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Abstract. A shadowed set, S, facilitates crisp decision-making with a
fuzzy set F . It is constructed with the aid of different optimization-based
principles. Among these principles, the requirement of uncertainty balance
guarantees preservation of the uncertainty of F in S. In order to gain fur-
ther insight on uncertainty balance, some essential mathematical properties
which characterize uncertainty-balance-based objective function, J(α), are
studied. These properties provide theoretical explanation for interpreting
and analyzing J(α) and its ensuing optimum partition threshold α. Two
senses of uncertainty balance are discussed in this paper. Their combined
efficiency in enhancing clustering results is illustrated with the aid of syn-
thetic data set used in shadowed C-means clustering. Finally a need for
five-region shadowed sets, S5, is pointed out. A closed-form formula for
determining its optimum thresholds is proposed and exemplified on typical
fuzzy set and synthetic dataset.
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1. Introduction

Shadowed sets, introduced by Pedrycz [20], are direct algorithmic construction
of fuzzy sets. By relying on Kleene’s three-valued logic [10], they represent fuzzy
sets with the aid of three regions (i.e., core, shadow and excluded zones). In fact,
shadowed sets stem from the necessity to make crisp decision with fuzzy sets [18, 31].

A key aspect of shadowed sets is determination of the required pair of thresholds
which balances the uncertainty distorted as a result of transforming a given fuzzy
set into three regions [20, 24]. There are various methods of inducing shadowed sets
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[5, 9, 20, 27, 8, 29, 33, 36, 40, 37]. These methods anchor on different optimization-
based principles.

The main goal of shadowed sets is to relocate the fuzziness inherently associated
with the original fuzzy set into a shadow region. As used in this paper, we determine
a pair of symmetric thresholds, (α, 1−α) and are guided by a principle of uncertainty
balance. This principle, follows from a general optimization-based principle known
as principle of uncertainty and information invariance [11].

Klir [11, 12], in general terms, suggested a principle of uncertainty (and its re-
lated information) invariance; which states that when making transformations be-
tween different mathematical theories characterized by uncertainty, the amount of
uncertainty should be preserved under these transformations. In the framework of
shadowed sets, Klir’s principle of uncertainty invariance may be viewed as a principle
of uncertainty balance. This principle advocates for preservation of the uncertainty
(and related information) of the original fuzzy set in the ensuing shadowed set.

It is difficult to retain the total amount of fuzziness of a fuzzy set, F , in the
ensuing shadowed set, S. Therefore, studies [20, 27, 29] which tackle this issue have
been carried out to improve the initial formulation of uncertainty balance. In order
to study the concept of uncertainty balance, some essential mathematical properties
for comprehending its notion, as well as, characterizing an optimum solution for
trisecting F are needed. This underlines the significance of this paper.

In this study, based on a principle of uncertainty balance, some mathematical
properties related to shadowed sets are studied. By exploiting a notion of fuzziness
set, ϕF , of F [27], we show that for optimum threshold (1 − α)-cut, the number
of patterns, x with µϕF (x) ≥ ϕ(1 − α) are exactly the overall amount of fuzziness
in F . Based on this idea, we give an algorithm to obtain the optimum threshold.
Its performance is illustrated on some typical fuzzy sets, as well as synthetic data
set. We investigate the usefulness of a principle of uncertainty balance in shadowed
C-means clustering. It is observed that uncertainty balance is theoretically mean-
ingful for retention of the fuzziness encountered in a dataset X. However, the related
information in F can be adequately preserved by exploiting the two senses of uncer-
tainty balance discussed in this paper. Further, illustrative examples are provided to
underline that better approximation of F in terms of minimum approximation error
and adequate fulfilment of a principle of uncertainty balance calls for development
of five-region shadowed sets.

1.1. Motivation and contribution of the study. This paper is motivated by
rare provision of mathematical properties of the objective function of uncertainty
balance in shadowed sets.

The idea of uncertainty balance in shadowed sets has been discussed in [27] by
exploiting a concept of gradual number of fuzziness, specific gradual elements, and
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partial assignment functions. In order to effectively communicate a notion of bal-
ance of uncertainty, Yao [33], modified the method in [27] in a simplified notational
system. Without delving into deeper mathematical concepts such as gradual number
of fuzziness, specific gradual elements, and partial assignment functions, a concept
of uncertainty balance in shadowed sets can be easily expressed and explained in
simple terms for the interest of early researchers in the field. Also, for a variety of
reasons which we enunciate.

From the formulation in [27, 33], it is difficult to envision the contribution of the
elements in the shadow region to the overall amount of fuzziness of F . In this paper,
we strive to overcome this difficulty by: (1) establishing simple terms that let us
easily communicate about uncertainty balance in shadowed sets and also allow us
suggest, precisely, a quick way to determine the optimum thresholds, (2) presenting
some new mathematical properties which guides selection of the required thresholds,
and (3) using an alternative closed-form formula for induction of shadowed sets.

In fact, uncertainty balance can be interpreted from two perspectives: (a) the
relationship between the size of the shadow region of a shadowed set and the over-
all amount of fuzziness of F and, (b) the relationship between the total amount of
fuzziness to be minimized in the core and excluded zones, and to be maximized in
the shadow zone. This two interpretations come with two closed-form formula and
achieves the same results. However, they give distinct insight on the distribution of
uncertainty and how it can be balanced and controlled in practical situations (e.g.,
data clustering).

The first interpretation is what we pursue. The second interpretation has been
discussed in [27]. Both interpretations when put together facilitate decision-making,
especially in classification of patterns in shadowed clustering. In fact, the member-
ship of a pattern to a cluster can be evaluated by using (α, 1 − α)-cuts to define
the size of the core, shadow and excluded zones of a cluster. The relationship (i.e.,
fuzziness-cut) between the total amount of fuzziness to be minimized and maximized
in the aforesaid zones can then be exploited to decide which object are to be used
to compute a cluster centroid. Therefore, with the aid of the two interpretations, a
fuzzy cluster can be approximated from two thresholds: α-cut and fuzziness-cut.

From numerical point of view, five-way approximation of fuzzy sets, when com-
pared to three-way approximations, promises better approximation results, and it is
worth developing. So, this paper introduces five-region shadowed sets.

This paper contributes to studies on shadowed set approximation of fuzzy sets
in the following aspects. (1) it provides theoretical analysis of a notion of uncer-
tainty balance in shadowed sets; (2) existence, uniqueness and determination of the
optimum thresholds which satisfy a principle of uncertainty balance is discussed;
(3) two approaches (i.e, direct procedure and closed-form formula), together with
an algorithm for determining the the optimum thresholds are provided. The per-
formance of these approaches are evaluated using typical fuzzy sets and synthetic
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data sets; (4) by considering the fuzziness cut, ϕ(1 − α) and the pair of optimum
thresholds, (α, 1−α), we propose an idea for inducing shadowed C-means clustering.
Essentially, by adopting, ϕ(1− α) and (α, 1− α), an approach to deal with objects
which exhibit very high degree of uncertainty to a fuzzy cluster is introduced; (5) we
provide a starting point for the development of five-way approximation of fuzzy sets.

Throughout the study, we adhere to the following symbols:
(α, β): a pair of optimum thresholds (not necessarily symmetric),
(α, 1− α): a pair of symmetric optimum thresholds,
Sn: n-region shadowed set
Sα: shadowed set induced by α,
ϕ: measure of fuzziness,
µF : membership function of fuzzy set F ,
ϕF : fuzziness set of F ,
µϕF : membership function of the fuzziness set of F defined from µF to [0, 1],
fS : membership function of shadowed set S,
E(A): error function which measures the error incurred in set A,
J(α): optimization function of uncertainty balance,
ck: kth cluster,
vk: centroid of the kth cluster,
µik: membership grade of the ith object in the kth cluster,
C: number of clusters,
n: number of objects.

2. Theoretical foundations

2.1. Fuzzy set and Zadeh’s three-way approximations. A fuzzy set, F is
characterized by a membership function

(2.1) µF : X −→ [0, 1]

which establishes the degree of membership, µF (x) ∈ [0, 1], of an element, x ∈ F . It
can be cut at a point α ∈ [0, 1] in order to filter irrelevant elements.

Zadeh [34] suggested two cuts α and β such that F is partitioned into the follow-
ing three regions:

Quantitative approximation:
Pos(F ) = {x ∈ X|µF (x) > β},
Bnd(F ) = {x ∈ X|α ≤ µF (x) ≤ β},
Neg(F ) = {x ∈ X|µF (x) < α}.

Qualitative approximation:
Pos(F ) = {x ∈ X|µF (x) = T},
Bnd(F ) = {x ∈ X|µF (x) = U},
Neg(F ) = {x ∈ X|µF (x) = F}.

Here the truth values T,U and F denote true, unknown and false, respectively [10].
242
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2.2. Fuzziness of fuzzy sets. A function ϕ : P (X) −→ R which characterize the
degree of fuzziness of each fuzzy subset A of X is called a measure of fuzziness, where
P (X) denotes the set of all fuzzy subsets of X [11]. Therefore, the fuzziness of a
(fuzzy) set, F , is a measure that quantifies the underlying vagueness or uncertainty
in F . In the literature, various measures of fuzziness have been proposed (see, for
example, [4, 12, 14]). In general, any measure of fuzziness should have the following
properties:

P1) ϕ(A) = 0, for all non-fuzzy sets A,
P2) ϕ(µF (x)) = 1, if µF (x) = 1

2 (i.e., level of maximum fuzziness),
P3) ϕ(µF (x)) = ϕ(1− µF (x)), where 1− µF (x) is the complement of µF (x),
P4) ϕ(µF (x)) is monotonically increasing in [0, 12 ] as µF (x) → 1

2 (whether from

left or right) and, monotonically decreases in [ 12 , 1] as µF (x)→ 1.
In [11, 12, 13], the measure of fuzziness of a given fuzzy set F is defined as:

(2.2) ϕ(F ) =

|F |∑
i=1

[1− |2µF (xi)− 1|]

If µF (xi) = 1
2 for all i, then we have

(2.3) ϕ(F ) = Card(F ),

where Card(F ) or |F | is the cardinality of fuzzy set F .

Fuzziness set of Fuzzy sets: Given a fuzzy set F = {(x, µF (x))|x ∈ X} drawn
from a universe

X = {xi|i = 1, 2, ..., n},
its corresponding fuzziness set, ϕF , is defined in [27] as

ϕF = {(x, µϕF (x))|x ∈ X ∧ µϕF (x) = ϕ(µF (x))}.
The fuzziness of F is completely described by its fuzziness set.

2.3. Three-way decisions and shadowed sets. A three-way decision is conceived
as follows.
Three-way decisions: Let X = {xi : i = 1, 2, 3, ..., n} be a finite nonempty set of
objects and C = {cj : j = 1, 2, 3, ..., k} be a finite set of conditions. A three-way
decision T relies on an evaluation function, µT : X −→ {a, r, u}, which classifies
x ∈ X into T according to its fulfilment of cj ∈ C. Here a, r and u represent accept,
reject and non-commitment decision, respectively.

Shadowed sets: Shadowed sets are concrete models of three-way decisions. They
approximate a fuzzy set by exploiting Kleene’s three-valued valuations.

Let (0, 1) denote uncertainty of an element’s membership to a set S. Given a
non-empty (finite) universe X, a shadowed set is characterized by the mapping [20]:

(2.4) fS : X −→ {0, (0, 1), 1}
An element, x ∈ X, which (completely) belong to S is assigned the membership
grade fS(x) = 1 and put in the core region, Cor(S). An element x ∈ X which is
(completely) excluded from S is assigned the membership grade fS(x) = 0, and put
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in the reduced area, Red(S). Subsequently, an element, x ∈ X, which is doubtful is
assigned the membership grade fS(x) = (0, 1) or fS(x) = 1

2 , as suggested in [2], and
it is put in the shadow region, Shd(S).

When a shadowed set is constructed from a given fuzzy set, F , with the aid of
some criteria (α, 1 − α), (α ∈ (0, 12 ]), the mapping in Equation (2.4) is defined on
the membership grades of F by

(2.5) fS(µF (x)) =


1, if µ(x) > 1− α
1
2 , if α ≤ µF (x) ≤ 1− α
0, if µF (x) < α.

2.4. Optimization-based principles for shadowed sets. Principle of uncer-
tainty balance and principle of minimum transformation error are key ingredients in
constructing shadowed sets.

A principle of uncertainty balance requires retention of the overall amount of
fuzziness of a given fuzzy set and its proper relocation in the ensuing shadowed set
[20, 27].

A principle of minimum error demands that the optimized thresholds required to
induce a shadowed set should be determined by minimizing the total error incurred
in changing elements membership grade from µF (x) to fS(µF (x)).

It is important to underline that the original idea for constructing shadowed sets
does not require fulfillment of a principle of minimum error. However, Deng and
Yao [5] proposed error-based interpretation of shadowed sets; which suggests that
this principle is desirable.

In what follows, we formally explicate principle of uncertainty balance, and some
situations under which it is useful.

Balance of uncertainty: A principle of uncertainty balance captures the essence
of uncertainty of fuzzy sets, particularly when they are transformed into a differ-
ent formalism (i.e., three-way approximation). It guides construction of three-way
approximation of F based on available amount of fuzziness in F .

The rationale behind a principle of uncertainty balance is to deliver a concise
characterization of F such that the produced shadow region is justified in the light
of the fuzziness encountered in F . Intuitively, this principle quantifies the extent
to which the shadow region accounts for ϕ(F ). Some situations under which this
principle is useful are:

(1) Data mining; where it is necessary to transform a data set into more inter-
pretable representation in order to support knowledge discovery. Here the
aforesaid principle guarantees information preservation.

(2) Granular computing. When information granules are to be constructed from
data, a principle of uncertainty balance is deployed in the form of a princi-
ple of justifiable granularity [23] in order to assess the extent to which the
information granule is supported by data.
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2.5. Induction of shadowed sets from fuzzy sets. Throughout the rest of the
paper, we will use the symbol |.| to denote the absolute value function. Also, we
note that there are other ways of inducing shadowed sets, for example, in [36], game-
theoretic shadowed sets has been suggested. However, as we do not wish to discuss
aspects of game-theory, this work has been omitted. Moreso, in [33] a three-way
approximation of F is discussed from three principles (i.e., generalized three-way
approximation, principles of minimum distance and minimum risk cost). As our
focus is on a special model of three-way approximation viz. shadowed sets, and our
objective is not to review decision-threoretic approach to approximation of F , we
will not delve into such methods.

Furthermore, we note that the authors in [5, 6, 23, 27] initially used a pair of fea-
sible thresholds, (α, β) in their formulations. However, they chose a single threshold
in terms of α (i.e., β = 1−α) for the purpose of calculational convenience. Therefore,
we adopt a pair of symmetric thresholds to report their methods.

2.5.1. Pedrycz’s model. In [20], the following condition is suggested as a requirement
for balance of uncertainty:

(2.6) ϕ(Cor(S)) + ϕ(Red(S)) = ϕ(Shd(S)).

Equation (2.6) interprets the sum of the elevated area and the reduced area as
the amount of decreased uncertainty and, the shadow is the amount of increased
uncertainty [33].

For a finite (discrete) fuzzy set F , Pedrycz expanded Equation (2.6) as
(2.7)∑
µF (xi)<α

µF (x) +
∑

µF (xi)>1−α

(1− µF (xi)) = Card({xi ∈ X|α ≤ µF (x) ≤ 1− α}).

In order to obtain an α-cut that satisfies Equation (2.6) and (2.7), Equation (2.7) is
reformulated as an optimization problem:

(2.8) α(opt) = arg(minα|a+ b− c|),
where

a =
∑

µF (xi)<α

µF (xi),

b =
∑

µF (xi)>1−α

(1− µF (xi)),

c = Card({xi ∈ X|α ≤ µF (xi) ≤ 1− α}).

2.5.2. Tahayori, Sadeghian and Pedrycz model. In line with a principle of uncer-
tainty balance, Yao et al. [33] reformulated Equation (2.7) to explicate Tahayori et
al. [27] model as follows:
(2.9) ∑

µF (xi)<α

ϕ(µF (xi)) +
∑

µF (xi)>1−α

ϕ(µF (xi)) =
∑

α≤µF (xi)≤1−α

(ϕ(
1

2
)− ϕ(µF (xi)))

and the optimized α-cut is computed using

(2.10) α(opt) = arg(minα|d+ e− f |),
245
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where
d =

∑
µF (xi)<α

ϕ(µF (xi)) is the total amount of fuzziness in Red(S),

e =
∑

µF (xi)>1−α
ϕ(µF (xi)) is the total amount of fuzziness in Cor(S),

f =
∑

α≤µF (xi)≤1−α
(ϕ( 1

2 )−ϕ(µF (xi))) is the total amount of fuzziness introduced

when the original amount of fuzziness of elements placed in Shd(S) is changed from
ϕ(µF (x)) to ϕ(fS(x)).

2.5.3. Deng and Yao model. As an alternative approach, Deng and Yao [5] rely on
a principle of minimum error, and suggest computation of the optimized thresholds
as

(2.11) α(opt) = arg(minαE(µF )),

where

(2.12) E(µF ) = E(Red(S)) + E(Cor(S)) + E(Shd(S))

is the summation of errors in the three regions:

E(Red(s)) =
∑

µF (xi)<α

µF (xi),

E(Cor(S)) =
∑

µF (xi)>1−α

(1− µF (xi))

and

E(Shd(S)) =
∑

α≤µF (xi)≤1−α

|1
2
− µF (xi)|.

2.5.4. Ibrahim and William-West model. Ibrahim and William-West [9] observed
that the threshold, α, which satisfies Equation (2.7), may not satisfy the principle
of uncertainty balance. The attitudes of different decision makers towards the level
of uncertain they want to retain is taken into consideration. It is observed that if
decision makers are optimistic, less of the original amount of uncertainty of F will be
retained in S, although the misclassification error may increase. If decision makers
are pessimistic, more of the original amount of uncertainty of F will be retained
in S. Based on this perspective, a shadowed sets which embraces a compromise
between optimistic and pessimistic way of uncertainty preservation are introduced
by searching for the average of the balance of uncertainty as follows. Therefore,
Equation (2.7) was modified to

(2.13) V (α) = |
∑

µF (xi)<α

µF (xi) +
∑

µF (xi)>1−α

(1− µF (xi))−
∑

α≤µF (xi)≤1−α

µF (xi)|

and Equation (2.8) now becomes

(2.14) α(opt) = arg(avgαV (α)),

where

(2.15) avgαV (α) =
V (α1) + V (α2) + ...+ V (αk)

k
.

V (α) is the balance of uncertainty, αi ∈ [µmin,
1
2 ], i = 1, 2, ..., k, and µmin is the

minimum membership grade in F . Here k is the number of feasible thresholds α.
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From Equation (2.15), the α-cut producing a value of V (αi) nearest to the average
avgαV (α), is selected as the optimal threshold.

2.5.5. William-West, Ibrahim and Kana model. William-West et al. [29] proposed
a method for calculating α(opt) as follows:

(2.16) α(opt) = arg(minα|ϕ(F )− ϕ(Sαi)|),

where Sαi are candidate shadowed sets determined from feasible thresholds αi ∈
[µmin,

1
2 ], i = 1, 2, ..., k.

Also, in line with studies in [5], the membership grade of elements in Shd(S) is
taken as

µF (x1) + µF (x2) + ...+ µF (xk)

k
,

where α ≤ µF (x1)+µF (x2)+...+µF (xk)
k ≤ 1−α and k is the number of objects embraced

by the shadow region.

A comparative study on shadowed sets induced by these aforesaid methods has
been carried out in [29]. The findings show that for randomly generated fuzzy sets,
different methods may produce different shadowed sets.

In summary, uncertainty balance is generally achieved by formulating an optimization-
based objective function whose terms are representations of an amount of fuzziness of
objects distributed in various regions of a shadowed set. So, Equations (2.8), (2.11)
and (2.14) in their present form are appropriate only for certain situations. Conse-
quently, these formulations may suffer from some limitations in reaching adequate
fulfillment of a principle of uncertainty balance.

3. The proposed method

Studies in shadowed sets point out that; to fulfill a principle of uncertainty bal-
ance, the main focus should be to achieve the following equation [27, 29]:

(3.1) ϕ(F ) = ϕ(Shd(S)).

We note that the fuzziness of a shadowed set is couched in the shadow region.
Equation (3.1) infers that the size of Shd(S), relative to ϕ(F ), should determine the
optimality of a given threshold value.

Noticeably, if µF (x) = 1
2 , then µϕF (x) = 1. Since element in Shd(S) have

µS(x) = 1
2 . Therefore, we have Card(Shd(S)) = ϕ(Shd(S)).

The meaningfulness of the idea proposed in this paper anchors on this notion,
and the fact that a shadowed set partitions a fuzzy set F into three disjoint regions,
such that the overall amount of fuzziness of F is distributed into the three regions,
and should be equivalent to the cardinality of Shd(S). Based on a principle of
uncertainty balance, we have the following closed-form formula:

(3.2)
∑

x∈Cor(S)

µϕF (xi) +
∑

x∈Red(S)

µϕF (xi) +
∑

x∈Shd(S)

µϕF (xi) = Card(Shd(S)).
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One can interpret Equation (3.2) as the extent to which the shadow region (i.e.,
right hand side of Equation (3.2)) accounts for ϕ(F ). That is, the optimal threshold
to be determined, should induce a shadow region satisfying Equation (3.1).

More explicitly, for any shadowed set S, Cor(S) and Red(S) are crisp sets,
whereas Shd(S) is not. Due to the elevation, reduction and fixing actions of S,
the uncertainty reduced (UR) and uncertainty introduced (UI) in S are respectively
calculated as:

UR =
∑

x∈Cor(S)

µϕF (xi) +
∑

x∈Red(S)

µϕF (xi)

and

UI = Card(Shd(S))−
∑

x∈Shd(S)

µϕF (xi).

Therefore, a principle of uncertainty balance is interpreted as the next equation:

UR = UI

which simplifies to Equation (3.2).

3.1. Theoretical analysis of uncertainty balance in shadowed sets. The fol-
lowing properties (i.e., theorems) facilitate discussion of uncertainty balance.

Throughout this section, (αi, 1 − αi), 1 ≤ i ≤ r denote the feasible thresholds
for constructing a shadowed set from a given fuzzy set, where αi ∈ (0, 12 ]. Further,
we assume that there are at least two of such pairs of feasible thresholds. Here α
is selected from the set consisting of all membership grades, µF (x), of an object,
x ∈ F , between 0 and 1

2 .
We note that for a given (discrete) fuzzy set F = {(x, µF (x)) : x ∈ X}, the choice

of αi is exactly the membership grades µF (x) ∈ (0, 12 ]. Also, it is important to

underline that selecting thresholds which do not coincide with µF (x) ∈ (0, 12 ] may
produce an approximation which does not conform with the structure of data, F .

Theorem 3.1. Let (α, 1−α) ∈ {(αi, 1− αi)} be any pair of feasible threshold values.
Then µϕF (x) < ϕ(1− α) if and only if x /∈ Shd(Sα), αi ∈ (0, 12 ].

Proof. Suppose ∀x ∈ F, µϕF (x) < ϕ(1− α). By implication, µF (x) < α or µF (x) >
1− α. Then µF (x) /∈ [α, 1− α]. Thus, x /∈ Shd(Sα).

Conversely, suppose x /∈ Shd(Sα). Then either µF (x) < α or µF (x) > 1− α. Let
ϕ(1 − α) = r ∈ R. Since ϕ is monotonically increasing in [0, 12 ] and monotonically

decreasing in [ 12 , 1], we have µϕF (x) < ϕ(1− α),∀x ∈ F .
This completes the proof. �

Theorem 3.2. Let B be the set of all patterns, x ∈ F , satisfying µϕF (x) ≥ ϕ(1−α)
with α ∈ (0, 12 ]. Then

(1) Red(Sα) ∪ Elv(Sα) = B′ = {x ∈ F : µϕF (x) < ϕ(1− α)},
(2) Shd(Sα) = B.

Proof. Recall that by the symmetric property of α, ϕ(α) = ϕ(1 − α). Let F =
{(x, µF (x)) : i = 1, 2, ..., n} , B = {x ∈ F : µϕF (x) ≥ ϕ(1− α)} and
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B′ = {x ∈ F : µϕF (x) < ϕ(1− α)}. For any x ∈ B′, since ϕ(µF (x)) = µϕF (x),
property (P4) of Subsection 2.2 guarantees that one of the inequalities hold:

* µF (x) < α ≤ 1
2 , or

* 1− α < µF (x) ≤ 1.

That is, either µF (x) is trailing behind α or, 1− α is trailing behind µF (x). This is
supported by Theorem 3.1. Then the membership grade of any x ∈ B′ is in one of
the intervals (0, α) or (1− α, 1]. Thus

Red(Sα) ∪ Elv(Sα) = B′ = {x ∈ F : µϕF (x) < ϕ(1− α)}.

Further, the pair of thresholds (α, 1− α) partitions F into disjoint regions:

Red(Sα), Elv(Sα) and Shd(Sα).

So B = F/B′. Theorem 3.1 guarantees that Shd(Sα) = B. In fact, ∀x ∈ B,
x ∈ Shd(Sα). Conversely, ∀x ∈ Shd(Sα), x ∈ B.
This completes the proof. �

Theorem 3.3. For any fuzzy set F , there exists a three-way approximation, Sα(α ∈
{αi : i = 1, 2, ..., r}), of F having the nearest amount of fuzziness, m = Card(Shd(Sα)),
to the total amount of fuzziness, ϕ(F ), in F . Here αi denote any feasible threshold.

Proof. Let α1 < α2 < ...αr denote the relation among the feasible threshold values
and ϕF be the fuzziness set of F . Then ϕ(1 − αr), ϕ(1 − αr−1)... upto ϕ(1 − α1)
cut ϕF from r different parts. Since α1 corresponds to min{µF (xi)}, from Theorem
3.2, we can find numbers

m1 = Card({x ∈ F : µϕF (x) ≥ ϕ(1− α1)}) = Card(Shd(Sα1
))

and

mr = Card({x ∈ F : µϕF (x) ≥ ϕ(1− αr)}) = Card(Shd(Sα1
)),

respectively having the maximum and minimum amount of fuzziness associated with
their corresponding shadow regions Shd(Sα1

) and Shd(Sαr ). Other threshold values
will induces shadowed sets whose total amount of fuzziness lie between m1 and mr.
Sorting mi in ascending order and, fixing ϕ(F ) in a suitable position among the
mi, say mα, we obtain the nearest amount of fuzziness to ϕ(F ). Hence, the result
holds. �

Remark 3.4. (1) Theorem 3.2 shows that every pair of feasible thresholds, (α, 1−α),
partitions a given fuzzy set in such a way that objects in the shadow region of the tri-
partition are always at and/or above the fuzziness cut, ϕ(1−α), of a fuzziness set ϕF .
By cutting ϕF at the right position, ϕ(1−α) can be used to induce an S which retains
the amount of fuzziness most equivalent to ϕ(F ). In fact, the principal idea of three-
way decisions, requires that the optimized threshold, 1− α, facilitate an evaluation
of an object for acceptance or rejection whenever its associated uncertainty is below
ϕ(1− α), otherwise a non-commitment decision is reached.

(2) Theorem 3.3 discusses the existence of a shadowed set which fulfills a principle
of uncertainty balance. In three-region shadowed sets, such mα (i.e., as observed in
the theorem) is the best possible.
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In what follows, we discuss more detailed issue on uncertainty balance.

Consider the fuzzy set F depicted in Figure 1. Suppose (αi, 1 − αi), 1 ≤ i ≤ r,
are feasible thresholds for constructing shadowed sets Sαi . Let Figure 2 depict the
graph of the fuzziness set of F .

Figure 1. A curve representing a fuzzy set.

Figure 2. A graph of fuzziness set of a fuzzy set.

The pair of optimum thresholds, say, (αk, 1−αk) to be found can be comprehended
from Equation (3.1) and Theorem 3.2. From Theorem 3.2, A3 + A4 is the union of
Red(Sαk) and Elv(Sαk). Also A1 + A2 captures the patterns in Shd(Sαk). Hence,
the goal of a principle of uncertainty balance is to search for 1 − αk-cut such that
the line ϕ(1 − αk) cuts the graph of Figure 2 to the horizontal in such a way that
the total number of objects, x ∈ F , satisfying the inequality µϕF (x) ≥ ϕ(1 − α)
(i.e., objects on and/or above the horizontal line drawn to ϕ(1 − αk)) is the most
equivalent to ϕ(F ).

Illustratively, suppose F is depicted as in Figure 3 such that ϕ(F ) = 10.4, say,
and if the total number, n[ϕ(1− αk)], of patterns, x ∈ F , on and/or above the line
ϕ(1−αk) is 10. Then (αk, 1−αk) becomes the desired pair of optimum thresholds,
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Figure 3. A graph depicting a discrete fuzzy set

Figure 4. The optimum fuzziness cuts, ϕ(1−αk), of the fuzziness
set of the discrete fuzzy set

as it produces the closest number to 10.4. Figure 4 brings home the idea.

In this instance (i.e., Figure 2),

Card({x ∈ F : µϕF (x) ≥ ϕ(1− αk)}) = Card(Shd(Sαk)) = 10.

Noticeably,

(3.3) ϕ(F ) = A3 +A4 +A1 +A2.

By assuming that the integral exist, the overall fuzziness of F can be expressed from
Equation (3.1), (3.2) and (3.3) to obtain:

(3.4) ϕ(F ) =

∫
x:µϕF (x)<ϕ(1−αk)

µϕF (x) +

∫
x:µϕF (x)≥ϕ(1−αk)

µϕF (x).

Following the ideas obtained from Theorem 3.2 and Equation (3.1), we have the
following modification of Equation (3.3):
(3.5)

Card({x ∈ F : µϕF (x) ≥ ϕ(1− αk)}) =

∫
x:µϕF (x)<ϕ(1−αk)

µϕF (x)+

∫
x:µϕF (x)≥ϕ(1−αk)

µϕF (x)
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or
(3.6)

Card({x ∈ F : αk ≤ µF (x) ≤ 1− αk}) =

∫
x:µϕF (x)<ϕ(1−αk)

µϕF (x)+

∫
x:µϕF (x)≥ϕ(1−αk)

µϕF (x).

Therefore, the required pair of thresholds which fulfills uncertainty balance is
obtained by minimizing the absolute difference:

(3.7) J(α) = |
∫
x:µϕF (x)<ϕ(1−α)

µϕF (x) +

∫
x:µϕF (x)≥ϕ(1−α)

µϕF (x)− z|,

where z = Card({x ∈ F : α ≤ µF (x) ≤ 1− α}), α ∈ (0, 12 ].

In passing, we search for the following optimum threshold:

(3.8) α(opt) = argminαJ(α).

For discrete membership values µF (xi), (i = 1, 2, ..., n), Equation (3.6) is ex-
pressed as:

(3.9) α(opt) = argminαJ
′(α),

where

J ′(α) = |
∑

x∈Cor(S)

µϕF (xi) +
∑

x∈Red(S)

µϕF (xi) +
∑

x∈Shd(S)

µϕF (xi)− z|.

Equivalently, we have

(3.10) α(opt) = arg(minα|g + h+ i− z|),
where

g =
∑

µF (xi)<α

ϕ(µF (xi)),

h =
∑

µF (xi)>1−α

ϕ(µF (xi)),

i =
∑

α≤µF (xi)≤1−α

ϕ(µF (xi)),

z = Card({x ∈ X : α ≤ µF (xi) ≤ 1− α}).

Theorem 3.5. Let F be a fuzzy set and (αi, 1− αi), 1 ≤ i ≤ r, be pairs of feasible
thresholds. For fixed k, the pair (αk, 1−αk) ∈ {(αi, 1− αi)} satisfying a principle of
uncertainty balance is unique. That is, F has exactly one optimum solution Sαk(opt).

Proof. Suppose for contradiction that F has two solutions Sαk and Sαk′ . Then we
must have Shd(Sαk) and Shd(Sαk′ ) as the nearest amount of fuzziness to ϕ(F ) such
that Card(Shd(Sαk)) = Card(Shd(Sαk′ )).

Selecting the feasible α-cuts in F and arranging them in ascending order in a
set: A = {α1 = minµF (xi), α2, ..., αr}, it can be observed that A is well-ordered.
Consequently, the set of intervals {(αi, 1− αi)}, 1 ≤ i ≤ r, is well-ordered. That is,
for any two pairs of feasible thresholds (α, 1− α), (α′, 1− α′) ∈ {(αi, 1− αi)}, only
one of the proper subsethood relation holds:
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(1) (α′, 1− α′) ⊂ (α, 1− α),
(2) (α, 1− α) ⊂ (α′, 1− α′).

This contradicts the initial assumption which infers that

Card(Shd(Sαk)) = Card(Shd(Sαk′ )).

Then each pair (α, 1− α) must induce a shadow region of distinct cardinality.
Further, in Equations (3.5) or (3.7), the value of J(α) is influenced by the size of z.
That is, different Shd(Sα), α ∈ (minµF (x), 12 ] give rise to different Card(Shd(Sα)).
Thus there is only one pair of thresholds, (αk, 1− αk), generating a number
Card(Shd(Sαk)) nearest to ϕ(F ), and this pair of thresholds is unique. �

Theorem 3.6. The objective function J(α) attains its maximum and minimum
values in (0, 12 ], where

J(α) = |
∑

µϕF
(x)<ϕ(1−αi)

µϕF (xi) +
∑

µϕF
(x)≥ϕ(1−αi)

µϕF (xi)− Card(Shd(Sαi))|.

Proof. Let α1 < α2 < ... < αr, αi ∈ (0, 12 ], be the relation among feasible threshold
values. Then the following subsethood relation holds:

(αr, 1− αr) ⊂ (αr−1, 1− αr−1) ⊂ ... ⊂ (α1, 1− α1).

Thus we have

Card(Shd(Sαr )) < Card(Shd(Sαr−1
)) < ... < Card(Shd(Sα1

)).

Further, the relation ϕ(1−α1) < ϕ(1−α2) < ... < ϕ(1−αr) holds. By implication,
the following inequalities are obtained:∑

µϕF
(x)<ϕ(1−α1)

µϕF (xi) <
∑

µϕF
(x)<ϕ(1−α2)

µϕF (xi) < ... <
∑

µϕF
(x)<ϕ(1−αr)

µϕF (xi)

and ∑
µϕF

(x)≥ϕ(1−α1)

µϕF (xi) >
∑

µϕF
(x)≥ϕ(1−α2)

µϕF (xi) > ... >
∑

µϕF
(x)≥ϕ(1−αr)

µϕF (xi).

Moreover, for all p 6= q, we have the following equation:
(3.11) ∑
µϕF

(x)<ϕ(1−αp)

µϕF (xi)+
∑

µϕF
(x)≥ϕ(1−αp)

µϕF (xi) =
∑

µϕF
(x)<ϕ(1−αq)

µϕF (xi)+
∑

µϕF
(x)≥ϕ(1−αq)

µϕF (xi).

However, J(αp) 6= J(αq), p 6= q. So Equation (3.9) infers that the value of J(α) is
influenced by

Card({x ∈ F : µϕF (x) ≥ ϕ(1− αi)}) = Card(Shd(Sαi)).

Since ϕ(1− α1) < ϕ(1− α2) < ... < ϕ(1− αr), the set

{Card({x ∈ F : µϕF (x) ≥ ϕ(1− αi)}) : 1 ≤ i ≤ r}

is well-ordered. Hence, it must contain two numbers nearest to ϕ(F ) and farthest
from ϕ(F ). These numbers guaranty the existence of the required minimum and
maximum.

This completes the proof. �
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3.2. Algorithm to obtain optimum thresholds from the proposed method.
A constructive algorithm to obtain the optimum threshold which fulfills a principle
of uncertainty balance can be drawn in the following steps:

Input: F = {(xi, µF (xi)) : i = 1, 2, ..., n},
Output: Optimum threshold value 1− α, Let

αj ∈ (min{µF (xi)}, µF (xk+1), ..., µF (xk+r) ≤
1

2
)

(i.e., αj , for each j is drawn from the ordered pair

(min{µF (xi)}, µF (xk+1), ..., µF (xk+r) ≤
1

2
)),

j, k, r = 1, 2, ...p,

(1) Determine ϕ(1− αj) by ϕ(1− αj) = 1− |2(1− αj)− 1|, j = 1, 2, ...p,
(2) Compute ϕ(F ) by Equation (2.2),
(3) Compute µϕF (xi) from µF (xi) by µF (xi) = 1− |2µF (xi)− 1|, ∀i,
(4) Initialization:

Shd(S1−αj ) = {},
(5) while µϕF (xi) ≥ ϕ(1− αj) (for any i and fixed j):

put x in Shd(S1−αj ). i.e., Shd(S1−αj ).append(xi)
do for all i ≤ n,

(6) Determine Card(Shd(S1−αj )), ∀j,
(7) Compute dj = |ϕ(F )− Shd(S1−αj )|, for each j,
(8) Determine min{dj} over j,
(9) Return 1− αk as optimum threshold value if dk = min{dj}, for fixed index

k.

In the algorithm, αj denote the feasible thresholds drawn from the interval

[min{µF (x)},max{µF (x)} ≤ 1

2
].

(5) and (6) determine the amount of fuzziness in each feasible shadowed set, S1−αj .
(7) computes the discrepancies between the fuzziness in F and S1−αj . Once the
minimum discrepancy is determined by line 8, the optimum threshold which satisfies
a principle of uncertainty balance is returned.

Another approach for obtaining the optimum threshold is to apply the closed-form
formula in Equation (3.2). From (5), we may also compute the number, n(1− αk),
of patterns x ∈ F satisfying the inequality therein. Line 6 can be replaced with ”if
‖floorϕ(F ) ≤ n(1− αk) ≤ ‖ceilϕ(F )”, then return 1− αk as optimum threshold.

3.3. Relationship between the proposed idea and Tahayori et al. method.
As reported in [27], the optimum threshold (which corresponds to ϕ(1−α) in Figure
2), to be found should be such that

(3.12) A1 +A2 = A3 +A4.

That is, for the fuzziness set, ϕF , the threshold to be found should be such that
the membership values of elements with µϕF (x) < ϕ(1 − α) would compensate the
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membership values of all elements with µϕF (x) ≥ ϕ(1− α) to become full members
of ϕF . Theoretically, this is captured with the aid of the next equations:

(3.13)
∑

µϕF
(x)<ϕ(1−α)

µϕF (x) =
∑

µϕF
(x)≥ϕ(1−α)

(1− µϕF (x))

or

(3.14)
∑

µF (x)<α

µϕF (x) +
∑

µF (x)>1−α

µϕF (x) =
∑

α≤µF (x)≤1−α

(ϕ(
1

2
)− µϕF (x)).

The next equation (i.e., Equation (3.14) and (3.15) shows that this formulation
agrees with our proposed idea (Equations (3.4)–(3.80). However, Equation (3.12)
may come with the following misleading interpretations, which may misinform a
user:

(1) one may interpret it as the optimum threshold to be found should be such
that the total amount of fuzziness in the reduced and elevated area should be
equal to the the total amount of fuzziness in the shadow area. Such threshold
value may be too restrictive and may not guaranty ϕ(F ) ≡ ϕ(Shd(Sα)).
Tahayori et al., [27] use Equation (3.12) to denote the fuzziness which is to be
minimized and maximized in the Cor(S), Red(S) and Shd(S), respectively.

(2) from semantic standpoint, the notational system of Equation (3.13) may
not give a clear idea on the overall amount of fuzziness in Shd(Sα). So, the
relationship between the expected size of the shadow region of S and the
overall amount of fuzziness in F as distributed over the three regions of S is
not easily visualized.

Notice that from right hand side of Equation (3.12), we can set
(3.15)∑
µϕF

(x)≥ϕ(1−α)

(1−µϕF (x)) = Card({x ∈ F : α ≤ µF (x) ≤ 1− α})−
∑

µϕF
(x)≥ϕ(1−α)

µϕF (x).

Therefore, Equation (3.12) can now be expressed as:
(3.16)∑
µϕF

(x)<ϕ(1−α)

µϕF (x) +
∑

µϕF
(x)≥ϕ(1−α)

µϕF (x) = Card({x ∈ F : α ≤ µF (x) ≤ 1− α}).

This is equivalent to Equation (3.5).

3.4. Two senses of uncertainty balance. The ideas drawn from the proposed
formulation and the work in [27], when combined together gives two interpretations
(i.e., thresholds (α, 1 − α) for abridging membership grades and, the fuzziness-cut
for making crisp and/or non-commitment decisions) of balance of uncertainty. They
point out two senses of uncertainty balance:

(1) structure-sensitive approximation. That is, balanced partitioning of F in
terms of its related information and uncertainty. This is achieved with the
aid of (α(opt), 1− α(opt)),

(2) information filtering. That is, separating objects for which there is sufficient
information for taking clear decision action (i.e., objects with low enough
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fuzziness) from the ones we are not clear about (i.e., objects with very high
fuzziness). This is achieved with the aid of the fuzziness-cut, ϕ(1− α(opt)).

Practically speaking, an effective decision-making strategy can be drawn from (1)
and (2) above. That is, on one hand, one could partition a data set involving
uncertainty with the aid an optimum criteria. On the other hand, the fuzziness-cut
can facilitate selection of objects that could be used in precisely interpreting the
data set of concern.

In order to bring home this idea, we will apply this strategy in shadowed C-means
clustering.

4. Examples

4.1. Synthetic data set. A synthetic fuzzy set F1 consists of 30 items. Their
membership values is given in Table 1. The optimized thresholds, fuzziness of the

Table 1. Synthetic dataset of typical fuzzy set, F1

Items µF1
(xi) Items µF1

(xi) Items µF1
(xi)

x1 0.05 x11 0.65 x21 0.15
x2 0.10 x12 0.65 x22 0.40
x3 0.20 x13 0.75 x23 0.45
x4 0.29 x14 0.75 x24 0.55
x5 0.30 x15 0.75 x25 0.28
x6 0.30 x16 0.80 x26 0.38
x7 0.35 x17 0.80 x27 0.15
x8 0.35 x18 0.85 x28 0.12
x9 0.50 x19 0.90 x29 0.26
x10 0.60 x20 0.95 x30 0.31

induced shadowed set, discrepancy and error incurred by various methods are re-
ported in Table 2:

Table 2. Optimized thresholds for discrete fuzzy set F1

Method Optimized (α, 1− α) ϕ(S) ϕ(F1) Discrepancy Error
Pedrycz (0.38, 0.62) 6 15.88 9.88 6.2
Taha et al (0.26, 0.74) 16 15.88 0.12 4.74
Deng and Yao (0.30, 0.70) 13 15.88 2.88 4.90
Ibra and Will (0.25, 0.75) 19 15.88 3.12 4.74
Willi et al (0.25, 0.75) 19 15.88 3.12 4.74
Proposed (0.26, 0.74) 16 15.88 0.12 4.74

The methods whose threshold values fulfill a principle of uncertainty balance are
in bold font. Their outstanding performance are easily seen (i.e., row 4 and 8 of
Table 2) from their minimal discrepancy in retention of overall amount of fuzziness
encountered in F1.

As another example, we consider the commonly used fuzzy set [5, 27] viz. Gaussian
fuzzy set.

4.2. Gaussian fuzzy set. Consider a Gaussian membership function

µF (xi) = e−(
xi−x̄
σ )2

describing ages, xi, of players in Aduvie School baseball team. The mean age is
x̄ = 30.68, the spread, σ = 6.09, and
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xi = 21, 21, 22, 23, 23, 24, 24, 25, 25, 28, 29, 29, 31, 32, 33, 33, 34, 35, 36, 36, 36, 36, 38, 38, 40
represent the ages of the players.
The relationship explaining the normal distribution of the ages may be view from
the membership values summarized in Table 3:

Table 3. Gaussian fuzzy set, F2

Items µF2
(xi) Items µF2

(xi) Items µF2
(xi)

x1 0.08 x9 0.83 x17 0.61
x2 0.08 x10 0.92 x18 0.47
x3 0.13 x11 0.92 x19 0.47
x4 0.20 x12 1.00 x20 0.47
x5 0.29 x13 0.95 x21 0.47
x6 0.29 x14 0.87 x22 0.24
x7 0.42 x15 0.87 x23 0.24
x8 0.42 x16 0.74 x24 0.10

The optimum thresholds for crisply interpreting ages, as well as, the discrepancy
and error induced by various methods for the Gaussian fuzzy set are shown in Table
4:

Table 4. Optimized thresholds for discrete fuzzy set F2

Method Optimized (α, 1−α) ϕ(S) ϕ(F2) Discrepancy Error
Pedrycz (0.47, 0.53) 4 11.32 7.32 3.82
Taha et al (0.24, 0.76) 12 11.32 0.68 2.72
Deng and Yao (0.24, 0.76) 12 11.32 0.68 2.72
Ibra and Will (0.08, 0.92) 22 11.32 10.68 5.02
Willi et al (0.20, 0.80) 13 11.32 1.68 2.72
Proposed (0.24, 0.76) 12 11.32 0.68 2.72

Here (i.e., in Table 4) the methods in bold font achieve the same level of discrepancies
and have outstanding performance.

Remark 4.1. (1) It can be deduced from column 5 and 6 of Tables 2 and 4
that when constructing a shadowed set, an optimum threshold value which
minimizes approximation error, may not balance the underlying uncertainty
of F in S. Also, a threshold value which balances the underlying uncertainty
may not minimize the error in approximation.

(2) Adequate fulfillment of both uncertainty balance and minimization of ap-
proximation error may be achieved from n(> 3)-region shadowed sets. This
will be demonstrated in Section 5.

4.3. Application example. We consider shadowed C-means (SCM) clustering [16];
which relies on shadowed sets, as our application example. In what follows, brief
introduction of SCM clustering is provided.

4.3.1. Shadowed C-means (SCM) clustering. Shadowed set approximation of fuzzy
c-means clustering is performed by exploiting an approach known as shadowed C-
mean clustering (SCM) [17]. An SCM clustering approach represents each cluster
as a shadowed set. For desired number of clusters C, it computes the means (or
centroids) v1, v2, ..., vC of the clusters, associates objects to each centroid according
to some computed membership degree, and determines a collection of thresholds
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α1(opt), α2(opt), ..., αC(opt) which facilitate the three-way clusters. Accordingly,
each fuzzy cluster c̄k is transformed into ck and partitioned in three regions with

the aid of αk(opt) (α ∈ [µimin ,
µikmin+µikmax

2 ]) determined bu using a shadowed set
approximation method. Here µikmin and µikmax are minimal and maximal member-
ship grades in the kth cluster.

Mitra et al. [17] modified Equation (2.7) and obtained:

(4.1) αk(opt) = minαk |
∑

µik<αk

µik +
∑

µik>(µikmax−αk)

(µikmax − µik)− c′|,

where c′ = Card({i|αk ≤ µik ≤ (µikmax − αk)}) and µik is calculated as

(4.2) µik =
1∑c

j=1(
||xai−vk||2
||xai−vj ||2

)
2

m−1

similar to fuzzy C-means clustering (FCM). Here we take m as 2.
After completing the computation of αk(opt), the SCM weighs the objects based on
their fulfilment of the critria 1 − α(opt), [α(opt), 1 − α(opt)] and α(opt), inducing
regions:

Cor(ck) = {x ∈ ck : µck(x) > 1− αk},

Shd(ck) = {x ∈ ck : α ≤ µck(x) ≤ 1− αk}

and

Red(ck) = {x ∈ ck : µck(x) < αk}

which are then used to update the centroid, vk, defined by:

(4.3) vk =

∑
x∈Cor(ck) x

a
i +

∑
x∈Shd(ck) µ

m
ikx

a
i +

∑
x∈Red(ck)(µik)m

m

xai

u′ + v′ + w′
,

where

u′ = Card({i|µik > (µikmax − αk)}),

v′ =
∑

αk≤µik≤(µikmax−αk)

µmik

and

w′ =
∑

µik<αk

µm
m

ik .

The elements in Cor(ck) do not have any fuzzy weight factor, while the elements in
other regions are treated as in FCM clustering technique. In particular, the elements
in Red(ck) are assigned double exponential fuzzifier. This shows a very low bias for
excluded objects, thereby minimizing the effect of noise and outliers [16].

The SCM clustering method repeats computation of µik from Equation (3.18) and
then the computation of the centroid is repeated until convergence (i.e., |µik(t) −
µik(t− 1)| < ε, at maximum iteration t) is reached.
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4.3.2. Cluster validity indexes. In the literature [7, 19, 26], some validity indexes
have been proposed to evaluate the quality of clustering, namely DB, XB, PBM
indexes. This indexes anchor on a principle that minimizes intra-cluster distance
(compactness) and maximizes inter-cluster distance (separation). As observed in
[25], formulation of these indexes are primarily couched with minimum and/or max-
imum distance between centroids and, are therefore sensitive to outliers. In order to
overcome this issue, Saitta et al. [25] proposed a bounded index for cluster validity
called the score function (SF). This index will be used to evaluate the performance
of various SCM clustering technique. Here SF is defined as:

(4.4) SF = 1− 1

eebcd−wcd
,

where
bcd = 1

nc

∑C
j=1 ||vj − x̄||2.nj is the between cluster distance,

wcd = 1
C

∑C
j=1

√
1

Card(cj)

∑
x∈cj ||x− vj ||

2 is the within cluster distance,

n and nj are respectively the number of patterns in dataset X and the numbers of
patterns in the j-th cluster. Also, C and x̄ denote the number of cluster and the
mean of the dataset, respectively.

Accordingly, we define the H-index as follows:

(4.5) H = −log(
wcd

bcd
).

The goodness of clustering is determined by minimum values of SF and H.

Example

The aim of the following example is to demonstrate how two-senses perspective
of uncertainty balance is fast to discover meaningful structures (i.e., clusters) in
datasets and to underline that uncertainty balance,when applied in data clustering,
on its own may not effectively learn the underlying structure inherent in the dataset.
Noticeably, all shadowed set approximation methods may learn the structure of data
at different (higher or lower) number of iterations. We purpose to observe the method
that is quick to learn the underlying pattern of the dataset.
As the rate of convergence to the original structure of the dataset can be visualized
from the third iteration, we report three iterations which help in explicating the
expected centroids determined by various approximation methods.

A two dimensional dataset (i.e., D32) ([17, 38]), is used in the SCM clustering exper-
iments. In order to minimize the number of iterations and accelerate the process and
quality of clustering, we adopt the method of obtaining initial centroid described in
[1]. D32 is presented in Table 5, where a and b denote the attributes of the pattern
described in Figure 5. We note that the initial cluster centroids (i.e., patterns with
x marks in Figure 5) that are used are calculated as [6.9, 3.3] and [7.1, 6.0]. Also,
our choice of fuzzifier m [22, 38, 39] is taken as 2.
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Table 5. Clustering dataset 1
Pattern a b Pattern a b Pattern a b
x1 1 3 x12 5 3 x23 10 4
x2 2 3 x13 5 4 x24 10 5
x3 3 2 x14 6 3 x25 11 2
x4 3 3 x15 7 3 x26 11 3
x5 3 4 x16 8 3 x27 11 4
x6 4 1 x17 9 3 x28 12 3
x7 4 2 x18 9 3 x29 13 3
x8 4 3 x19 9 4 x30 4 20
x9 4 4 x20 10 1 x31 7 20
x10 4 5 x21 10 2 x32 10 20
x11 5 2 x22 10 3 . . .

Figure 5. Topology of D32

Two main clusters can be easily observed by eyeballing. Patterns x30, x31 and x32
(see Table 6) are inserted into the dataset as noisy objects. An efficient representa-
tion of D32 should effectively deal with the aforesaid fuzziness by classifying them
into the boundary region of the clusters. One can identify two notable clusters (to
the left and right of Figure 5) lying between 0 to 7 and 8 to 14 of the a-axis. The
next table shows the thresholds, and the centroids obtained by various methods in
the third iteration: The deviation in column 5 of Table 6 is calculated by using the

Table 6. Thresholds and centroids for D32

Methods Optimized threshold
(α, β)

Cluster centre
1

Cluster centre
2

D(ci) SF H

Pedrycz (0.132, 0.856), (0.044, 0.955) [6.943, 3.021] [7.033, 19.899] 650.736 0.9998 1.3124
Taha. et al. (0.120, 0.834), (0.084, 0.915) [6.878, 3.025] [7.060, 19.590] 642.378 1.0000 1.0524
Deng and Yao (0.151, 0.814), (0.064, 0.935) [6.926, 3.011] [7.045, 19.873] 650.077 0.9998 1.3096
Ibra and Willi (0.021, 0.920), (0.079, 0.920) [7.009, 2.948] [8.468, 18.691] 621.064 1.0000 1.0284
Willi et al (0.034, 0.930), (0.066, 0.934) [6.934, 3.010] [6.969, 19.487] 639.561 0.9999 0.5485
Proposed (0.120, 0.834), (0.084, 0.915) [6.878, 3.025] [7.060, 19.590] 642.378 1.0000 1.0524
Two-senses (0.145, 0.838), (0.159, 0.840) [3.771, 2.946] [10.003, 3.075] 331.378 0.9979 0.1460

following equation:

(4.6) D(ci) =

C∑
j=1

n∑
i=1

||xai − vj ||2.

In Equation (4.6), xai is the attribute of the i-th object in the dataset. This equation
measures the degree to which the computed cluster centroid captures the central
position of the patterns in a given cluster. In fact, it shows the appropriateness
of the calculated cluster centroid relative to the data structure. Minimum value of
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D underlines the efficiency of the clustering technique in recognizing the pattern
described by the dataset.

4.4. Discussion. The schema of an SCM clustering classifies pattern in a cluster by
relying on a criteria (α, 1−α). Computation of cluster centorid utilizes the attributes
and membership grades of all patterns in the cluster. However, the quality of the
computed centroid is degraded by patterns exhibiting very high degree of fuzziness
to a cluster. Consequently, the obtained centroids, no matter how well separated
they may be, may not adequately capture the true position of their representatives.
In order to determine cluster centroids which maintain the true position of their rep-
resentatives, two types of cuts are used to (i.e., α-cuts; for upgrading membership
values and, fuzziness-cut; for separating objects for which there is sufficient infor-
mation for making clear decision about their membership to a cluster) partition a
fuzzy cluster. We call this approach ”two-senses” clustering method.

The procedure for identifying patterns which exhibit very high degree of fuzziness
is comprehended from what follows:

First of all, we define the fuzziness set, ϕck , of ck as follows:

ϕck = {(xi, ϕ(xi))|ϕ(xi) = 1− |2µik − 1|}.
Let ϕmaxck and ϕminck denote the maximum and minimum degree of fuzziness of
the objects in ck. We search for a pair of optimum fuzziness values,

(ϕ∗, ϕ∗∗),

where ϕ∗ = ϕmaxck − ϕ
∗∗ and ϕ∗ ∈ [ϕminck ,

ϕmaxck
−ϕminck
2 ].

This optimum threshold is calculated as:

(4.7) ϕ∗(opt) = minϕ∗ |u+ v + w − z|,
where

u =
∑

ϕck
(x)<ϕ∗

ϕ(x),

v =
∑

ϕck
(x)>ϕ∗∗

ϕ(x),

w =
∑

ϕ′≤ϕck (x)≤ϕ∗∗

ϕ(x),

z = Card({x|ϕ∗ ≤ ϕck(x) ≤ ϕ∗∗}).
With the aid of the aforesaid optimized fuzziness thresholds, the following decision
rules are used to refine a three-way cluster:

Accept fuzziness (AF):

An object with lower fuzziness is accepted as belonging to a cluster, if its mem-
bership grade to the fuzziness set, ϕck , is less than ϕ∗. That is,

AF = {x|ϕck(x) < ϕ∗}.
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Undecided fuzziness (UF):

We postpone the decision as to the inclusion or exclusion of an object to a clus-
ter, if its membership grade to the fuzziness set ϕck is between ϕ∗ and ϕ∗∗. That
is,

UF = {x|ϕ∗ ≤ ϕck(x) ≤ ϕ∗∗}.

Reject fuzziness (RF):

An object with higher fuzziness is rejected as belonging to a cluster, if its mem-
bership grade to the fuzziness set ϕck is greater than ϕ∗∗. That is,

RF = {x|ϕck(x) > ϕ∗∗}.

In view of the aforesaid, any pattern in RF will not be used during computation
of cluster centroids. The thresholds and centroids obtained by using this idea are
shown in the last row of Table 6.

Let us discuss the results presented in Table 6. In the following figures, the pat-
terns represented in green, blue and red circles are core, fringe and outlier (excluded)
to cluster 1, respectively. Patterns in red are outliers and, are evaluated for possible
consideration in cluster 2. The centroids are depicted with purple x marks.
The centroids computed by deploying Equation (2.8) into the schema on D32 yield
the following plots:

Figure 6. SCM clustering of D32 with Equation (2.8): Cluster 1

Cluster 2 yields Figure 7:

When the formulation in Equation (2.10) (Tahayori et al., 2013) is deployed to
cluster patterns in D32, we obtain the next to figures:
Cluster 2 yields Figure 9:

When the formulation in Equation (2.11) (Deng and Yao, 2014) is deployed in the
schema on D32, we obtain the next two figures:
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Figure 7. SCM clustering of D32 with Equation (2.8): Cluster 2

Figure 8. SCM clustering of D32 with Equation (2.10): Cluster 1

Figure 9. SCM clustering of D32 with Equation (2.10): Cluster 2

Cluster 2 yields Figure 2.11:
The clustering induced by deploying Equation (2.14) (Ibrahim and William-West,
2019) yields the next two figures:

Cluster 2 yields Figure 13:

The clustering determined by deploying Equation (2.16) (William-West et al., 2019)
yields the next two figures:

Cluster 2 yields Figure 15:

The clustering obtained from Two-senses approximation is shown in the last two
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Figure 10. SCM clustering of D32 with Equation (2.11): Cluster 1

Figure 11. SCM clustering of D32 with Equation (2.11): Cluster 2

Figure 12. SCM clustering of D32 with Equation (2.14): Cluster 1

figures:

The clustering of patterns in cluster 2 is shown in the next figure:

Noticeably from Figures 6–17, only the two-senses approach show better perfor-
mance in terms of fast learning of the structural pattern described by D32. So,
its clustering effectively align with the intuitive idea of the topology of D32. The
other methods produce two clusters: classifying noisy patterns into one cluster and
the patterns directly below them into another cluster. This is merely a structural
assumption, and does not reflect our intuition about D32.
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Figure 13. SCM clustering of D32 with Equation (2.14): Cluster 2

Figure 14. SCM clustering of D32 with Equation (2.16): Cluster 1

Figure 15. SCM clustering of D32 with Equation (2.16): Cluster 2

Further, it can be observed from the cluster centroids (i.e., the patterns with purple
x marks) that the two-senses approach determines a central position of their repre-
sentatives, which adequately conform with the intuitive idea, as portrayed by the
patterns. Hence, the method gives a more appealing representation of D32. This is
supported by the minimum value of D in Table 6.

From the insightful gain obtained from clustering D32 with various shadowed set
approximation techniques, the following conclusions could be made:

(1) without isolating patterns which exhibit very high degree of uncertainty to
a cluster when the centroids are computed, an SCM algorithm may not
effectively minimize the influence of uncertain patterns. Also, it may not
ensure that we have centroids which do not drift from the true position of
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Figure 16. SCM clustering of D32 with Two-senses approach:
Cluster 1

Figure 17. SCM clustering of D32 with Two-senses approach:
Cluster 2

their representatives. Consequently, the underlying structure in the dataset
may be perceived differently (i.e., as in D32, uncertain patterns may be
grouped together, while every other pattern may be viewed as been related
to the same group),

(2) shadowed set approximation based on a principle of uncertainty balance
plays a key role in data mining. However, being primarily couched in uncer-
tainty and information preservation, on its own, may not effectively deal with
pattern recognition task, especially when the structure of the dataset is such
that the within-cluster distance is bigger than the between-cluster distance.
In fact, it attempts to preserve the original uncertainty in the dataset and
thereby, producing the largest (respectively smallest) fringe region according
to the magnitude of the uncertainty encountered in each cluster. For the
case of having large fringe size, this may lead to a clustering with patterns
concentrating at the boundary and, may misguide formation of core region.

(3) the two-senses approach learns the structural configuration of the dataset
faster. This is evident from Figures 16 and 17. However, as shown in
Figures 16 and 17, a few data objects are apparently partitioned into the
wrong regions, namely patterns x14, x16, x30, x31 and x32,

(4) The ratio between compactness and separation of clusters, numerically ex-
pressed as SF , as well as H-index, evaluates the performance of two-senses
shadowed C-means clustering method for D32 to be outstanding. This
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method exhibits the capability to effectively deal with pattern recognition
task that cannot be handled by uncertainty balance method.

5. A need for shadowed sets with higher number of approximation
regions

Remark 4.1 motivates the introduction of n(> 3)-way approximation of fuzzy sets
via shadowed sets.
In an attempt to increase the number of approximation regions in shadowed sets,
the first point of departure is to consider four-region shadowed sets. This may be
in line with Lukasiewicz n-valued logic, when n = 4. However, two problems may
arise:

(1) how to define the complement of the fourth region. Suppose we can assign
the following membership values to the four regions: 0, 0.25, 0.75 and 1. This
would lead to a new type of problem:

(2) a shadowed set which lacks well-defined boundary region.

We note that introduction of four-region shadowed sets may lead to introduction of
five-region shadowed set. This is supported by the profound findings on truth-value
judgment involving vagueness from a study by Zehr [35].

The cognitive basis for five-region shadowed sets, S5, can be explained from the
studies on techniques of chunking (i.e., a method of transforming information into
manageable size) in [3, 15].

Formally, by exploiting the four threshold values α, β, γ and ρ, we partition a fuzzy
set into five-regions:

(1) Cor(S5) = {x ∈ F : µF (x) ∈ [ρ, 1]},
(2) SCor(S5) = {x ∈ F : µF (x) ∈ (γ, ρ)},
(3) Shd(S5) = {x ∈ F : µF (x) ∈ [β, γ]},
(4) SRed(S5) = {x ∈ F : µF (x) ∈ (α, β)},
(5) Red(S5) = {x ∈ F : µF (x) ∈ [0, α]}.

The threshold values are such that 0 < α ≤ β, α+ β = 1
2 , α+ ρ = 1, β + γ = 1 and

γ ≤ ρ. Also, 1- 5 represent the core (i.e., highlighting clearly true instances), semi-
core (i.e., highlighting possibly true instances), shadow (i.e., highlighting borderline
instances), semi-reduced (i.e., highlighting possibly false instances) and reduced area
(i.e., highlighting clearly false instances). The semi-core and semi-reduced zones con-
sist of objects for which there is no sufficient information as to their full inclusion
into the core and exclusion from the set, respectively. Essentially, these zones are
introduced to control the effects of taking wrong/quick decision.

Let us discuss key aspect of induction of S5. Consider the fuzzy set described in Fig-
ure 18 and its resulting fuzziness set in Figure 20. Construction of S5 requires that
Figure 18 give rise to Figure 19. That is, the approximation procedure (as summa-
rized in Figure 19) involves elevating elements’ membership values to 0.25, 0.5, 0.75
and 1 if they are greater than α, β, γ and ρ, respectively. Similarly, we reduce the
membership values to 0, 0.25, 0.5 and 0.75 if they are less than α, β, γ and ρ.
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Figure 18. Graph of fuzzy set.

Figure 19. Five-region approximation of fuzzy set

Figure 20. Fuzziness graph.

The following property facilitate discussion of uncertainty balance in five-region
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shadowed sets. Determination of the optimum thresholds is deduced from the same
property.

Theorem 5.1. Let (α, ρ) and (β, γ) be any pair of feasible thresholds for constructing
S5 from F . Then ∀x ∈ F , we have

(1) x ∈ (Cor(S5) ∪Red(S5)) if and only if µϕF (x) ≤ ϕ(ρ),
(2) x ∈ (SCor(S5) ∪ SRed(S5)) if and only if ϕ(ρ) < µϕF (x) < ϕ(γ),
(3) x ∈ Shd(S5) if and only if µϕF (x) ≥ ϕ(γ)

Proof. Recall that ϕ(ρ) = ϕ(α) and ϕ(β) = ϕ(γ).
(1) Suppose x ∈ (Cor(S5) ∪ Red(S5)). Then µF (x) ∈ (0, α] or µF (x) ∈ [ρ, 1].

Since ϕ is monotonic increasing in (0, α] and monotonic decreasing in [ρ, 1] and,
attains its maximum value for both interval at α and ρ,n µϕF (x) ≤ ϕ(ρ).

Conversely, suppose µϕF (x) ≤ ϕ(ρ). Then µF (x) ∈ (0, α] or µF (x) ∈ [ρ, 1]. Thus
x must belong to either Cor(S5) or Red(S5). So x ∈ (Cor(S5) ∪Red(S5)).

(2) Suppose x ∈ (SCor(S5)∪ SRed(S5)). Then µF (x) ∈ (α, β) or µF (x) ∈ (γ, ρ).
From the monotonic property of ϕ, we can find a maximum value in (α, β) and (γ, ρ)
at β and ρ. Since ϕ(β) = ϕ(γ) and ϕ(ρ) < ϕ(γ), ϕ(ρ) < µϕF (x) < ϕ(γ). We note
that ϕ attains its minimum value in (α, β) and (γ, ρ) at α and ρ.

Conversely, suppose ϕ(ρ) < µϕF (x) < ϕ(γ). Then µF (x) ∈ (α, β) or µF (x) ∈
(γ, ρ). Thus x must belong to either SCor(S5) or SRed(S5). So x ∈ (SCor(S5) ∪
SRed(S5)).

(3) Suppose x ∈ Shd(S5). Then µF (x) ∈ [β, γ]. Now ϕ attains its maximum value
at 1

2 ∈ [β, γ]. The minimum value of ϕ in [β, γ] is at β and γ. Thus ∀x ∈ [β, γ],
µϕF (x) ≥ ϕ(γ).

Conversely, suppose µϕF (x) ≥ ϕ(γ). Then x ∈ [β, γ]. Thus we must have that x
belongs to Shd(S5).

This completes the proof. �

Remark 5.2. Theorem 5.1 infers that in five-region shadowed sets, the optimum
threshold values to be found depends on two fuzziness-cuts ϕ(ρ) and ϕ(γ) which
cuts the entire fuzziness set of F into five regions.

Note that S5 redistributes the fuzziness in F into Shd(S5), SCor(S5) and SRed(S5).
The optimum pairs of thresholds, (α, ρ) and (β, γ), to found can be comprehended

from the following theoretical analysis:

(5.1) ϕ(F ) = ϕ(Shd(S5)) + ϕ(SCor(S5)) + ϕ(SRed(S5)).

From Theorem 5.1, we have the following equation:

(5.2) A1 +A2 +A3 +A4 +A5 +A6 = ϕ(F ).

That is,

(5.3)
∑

µϕF
(x)≤ϕ(ρ)

µϕF (x) +
∑

ϕ(ρ)<µϕF
(x)<ϕ(γ)

µϕF (x) +
∑

µϕF
(x)≥ϕ(γ)

µϕF (x) = ϕ(F ).

This expands to the next equation:
(5.4)∑
x∈Cor(S5)

µϕF (x)+
∑

x∈Red(S5)

µϕF (x)+
∑

x∈SCor(S5)

µϕF (x)+
∑

x∈SRed(S5)

µϕF (x)+
∑

x∈Shd(S5)

µϕF (x) = ϕ(F ).
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By combining Equations (4.2) and (4.5), we have the next equation:

(5.5) w1 + w2 + w3 + w4 + w5 = v1 + v2 + v3,

where
w1 =

∑
x∈Cor(S5)

µϕF (x),

w2 =
∑

x∈Red(S5)
µϕF (x),

w3 =
∑

x∈SCor(S5)
µϕF (x),

w4 =
∑

x∈SRed(S5)
µϕF (x),

w5 =
∑

x∈Shd(S5)
µϕF (x),

v1 = ϕ(Shd(S5)),
v2 = ϕ(SCor(S5)),
v3 = ϕ(SRed(S5)).

Recall that whenever µF (x) = 0.75 or µF (x) = 0.25, we have µϕF (x) = µϕF (x) = 1
2 .

Also, when µF (x) = 0.5, we have µϕF (x) = 1. Hence, we have the following rela-
tionship:

(5.6) ϕ(Shd(S5)) = Card(Shd(S5)),

(5.7) ϕ(SCor(S5)) =
1

2
Card(SCor(S5)),

(5.8) ϕ(SRed(S5)) =
1

2
Card(SRed(S5)).

Putting Equations (5.6)–(5.8) in the right hand side of Equation (5.5), the optimum
threshold is computed by minimizing the next equation:

(5.9) Q(α) = |w1 + w2 + w3 + w4 + w5 − (v′1 + v′2 + v′3)|,
where

v′1 = Card(Shd(S5)),
v′2 = 1

2Card(SCor(S5)),

v′3 = 1
2Card(SRed(S5)).

Remark 5.3. Five-region shadowed sets provide additional decision alternatives for
approximation of F . From the examples considered on F1 and F2 of Tables 1 and 3,
their efficiency in fulfilling a principle of uncertainty balance and error minimization
are shown in the next table.

Table 7. Optimized thresholds for discrete fuzzy set F2

Fuzzy set Optimized threshold
(α, ρ), (β, γ)

ϕ(S5) ϕ(Fi) Discrepancy Error

F1 (0.15, 0.85), (0.35, 0.65) 16 15.88 0.12 1.93
F2 (0.10, 0.90), (0.40, 0.60) 11.5 11.32 0.18 1.49

A comparison of the discrepancy and error in three-region and five-region shad-
owed set approximation of fuzzy sets (see column 5 and 6 of Tables 2, 4 and 5)
underlines the advantage of five-region shadowed sets over three-region shadowed
sets.
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It is observed that the higher the (odd) number of approximation regions of a shad-
owed set the smaller the discrepancy and approximation error. We conclude the
analysis with the following conjecture, which has been checked from several ran-
domly constructed fuzzy sets.

Conjecture 1
For two shadowed sets, S3 and S5, approximation of fuzzy set F , the following

inequalities hold:
(1) |ϕ(F )− ϕ(S5)| ≤ |ϕ(F )− ϕ(S3)|,
(2) E(S5) ≤ E(S3),

where Si denotes an i-region shadowed set and E(A) is the error in approximating
F into A.

5.1. Five-way approximation of sets as a model for thinking in fives. Gran-
ular computing(GrC) [24, 21] is a theoretical and computational platform for model-
ing human-data-interaction. It facilitates construction of information granules aris-
ing from abstraction, generalization, approximation, aggregation or other forms of
derivation of knowledge from data or information [28]. As fuzzy sets and their
associated n-way approximations are computational tools in GrC [30], five-way ap-
proximation of sets, as well, facilitate construction of information granules. It is a
form of information granulation that allow us differentiate necessary and sufficient,
sufficient, and uncertain from seemingly unnecessary and unnecessary detail in a
given data system.

From a broad perspective, five-way approximation introduces the notion of five-
way decision. It can be used to interpret five types of decision actions obtained from
the five regions of the ensuing approximation of fuzzy sets. Immediately, one can
easily link its methodology to a concept of thinking in fives (an extended form of
thinking in threes [32].

More explicitly, when handling data sets, human cognitive methods of processing
deploys a concept in GrC known as zoom-out (mapping information granules from
finer level to coarser level) and zoom-in (mapping information granules from coarser
level to finer level) operations. For example, a day may be zoom-in as morning,
afternoon and night. Alternatively, one can zoom-out a day as morning, mid-day,
afternoon, evening and night. In this context, these two operations define thinking
in threes and fives, respectively.

Concluding, it is well-known that given the same knowledge source, distinct views
may induce distinct granular knowledge structures. So, a fusion of three-way and
five-way approximation models in GrC methodologies may provide practical strate-
gies on how to use granular knowledge structures. Moreover, this notion may help
us select and switch between levels and views in a given granular space. Therefore,
both models should rather be harmonized than compete against each other. Hence,
one can take either five-way approximation as a literal sense of five, as being taken
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in the present study, or as a figurative sense of five as some zoom-out operation in
three-way decision models.

6. Conclusions

This paper explicates a concept of uncertainty balance in shadowed sets and pro-
vides some of its related properties. It identified two senses of uncertainty balance
and underlines their usefulness when combined in approximating fuzzy clusters. The
study revealed that uncertainty balance is theoretically meaningful for retention of
the fuzziness encountered in a dataset F . However, the related information in F can
be adequately preserved by exploiting the two-senses of uncertainty balance. This is
exemplified with pattern recognition task involving shadowed C-means clustering.

Further, five-region shadowed sets has been introduced in this paper. An im-
perative for its introduction is to effectively deal with the problem of uncertainty
balance, and in the same vein, minimize the approximation error associated with
three-region shadowed sets. A blind spot of five-region shadowed set is that its ob-
jective function Q(α) is nonconvex. Hence, more than one optimal solution for Q(α)
exists. Therefore, it is important to investigate the conditions that can be imposed
on Q(α) for its solution to be unique.
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