = λ(εuvw) = λ(εvuw) = λ(vuw).
(C1)⇒ (C2) : λ(uvw) = λ(uvwε) = λ(wuvε) = λ(wuv) = λ(uwv).
(C2)⇒ (C3) : λ(uvw) = λ(uwv) = λ(εuwv) = λ(εwvu) = λ(wvu).
(C3)⇒ (C) : λ(suvt) = λ(tvsu) = λ(uvst) = λ(stvu) = λ(utvs) = λ(svut).
Thus we have (C)⇒ (C1)⇒ (C2)⇒ (C3)⇒ (C), which proves (1).
Similarly, (2) is proved by
(C4)⇒ (C5): λ(uvw) = λ(vwu) = λ(wuv), and
(C5)⇒ (C4): λ(uvw) = λ(wuv) = λ(vwu). �

Hence we are left with the following two families of regular fuzzy languages:
(a) the family FCom = {FCom(X)}X of commutative regular fuzzy languages

defined by any one of the conditions (C), (C1), (C2) or (C3),
(b) the family FRot = {FRot(X)}X of rotation invariant regular fuzzy languages

defined by (C4) or equivalently by (C5).

Proposition 4.2. FCom ⊂ FRot.
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Proof. To prove the inclusion FCom ⊆ FRot, we show that (C3) implies (C4): if
λ : X∗ → [0, 1] satisfies (C3), then for all u, v, w ∈ X∗,

λ(uvw) = λ(uvwε) = λ(εvwu) = λ(vwu),

i.e., λ satisfies (C4). To prove that the inclusion is proper, let X = {x, y, z} and
λ = {xyz/1, yzx/1, zxy/1}. Then λ satisfies (C4) but it does not satisfy (C3)
because λ(xyz) = 1 while λ(zyx) = 0. �

Remark 4.3. In terms of the notation of [3], the above results are summarized by

CFL = P1IF = P2IF = P3IF ⊂ P4IF = P5IF.

5. Families of languages defined by word identities

The varieties of fuzzy languages defined in [21] correspond bijectively to Eilen-
berg’s [11] ?-varieties of crisp languages. We shall now introduce a general scheme
for defining similarly linked pairs of families of regular fuzzy languages and regular
crisp languages that are not necessarily varieties.

In what follows, Ξ = {ξ, π} ∪ Ξ0 = {ξ, π, s, t,u, v,w, . . .}, is a countably infinite
set of (word) variables that range over the words over the alphabet considered. Here
Ξ0 = {s, t,u, v,w, . . .} is the set variables ordinarily used, while the two variables ξ
and π are singled out for a special role. A (word) identity is an expression

(I) u ≈ v,

where u,v ∈ Ξ∗. A language L ⊆ X∗ satisfies (I), if

uα ∈ L⇔ vα ∈ L,

for every homomorphism α : Ξ∗ → X∗, and a fuzzy language λ : X∗ → [0, 1] satisfies
the identity (I), if

λ(uα) = λ(vα)

for every homomorphism α : Ξ∗ → X∗. Let LI = {LI(X)}X be the family of
regular languages satisfying (I), and let FI = {FI(X)}X be the family of regular
fuzzy languages satisfying (I).

Any homomorphism α : Ξ∗ → X∗ assigns a word in X∗ to each word variable
and α is determined by these words. Hence, in concrete cases it is convenient to
express the satisfaction condition in terms of words instead of homomorphisms. For
example, the identity uwu ≈ vwv, where u, v,w ∈ Ξ, is satisfied by a fuzzy language
λ : X∗ → [0, 1], if λ(uwu) = λ(vwv), for all words u, v, w ∈ X∗.

Proposition 5.1. Let (I) u ≈ v be a word identity. If K,L ∈ LI(X), then
(1) L := {w ∈ X∗ | w /∈ L}, K ∪ L,K ∩ L ∈ LI(X),
(2) Lϕ−1 ∈ LI(Y ) for every homomorphism ϕ : Y ∗ → X∗.

Proof. It is well known that these operations preserve regularity. For any homomor-
phism α : Ξ∗ → Y ∗,

uα ∈ Lϕ−1 ⇔ u(αϕ) ∈ L ⇔ v(αϕ) ∈ L ⇔ vα ∈ Lϕ−1,

i.e., Lϕ−1 ∈ LI(Y ). The statements in (1) have equally simple proofs. �
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Proposition 5.2. Let (I) u ≈ v be a word identity. If κ, λ ∈ FI(X), then
(1) λ,κ ∪ λ,κ ∩ λ ∈ FI(X),
(2) cλ, λ[c) ∈ FI(X), for every c ∈ [0, 1],

(3) ϕ−1(λ) ∈ FI(Y ), for every homomorphism ϕ : Y ∗ → X∗.

Proof. By Proposition 3.2, all these operations preserve recognizability. Moreover,
it is easy to verify that the resulting fuzzy languages satisfy (I). For example, for
any homomorphism α : Ξ∗ → X∗,

λ[c)(uα) = 1 ⇔ λ(uα) ≥ c ⇔ λ(vα) ≥ c ⇔ λ[c)(vα) = 1,

which shows that λ[c) ∈ FI . �

Since Rec and FRec are defined by any trivial identity u ≈ u (u ∈ Ξ), the
following results generalize Lemma 3.3 and Proposition 3.4.

Lemma 5.3. Let (I) u ≈ v be a word identity.
(1) A language L ⊆ X∗ satisfies (I) if and only if Lχ satisfies (I). In particular,

L ∈ LI(X) if and only if Lχ ∈ FI(X).
(2) If λ ∈ FI(X), then supp(λ) ∈ LI(X).

Proof. The first part of (1) follows from the fact that, for any w ∈ X∗, Lχ(w) = 1
if and only if w ∈ L. The second part of (1) follows then from Lemma 3.3. Also (2)
has a very simple proof. �

Proposition 5.4. Let (I) u ≈ v be a word identity. A fuzzy language λ : X∗ → [0, 1]
belongs to FI(X) if and only if λ = c1L

χ
1 ∪ . . . ∪ cnLχn for some n ≥ 1, c1, . . . , cn ∈

[0, 1], and L1, . . . , Ln ∈ LI(X). Moreover, if λ ∈ FI(X), then the constants ci may
be chosen to be pairwise distinct and the languages Li to be pairwise disjoint.

Proof. If λ = c1L
χ
1 ∪ . . . ∪ cnLχn as in the proposition, then λ ∈ FI(X) by Lemma

5.3 and Proposition 5.2.
Assume then that λ ∈ FI(X), and consider a minimal FDFR F = (A,X, δ, a0, ω)

recognizing λ. Similarly as in the proof of Proposition 3.4, let ω(A) = {c1, . . . , cn},
and for each i ∈ n, let Ai = (A,X, δ, a0, ω

−1(ci)) and Li := L(Ai). We claim that
λ = c1L

χ
1 ∪ . . . ∪ cnLχn is a representation of the required kind. For any i ∈ n and

any homomorphism α : Ξ∗ → X∗,

uα ∈ Li ⇔ a0(uα) ∈ ω−1(ci) ⇔ λ(uα) = ci ⇔ λ(vα) = ci ⇔ a0(vα) ∈ ω−1(ci)

⇔ vα ∈ Li
and hence L1, . . . , Ln satisfy (I). Of course, Li ∈ Rec(X), for every i ∈ n and
Li ∩ Lj = ∅, for i 6= j. �

6. Word identities and varieties

In Eilenberg’s variety theory [11, 1, 22], a family of regular languages L =
{L(X)}X is called a ?-variety, if for all alphabets X and Y ,

(i) ∅ 6= L(X) ⊆ Rec(X) and if K,L ∈ L(X), then K ∩ L,L ∈ L(X),
(ii) if L ∈ L(X), then L(X) contains also the quotient languages w−1L := {u ∈

X∗ | wu ∈ L} and Lw−1 := {u ∈ X∗ | wu ∈ L} for every w ∈ X∗,
(iii) if L ∈ L(Y ), then Lϕ−1 ∈ L(X) for every homomorphism ϕ : X∗ → Y ∗.
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A non-empty class M of finite monoids is a variety of finite monoids (VFM) or
a pseudovariety, if it is closed under submonoids, homomorphic images and finite
direct products.

For any ?-variety L, let Lm be the VFM generated by the syntactic monoids
SM(L) with L ∈ L(X) for some X, and for any VFM M, let M` = {M`(X)}X with
M`(X) := {L ⊆ X∗ | SM(L) ∈M}. By Eilenberg’s Variety Theorem [11, 1, 22], the
maps L 7→ Lm and M 7→M` are mutually inverse isomorphisms between the lattice
of ?-varieties and the lattice of VFMs.

We call a family of fuzzy languages F = {F(X)}X is a fuzzy ?-variety, if for all
alphabets X and Y ,

(i) ∅ 6= F(X) ⊆ FRec(X) and if κ, λ ∈ F(X), then κ ∪ λ,κ ∩ λ, λ ∈ F(X),
(ii) if λ ∈ F(X), then cλ, λ[c) ∈ F(X) for every c ∈ [0, 1],

(iii) if λ ∈ F(X), then κ−1λ, λκ−1 ∈ F(X) for every κ : X∗ → [0, 1],
(iv) if λ ∈ F(Y ), then ϕ−1(λ) ∈ F(X) for any homomorphism ϕ : X∗ → Y ∗.
The fuzzy ?-varieties are the ‘varieties of fuzzy languages’ of [21] but we excluded

the empty variety, as we also excluded the empty ?-variety and the empty VFM. By
Proposition 3.2, FRec is the greatest fuzzy ?-variety.

With any fuzzy ?-variety F we associate the family of regular languages F`, where
F`(X) := {L ⊆ X∗ | Lχ ∈ F(X)} and the VFM Fm generated by the syntactic
monoids SM(λ) with λ ∈ F(X) for some X. For any VFM M, let Mf = {Mf (X)}X
be the family of regular fuzzy languages, where

Mf (X) := {λ ∈ FRec(X) | SM(λ) ∈M}.

Furthermore, for any ?-variety L = {L(X)}X , let Lf = {Lf (X)}X be the family of
fuzzy regular languages, where

Lf (X) = {c1Lχ1 ∪ · · · ∪ cnLχn | n ≥ 1, c1, . . . , cn ∈ [0, 1], L1, . . . , Ln ∈ L(X)},

The main results of Petković [21] can be summarized as follows.
(1) The maps F 7→ F` and L 7→ Lf are mutually inverse isomorphisms between

the lattice of fuzzy ?-varieties and that of ?-varieties. The maps F 7→ Fm and
M 7→Mf are mutually inverse isomorphisms between the lattice of fuzzy ?-varieties
and that of VFMs.

(2) These maps and Eilenberg’s maps L 7→ Lm and M 7→M` can be composed
in the natural way. For example, F`m := (F`)m = Fm for every fuzzy ?-variety F .

A flanked (word) identity is an expression

(J) ξuπ ≈ ξvπ,

where u,v ∈ Ξ ∗0 . The variables ξ and π will be used only this way as border
symbols in flanked identities. A word identity u ≈ v in which u,v ∈ Ξ ∗0 is said to
be unflanked (although it actually may be equivalent to a flanked identity). Thus
there is a natural correspondence between the flanked identities ξuπ ≈ ξvπ and the
unflanked identities u ≈ v.

Proposition 6.1. Let (J) ξuπ ≈ ξvπ be a flanked word identity.
(1) If L ∈ LJ(X), then w−1L,Lw−1 ∈ LJ(X), for every w ∈ X∗.
(2) If λ ∈ FJ(X), then κ−1λ, λκ−1 ∈ FJ(X), for every κ : X∗ → [0, 1].
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Proof. All four claims have similar proofs. Let us show that κ−1λ ∈ FJ(X). For
any homomorphism α : Ξ∗ → X∗,

(κ−1λ)((ξuπ)α) =
∨
{κ(w) ∧ λ(w(ξuπ)α) | w ∈ X∗}

=
∨
{κ(w) ∧ λ((ξuπ)β) | w ∈ X∗}

=
∨
{κ(w) ∧ λ((ξvπ)β) | w ∈ X∗}

=
∨
{κ(w) ∧ λ(w(ξvπ)α) | w ∈ X∗}

= (κ−1λ)((ξvπ)α),

where β : Ξ∗ → X∗ is the homomorphism which differs from α only in that ξβ =
w(ξα). Note that it is essential that ξ does not appear in uπ or vπ. �

Theorem 6.2. If (J) ξuπ ≈ ξvπ is a flanked word identity, then LJ is a ?-variety
and FJ is the corresponding fuzzy ?-variety.

Proof. That LJ is a ?-variety and FJ is a fuzzy ?-variety follows from Propositions

5.1, 5.2 and 6.1. Proposition 5.4 means that L fJ = FJ , and hence we also have
F `
J = LJ by the variety theory. �

Any word identity (I) u ≈ v may also be regarded as a monoid identity: we say
that a monoid M satisfies (I), if uα = vα, for every homomorphism α : Ξ∗ → M .
Let MI denote the class of all finite monoids satisfying (I). Since MI is defined by
an identity, it is a VFM.

Lemma 6.3. A language L ⊆ X∗ satisfies a flanked word identity (J) ξuπ ≈ ξvπ
if and only if its syntactic monoid SM(L) satisfies the unflanked word identity (I)
u ≈ v. Similarly, a fuzzy language λ : X∗ → [0, 1] satisfies (J) if and only if SM(λ)
satisfies (I).

Proof. Let u = u1 . . . uk and v = uk+1 . . . un, where 0 ≤ k ≤ n and u1, . . . ,un ∈ Ξ0.
Assume first that L satisfies (J), and let α : Ξ∗ → SM(L) be any homomorphism.
For each i ∈ n, choose a word wi ∈ X∗ such that uiα = [wi]. If ui = uj for some
i, j ∈ n, then let wi = wj . For any words s, t ∈ X∗, there is a homomorphism
β : Ξ∗ → X∗ such that uiβ = wi for each i ∈ n, ξβ = s and πβ = t. Then

s(uβ)t ∈ L ⇔ (ξuπ)β ∈ L ⇔ (ξvπ)β ∈ L ⇔ s(vβ)t ∈ L.

Since this holds for all s, t ∈ X∗, while uβ and vβ do not depend on s and t, this
means that uβ σL vβ. Hence,

uα = [w1] · · · [wk] = [uβ] = [vβ] = [wk+1] · · · [wn] = vα,

which shows that SM(L) satisfies (I) u ≈ v.
Assume then that SM(L) satisfies (I), and consider any homomorphism α : Ξ∗ →

X∗. Since αϕL : Ξ∗ → SM(L) is a homomorphism, we have uαϕL = vαϕL, which
means that uασL vα. This implies that

(ξuπ)α ∈ L ⇔ (ξα)uα(πα) ∈ L ⇔ (ξα)vα(πα) ∈ L ⇔ (ξvπ)α ∈ L.

Thus L satisfies (J). The statement concerning λ has a similar proof. �
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The following result is obtained by comparing Lemma 6.3 with the definitions of
the ?-variety M` and the fuzzy ?-variety Mf corresponding to a given VFM M.

Proposition 6.4. Let (J) ξuπ ≈ ξvπ be a flanked word identity and let (I) u ≈ v
be the corresponding unflanked word identity. Then FJ is the fuzzy ?-variety and
LJ the ?-variety corresponding to the VFM MI .

The families of crisp and fuzzy regular languages defined by unflanked word iden-
tities u ≈ v are not always varieties. In such cases, the following proposition is of
interest. In its proof, we use the following notation and observation.

For any fuzzy language λ : X∗ → [0, 1] and word s ∈ X∗, define s−1λ : X∗ → [0, 1]
and λs−1 : X∗ → [0, 1] by (s−1λ)(w) = λ(sw) and (λs−1)(w) = λ(ws) (w ∈ X∗).
Then clearly, s−1λ = κ−1λ and λs−1 = λκ−1 for κ = {s/1}. Thus, if λ ∈ F(X) for
a fuzzy ?-variety F , then s−1λ, λs−1 ∈ F(X) for any s ∈ X∗. So

s−1λt−1 : X∗ → [0, 1], w 7→ λ(swt)

belongs to F(X) for all s, t ∈ X∗, because s−1λt−1 = (s−1λ)t−1.

Proposition 6.5. Let (I) u ≈ v be a unflanked word identity and let (J) ξuπ ≈ ξvπ
be the corresponding flanked word identity. Then

(1) LJ is the greatest ?-variety contained in LI ,
(2) FJ is the greatest fuzzy ?-variety contained in FI .

Proof. The following three parts (a)-(c) constitute a proof for (2).
(a) FJ ⊆ FI . Let λ ∈ FJ(X) and α0 : Ξ ∗0 → X∗ be any homomorphism. If we

extend α0 to a homomorphism α : Ξ∗ → X∗ by ξα = πα = ε, then

λ(uα0) = λ((ξuπ)α) = λ((ξvπ)α) = λ(vα0),

which shows that λ ∈ FI(X).
(b) FJ is a fuzzy ?-variety by Theorem 6.2.
(c) If F is a fuzzy ?-variety contained in FI , then F ⊆ FJ . To prove this, consider

any λ ∈ F(X) and any homomorphism α : Ξ∗ → X∗ and let ξα = s and πα = t.
Since F is a fuzzy ?-variety contained in FI , s−1λt−1 satisfies (I). Thus

λ((ξuπ)α) = λ(s(uα)t) = (s−1λt−1)(uα) = (s−1λt−1)(vα) = λ(s(vα)t)

= λ((ξvπ)α).

So λ ∈ FJ(X).
Statement (1) can be proved in a similar manner. �

7. Sequences of word identities

The definitions and results of the previous two sections can easily be extended
to concern sets of word identities; a monoid, language or fuzzy language is said to
satisfy a set (E) of word identities, if it satisfies every identity in (E). However, this
extension would still not yield all ?-varieties, fuzzy ?-varieties and VFMs. Instead
we make use of a well-known theorem by Eilenberg and Schützenberger [12]. Let

(S) 〈un ≈ vn〉n≥1 = u1 ≈ v1,u2 ≈ v2,u3 ≈ v3, . . .

be a denumerable sequence of word identities (un,vn ∈ Ξ∗). A monoid M ultimately
satisfies the sequence (S), if there is a k ≥ 1 such that M satisfies un ≈ vn for every
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n ≥ k. Let MS be the class of all finite monoids ultimately satisfying (S), i.e., the
class ultimately defined by (S).

Theorem 7.1. (S. Eilenberg and M.P. Schützenberger [12, 11]) A class of finite
monoids is a VFM if and only if it is ultimately defined by a sequence of identities.

Let us say that a language L ultimately satisfies the sequence (S), if there is a
k ≥ 1 such that L satisfies every un ≈ vn with n ≥ k. The family of regular
languages ultimately satisfying (S) is denoted by LS = {LS(X)}X , and LS is said
to be ultimately defined by (S). Similarly, a fuzzy language λ ultimately satisfies
(S), if there is a k ≥ 1 such that λ satisfies every un ≈ vn with n ≥ k, and let
FS = {FS(X)}X be the family of regular fuzzy languages ultimately defined by (S).

Remark 7.2. Since any set of word identities (E) is countable, there exists a se-
quence (S) of word identities such that a language, fuzzy language or monoid satisfies
(E) if and only if it ultimately satisfies (S).

With any sequence of unflanked word identities 〈un ≈ vn〉n≥1 we associate the
sequence of flanked word identities 〈ξunπ ≈ ξvnπ〉n≥1.

Proposition 7.3. Let (S) 〈un ≈ vn〉n≥1 be a sequence of unflanked word identities
and (T) 〈ξunπ ≈ ξvnπ〉n≥1 be the associated sequence of flanked identities. Then

(1) MS is a VFM,
(2) LT is the ?-variety corresponding to MS, and
(3) FT is the fuzzy ?-variety corresponding to MS.

Proof. (1) MS is a VFM by Theorem 7.1.
(2) We show that LT = M `

S . By Lemma 6.3, a language L ⊆ X∗ satisfies the
flanked identity ξunπ ≈ ξvnπ if and only SM(L) satisfies un ≈ vn (n ≥ 1). This
implies that L ultimately satisfies (T) if and only if SM(L) ultimately satisfies (S).
In other words, L ∈ LT (X) if and only if SM(L) ∈MS . Then LT = M `

S . A simple
modification of this argument yields a proof for (3). �

Now we may characterize the fuzzy ?-varieties in terms of word identities.

Theorem 7.4. A family F of regular fuzzy languages is a fuzzy ?-variety if and
only if it is ultimately defined by a sequence of flanked word identities. Similarly, a
family L of regular languages is a ?-variety if and only if it is ultimately defined by
a sequence of flanked word identities. Moreover, if F is a fuzzy ?-variety and L is
the corresponding ?-variety (F` = L), then F and L can be ultimately defined by the
same sequence of flanked word identities.

Proof. If F is ultimately defined by a sequence 〈ξunπ ≈ ξvnπ〉n≥1 of flanked word
identities, then F is by Proposition 7.3 the fuzzy ?-variety corresponding to the
VFM ultimately defined by the sequence 〈un ≈ vn〉n≥1.

Suppose F is a fuzzy ?-variety. Then by Theorem 7.1, the VFM Fm is ultimately
defined by a sequence 〈un ≈ vn〉n≥1 of unflanked identities. Thus 〈ξunπ ≈ ξvnπ〉n≥1
ultimately defines F , by Proposition 7.3. The claim concerning L can be proved the
same way. Finally, if F and L are varieties such that F` = L, then F and L
correspond to the same VFM M = Fm = Lm, and both are ultimately defined
by the same sequence 〈ξunπ ≈ ξvnπ〉n≥1 of flanked identities obtained from any
sequence 〈un ≈ vn〉n≥1 of unflanked identities defining M. �
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Proposition 6.5 has the following extension to sequences of identities.

Proposition 7.5. If (S) 〈un ≈ vn〉n≥1 is a sequence of unflanked word identities
and (T) 〈ξunπ ≈ ξvnπ〉n≥1 is the associated sequence of flanked identities, then

(1) LT is the greatest ?-variety contained in LS,
(2) FT is the greatest fuzzy ?-variety contained in FS.

Proof. Statement (1) is proved as follows in three steps.
(a) LT ⊆ LS . If L ∈ LT (X), then there is a k ≥ 1 such that L satisfies ξunπ ≈

ξvnπ, for every n ≥ k. But L also satisfies un ≈ vn, for every n ≥ k. Thus
L ∈ LS(X).

(b) LT is a ?-variety, by Proposition 7.3.
(c) Let L be any ?-variety contained in LS . To show that L ⊆ LT , consider any

L ∈ L(X) and any homomorphism α : Ξ∗ → X∗. Let ξα = s and πα = t. Since L is
a ?-variety, s−1Lt−1 is in L(X), and as L ⊆ LS , there is a k ≥ 1 such that s−1Lt−1

satisfies un ≈ vn, for every n ≥ k. Then,

(ξunπ)α ∈ L⇔ s(unα)t ∈ L ⇔ unα ∈ s−1Lt−1 ⇔ vnα ∈ s−1Lt−1 ⇔ s(vnα)t ∈ L
⇔ (ξvnπ)α ∈ L,

for every n ≥ k, which shows that L ∈ LT (X).
Statement (2) has a similar proof. �

8. The varieties of commutative languages

It is clear that condition (C), by which the commutativity of fuzzy languages was
defined, is equivalent to the flanked word identity

(JC) ξuvπ ≈ ξvuπ

(ξ,u, v, π ∈ Ξ), and hence FCom = FJC . Furthermore, a monoid M satisfies the
word identity (IC) uv ≈ vu if and only if it is commutative. Thus MIC is the VFM
Com of all finite commutative monoids.

Let us recall that a language L ⊆ X∗ is commutative, if for any n ≥ 0 and
x1, x2, . . . , xn ∈ X, x1x2 . . . xn ∈ L implies xi1xi2 . . . xin ∈ L, for every permutation
i1, i2, . . . , in of n. Let Com = {Com(X)}X be the family of commutative regular
languages. It is clear that any commutative language satisfies (JC). On the other
hand, if a language L ⊆ X∗ satisfies (JC), then it satisfies also the condition

(LC) (∀s, t ∈ X∗)(∀x, y ∈ X)(sxyt ∈ L⇔ syxt ∈ L).

Since any permutation on n can be represented as a composition of the transpositions
(1 2), (2 3), . . . , (n − 1n) (cf. [8], for example), condition (LC) implies that L is
commutative. We may conclude that Com = LJC .

By applying Proposition 6.4 to the word identities (JC) and (IC), we get the
following (known) facts.

Proposition 8.1. FCom is the fuzzy ?-variety and Com the ?-variety corresponding
to the VFM Com, i.e., FCom = Comf and Com = Com`.

Moreover, the following connections between Com and FCom are obtained as
special cases from Lemma 5.3 and Proposition 5.4.
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Proposition 8.2. (1) A language L ⊆ X∗ is commutative if and only if Lχ is
commutative, and L ∈ Com(X) if and only if Lχ ∈ FCom(X)

(2) If a fuzzy language λ : X∗ → [0, 1] is commutative, then so is supp(λ) and if
λ ∈ FCom(X), then supp(λ) ∈ Com(X).

(3) A regular fuzzy language λ : X∗ → [0, 1] is commutative if and only if it can
be expressed in the form λ = c1L

χ
1 ∪ . . . ∪ cnLχn, where n ≥ 1, c1, . . . , cn ∈ [0, 1] and

L1, . . . , Ln ∈ Com(X). Moreover, if λ ∈ FCom(X), the constants ci may be chosen
to be pairwise distinct and the languages Li to be pairwise disjoint.

Let us now consider FDFRs recognizing the regular fuzzy commutative languages.
A DFR A = (A,X, δ, a0, F ) is commutative, if auv = avu, for all a ∈ A and

u, v ∈ X∗. It is easy to see that a regular language L is commutative if and only if
it is recognized by a commutative DFR or if and only if its syntactic monoid SM(L)
is commutative. These facts can be found already, in some form, in [14] (cf. also
[13]). Shyr [28] called a DFR A = (A,X, δ, a0, F ) quasi-abelian, if a0uv = a0vu, for
all u, v ∈ X∗, and he showed that the languages recognized by quasi-abelian DFRs
are exactly the commutative regular languages. This follows also from Lemma 8.3
below.

Let us call a FDFR F = (A,X, δ, a0, ω) commutative, if auv = avu, for all a ∈ A
and u, v ∈ X∗ and quasi-abelian, if a0uv = a0vu, for all u, v ∈ X∗.

Lemma 8.3. Any commutative FDFR (DFR) is quasi-abelian and every connected
quasi-abelian FDFR (DFR) is commutative.

Proof. The proofs for FDFRs and for DFRs are identical. The first statement holds
trivially. Let F = (A,X, δ, a0, ω) be a connected quasi-abelian FDFR and consider
any a ∈ A and u, v ∈ X∗. Since F is connected, a = a0w, for some w ∈ X∗. Then
auv = a0wuv = a0uwv = a0wvu = avu. �

The following proposition encompasses the fuzzy forms of the classical facts noted
above and those appearing in Propositions 7.10 and 7.12 of [28].

Proposition 8.4. For any regular fuzzy language λ : X∗ → [0, 1], the following
conditions are equivalent to each other:

(1) λ is commutative,
(2) Fλ is a commutative FDFR,
(3) λ is recognized by a commutative FDFR,
(4) Fλ is a quasi-abelian FDFR,
(5) λ is recognized by a quasi-abelian FDFR,
(6) SM(λ) is a commutative monoid,
(7) TM(Fλ) is a commutative monoid.

Proof. The equivalence (1)⇔ (2) follows from the definition of δλ and the fact that
Fλ recognizes λ. Firstly, if λ is commutative, then

δλ([s], uv) = [suv] = [svu] = δλ([s], vu)

for all s, u, v ∈ X∗. Conversely, if Fλ is commutative, then

λ(suvt) = ωλ(δλ([ε], suvt) = ωλ(δλ([s], uvt) = ωλ(δλ([s], vut) = ωλ(δλ([ε], svut)

= λ(svut),
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for all s, t, u, v ∈ X∗, i.e., λ is commutative.
The equivalences (2) ⇔ (4) and (3) ⇔ (5) hold by Lemma 8.3. The implication

(2) ⇒ (3) is obvious because Fλ recognizes λ, and the converse (3) ⇒ (2) holds
because commutativity is preserved when a FDFR is minimized. The equivalence
(1) ⇔ (6) follows from Proposition 8.1. Finally, (6) ⇔ (7) holds because the two
monoids are isomorphic. �

As the commutativity of an FDFR can be decided, we get the following result.

Corollary 8.5. The commutativity of regular fuzzy languages is decidable.

9. The families of rotation invariant languages

Clearly, FRot = FIR for the word identity

(IR) uvw ≈ vwu

(u, v,w ∈ Ξ0). Let us call a language L ⊆ X∗ rotation invariant, if it satisfies (IR),
i.e., for any words u, v, w ∈ X∗, uvw ∈ L if and only if vwu ∈ L. The family LIR is
denoted by Rot = {Rot(X)}X . Note that (IR) is not flanked and hence Propositions
6.1 and 6.2 do not apply to Rot and FRot.

Proposition 9.1. If K,L ∈ Rot(X), then
(1) L,K ∪ L,K ∩ L ∈ Rot(X),
(2) Lϕ−1 ∈ Rot(Y ), for every homomorphism ϕ : Y ∗ → X∗.

On the other hand, w−1L and Lw−1 are not necessarily in Rot(X) for every w ∈ X∗.

Proof. Statements (1) and (2) follow from Proposition 5.1, since Rot = LIR.
To see that Rot is not closed under the quotient operations, consider the language

L = {xyz, yzx, zxy} over X = {x, y, z}. It is clear that L ∈ Rot(X), but x−1L =
Lx−1 = {yz} is not rotation invariant. �

Proposition 9.2. If κ, λ ∈ FRot(X), then
(1) λ,κ ∪ λ,κ ∩ λ ∈ FRot(X),
(2) cλ, λ[c) ∈ FRot(X) for every c ∈ [0, 1],

(3) ϕ−1(λ) ∈ FRot(Y ) for every homomorphism ϕ : Y ∗ → X∗.
On the other hand, η−1λ and λη−1 do not necessarily belong to FRot(X) for every
η : X∗ → [0, 1] (even in case η ∈ FRot(X) is assumed).

Proof. Statements (1)-(3) follow from Proposition 5.2 because FRot = FIR.
To see that FRot is not closed under the quotient operations, consider the fuzzy

language λ = {xyz/1, yzx/1, zxy/1} ∈ FRot(X), where X = {x, y, z}. If η =
{x/1}, then η(x) = 1, but η(v) = 0 for all v 6= x. This means that (η−1λ)(yz) =
η(x) ∧ λ(xyz) = 1, but (η−1λ)(w) = 0 for any w 6= yz, and hence η−1λ = {yz/1}.
Obviously {yz/1} /∈ FRot(X). Similarly, λη−1 = {yz/1} /∈ FRot(X). Note that
also η ∈ FRot(X). �

From Lemma 5.3 and Proposition 5.4 we get the following links between rotation
invariant languages and rotation invariant fuzzy languages.
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Proposition 9.3. (1) A language L ⊆ X∗ is rotation invariant if and only if Lχ is
rotation invariant, and L ∈ Rot(X) if and only if Lχ ∈ FRot(X).

(2) If λ : X∗ → [0, 1] is rotation invariant, then so is supp(λ), and if λ ∈
FRot(X), then supp(λ) ∈ Rot(X).

(3) A regular fuzzy language λ : X∗ → [0, 1] is rotation invariant if and only if
λ = c1L

χ
1 ∪ . . . ∪ cnLχn for some n ≥ 0, c1, . . . , cn ∈ [0, 1] and L1, . . . , Ln ∈ Rot(X).

Moreover, if λ ∈ FRot(X), the constants ci may be assumed to be distinct and the
languages Li to be pairwise disjoint.

For any word w = x1 . . . xn (n ≥ 0, x1, . . . , xn ∈ X), we call the set

ro(w) := {w, x2 . . . xnx1, x3 . . . xnx1x2, . . . , xnx1x2 . . . xn−1}
the rotation orbit of w. Obviously, the three conditions (1) u ∈ ro(v), (2) ro(u) ∩
ro(v) 6= ∅, and (3) ro(u) = ro(v), are equivalent to each other for all u, v ∈ X∗.
Hence, the condition

u 'X v ⇔ ro(u) = ro(v) (u, v ∈ X∗)
defines an equivalence on X∗ whose equivalence classes are the rotation orbits. For
example, ro(xyz) = {xyz, yzx, zxy} and ro(xyxy) = {xyxy, yxyx} are two 'X -
classes for X = {x, y, z}. If |X| > 1, then 'X is not a congruence on the monoid
X∗. For example, xyx 'X yxx, but xyxy 'X yxxy does not hold.

The the following proposition offers some alternative descriptions of the rotation
invariant crisp languages.

Proposition 9.4. For any language L ⊆ X∗, the following conditions are equivalent
to each other.

(1) L is rotation invariant.
(2) (∀u, v, w ∈ X∗)(uvw ∈ L⇔ wuv ∈ L).
(3) (∀w ∈ X∗)(w ∈ L⇒ ro(w) ⊆ L), i.e., L is saturated by 'X .
(4) (∀x ∈ X)(∀w ∈ X∗)(xw ∈ L⇔ wx ∈ L).
(5) x−1L = Lx−1 for every x ∈ X.

Proof. Consider any language L ⊆ X∗.
(1)⇔ (2): This equivalence is the crisp counterpart of Proposition 4.1 (2) and it

can be verified in a similar way.
(1)⇒ (3): Consider any word w = x1 . . . xn (x1, . . . , xn ∈ X). By (1),

w ∈ L ⇒ x2x3 . . . xnx1 ∈ L ⇒ x3 . . . xnx1x2 ∈ L ⇒ . . .

⇒ xnx1x2 . . . xn−1 ∈ L,
which means that w ∈ L implies ro(w) ⊆ L.

(3)⇒ (4): This follows from wx ∈ ro(xw).
(4)⇔ (5): Suppose (4) holds. Then for any w ∈ X∗,

w ∈ x−1L ⇔ xw ∈ L ⇔ wx ∈ L ⇔ w ∈ Lx−1,
which means that x−1L = Lx−1.

Suppose (5) holds. Then for any w ∈ X∗,
xw ∈ L ⇔ w ∈ x−1L ⇔ w ∈ Lx−1 ⇔ wx ∈ L,

which means that (4) holds.
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(4) ⇒ (1): Suppose L satisfies (4) and consider any words u, v, w ∈ X∗. If
u = x1 . . . xn with n ≥ 0 and x1, . . . , xn ∈ X, then we get

uvw ∈ L⇔ x2 . . . xnvwx1 ∈ L⇔ x3 . . . xnvwx1x2 ∈ L⇔ . . .⇔ vwu ∈ L

by n applications of (4).
All the remaining implications follow from the ones we have verified. �

If a language L is recognized by a given DFR, then condition (4) in Proposition 9.4
is effectively testable: for any x ∈ X, the languages x−1L and Lx−1 are effectively
regular and their equality can be decided.

Corollary 9.5. The rotation invariance of regular languages is decidable.

The following facts about fuzzy languages correspond to Proposition 9.4.

Proposition 9.6. For any fuzzy language λ : X∗ → [0, 1], the following conditions
are equivalent to each other:

(1) λ is rotation invariant,
(2) 'X ⊆ ker(λ),
(3) λ(xw) = λ(wx), for all x ∈ X and w ∈ X∗,
(4) x−1λ = λx−1, for every x ∈ X.

Proof. Let us again prove a set of implications from all the claimed equivalences
follow. Let λ : X∗ → [0, 1] be any fuzzy language.

(1)⇒ (2): For any word v = x1 . . . xn (x1, . . . , xn ∈ X), (1) implies that

λ(v) = λ(x2 . . . xnx1) = λ(x3 . . . xnx1x2) = . . . = λ(xnx1 . . . xn−1),

i.e., that λ(u) = λ(v), for every u ∈ ro(v). Since u 'X v means that u ∈ ro(v), this
shows that (1) implies (2).

(2)⇒ (3): This holds as xw 'X wx, for all x ∈ X and w ∈ X∗.
(3) ⇒ (1): Consider any words u, v, w ∈ X∗. If u = x1 . . . xn with n ≥ 0 and

x1, . . . , xn ∈ X, then we get

λ(uvw) = λ(x2 . . . xnvwx1) = λ(x3 . . . xnvwx1x2) = · · · = λ(vwu)

by n applications of (3).
(3)⇔ (4): This equivalence follows easily from the fact that λ(xw) = (x−1λ)(w)

and λ(wx) = (λx−1)(w), for all x ∈ X and w ∈ X∗. �

Proposition 9.7. The rotation invariance of regular fuzzy languages is decidable.

Proof. Let F = (A,X, δ, a0, ω) be a given FDFR. We may assume that F is minimal.
Let λF = c1L

χ
1 ∪ . . .∪ cnLχn as in the proof of Proposition 5.4, where for each i ∈ n,

Li = L(Ai) for the DFR Ai = (A,X, δ, a0, ω
−1(ci)). If every language Li is rotation

invariant, then λF ∈ FRot(X), by Propositions 9.3 and 9.2. If some Li is not
rotation invariant, then by Proposition 9.4, there exist some x ∈ X and w ∈ X∗

such that xw ∈ Li but wx /∈ Li (or conversely). Thus λF(wx) = ci but λF(xw) 6= ci
(or conversely), which means by Proposition 9.6 that λF is not rotation invariant.
So λF ∈ FRot(X) if and only if Li ∈ Rot(X), for every i ∈ n, and this can be
decided by Corollary 9.5. �
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As noted above, Rot and FRot are not varieties, but we can describe the greatest
varieties contained in them.

Proposition 9.8. Com is the greatest ?-variety contained in Rot, and FCom is
the greatest fuzzy ?-variety contained in FRot.

Proof. By Proposition 6.5, it suffices to show that Com = LJR and FCom = FJR
for the flanked version (JR) ξuvwπ ≈ ξvwuπ of the identity (IR) uvw ≈ vwu that
defines Rot and FRot. Let us verify this for fuzzy languages.

If λ : X∗ → [0, 1] is commutative, then λ(suvwt) = λ(svwut), for all s, t, u, v, w ∈
X∗. Thus λ satisfies (JR). On the other hand, if λ satisfies (JR), then λ(suvt) =
λ(suvεt) = λ(svεut) = λ(svut), for all s, t, u, v ∈ X∗, i.e., λ ∈ FCom(X). �

Finally, let us note that since Rot is not a ?-variety, Rot = M` for no VFM M.
Similarly, there is no VFM M such that FRot = Mf . Hence, neither Rot nor FRot
can be characterized by syntactic monoids in the sense of [11] or [21], respectively.
In [3] Archana introduced the monoid identities

(E1) uvw ≈ vuw (E2) uvw ≈ uwv (E3) uvw ≈ wvu

(E4) uvw ≈ vwu (E5) uvw ≈ wuv

to match conditions (C1)–(C5). The idea was that for each i ∈ [5], a regular fuzzy
language satisfies condition (Ci) exactly in case its syntactic monoid satisfies the
identity (Ei). However, by the above remark, this is not possible. In fact, it is easy
to show that each one of the identities (E1)–(E5) is equivalent to the commutative
law (EC) uv ≈ vu and thus defines Com.

10. The varieties of aperiodic languages

A monoid M is aperiodic [11, 15, 22], if there is an n ≥ 1 such that an+1 = an

for every a ∈ M . Obviously, an+1 = an implies that am+1 = am, for all m ≥
n. Hence the VFM Ap of aperiodic finite monoids is ultimately defined by the
sequence of identities (SAp) 〈un+1 ≈ un〉n≥1. A famous theorem by Schützenberger
[26, 11, 15, 22] shows that Ap is the VFM corresponding to the ?-variety of star-free
languages. On the other hand, it is known that the star-free languages are the same
as the aperiodic, or noncounting, languages; a language L ⊆ X∗ is aperiodic, if
there is an n ≥ 1 such that, for all s, t, u ∈ X∗, sun+1t ∈ L if and only if sunt ∈ L.
Let Ap = {Ap(X)}X be the family of regular aperiodic languages. Thus Ap is the
?-variety corresponding to the VFM Ap. Moreover, Ap is ultimately defined by the
flanked version (TAp) 〈ξun+1π ≈ ξunπ〉n≥1 of the sequence (SAp); if a language
satisfies ξun+1π ≈ ξunπ for some n, then it satisfies ξum+1π ≈ ξumπ for every
m ≥ n. The many ways in which the family Ap arises are discussed in the book [18]
by McNaughton and Papert.

Finally, following Li [16], we call a fuzzy language λ : X∗ → [0, 1] aperiodic, if
there is an n ≥ 1 such that λ(sun+1t) = λ(sunt) for all s, t, u ∈ X∗. Let FAp =
{FAp(X)}X be the family regular aperiodic fuzzy languages. In [4] Archana showed
that FAp is a fuzzy ?-variety by verifying the required closure properties. Obviously,
also FAp is ultimately defined by the sequence (TAp). This means that the results
of Sections 5 and 7 apply the triple Ap, FAp and Ap. In particular,
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(1) Ap is the ?-variety and FAp the fuzzy ?-variety characterized by the VFM
Ap,

(2) a fuzzy language λ : X∗ → [0, 1] belongs to FAp(X) if and only if it can
be expressed in the form λ = c1L

χ
1 ∪ . . . ∪ cnLχn, where n ≥ 1, c1, . . . , cn ∈ [0, 1],

and L1, . . . , Ln ∈ Ap(X), and then the constants ci may be chosen to be pairwise
distinct and the languages Li to be pairwise disjoint.
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[14] W. M. Gluschkow, Theorie der Abstrakten Automaten, VEB Deutscher Verlag der Wis-

senshaften, Berlin 1963.
[15] J. M. Howie, Automata and Languages, Oxford Science Publications, Clarendon Press, Oxford

1991.
[16] Y. Li, Fuzzy finite automata and fuzzy monadic second-order logic, 2008 International Con-

ference on Fuzzy Systems (FUZZ 2008), Proceedings (2008) 117–121.
[17] A. Mateescu, A. Salomaa, K. Salomaa and S. Yu, Lexical analysis with a simple finite-fuzzy-

automaton model, Journal of Universal Computer Science 1 (5) (1995) 292-311.
[18] R. McNaughton and S. Papert, Counter-Free Automata, Research Monograph No. 65, The

M.I.T. Press, Cambridge, Ma. 1971.
[19] E. F. Moore, Gedanken-experiments on sequential machines, in: C.E. Shannon and J. Mc-

Carthy (eds.), Automata Studies, Princeton University Press, Princeton NJ 1956, pp. 129–153.
[20] J. Mordeson and D. Malik, Fuzzy Automata and Languages: Theory and Applications, Chap-

man & Hall (CRC), London 2002.
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