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Type i-intersection, Type i-union (i = 1, 2, 3, 4) and study some of their
properties. Moreover, we define an octahedron point and deal with the
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1. Introduction

To express the real world as it is, numerous mathematicians have been trying to
find a mathematical expression of its uncertainty a long time ago. Zadeh [19] (1965)
introduced the concept of fuzzy sets as the generalization of ordinary sets. After that
time, Zadeh [20] (1975), Pawlak [17] (1982), Atanassov [1] (1983), Atanassov and
Gargov [2] (1989), Gau and Buchrer [5] (1993), Coker [3] (1996), Smarandache [18]
(1998) and Molodtsov [15] (1999) introduced the concept of interval-valued fuzzy
sets, rough sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets,
vague sets, intuitionistic sets, neutrosophic sets and soft sets, in turn in order to
solve various real-life problems. We can see from the literatures that these concepts
have been studied in various fields of mathematics, engineering, medicine, and social
sciences, etc. Recently, Jun et al. [8] defined a cubic set as a pair of an interval-valued
fuzzy set and a fuzzy set, and investigated some of its properties. Smarandache et
al. [9] extended the concept of cubic sets to neutrosophic sets and studied some of
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its properties. Also, Jun et al. [10] introduced the concept of cubic interval-valued
intuitionistic fuzzy sets and applied it to BCK/BCI-algebras. Moreover, Jun [7]
introduce the notion of cubic intuitionistic set (called an interval-valued intuitionistic
cubic set by Kim et al. [13]) and applied it to the cubic intuitionistic set. After then,
Kaur and Garg [11, 12] applied it to decision-making and studied cubic intuitionistic
fuzzy aggregation operators.

In order to reduce the loss of information in solving the problem of uncertainty,
it is considered that the concept of a study should consider the interval-valued fuzzy
set, the intuitionistic fuzzy set, and the fuzzy set simultaneously. Then in this
paper, by using an interval-valued fuzzy set, an intuitionistic fuzzy set and a fuzzy
set, we introduce a new notion, called an (internal, external) octahedron set, and
study some properties and give some examples. Also, we define Type i-order, Type
i-intersection, Type i-union (i = 1, 2, 3, 4) and investigate some of their properties.
Moreover, we define an octahedron point and deal with the characterizations of Type
i-union (Type i-intersection). Also, we introduce the level set of an octahedron set
and obtain one property. Finally, we define the image and preimage of an octahedron
set under a mapping and study some of their properties.

2. Preliminaries

In this section, we list some basic definitions needed in the next sections.

Let I ⊕ I = {ā = (a∈, a6∈) ∈ I × I : a∈ + a6∈ ≤ 1}, where I = [0, 1]. Then
each member ā of I ⊕ I is called an intuitionistic point or intuitionistic number. In
particuar, we denote (0, 1) and (1, 0) as 0̄ and 1̄, respectively. We define relations ≤
and = on I ⊕ I as follows (See [4]):

(∀ā, b̄ ∈ I ⊕ I)(ā ≤ b̄⇐⇒ a∈ ≤ b∈ and a6∈ ≥ b 6∈),

(∀ā, b̄ ∈ I ⊕ I)(ā = b̄⇐⇒ a∈ = b∈ and a6∈ = b 6∈).

For each ā ∈ I ⊕ I, the complement of ā, denoted by āc, is defined as follows:

āc = (a6∈, a∈).

For any (āj)j∈J ⊂ I ⊕ I, its infimum
∧
j∈J āj and supremum

∨
j∈J āj are defined

as follows: ∧
j∈J

āj = (
∧
j∈J

a∈j ,
∨
j∈J

a6∈j ),

∨
j∈J

āj = (
∨
j∈J

a∈j ,
∧
j∈J

a6∈j ).

From Theorem 2.1 in [4], we can see that (I ⊕ I,≤) is a complete distributive
lattice with the greatest element 1̄ and the least element 0̄ satisfying De Morgan’s
laws.

Definition 2.1 ([1]). For a nonempty set X, a mapping A : X → I ⊕ I is called
an intuitionistic fuzzy set (briefly, IF set) in X, where for each x ∈ X, A(x) =
(A∈(x), A6∈(x)), and A∈(x) and A 6∈(x) represent the degree of membership and the
degree of nonmembership of an element x to A, respectively. Let (I⊕I)X denote the
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set of all IF sets in X and for each A ∈ [I]X , we write A = (A∈, A6∈). In particular,
0̄ and 1̄ denote the IF empty set and the IF whole set in X defined by, respectively:
for each x ∈ X,

0̄(x) = 0̄ and 1̄(x) = 1̄.

We define relations ⊂ and = on (I ⊕ I)X as follows:

(∀ A, B ∈ (I ⊕ I)X)(A ⊂ B ⇐⇒ (x ∈ X)(A(x) ≤ B(x)),

(∀ A, B ∈ (I ⊕ I)X)(A = B ⇐⇒ (x ∈ X)(A(x) = B(x)).

For each A ∈ (I⊕I)X , the complement of A, denoted by Ac, is defined as follows:
For each x ∈ X,

Ac(x) = (A 6∈(x), A∈(x)).

For each A ∈ (I ⊕ I)X , [ ]A and �A are IF sets in X defined as follows:
For each x ∈ X,

[ ]A(x) = (A∈(x), 1−A∈(x)) and �A(x) = (1−A 6∈(x), A6∈(x)).

For any (Aj)j∈J ⊂ (I ⊕ I)X , its intersection
⋂
j∈J Aj and union

⋃
j∈J Aj are

defined, respectively as follows: For each x ∈ X,

(
⋂
j∈J

Aj)(x) = ((
⋂
j∈J

A∈j )(x), (
⋂
j∈J

A 6∈j )(x)) = (
∧
j∈J

A∈j (x),
∨
j∈J

A 6∈j (x)),

(
⋃
j∈J

Aj)(x) = ((
⋃
j∈J

A∈j )(x), (
⋃
j∈J

A 6∈j )(x)) = (
∨
j∈J

A∈j (x),
∧
j∈J

A 6∈j (x)).

The set of all closed subintervals of I is denoted by [I], and members of [I] are

called interval numbers and are denoted by ã, b̃, c̃, etc., where ã = [a−, a+] and
0 ≤ a− ≤ a+ ≤ 1. In particular, if a− = a+, then we write as ã = a.

We define relations ≤ and = on [I] as follows:

(∀ ã, b̃ ∈ [I])(ã ≤ b̃⇐⇒ a− ≤ b− and a+ ≤ b+),

(∀ ã, b̃ ∈ [I])(ã = b̃⇐⇒ a− = b− and a+ = b+).

For any ã, b̃ ∈ [I], their minimum and maximum, denoted by ã∧ b̃ and ã∨ b̃, are
defined as follows:

ã ∧ b̃ = [a− ∧ b−, a+ ∧ b+],

ã ∨ b̃ = [a− ∨ b−, a+ ∨ b+].

Let (ãj)j∈J ⊂ [I]. Then its inf and sup, denoted by
∧

j∈J ãj and
∨

j∈J ãj are
defined as follows: ∧

j∈J
ãj = [

∧
j∈J

a−j ,
∧
j∈J

a+
j ],

∨
j∈J

ãj = [
∨
j∈J

a−j ,
∨
j∈J

a+
j ].

For each ã ∈ [I], its complement, denoted by ãc, is defined as follows:

ãc = [1− a+, 1− a−].
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Definition 2.2 ([6, 20]). For a nonempty set X, a mapping A : X → [I] is called
an interval-valued fuzzy set (briefly, an IVF set) in X. Let [I]X denote the set of all
IVF sets in X. For each A ∈ [I]X and x ∈ X, A(x) = [A−(x), A+(x)] is called the
degree of membership of an element x to A, where A−, A+ ∈ IX are called a lower
fuzzy set and an upper fuzzy set in X, respectively. For each A ∈ [I]X , we write

A = [A−, A+]. In particular, 0̃ and 1̃ denote the interval-valued fuzzy empty set and
the interval-valued fuzzy empty whole set in X, respectively. We define relations ⊂
and = on [I]X as follows:

(∀ A, B ∈ [I]X)(A ⊂ B ⇐⇒ (x ∈ X)(A(x) ≤ B(x)),

(∀ A, B ∈ [I]X)(A = B ⇐⇒ (x ∈ X)(A(x) = B(x)).

For each A ∈ [I]X , the complement of A, denoted by Ac, is defined as follows:
For each x ∈ X,

Ac(x) = [1−A−(x), 1 +A+(x)].

For any (Aj)j∈J ⊂ [I]X , its intersection
⋂
j∈J Aj and union

⋃
j∈J Aj are defined,

respectively as follows:
For each x ∈ X,

(
⋂
j∈J

Aj)(x) =
∧
j∈J

Aj(x),

(
⋃
j∈J

Aj)(x) =
∨
j∈J

Aj(x).

Definition 2.3 ([8]). Let X be a nonempty set. Then a complex mapping A =
〈A, λ〉 : X → [I]× I is called a cubic set in X.

A cubic set A = 〈A, λ〉 in which A(x) = 0 and λ(x) = 1 (resp. A(x) = 1 and
λ(x) = 0) for each x ∈ X is denoted by 0̈ (resp. 1̈).

A cubic set B = 〈B,µ〉 in which B(x) = 0 and µ(x) = 0 (resp. B(x) = 1 and

µ(x) = 1) for each x ∈ X is denoted by 0̂ (resp. 1̂). In this case, 0̂ (resp. 1̂) will be
called a cubic empty (resp. whole) set in X.

We denote the set of all cubic sets in X as C(X).

Definition 2.4 ([8]). Let X be a nonempty set and let A = 〈A, λ〉 ∈ C(X). Then
A is called :

(i) an internal cubic set (briefly, ICS) in X, if A−(x) ≤ λ(x) ≤ A+(x) for each
x ∈ X,

(ii) an external cubic set (briefly, ECS) in X, if λ(x) 6∈ (A−(x), A+(x)) for each
x ∈ X.

3. Octahedron sets

In this section, we introduce concepts of octahedron sets, internal octahedron sets
and external octahedron sets, and study some of their properties and some examples.

We denote members of [I]×(I⊕I)×I as ˜̄a =< ã, ā, a >=< [a−, a+], (a∈, a6∈), a >

, ˜̄b =< b̃, b̄, b >=< [b−, b+], (b∈, b6∈), b >, etc. and they are called octahedron num-

bers. Furthermore, we define the following order relations between ˜̄a and ˜̄b:
(i) (Equality) ˜̄a = ˜̄b⇔ ã = b̃, ā = b̄, a = b,
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(ii) (Type 1-order) ˜̄a ≤1
˜̄b⇔ a− ≤ b−, a+ ≤ b+, a∈ ≤ b∈, a6∈ ≥ b 6∈, a ≤ b,

(iii) (Type 2-order) ˜̄a ≤2
˜̄b⇔ a− ≤ b−, a+ ≤ b+, a∈ ≤ b∈, a6∈ ≥ b 6∈, a ≥ b,

(iv) (Type 3-order) ˜̄a ≤3
˜̄b⇔ a− ≤ b−, a+ ≥ b+, a∈ ≥ b∈, a6∈ ≤ b 6∈, a ≤ b,

(v) (Type 4-order) ˜̄a ≤4
˜̄b⇔ a− ≤ b−, a+ ≤ b+, a∈ ≥ b∈, a6∈ ≤ b 6∈, a ≥ b.

Definition 3.1. Let X be a nonempty set and let A = [A−, A+] ∈ [I]X , A =
(A∈, A6∈) ∈ (I⊕ I)X , λ ∈ IX . Then the triple A = 〈A, A, λ〉 is called an octahedron
set in X. In fact, A : X → [I]× (I ⊕ I)× I is a mapping.

We can consider following special octahedron sets in X:〈
0̃, 0̄, 0

〉
= 0̈,〈

0̃, 0̄, 1
〉
,
〈

0̃, 1̄, 0
〉
,
〈

1̃, 0̄, 0
〉
,〈

0̃, 1̄, 1
〉
,
〈

1̃, 0̄, 1
〉
,
〈

1̃, 1̄, 0
〉
,〈

1̃, 1̄, 1
〉

= 1̈.

In this case, 0̈ (resp. 1̈) is called an octahedron empty set (resp. octahedron
whole set) in X. We denote the set of all octahedron sets as O(X).

It is obvious that for each A ∈ 2X , A = 〈[χA, χA], (χA, χAc), χA〉 ∈ O(X) and
then 2X ⊂ O(X), where 2X denotes the set of all subsets of X and χA denotes
the characteristic function of A. Furthermore, we can easily see that for each A =
〈A, λ〉 ∈ C(X), A = 〈A, (A−, A+), λ〉 , A = 〈A, (λ, λc), λ〉 ∈ O(X) and then C(X) ⊂
O(X). In this case, we denote 〈A, (A−, A+), λ〉 and 〈A, (λ, λc), λ〉 as AA and Aλ,
respectively. In fact, we can consider octahedron sets as a generalization of cubic
sets.

Example 3.2. (1) Let X = {a, b, c} be a set and let A = 〈A, A, λ〉 : X → [I]× (I ⊕
I)× I be the mapping given by:

A(a) = 〈[0.3, 0.6], (0.7, 0.2), 0.5〉 ,

A(b) = 〈[0.2, 0.4], (0.6, 0.3), 0.7〉 ,

A(c) = 〈[0.4, 0.7], (0.5, 0.4), 0.3〉 .
Then we can easily see that A is an octahedron set in X.

(2) Let X = I and let A = 〈A, A, λ〉 : X → [I] × (I ⊕ I) × I be the mapping
defined as follows: for each x ∈ X,

A(x) =

〈
[
x

4
,

1 + x

2
], (
x

3
,

1 + x

5
), x

〉
.

Then we can easily calculate that A is an octahedron set in X.
(3) Let A = [A−, A+] ∈ [I]X . Then clearly,

〈A, 0̄, 0〉 (resp. 〈A, 1̄, 0〉 , 〈A, 0̄, 1〉 , 〈A, 1̄, 1〉)

is an octahedron set in X. In this case, we will denote

〈A, 0̄, 0〉 (resp. 〈A, 1̄, 0〉 , 〈A, 0̄, 1〉 , 〈A, 1̄, 1〉)

as O0̄,0 (resp. O1̄,0, O0̄,1, O1̄,1).
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Now let us A : X → I ⊕ I and λ : X → I be the mappings defined as follows,
respectively: for each x ∈ X,

A(x) = (A∈(x), A6∈(x)) = (A−(x), 1−A+(x)),

λ(x) =
A−(x) +A+(x)

2
.

Then we can easily see that 〈A, A, λ〉 is an octahedron set in X. In this case,
< A, A, λ > will be called the octahedron set in X induced by A and will be
denoted by OA.

(4) Let A = (A∈, A6∈) ∈ (I ⊕ I)X . Then clearly〈
0̃, A, 0

〉
(resp.

〈
1̃, A, 0

〉
,
〈

0̃, A, 1
〉
,
〈

1̃, A, 1
〉

)

is an octahedron set in X. In this case,〈
0̃, A, 0

〉
(resp.

〈
1̃, A, 0

〉
,
〈

0̃, A, 1
〉
,
〈

1̃, A, 1
〉

)

will be denoted by O0̃,0 (resp. O1̃,0, O0̃,1, O1̃,1).

Now let us A : X → [I] and λ : X → I be the mappings defined as follows,
respectively: for each x ∈ X,

A(x) = [A∈(x), 1−A 6∈(x)],

λ(x) =
A∈(x) + 1−A 6∈(x)

2
.

Then clearly 〈A, A, λ〉 is an octahedron set in X. In this case, 〈A, A, λ〉 will be
called the octahedron set in X induced by A and will be denoted by OA.

(5) Let A = 〈A, A, λ〉 be an octahedron set in X. Then clearly 〈A, [ ]A, λ〉 and
〈A, �A, λ〉 are octahedron sets in X.

Definition 3.3. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X). Then we can define following order relations between A and B:

(i) (Equality) A = B ⇔ A = B, A = B, λ = µ,
(ii) (Type 1-order) A ⊂1 B ⇔ A ⊂ B, A ⊂ B, λ ≤ µ,
(iii) (Type 2-order) A ⊂2 B ⇔ A ⊂ B, A ⊂ B, λ ≥ µ,
(iv) (Type 3-order) A ⊂3 B ⇔ A ⊂ B, A ⊃ B, λ ≤ µ,
(v) (Type 4-order) A ⊂4 B ⇔ A ⊂ B, A ⊃ B, λ ≥ µ.

Definition 3.4. Let X be a nonempty set and let (Aj)j∈J = (〈Aj , Aj , λj〉)j∈J be a
family of octahedron sets in X. Then the Type i-union ∪i and Type i-intersection
∩i of (Aj)j∈J , (i = 1, 2, , 3, 4), are defined as follows, respectively:

(i) (Type i-union)
⋃1
j∈J Aj =

〈⋃
j∈J Aj ,

⋃
j∈J Aj ,

⋃
j∈J λj

〉
,⋃2

j∈J Aj =
〈⋃

j∈J Aj ,
⋃
j∈J Aj ,

⋂
j∈J λj

〉
,⋃3

j∈J Aj =
〈⋃

j∈J Aj ,
⋂
j∈J Aj ,

⋃
j∈J λj

〉
,⋃4

j∈J Aj =
〈⋃

j∈J Aj ,
⋂
j∈J Aj ,

⋂
j∈J λj

〉
,

(ii) (Type i-intersection)
⋂1
j∈J Aj =

〈⋂
j∈J Aj ,

⋂
j∈J Aj ,

⋂
j∈J λj

〉
,⋂2

j∈J Aj =
〈⋂

j∈J Aj ,
⋂
j∈J Aj ,

⋃
j∈J λj

〉
,
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⋂3
j∈J Aj =

〈⋂
j∈J Aj ,

⋃
j∈J Aj ,

⋂
j∈J λj

〉
,⋂4

j∈J Aj =
〈⋂

j∈J Aj ,
⋃
j∈J Aj ,

⋃
j∈J λj

〉
.

The followings are the immediate results of Definitions 3.3 and 3.4.

Proposition 3.5. Let X be a nonempty set and let A = 〈A, A, λA〉 , B = 〈B, B, λB〉 , C =
〈C, C, λC〉 and D = 〈D, D, λD〉 be octahedron sets in X. Then for each i = 1, 2, 3, 4,

(1) if A ⊂i B and B ⊂i C, then A ⊂i C,
(2) if A ⊂i B and A ⊂i C, then A ⊂i B ∩i C,
(3) if A ⊂i B and C ⊂i B, then A ∪i C ⊂i B, .
(4) if A ⊂i B and C ⊂i D, then A ∪i C ⊂i B ∪i D and A ∩i C ⊂i B ∩i D.

Definition 3.6. Let X be a nonempty set and let A = 〈A, A, λ〉 be an octahedron
set in X. Then the complement Ac, operators [ ] and � of A are defined as follows,
respectively: for each x ∈ X,

(i) Ac = 〈Ac, Ac, λc〉,
(ii) [ ]A = 〈A, [ ]A, λ〉,
(iii) �A = 〈A, �A, λ〉.

From Definition 3.6 (i), we can easily see that the followings hold:
0̈c = 1̈, 1̈c = 0̈,〈

0̃, 0̄, 1
〉c

=
〈

1̃, 1̄, 0
〉
,
〈

1̃, 1̄, 0
〉c

=
〈

0̃, 0̄, 1
〉

,〈
0̃, 1̄, 0

〉c
=
〈

1̃, 0̄, 1
〉
,
〈

1̃, 0̄, 1
〉c

=
〈

0̃, 1̄, 0
〉

,〈
1̃, 0̄, 0

〉c
=
〈

0̃, 1̄, 1
〉
,
〈

0̃, 1̄, 1
〉c

=
〈

1̃, 0̄, 0
〉
,〈

0̃, 1̄, 1
〉c

=
〈

1̃, 0̄, 0
〉
,
〈

1̃, 0̄, 0
〉c

=
〈

0̃, 1̄, 1
〉

,〈
1̃, 0̄, 1

〉c
=
〈

0̃, 1̄, 0
〉
,
〈

0̃, 1̄, 0
〉c

=
〈

1̃, 0̄, 1
〉

,〈
1̃, 1̄, 0

〉c
=
〈

0̃, 0̄, 1
〉
,
〈

0̃, 0̄, 1
〉c

=
〈

1̃, 1̄, 0
〉
.

The followings are the immediate results of Definitions 3.3 and 3.6 (i).

Proposition 3.7. Let X be a nonempty set and let A = 〈A, A, λ〉 and B = 〈B, B, µ〉
be octahedron sets in X. If A ⊂i B, then Bc ⊂i Ac, for each i = 1, 2, 3, 4.

Proposition 3.8. Let A ∈ O(X) and let (Aj)j∈J ⊂ O(X). Then
(1) (Ac)c = A,
(2) for each i = 1, 2, 3, 4,

(

i⋃
j∈J
Aj)c =

i⋂
j∈J
Acj , (

i⋂
j∈J
Aj)c =

i⋃
j∈J
Acj .

Remark 3.9. For any A = 〈A, A, λ〉 ∈ O(X) and each i = {1, 2, 3, 4}, the
followings do not hold, in general:

A ∪i Ac = 1̈ and A ∩i Ac = 0̈.
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Example 3.10. Consider the IVF set A, the IF set A and the fuzzy set λ in a
nonempty set X given by respectively: for each x ∈ X,

A(x) = [0.5, 0.5], A(x) = (0.5, 0.5) and λ = 0.5.

Then, clearly, A = 〈A, A, λ〉 is an octahedron set in X. Moreover,

(A ∪i Ac)(x) = 〈[0.5, 0.5], (0.5, 0.5), 0.5〉 6= 1̈(x)

and
(A ∩i Ac)(x) = 〈[0.5, 0.5], (0.5, 0.5), 0.5〉 6= 0̈(x).

Thus A ∪i Ac 6= 1̈ and A ∩i Ac 6= 0̈.

The followings are the immediate results of Definition 3.6.

Proposition 3.11. Let X be a nonempty set, A = 〈A, A, λA〉 , B = 〈B, B, λB〉 , C =
〈C, C, λC〉 ∈ O(X) and (Aj)j∈J = (〈Aj , Aj , λj〉)j∈J ⊂ O(X). Then for each i =
1, 2, 3, 4;

(1) A ∪i A = A, A ∩i A = A,
(2) A ∪i B = B ∪i A, A ∩i B = B ∩i A,
(3) A ∪i (B ∪i C) = (A ∪i B) ∪i C, A ∩i (B ∩i C) = (A ∩i B) ∩i C,
(4) A ∪i (B ∩i C) = (A ∪i B) ∩i (A ∪i C), A ∩i (B ∪i C) = (A ∩i B) ∪i (A ∩i C),
(4)
′ A ∪i (

⋂i
j∈J Aj) =

⋂i
j∈J(A ∪i Aj), A ∩i (

⋃i
j∈J Aj) =

⋃i
j∈J(A ∩i Aj).

From the above Propositions 3.8 and 3.11, we can see that (O(X),∪i,∩i, 0̈, 1̈)
forms a Boolean algebra except the property of Remark 3.9.

From Definition 3.6, we have the similar results to Theorem 2 in [1].

Proposition 3.12. Let A = 〈A, A, λ〉 be an octahedron set in a nonempty set X.
Then

(1) ([ ]Ac)c = �A, (�Ac)c = [ ]A,
(2) [ ]A ⊂i A ⊂i �A for each i = 1, 2, 3, 4,
(3) [ ][ ]A = [ ]A,
(4) [ ] � A = �A,
(5) �[ ]A = [ ]A,
(6) � � A = �A.

Also, we have the similar results to Theorems 3 and 4 in [1].

Proposition 3.13. Let A = 〈A, A, λ〉 and B = 〈B, B, µ〉 be octahedron sets in a
nonempty set X and let i = 1, 2, 3, 4. Then

(1) [ ](A ∪i B) = [ ]A ∪i [ ]B, [ ](A ∩i B) = [ ]A ∩i [ ]B,
(2) �(A ∪i B) = �A ∪i �B, �(A ∩i B) = �A ∩i �B.

Definition 3.14. Let X be a nonempty set and let A = 〈A, A, λ〉 ∈ O(X). Then
A is called:

(i) an ∈-internal octahedron set (briefly, ∈-IOS) in X, if for each x ∈ X,

A∈(x), λ(x) ∈ A(x) = [A−(x), A+(x)],

(ii) a 6∈-internal octahedron set (briefly, 6∈-IOS) in X, if for each x ∈ X,

1−A 6∈(x), λ(x) ∈ A(x) = [A−(x), A+(x)],
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(iii) an internal octahedron set (briefly, IOS) in X, if it is both an ∈-IOS and a
6∈-IOS in X,

(iv) an ∈-external octahedron set (briefly, ∈-EOS) in X, if for each x ∈ X,

A∈(x), λ(x) 6∈ (A−(x), A+(x)),

(v) a 6∈-external octahedron set (briefly, 6∈-EOS) in X, if for each x ∈ X,

1−A 6∈(x), λ(x) 6∈ (A−(x), A+(x)),

(iv) an external octahedron set (briefly, EOS) in X, if it is both an ∈-EOS and a
6∈-EOS in X.

From Definitions 2.4 and 3.14, it is obvious that if A = 〈A, λ〉 an ICS [resp. ECS]
in X, then AA and Aλ are IOSs [resp. EOSs] in X.

Example 3.15. (1) Let A1 = 〈A1, A1, λ1〉 be the octahedron set in I given by: for
each x ∈ I,

A1(x) =

〈
[
x

4
,

1 + x

2
], (
x

3
,

1 + x

5
),
x

2

〉
.

Then we can easily calculate that A∈1 (x), λ1(x) ∈ A1(x), for each x ∈ I but A 6∈1 (x) 6∈
(A−1 (x), A+

1 (x)), for each x ∈ I such that x > 3
7 . Thus A1 is an ∈-IOS but not a

6∈-IOS in X.
(2) Let A2 = 〈A2, A2, λ2〉 be the octahedron set in I given by: for each x ∈ I,

A2(x) =

〈
([
x

4
,
x

2
], (

1 + x

5
, 1− x

3
),
x

3

〉
.

Then we can easily see that A2 is a 6∈-IOS in X.
(3) Let A3 = 〈A3, A3, λ3〉 be the octahedron set in I given by: for each x ∈ I,

A3(x) =
〈

[
x

4
,
x

2
], (
x

4
, 1− x

3
),
x

3

〉
.

Then we can easily calculate that A3 is an IOS in X.
(4) Let A4 = 〈A4, A4, λ4〉 be the octahedron set in I given by: for each x ∈ I,

A4(x) =

〈
[
1 + x

4
,

1 + x

2
], (
x

4
,

1 + x

3
),

2 + x

3

〉
.

Then we can easily see that A4 is an ∈-EOS in X.
(5) Let A5 = 〈A5, A5, λ5〉 be the octahedron set in I given by: for each x ∈ I,

A5(x) =

〈
[
1 + x

4
,

1 + x

2
], (

1 + x

3
, 1−

1

2
+ x

4
),

2 + x

3

〉
.

Then we can easily calculate that A5 is a 6∈-EOS in X.
(6) Let A6 = 〈A6, A6, λ6〉 be the octahedron set in I given by: for each x ∈ I,

A6(x) =

〈
[
1 + x

4
,

1 + x

2
], (

1 + x

5
, 1−

1

2
+ x

4
),

2 + x

3

〉
.

Then we can easily see that A6 is an EOS in X.

The followings are the immediate results of Definition 3.14.
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Proposition 3.16. Let X be a nonempty set and let A = 〈A, A, λ〉 ∈ O(X). If A
is not external, then there is x ∈ X such that A∈(x) ∈ A(x) or 1 − A 6∈(x) ∈ A(x)
and λ(x) ∈ A(x).

Proposition 3.17. Let X be a nonempty set and let A = 〈A, A, λ〉 ∈ O(X). If A
is both internal and external, then for each x ∈ X,

A∈(x), 1−A 6∈(x), λ(x) ∈ U(A) ∪ L(A),

where U(A) = {A+(x) : x ∈ X} and L(A) = {A−(x) : x ∈ X}.

The following is the immediate result of Definitions 3.6 (i) and 3.14.

Proposition 3.18. Let X be a nonempty set and let A = 〈A, A, λ〉 ∈ O(X). If A
is internal (resp. external), then Ac is external (resp. internal).

Proposition 3.19. Let X be a nonempty set and let A = 〈A, A, λ〉 ∈ O(X). If A
is internal, then [ ]A and �A are internal.

Proof. The proofs are straightforward. �

Proposition 3.20. Let X be a nonempty set and let A = 〈A, A, λ〉 ∈ O(X).
(1) If A is ∈-external, then [ ]A is ∈-external.
(2) If A is 6∈-external, then �A is 6∈-external.

Proof. The proofs are straightforward. �

For any 6∈-external (resp. ∈-external) octahedron setA = 〈A, A, λ〉 in a nonempty
setX, [ ]A (resp. �A) need not be 6∈-external (resp. ∈-external) as shown in following
example.

Example 3.21. (1) In Example 3.15 (5), consider the 6∈-EOS A5 in I given by: for
each x ∈ I,

A5(x) =

〈
[
1 + x

4
,

1 + x

2
], (

1 + x

3
, 1−

1

2
+ x

4
),

2 + x

3

〉
.

Since [ ]A5 = 〈A5, [ ]A5, λ5〉 = 〈A5, (A
∈
5 , 1−A∈5 ), λ5〉, ([ ]A5) 6∈(x) = 1 − A∈5 (x).

Then ([ ]A5)6∈(x) = 1 − 1+x
3 . Thus 1 − [ ]A5)6∈(x) = 1+x

3 ∈ A5. So [ ]A5 is not
6∈-external.

(2) In Example 3.15 (4), consider the ∈-EOS A4 in I given by: for each x ∈ I,

A4(x) =

〈
[
1 + x

4
,

1 + x

2
], (
x

4
,

1 + x

3
),

2 + x

3

〉
.

Since �A4 = 〈A4, �A4, λ4〉 =
〈
A5, (1−A 6∈4 , A

6∈
4 ), λ5

〉
, (�A4)∈(x) = 1−A 6∈4 (x). Then

(�A4)∈(x) = 1 − 1+x
3 (x) = 2−x

3 and (�A4)∈(x) ∈ A4(x), for each x ∈ [ 5
17 ,

1
7 ]. Thus

�A4 is not ∈-external.

Proposition 3.22. Let X be a nonempty set and let A = 〈A, A, λ〉 ∈ O(X).
(1) If A is ∈-internal (resp. ∈-external), then [ ]A is ∈-internal (resp. ∈-

external).
(2) If A is 6∈-internal (resp. 6∈-external), then �A is 6∈-internal (resp. 6∈-external).
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Proof. The proofs are straightforward. �

For any 6∈-internal (resp. 6∈-external) octahedron set A = 〈A, A, λ〉 in a nonempty
set X, [ ]A need not be 6∈-internal (resp. 6∈-external). Also for any ∈-internal (resp.
∈-external) octahedron set A = 〈A, A, λ〉 in a nonempty set X, �A need not be
∈-internal (resp. ∈-external) as shown in following examples.

Example 3.23. (1) In Example 3.15 (2), consider the 6∈-IOS A2 in I given by: for
each x ∈ I,

A2(x) =

〈
[
x

4
,
x

2
], (

1 + x

5
, 1− x

3
),
x

3

〉
.

Then 1− ([ ]A2) 6∈(x) = 1− (1− 1+x
5 ) = 1+x

5 6∈ [x4 ,
x
2 ], for each x ∈ [0, 2

3 ). Thus [ ]A2

is not 6∈-internal.
(2) In Example 3.15 (5), consider the 6∈-EOS A5 in I given by: for each x ∈ I,

A5(x) =

〈
[
1 + x

4
,

1 + x

2
], (

1 + x

3
, 1−

1

2
+ x

4
),

2 + x

3

〉
.

Then 1− ([ ]A5)6∈(x) = 1− (1− 1+x
3 ) = 1+x

3 ∈ [ 1+x
4 , 1+x

2 ], for each x ∈ I. Thus [ ]A2

is not 6∈-external.
(3) In Example 3.15 (1), consider the ∈-IOS A1 in I given by: for each x ∈ I,

A1(x) =

〈
[
x

4
,

1 + x

2
], (
x

3
,

1 + x

5
),
x

2

〉
.

Then (�A1)∈(x) = 1 − 1+x
5 = 4−x

5 6∈ [x4 ,
1+x

2 ], for each x ∈ [0, 3
7 ). Thus �A2 is not

∈-internal.
(4) In Example 3.15 (4), consider the ∈-IOS A4 in I given by: for each x ∈ I,

A4(x) =

〈
[
1 + x

4
,

1 + x

2
], (
x

4
,

1 + x

3
),

2 + x

3

〉
.

Then (�A4)∈(x) = 1 − 1+x
3 = 2−x

3 6∈ [ 1+x
4 , 1+x

2 ], for each x ∈ ( 1
5 ,

5
7 ). Thus �A4 is

not ∈-internal.

The followings are the immediate results of Propositions 3.19, 3.20 and 3.22

Corollary 3.24. Let X be a nonempty set and let A = 〈A, A, λ〉 ∈ O(X).
(1) If A is ∈-internal (resp. ∈-external), then [ ]A is ∈-internal (resp. ∈-

external).
(2) If A is 6∈-external, then �A is 6∈-external.

Proposition 3.25. Let X be a nonempty set and let (Aj)j∈J = (〈Aj , Aj , λj〉)j∈J
be a family octahedron sets in X. If Aj is internal for each j ∈ J , then

⋃1
j∈J Aj

and
⋂1
j∈J Aj are internal.

Proof. The proof is straightforward. �

We can see that Type i-union and Type i-intersection (i = 2, 3, 4) of inter-
nal octahedron sets may not be internal octahedron sets as shown in the following
examples.
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Example 3.26. Consider two octahedron sets A = 〈A, A, λ〉 and B = 〈B, B, µ〉 in
I defined as follows: for each x ∈ I,

A(x) =

〈
[
1 + x

4
,

1 + x

2
], (

1 + x

3
,

1− x
3

),
2 + x

5

〉
and

B =

〈
[
x

5
,

2 + x

3
], (
x

3
,

2− x
5

),
x

4

〉
.

Then we have the followings:

(3.1) (A ∪2 B)(x) =

〈
[
1 + x

4
,

2 + x

3
], (

1 + x

3
,

1− x
3

),
x

4

〉
,

(3.2) (A ∪3 B)(x) =

〈
[
1 + x

4
,

2 + x

3
], (
x

3
,

2− x
5

),
2 + x

5

〉
,

(3.3) (A ∪4 B)(x) =

〈
[
1 + x

4
,

2 + x

3
], (
x

3
,

2− x
5

),
x

4

〉
,

(3.4) (A ∩2 B)(x) =

〈
[
x

5
,

1 + x

2
], (
x

3
,

2− x
5

),
2 + x

5

〉
,

(3.5) (A ∩3 B)(x) =

〈
[
x

5
,

1 + x

2
], (

1 + x

3
,

1− x
3

),
x

4

〉
,

(3.6) (A ∩4 B)(x) =

〈
[
x

5
,

1 + x

2
], (

1 + x

3
,

1− x
3

),
2 + x

5

〉
.

Thus we can see the followings.
In (3.1), (λ ∧ µ)(1) = 1

4 6∈ [ 1
2 , 1] = (A ∪B)(1).

In (3.2), (A ∩B)∈(1) = 1
3 6∈ [ 1

2 , 1] = (A ∪B)(1).

In (3.3), also (A ∩B)∈(1) = 1
3 6∈ [ 1

2 , 1] = (A ∪B)(1).

In (3.4), 1− (A ∩B) 6∈(0) = 3
5 6∈ [0, 1

2 ] = (A ∩B)(0).

In (3.5), 1− (A ∪B) 6∈(0) = 2
3 6∈ [0, 1

2 ] = (A ∩B)(0).

In (3.6), also 1− (A ∪B)6∈(0) = 2
3 6∈ [0, 1

2 ] = (A ∩B)(0).

So A ∪i B and A ∩i B are not internal octahedron sets in I, for i = 2, 3, 4.

We provide a condition for the Type i-union (i = 2, 3, 4) of two IOSs to be an
IOS.

Proposition 3.27. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X). Suppose A and B are internal such that for each x ∈ X,

(3.7) A−(x) ∨B−(x) ≤ (λ ∧ µ)(x).

Then A ∪2 B is internal.
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Proof. Suppose A and B be IOSs in X satisfying the condition (3.7) and let x ∈ X.
Then clearly,

A−(x) ≤ A∈(x) ≤ A+(x), A−(x) ≤ 1−A 6∈(x) ≤ A+(x), A−(x) ≤ λ(x) ≤ A+(x),

B−(x) ≤ B∈(x) ≤ B+(x), B−(x) ≤ 1−B 6∈(x) ≤ B+(x), A−(x) ≤ µ(x) ≤ A+(x).

Thus

(A ∪B)−(x) ≤ (A ∪B)∈(x) ≤ (A ∪B)+(x)

and

(A ∪B)−(x) ≤ 1− (A ∪B) 6∈(x) ≤ (A ∪B)+(x).

By the condition (3.7), we have

(A ∪B)−(x) = A−(x) ∨B−(x) ≤ (λ ∧ µ)(x) ≤ (A ∪B)+(x).

So A ∪2 B is internal. �

Proposition 3.28. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X). Suppose A and B are internal such that for each x ∈ X,

(3.8) A−(x) ∨B−(x) ≤ (A ∩B)∈(x), A−(x) ∨B−(x) ≤ 1− (A ∩B) 6∈(x).

Then A ∪3 B is internal.

Proof. Suppose A and B be IOSs in X satisfying the condition (3.7) and let x ∈ X.
Then clearly,

A−(x) ≤ A∈(x) ≤ A+(x), A−(x) ≤ 1−A 6∈(x) ≤ A+(x), A−(x) ≤ λ(x) ≤ A+(x),

B−(x) ≤ B∈(x) ≤ B+(x), B−(x) ≤ 1−B 6∈(x) ≤ B+(x), A−(x) ≤ µ(x) ≤ A+(x).

Thus (A ∪ B)−(x) ≤ (λ ∨ µ)(x) ≤ (A ∪ B)+(x). By the condition (3.8), we have
Thus

(A ∪B)−(x) = A−(x) ∨B−(x) ≤ (A ∩B)∈(x) ≤ (A ∪B)+(x)

and

(A ∪B)−(x) = A−(x) ∨B−(x) ≤ 1− (A ∩B) 6∈(x) ≤ (A ∪B)+(x).

So A ∪3 B is internal. �

The following is the immediate result of Propositions 3.27 and 3.28.

Corollary 3.29. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X). Suppose A and B are IOSs satisfying the conditions (3.7) and 3.8). Then
A ∪4 B is internal.

We provide a condition for the Type i-intersection (i = 2, 3, 4) of two IOSs to
be an IOS.

Proposition 3.30. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X). Suppose A and B are internal such that for each x ∈ X,

(3.9) A+(x) ∧B+(x) ≥ (λ ∨ µ)(x).

Then A ∩2 B is internal.
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Proof. Suppose A and B be IOSs in X satisfying the condition (3.9) and let x ∈ X.
Then clearly,

A−(x) ≤ A∈(x) ≤ A+(x), A−(x) ≤ 1−A 6∈(x) ≤ A+(x), A−(x) ≤ λ(x) ≤ A+(x),

B−(x) ≤ B∈(x) ≤ B+(x), B−(x) ≤ 1−B 6∈(x) ≤ B+(x), A−(x) ≤ µ(x) ≤ A+(x).

Thus
(A ∩B)−(x) ≤ (A ∩B)∈(x) ≤ (A ∩B)+(x)

and
(A ∩B)−(x) ≤ 1− (A ∩B) 6∈(x) ≤ (A ∩B)+(x).

By the condition (3.9), we have

(A ∩B)−(x) ≤ (λ ∨ µ)(x) ≤ A+(x) ∧B+(x) = (A ∩B)+(x).

So A ∩2 B is internal. �

Proposition 3.31. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X). Suppose A and B are internal such that for each x ∈ X,

(3.10) A+(x) ∧B+(x) ≥ (A ∪B)∈(x), A+(x) ∧B+(x) ≥ 1− (A ∪B) 6∈(x).

Then A ∩3 B is internal.

Proof. Suppose A and B be IOSs in X satisfying the condition (3.10) and let x ∈ X.
Then clearly,

A−(x) ≤ A∈(x) ≤ A+(x), A−(x) ≤ 1−A 6∈(x) ≤ A+(x), A−(x) ≤ λ(x) ≤ A+(x),

B−(x) ≤ B∈(x) ≤ B+(x), B−(x) ≤ 1−B 6∈(x) ≤ B+(x), A−(x) ≤ µ(x) ≤ A+(x).

Thus (A ∩ B)−(x) ≤ (λ ∧ µ)(x) ≤ (A ∩ B)+(x). By the condition (3.10), we have
Thus

(A ∩B)−(x) = A−(x) ≤ (A ∪B)∈(x) ≤ A+(x) ∧B+(x) = (A ∪B)+(x)

and

(A ∩B)−(x) ≤ 1− (A ∪B)6∈(x) ≤ A+(x) ∧B+(x) = (A ∩B)+(x).

So A ∩3 B is internal. �

The following is the immediate result of Propositions 3.30 and 3.31.

Corollary 3.32. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X). Suppose A and B are IOSs satisfying the conditions (3.9) and (3.10). Then
A ∩4 B is internal.

Remark 3.33. Type i-union and Type i-intersection (i = 1, 2, 3, 4) of two external
octahedron sets may not be external, in general.

Example 3.34. In Example 3.15 (6), consider the EOS A6 in I given by: for each
x ∈ I,

A6(x) =

〈
[
1 + x

4
,

1 + x

2
], (

1 + x

5
, 1−

1
2 + x

4
),

2 + x

3

〉
.

Let A = 〈A, A, λ〉 be the octahedron set in I defined as follows: for each x ∈ I,

A(x) =

〈
[
1 + x

3
,
x

2
], (

1 + x

4
,

1− x
2

),
1 + x

2

〉
.
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Then we can easily see that A is an EOS in I.
(Case 1) Type 1-union and Type 1-intersection: for each x ∈ I,

(A ∪1 A6)(x) =

〈
[
1 + x

3
,

1 + x

2
], (

1 + x

4
,

1− x
2

),
2 + x

3

〉
and

(A ∩1 A6)(x) =

〈
[
1 + x

4
,
x

2
], (

1 + x

5
, 1−

1
2 + x

4
),

1 + x

2

〉
.

Then (A∪A6)∈(x), (λ∨λ6)(x) 6∈ ( 1+x
3 , 1+x

2 ) but 1−(A∪A6) 6∈(x) = 1+x
2 ∈ (A∪B)(x),

for each x ∈ I and (A ∩ A6)∈(x), (λ ∧ λ6)(x) 6∈ ( 1+x
4 , x2 ) but 1 − (A ∩ A6)6∈(x) =

1
2−x

4 ∈ (A∩B)(x), for each x ∈ [ 1
2 , 1]. Thus A∪1A6 and A∩1A6 are not EOS in I.

(Case 2) Type 2-union and Type 2-intersection: for each x ∈ I,

(A ∪2 A6)(x) =

〈
[
1 + x

3
,

1 + x

2
], (

1 + x

4
,

1− x
2

),
1 + x

2

〉
and

(A ∩2 A6)(x) =

〈
[
1 + x

4
,
x

2
], (

1 + x

5
, 1−

1
2 + x

4
),

2 + x

3

〉
.

Then (A∪A6)∈(x) but (λ∧λ6)(x) = 1+x
2 ∈ (A∪B)(x) and (A∩A6)∈(x), (λ∨λ6)(x) 6∈

( 1+x
4 , x2 ) but 1−(A∩A6)6∈(x) =

1
2−x

4 ∈ (A∩B)(x), for each x ∈ [ 1
2 , 1]. Thus A∪2A6

and A ∩2 A6 are not EOS in I.
Similarly, we can easily calculate that A ∪3 A6, A ∩3 A6, A ∪4 A6 and A ∩4 A6

are not EOS in I.

We give a condition for the Type i-intersection of two EOSs to be an EOS.

Proposition 3.35. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X). Suppose A and B are external satisfying the following conditions: for each
x ∈ X,

(3.11) (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))
≥ (λ ∧ µ)(x) > (A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)),

(3.12) (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))
≥ (A ∩B)∈(x) > (A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)),

(3.13) (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))
≥ 1− (A ∩B) 6∈(x) > (A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)).

Then A ∩1 B is external.

Proof. Suppose the condition (3.12) holds and for each x ∈ X, take

αx := (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))

and
βx := ((A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)).

Then clearly, αx = A−(x) or αx = B−(x) or αx = A+(x) or αx = B+(x).
Case 1: Suppose αx = A−(x). Then B−(x) ≤ B+(x) ≤ A−(x) ≤ A+(x). Thus

βx = B+(x). So

B−(x) = (A ∩B)−(x) ≤ (A ∩B)+(x) = B+(x) = βx < (A ∩B)∈(x).

Hence (A ∩B)∈(x) 6∈ ((A ∩B)−(x), (A ∩B)+(x)).
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Case 2: Suppose αx = A+(x). Then B−(x) ≤ A+(x) ≤ B+(x). Thus

βx = A−(x) ∨B+(x).

If βx = A−(x), then

(3.14) B−(x) ≤ A−(x) < (A ∩B)∈(x) ≤ A+(x) ≤ B+(x).

Since A and B are external, the inequality

B−(x) ≤ A−(x) < (A ∩B)∈(x) < A+(x) ≤ B+(x)

does not hold. Thus by the inequality (3.14), we have

B−(x) ≤ A−(x) < (A ∩B)∈(x) = A+(x) ≤ B+(x).

So (A ∩B)∈(x) = A+(x) = (A ∩B)+(x). Hence

(A ∩B)∈(x) 6∈ ((A ∩B)−(x), (A ∩B)+(x)).

If βx = B−(x), then

(3.15) A−(x) ≤ B−(x) < (A ∩B)∈(x) ≤ A+(x) ≤ B+(x).

Since A and B are external, the inequality

A−(x) ≤ B−(x) < (A ∩B)∈(x) < A+(x) ≤ B+(x)

does not hold. Thus by the inequality (3.15), we have

A−(x) ≤ B−(x) < (A ∩B)∈(x) = A+(x) ≤ B+(x).

So (A ∩B)∈(x) = A+(x) = (A ∩B)+(x). Hence

(A ∩B)∈(x) 6∈ ((A ∩B)−(x), (A ∩B)+(x)).

Case 3: Suppose αx = B−(x) or αx = B+(x). Then the proof is similar to Case
1 and Case 2.

When the conditions (3.11) and (3.12) hold, we can also prove similarly that

(λ ∧ µ)(x) 6∈ ((A ∩B)−(x), (A ∩B)+(x))

and
1− (A ∩B)6∈(x) 6∈ ((A ∩B)−(x), (A ∩B)+(x)).

Therefore A ∩1 B is an EOS in X. �

Proposition 3.36. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X). Suppose A and B are external satisfying the conditions (3.12) and (3.13),
and the following condition: for each x ∈ X,

(3.16) (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))
≥ (λ ∨ µ)(x) > (A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)).

Then A ∩2 B is external.

Proof. From the proof of Proposition 3.35, it is obvious that

(A ∩B)∈(x) 6∈ ((A ∩B)−(x), (A ∩B)+(x)),

1− (A ∩B)6∈(x) 6∈ ((A ∩B)−(x), (A ∩B)+(x)).

Suppose the condition (3.16) holds and for each x ∈ X, take

αx := (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))
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and

βx := ((A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)).

Then by the proof process of Proposition 3.35,

(λ ∨ µ)(x) 6∈ ((A ∩B)−(x), (A ∩B)+(x)).

Thus A ∩2 B is external. �

Proposition 3.37. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X). Suppose A and B are external satisfying the condition (3.11), and the fol-
lowing conditions: for each x ∈ X,

(3.17) (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))
≥ (A ∪B)∈(x) > (A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)),

(3.18) (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))
≥ 1− (A ∪B)6∈(x) > (A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)).

Then A ∩3 B is external.

Proof. The proof is clear from the proofs of Propositions 3.35 and 3.36. �

The followings are immediate results of Propositions 3.36 and 3.37.

Corollary 3.38. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X).

If A and B are external satisfying the conditions (3.16), (3.17) and (3.18), then
A ∩4 B is external.

We give a condition for the Type i-union (i = 1, 2, 3, 4) of two EOSs to be an
EOS.

Proposition 3.39. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X). Suppose A and B are external satisfying the following conditions: for each
x ∈ X,

(3.19) (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))
> (λ ∨ µ)(x) ≥ (A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)),

(3.20) (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))
> (A ∪B)∈(x) ≥ (A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)),

(3.21) (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))
> 1− (A ∪B)6∈(x) ≥ (A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)).

Then A ∪1 B is external.

Proof. We prove only when the condition (3.20) holds. Suppose (3.20) holds and for
each x ∈ X, take

αx := (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))

and

βx := ((A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)).

Then clearly, αx = A−(x) or αx = B−(x) or αx = A+(x) or αx = B+(x). We
consider only αx = A−(x) or αx = A+(x), since the proofs of the remainder are
similar.
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Case 1: Suppose αx = A−(x). Then B−(x) ≤ B+(x) ≤ A−(x) ≤ A+(x). Thus
βx = B+(x). So

(A ∪B)−(x) = A−(x) = αx > (A ∪B)∈(x).

Hence (A ∪B)∈(x) 6∈ ((A ∪B)−(x), (A ∪B)+(x)).
Case 2: Suppose αx = A+(x). Then B−(x) ≤ A+(x) ≤ B+(x). Thus

βx = A−(x) ∨B−(x).

If βx = A−(x), then

(3.22) B−(x) ≤ A−(x) ≤ (A ∪B)∈(x) < A+(x) ≤ B+(x).

Since A and B are external, the inequality

B−(x) ≤ A−(x) < (A ∪B)∈(x) < A+(x) ≤ B+(x)

does not hold. Thus by the inequality (3.22), we have

B−(x) ≤ A−(x) = (A ∪B)∈(x) = A+(x) ≤ B+(x).

So (A ∪B)∈(x) = A−(x) = (A ∪B)+(x). Hence

(A ∪B)∈(x) 6∈ ((A ∪B)−(x), (A ∪B)+(x)).

If βx = B−(x), then

(3.23) A−(x) ≤ B−(x) ≤ (A ∪B)∈(x) < A+(x) ≤ B+(x).

Since A and B are external, the inequality

A−(x) ≤ B−(x) < (A ∪B)∈(x) < A+(x) ≤ B+(x)

does not hold. Thus by the inequality (3.23), we have

A−(x) ≤ B−(x) = (A ∪B)∈(x) < A+(x) ≤ B+(x).

So (A ∪B)∈(x) = B−(x) = (A ∪B)−(x). Hence

(A ∪B)∈(x) 6∈ ((A ∪B)−(x), (A ∪B)+(x)).

When the conditions (3.19) and (3.21), we can prove similarly that

(λ ∨ µ)(x) 6∈ ((A ∪B)−(x), (A ∪B)+(x))

and

1− (A ∪B) 6∈(x) 6∈ ((A ∪B)−(x), (A ∪B)+(x)).

Therefore A ∪1 B is an EOS in X. �

Proposition 3.40. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X). Suppose A and B are external satisfying the conditions (3.20) and (3.21),
and the following condition: for each x ∈ X,

(3.24) (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))
> (λ ∧ µ)(x) ≥ (A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)).

Then A ∪2 B is external.
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Proof. From the proof of Proposition 3.39, it is obvious that for each x ∈ X,

(A ∩B)∈(x) 6∈ ((A ∪B)−(x), (A ∪B)+(x))

and

1− (A ∩B) 6∈(x) 6∈ ((A ∪B)−(x), (A ∪B)+(x)).

Suppose (3.24) holds and for each x ∈ X, take

αx := (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))

and

βx := ((A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)).

Then clearly, αx = A−(x) or αx = B−(x) or αx = A+(x) or αx = B+(x). We
consider only αx = B−(x) or αx = B+(x), since the proofs of the remainder are
similar.

Case 1: Suppose αx = B−(x). Then A−(x) ≤ A+(x) ≤ B−(x) ≤ B+(x). Thus
βx = A+(x). So by the inequality (3.24),

(A ∪B)−(x) = B−(x) = αx > (λ ∧ µ)(x).

Hence (λ ∧ µ)(x) 6∈ ((A ∪B)−(x), (A ∪B)+(x)).
Case 2: Suppose αx = B+(x). Then A−(x) ≤ B+(x) ≤ A+(x). Thus

βx = A−(x) ∨B−(x).

If βx = A−(x), then

(3.25) B−(x) ≤ A−(x) ≤ (λ ∧ µ)(x) < B+(x) ≤ A+(x).

Since A and B are external, the inequality

B−(x) ≤ A−(x) < (λ ∧ µ)(x) < B+(x) ≤ A+(x)

does not hold. Thus by the inequality (3.25), we have

B−(x) ≤ A−(x) = (λ ∧ µ)(x) < B+(x) ≤ A+(x).

So (λ ∧ µ)(x) = A−(x) = (A ∪B)−(x). Hence

(λ ∧ µ)(x) 6∈ ((A ∪B)−(x), (A ∪B)+(x)).

If βx = B−(x), then

(3.26) A−(x) ≤ B−(x) ≤ (λ ∧ µ)(x) < B+(x) ≤ A+(x).

Since A and B are external, the inequality

A−(x) ≤ B−(x) < (λ ∧ µ)(x) < B+(x) ≤ A+(x)

does not hold. Thus by the inequality (3.26), we have

A−(x) ≤ B−(x) = (λ ∧ µ)(x) < B+(x) ≤ A+(x).

So (λ ∧ µ)(x) = B−(x) = (A ∪B)−(x). Hence

(λ ∧ µ) 6∈ ((A ∪B)−(x), (A ∪B)+(x)).

Hence A ∪2 B is an EOS in X. �
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Proposition 3.41. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X). Suppose A and B are external satisfying the condition (3.19), the following
conditions: for each x ∈ X,

(3.27) (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))
> (A ∩B)∈(x) ≥ (A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)),

(3.28) (A+(x) ∨B−(x)) ∧ (A−(x) ∨B+(x))
> 1− (A ∩B)6∈(x) ≥ (A+(x) ∧B−(x)) ∨ (A−(x) ∧B+(x)).

Then A ∪3 B is external.

Proof. The proof is similar to Proposition 3.40. �

The following is the immediate result of Propositions 3.40 and 3.41.

Corollary 3.42. Let X be a nonempty set and let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈
O(X). If A and B are external satisfying the conditions (3.24), (3.27) and (3.28),
then A ∪4 B is external.

4. Octahedron points and level sets

In this section, we define an octahedron point and dealt with the characterizations
of Type i-union (Type i-intersection). Also we define a level set of an octahedron
set and investigate its property.

Definition 4.1 ([14]). A ∈ (I ⊕ I)X is called an intuitionistic fuzzy point (briefly,
an IF point) with the support x ∈ X and the value ā ∈ I ⊕ I with ā 6= 0̄, denoted
by A = xā, if for each y ∈ X,

xā(y) =

{
ā if y = x
0̄ otherwise.

The set of all IF points in X is denoted by IFP (X).
For each xā ∈ IFP (X) and A ∈ (I ⊕ I)X , xā is said to belong to A, denoted by

xā ∈ A, if a∈ ≤ A∈(x) and a6∈ ≥ A 6∈(x).
It is well-known (See Theorem 2.4 in [14]) that A =

⋃
xā∈A xā, for each A ∈

(I ⊕ I)X .

Definition 4.2 ([16]). A ∈ [I]X is called an interval-valued fuzzy point (briefly, an
IVF point) with the support x ∈ X and the value ã ∈ [I] with a+ > 0, denoted by
A = xã, if for each y ∈ X,

xã(y) =

{
ã if y = x
0 otherwise.

The set of all IVF points in X is denoted by IV FP (X).
For each xã ∈ IV FP (X) and A ∈ [I]X , xã is said to belong to A, denoted by

xã ∈ A, if a− ≤ A−(x) and a+ ≤ A+(x).
It is clear that A =

⋃
xã∈A xã, for each A ∈ [I]X .

Definition 4.3. LetA = 〈A, A, λ〉 ∈ O(X) and let ˜̄a =< ã, ā, a >=< [a−, a+], (a∈, a6∈), a >
be a octahedron number of X such that a+ > 0, ā 6= 0̄ and a 6= 0. Then A is called
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an octahedron point with the support x ∈ X and the value ˜̄a, denoted by A = x˜̄a,
if for each y ∈ X,

x˜̄a(y) =

{ ˜̄a if y = x〈
0̃, 0̄, 0

〉
otherwise.

The set of all octahedron points in X is denoted by OP (X).

Definition 4.4. Let A = 〈A, A, λ〉 ∈ O(X) and let x˜̄a ∈ OP (X). Then x˜̄a is said
to:

(i) belong to A with respect to Type 1-order, denoted by x˜̄a ∈1 A, if

ã ≤ A(x), ā ≤ A(x) and a ≤ λ(x), i.e., xã ∈ A, xā ∈ A and xa ∈ λ,

(ii) belong to A with respect to Type 2-order, denoted by x˜̄a ∈2 A, if

ã ≤ A(x), ā ≤ A(x) and a ≥ λ(x), i.e., xã ∈ A, xā ∈ A and a ≥ λ(x),

(iii) belong to A with respect to Type 3-order, denoted by x˜̄a ∈3 A, if

ã ≤ A(x) , ā ≥ A(x) and a ≤ λ(x), i.e., xã ∈ A, ā ≥ A(x) and xa ∈ λ,

(iv) belong to A with respect to Type 4-order, denoted by x˜̄a ∈4 A, if

ã ≤ A(x), ā ≥ A(x) and a ≥ λ(x), i.e., xã ∈ A, ā ≥ A(x) and a ≥ λ(x).

It is clear that A =
⋃1
x˜̄a∈1A x˜̄a, for each A ∈ O(X).

Theorem 4.5. Let x˜̄a ∈ OP (X), A = 〈A, A, λ〉 and B = 〈B, B, µ〉 ∈ O(X) and let
i = {1, 2, 3, 4}. Then

A ⊂i B if and only if x˜̄a ∈i B, for each x˜̄a ∈i A.
Proof. Suppose A ⊂1 B and let x˜̄a ∈1 A. Then

ã = [a−, a+] ≤ [A−(x), A+(x)] = A(x),
ā = (a∈, a6∈) ≤ (A∈(x), A6∈(x)) = A(x), a ≤ λ(x).

Since A ⊂1 B, A(x) ≤ B(x), A(x) ≤ B(x), λ(x) ≤ µ(x). Thus

ã ≤ B(x), ā ≤ B(x), a ≤ µ(x).

So x˜̄a ∈1 B.
Conversely, suppose the necessary condition holds and Assume that A 6⊂1 B.

Then there is x˜̄a ∈ OP (X) such that x˜̄a ∈1 A, but x˜̄a 6∈1 B. Thus xã ∈ A, xā ∈ A,
xa ∈ λ but ã > B(x) or ā > B(x) or a > λ(x). This is a contradiction. So A ⊂1 B.

The remainders can be proved similarly. �

Proposition 4.6. Let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈ O(X), let (Aj)j∈J =
(〈Aj , Aj , λj〉)j∈J ⊂ O(X), x˜̄a ∈ OP (X) and let i = {1, 2, 3, 4}.

(1) If x˜̄a ∈i A or x˜̄a ∈i B, then x˜̄a ∈i A ∪i B.
(2) If there is j ∈ J such that x˜̄a ∈i Aj, then x˜̄a ∈i ⋃ij∈J Aj.

Proof. The proofs are straightforward. �

The converse of Proposition 4.6 need not to be true in general as shown in the
following example.
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Example 4.7. Let A = 〈A, A, λ〉 and B = 〈B, B, µ〉 be two octahedron sets in I
given in Example 3.26 as follows: for each x ∈ I,

A(x) =

〈
[
1 + x

4
,

1 + x

2
], (

1 + x

3
,

1− x
3

),
2 + x

5

〉
and

B =

〈
[
x

5
,

2 + x

3
], (
x

3
,

2− x
5

),
x

4

〉
.

Then clearly, A ∪1 B =
〈
[ 1+x

4 , 2+x
3 ], ( 1+x

3 , 1−x
3 ), 2+x

5

〉
. Let ã = [ 1

6 ,
2
3 ], ā = ( 3

5 ,
1
6 ),

a = 2
5 and Consider octahedron point 1˜̄a. Since (A ∪1 B)(1) =

〈
[ 1
2 , 1], ( 2

3 , 0), 3
5

〉
,

A(1) =
〈
[ 1
2 , 1], ( 2

3 , 0), 3
5

〉
and B(1) =

〈
[ 1
5 , 1], ( 1

3 ,
1
5 ), 1

4

〉
, we have

ã ≤ (A ∪B)(1), ā ≤ (A ∪B)(1), a ≤ λ(1) but 3
5 >

1
3 and 2

5 >
1
4 .

Thus 1ã ∈ A ∪B, 1ā ∈ A ∪B, 1a ∈ λ but 1ā 6∈ B and 1a 6∈ λ. So 1˜̄a ∈1 A ∪1 B but
1˜̄a 6∈1 B.

On the other hand, by (3.1) of Example 3.26, (A ∪2 B)(1) =
〈
[ 1
2 , 1], ( 2

3 , 0), 1
4

〉
.

Then 1ã ∈ A ∪ B, 1ā ∈ A ∪ B, a > 1
4 = λ(1) but ā 6≤ B(x), i.e., 1ā 6∈ B. Thus

1˜̄a ∈2 A ∪2 B but 1˜̄a 6∈2 B.
Similarly, we can see that for i = 2, 3, 1˜̄a ∈i A ∪i B but 1˜̄a 6∈i B.

Theorem 4.8. Let A = 〈A, A, λ〉 , B = 〈B, B, µ〉 ∈ O(X), let (Aj)j∈J be a family
of octahedron sets in X, let x˜̄a ∈ OP (X) and let i = {1, 2, 3, 4}. Then

(1) x˜̄a ∈i A ∩i B if and only if x˜̄a ∈i A and x˜̄a ∈i B,
(2) x˜̄a ∈i ∩ij∈JAj if and only if x˜̄a ∈i Aj, for each j ∈ J .

Proof. (1) Suppose x˜̄a ∈1 A ∩1 B. Then xã ∈ A ∩B, xā ∈ A ∩ B and xa ∈ λ ∧ µ.
Thus ã = [a−, a+] ≤ (A ∩B)(x) = [A−(x)] ∧B−(x), A+(x)] ∧B+(x)],

ā = (a∈, a6∈) ≤ (A ∩B)(x) = (A∈(x) ∧B∈(x), A6∈(x) ∨B 6∈(x),
a ≤ (λ ∧ µ)(x) = λ(x) ∧ µ(x).

So a− ≤ A−(x), a+ ≤ A+(x) and a− ≤ B−(x), a+ ≤ B+(x),
a∈ ≤ A∈(x), a6∈ ≥ A 6∈(x) and a∈ ≤ B∈(x), a6∈ ≥ B 6∈(x),
a ≤ λ(x) and a ≤ µ(x).

Hence xã ∈ A, xā ∈ A, xa ∈ λ and xã ∈ B, xā ∈ B, xa ∈ µ. Therefore x˜̄a ∈1 A
and x˜̄a ∈1 B.

Conversely, suppose x˜̄a ∈1 A and x˜̄a ∈1 B. Then

a− ≤ A−(x), a+ ≤ A+(x), a∈ ≤ A∈(x), a6∈ ≥ A 6∈(x), a ≤ λ(x)

and
a− ≤ B−(x), a+ ≤ B+(x), a∈ ≥ B∈(x), a6∈ ≥ B 6∈(x), a ≤ µ(x),

b∈ ≤ B∈(x), a6∈ ≥ B 6∈(x).

Thus

a− ≤ A−(x) ∧B−(x) = (A ∩B)−(x), a+ ≤ A+(x) ∧B+(x) = (A ∩B)+(x),

a∈ ≤ A∈(x) ∧B∈(x) = (A ∩B)∈(x), a6∈ ≥ A 6∈(x) ∨B 6∈(x) = (A ∩B) 6∈(x),

a ≤ λ(x) ∧ µ(x) = (λ ∧ µ)(x).

So xã ∈ A ∩B, xā ∈ A ∩B and xa ∈ λ ∧ µ. Hence x˜̄a ∈i A ∩i B.
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For i = 2, 3, 4, the proofs is similar. �

It is clear that

Definition 4.9. Let X be a nonempty set, let ˜̄a ∈ [I] × (I ⊕ I) × I and let A =
〈A, A, λ〉 ∈ O(X). Then two subsets [A]˜̄a and [A]∗˜̄a of X are defined as follows:

[A]˜̄a = {x ∈ X : A(x) ≥ ã, A(x) ≥ ā, λ(x) ≥ a} = {x ∈ X : A(x) ≥1 ˜̄a},
[A]∗˜̄a = {x ∈ X : A(x) > ã, A(x) > ā, λ(x) > a} = {x ∈ X : A(x) >1 ˜̄a}.

In this case, [A]˜̄a is called an ˜̄a-level set of A and [A]∗˜̄a is called a strong ˜̄a-level set
of A.

Example 4.10. Consider the octahedron set in I given by: for each x ∈ I,

A =

〈
[
1 + x

6
,

2 + x

3
], (

1 + x

2
,
x

5
),

1 + x

4

〉
.

Let ã = [ 1
2 ,

2
3 ], ā = ( 2

3 ,
1
4 ), a = 1

2 . Then

[A]〈0,0̄,0〉 = {x ∈ I : [ 1+x
6 , 2+x

3 ] ≥ 0, ( 1+x
2 , x5 ) ≥ 0̄, 1+x

4 ≥ 0}
= {x ∈ I : 1+x

6 ≥ 0, 2+x
3 ≥ 0, 1+x

2 ≥ 0, 2+x
3 ≤ 1, 1+x

4 ≥ 0}
= I,

[A]∗〈0,0̄,0〉 = {x ∈ I : [ 1+x
6 , 2+x

3 ] > 0, ( 1+x
2 , x5 ) > 0̄, 1+x

4 > 0}
= {x ∈ I : 1+x

6 > 0, 2+x
3 > 0, 1+x

2 > 0, 2+x
3 < 1, 1+x

4 > 0}
= I \ {1},

[A]〈1,1̄,1〉 = {x ∈ I : [ 1+x
6 , 2+x

3 ] ≥ 1, ( 1+x
2 , x5 ) ≥ 1̄, 1+x

4 ≥ 1}
= {x ∈ I : 1+x

6 ≥ 1, 2+x
3 ≥ 1, 1+x

2 ≥ 1, 2+x
3 ≤ 0, 1+x

4 ≥ 1}
= φ = [A]∗<1,1̄,1>,

[A]˜̄a = {x ∈ I : [ 1+x
6 , 2+x

3 ] ≥ ã, ( 1+x
2 , x5 ) ≥ b̄, 1+x

4 ≥ α}
= {x ∈ I : 1+x

6 ≥ 1
2 ,

2+x
3 ≥ 2

3 ,
1+x

2 ≥ 2
3 ,

2+x
3 ≤ 1

4 ,
1+x

4 ≥ 1
2}

= [ 1
3 , 1],

[A]∗˜̄a = {x ∈ I : [ 1+x
6 , 2+x

3 ] > ã, ( 1+x
2 , x5 ) > b̄, 1+x

4 > α}
= {x ∈ I : 1+x

6 > 1
2 ,

2+x
3 > 2

3 ,
1+x

2 > 2
3 ,

2+x
3 < 1

4 ,
1+x

4 > 1
2}

= ( 1
3 , 1].

It is obvious that that for each ˜̄a ∈ [I]×(I⊕I)×I and eachA ∈ O(X), [A]∗˜̄a ⊂ [A]˜̄a.
Proposition 4.11. Let A ∈ O(X) and let ˜̄a, ˜̄b ∈ [I]× (I ⊕ I)× I. Then have the
following properties:

(1) if ˜̄a ≤1
˜̄b, then [A]̃

b̄
⊂ [A]˜̄a,

(2) [A]˜̄a =
⋂
˜̄b<˜̄a

[A]̃
b̄
, where ã 6= 0, ā 6= 0̄, a 6= 0,

(1)
′
if ˜̄a ≤1

˜̄b, then [A]∗˜̄b ⊂ [A]∗˜̄a,
(2)
′

[A]∗˜̄a =
⋃
˜̄b>˜̄a

[A]∗˜̄a, where ã 6= 1, ā 6= 0̄, a 6= 0.

Proof. (1) The proof is obvious from Definition 4.9.
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(2) From (1), it is obvious that ([A]˜̄a)˜̄a∈([I]×(I⊕I)×I)\{〈0,0̄,0〉} is a descending family

of subsets of X. Then clearly,

[A]˜̄a ⊂ ⋂˜̄b<˜̄a
[A]̃

b̄
,

for each ˜̄a ∈ ([I]× (I ⊕ I)× I) \ {〈0, 0̄, 0〉}.
Suppose x /∈ [A]˜̄a. Then A(x) < ˜̄a. Thus

∃ ˜̄b ∈ ([I]× (I ⊕ I)× I) \ {〈0, 0̄, 0〉}

such that A(x) < ˜̄b < ˜̄a. So x 6∈ [A]̃
b̄
, for some ˜̄b ∈ ([I] × (I ⊕ I) × I) \ {〈0, 0̄, 0〉}

such that ˜̄b < ˜̄a, i.e., x /∈
⋂
˜̄b<˜̄a

[A]̃
b̄
. Hence

⋂
˜̄b<˜̄a

[A]̃
b̄
⊂ [A]˜̄a. Therefore [A]˜̄a =

⋂
˜̄b<˜̄a

[A]̃
b̄
.

(2)
′

The proof is similar to (2). �

5. the image and the preimage of an octahedron set under a mapping

In this section, Finally, we define the image and preimage of an octahedron set
under a mapping and investigated some of their properties.

Definition 5.1 ([?]). Let X, Y be two sets, let f : X → Y be a mapping and let
A ∈ (I ⊕ I)X , B ∈ (I ⊕ I)Y .

(i) The preimage of B under f , denoted by f−1(B), is the IF set in X defined as
follows: For each x ∈ X,

f−1(B)(x) = (B∈(f(x)), B 6∈(f(x))) = ((B∈ ◦ f)(x), (B 6∈ ◦ f)(x)).

(ii) The image of A under f , denoted by f(A) = (f(A∈), f−(A 6∈)), is the IF set
in Y defined as follows: For each y ∈ Y ,

f(A∈)(y) =

{ ∨
x∈f−1(y)A

∈(x) if f−1(y) 6= φ

0̄ otherwise,

f−(A 6∈)(y) = (1− f(1−A 6∈))(y) =

{ ∧
x∈f−1(y)A

6∈,−(x) if f−1(y) 6= φ

1̄ otherwise.

Definition 5.2 ([16]). Let X, Y be two sets, let f : X → Y be a mapping and let
A ∈ [I]X , B ∈ [I]Y .

(i) The preimage of B under f , denoted by f−1(B), is the IVF set in X defined
as follows: for each x ∈ X,

f−1(B)(x) = [(B−(f(x)), B+(f(x))] = [(B− ◦ f)(x)), (B+ ◦ f)(x)].

(ii) The image of A under f , denoted by f(A) = [f(A−), f(A+)], is the IVF set
in Y defined as follows: for each y ∈ Y ,

f(A)(y) =

{
[
∨
x∈f−1(y)A

−(x),
∨
x∈f−1(y)A

+(x)] if f−1(y) 6= φ

0 otherwise.

Definition 5.3. Let X, Y be two sets, let f : X → Y be a mapping and let
A = 〈A, A, λ〉 ∈ O(X), B = 〈B, B, µ〉 ∈ O(Y ).
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(i) The preimage of B under f , denoted by f−1(B) =
〈
f−1(B), f−1(B), f−1(µ)

〉
,

is the octahedron set in X defined as follows: for each x ∈ X,

f−1(B)(x) =
〈
[(B− ◦ f)(x), (B+ ◦ f)(x))], ((B∈ ◦ f)(x), (B 6∈ ◦ f)(x)), (µ ◦ f)(x)

〉
.

(ii) The image of A under f , denoted by f(A) = 〈f(A), f(A), f(λ)〉, is the octa-
hedron set in Y defined as follows: for each y ∈ Y ,

f(A)(y) =

{
[
∨
x∈f−1(y)A

−(x),
∨
x∈f−1(y)A

+(x)] if f−1(y) 6= φ

0 otherwise,

f(A)(y) =

{
(
∨
x∈f−1(y)A

∈(x),
∧
x∈f−1(y)A

6∈(x)) if f−1(y) 6= φ

0̄ otherwise,

f(λ)(y) =

{ ∨
x∈f−1(y) λ(x) if f−1(y) 6= φ

0 otherwise.

It is obvious that f(x˜̄a) = [f(x)]˜̄a, for each x˜̄a ∈ OP (X).

Example 5.4. Let X = {x, y, z}, Y = {a, b, c, d} and let f : X → Y be the
mapping defined by: f(x) = f(y) = a, f(z) = c. Let A = 〈A, A, λ〉 be the octahe-
dron set in X and let B = 〈B, B, µ〉 be the octahedron set in Y defined by Table 5.1:

X A(t) A(t) λ(t)
x ([0.2, 0.6] (0.6, 0.3) 0.7
y ([0.3, 0.5] (0.5, 0.2) 0.6
z ([0.4, 0.7] (0.7, 0.2) 0.8

Table 5.1

Then we have easily the following Table 5.2 for f(A):

Y f(A)(x) f(A)(x) f(λ)(x)
a [0.3, 0.6] (0.6, 0.2) 0.7

b 0 0̃ 0
c [0.4, 0.7] (0.7, 0.2) 0.8

d 0 0̃ 0

Table 5.2

Now let B = 〈B, B, µ〉 be the octahedron set in Y defined by the following Table:

Y B(x) B(x) µ(x)
a ([0.3, 0.5] (0.5, 0.4) 0.6
b ([0.2, 0.6] (0.7, 0.2) 0.8
c ([0.4, 0.7] (0.6, 0.3) 0.7
d ([0.2, 0.5] (0.4, 0.5) 0.5

Table 5.3

Then we have easily the following Table 5.4 for f−1(B):
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X f−1(B)(t) f−1(B)(t) f−1(µ)(t)
x [0.3, 0.5] (0.5, 0.4) 0.6
y [0.3, 0.5] (0.5, 0.4) 0.6
z [0.4, 0.7] (0.6, 0.3) 0.7

Table 5.4

Proposition 5.5. Let A = 〈A, A, λ〉 , A1 = 〈A1, A1, λ1〉 , A2 = 〈A2, A2, λ2〉 ∈
O(X), (Aj)j∈J = (〈Aj , Aj , λj〉)j∈J ⊂ O(X), let B = 〈B, B, µ〉 , B1 = 〈B1, B1, µ1〉 ,
B2 = 〈B2, B2, µ2〉 ∈ O(Y ), (Bj)j∈J = (〈Bj , Bj , µj〉)j∈J ⊂ O(Y ) and let f : X → Y
be a mapping. Then for each i = 1, 2, 3, 4,

(1) if A1 ⊂i A2, then f(A1) ⊂i f(A2),
(2) if B1 ⊂i B2, then f

−1(B1) ⊂i f−1(B2),
(3) A ⊂1 f

−1(f(A)) and if f is injective, then A = f−1(f(A)),
(4) f(f−1(B)) ⊂1 B and if f is surjective, f(f−1(B)) = B,
(5) f−1(

⋃i
j∈J Bj) =

⋃i
j∈J f

−1(Bj),
(6) f−1(

⋂i
j∈J Bj) =

⋂i
j∈J f

−1(Bj),
(7) f(

⋃1
j∈J Aj) =

⋃1
j∈J f(Aj),

(8) f(
⋂i
j∈J Aj) ⊂i

⋂i
j∈J f(Aj) and if f is injective, then f(

⋂i
j∈J Aj) =

⋂i
j∈J f(Aj),

(9) if f is surjective, then f(A)c ⊂1 f(Ac).
(10) f−1(Bc) = f−1(B)c.

(11) f−1(0̈) = 0̈, f−1(1̈) = 1̈, f−1(
〈

0̃, 0̄, 1
〉

) =
〈

0̃, 0̄, 1
〉
,

f−1(
〈

0̃, 1̄, 0
〉

) =
〈

0̃, 1̄, 0
〉
, f−1(

〈
1̃, 0̄, 0

〉
) =

〈
1̃, 0̄, 0

〉
,

f−1(
〈

0̃, 1̄, 1
〉

) =
〈

0̃, 1̄, 1
〉
, f−1(

〈
1̃, 0̄, 1

〉
) =

〈
1̃, 0̄, 1

〉
,

f−1(
〈

1̃, 1̄, 0
〉

) =
〈

1̃, 1̄, 0
〉
.

(12) f(0̈) = 0̈ and if f is surjective, then the following hold:

f(
〈

0̃, 0̄, 1
〉

) =
〈

0̃, 0̄, 1
〉
, f(

〈
0̃, 1̄, 0

〉
) =

〈
0̃, 1̄, 0

〉
,

f(
〈

1̃, 0̄, 0
〉

) =
〈

1̃, 0̄, 0
〉
, f(

〈
0̃, 1̄, 1

〉
) =

〈
0̃, 1̄, 1

〉
,

f(
〈

1̃, 0̄, 1
〉

) =
〈

1̃, 0̄, 1
〉
, f(

〈
1̃, 1̄, 0

〉
) =

〈
1̃, 1̄, 0

〉
, f(1̈) = 1̈.

Proof. The proofs are straightforward. �

Example 5.6. In Example 5.4, f−1(f(A))(x) = 〈[0.3, 0.6], (0.6, 0.2), 0.7〉 ≥1 A(x),
f−1(f(A))(y) = 〈[0.3, 0.6], (0.6, 0.2), 0.7〉 ≥1 A(y) and f−1(f(A))(z) = A(z). Then
A ⊂1 f−1(f(A)). Moreover, A 6= f−1(f(A)). On the other hand, we can easily
calculate that f(f−1(B)) = B. Thus we can confirm that Proposition 5.5 (3) and
(4) hold. Note that f is surjective but not injective.

Remark 5.7. f(
⋃1
j∈J Aj) 6=

⋃i
j∈J f(Aj) for i = 2, 4, 4, in general.

Example 5.8. Let X = {x, y, z}, Y = {a, b, c}, let A1 = 〈A1, A1, λ1〉 and A2 =
〈A2, A2, λ2〉 be two octahedron sets in X given by:

A1(x) = 〈[0.3, 0.6], (0.6, 0.3), 0.6〉 , A1(y) = 〈[0.2, 0.7], (0.7, 0.2), 0.7〉 ,
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A1(z) = 〈[0.5, 0.6], (0.7, 0.1), 0.5〉 ,
A2(x) = 〈[0.4, 0.5], (0.7, 0.2), 0.7〉 , A2(y) = 〈[0.3, 0.4], (0.6, 0.3), 0.6〉 ,
A1(z) = 〈[0.3, 0.8], (0.5, 0.3), 0.7〉 .

Let f : X → Y be the mapping defined by f(x) = f(y) = a, f(z) = c. Then

f(λ1 ∧ λ2)(a) = 0.6 6= 0.7 = (f(λ1) ∧ f(λ2))(a)

and

f(A1 ∩A2)(a) = (0.6, 0.3) 6= (0.7, 0.2) = (f(A1) ∩ f(A2).

Thus f(A1∪2A2)(a) 6= (f(A1)∪2f(A1))(a), f(A1∪3A2)(a) 6= (f(A1)4f(A1))(a) and

f(A1∪4A2)(a) 6= (f(A1)∪4f(A1))(a). So f(
⋃1
j∈J Aj) 6=

⋃i
j∈J f(Aj) for i = 2, 4, 4.

The following is an immediate result of Definition 5.3 (i).

Proposition 5.9. If g : Y → Z is a mapping, then (g ◦ f)−1(C) = f−1(g−1(C)), for
each C ∈ O(X), where g ◦ f is the composition of f and g.

6. Conclusions

We defined an octahedron set and introduced concepts of internal octahedron
sets and external octahedron sets. Moreover, we studied some related properties
and gave some examples. Furthermore, we defined an octahedron point and dealt
with the characterizations of Type i-union (Type i-intersection). Finally, we defined
the image and preimage of an octahedron set under a mapping and investigated
some of their properties. In the future, we expect that one applies octahedron sets
to algebras, topologies, decision-making, measures and entropy measures, etc. Fur-
thermore, In solving real-world problems, we think that it is necessary to extend the
concept of octahedron sets as a way of reducing possible information loss, for exam-
ple, interval-valued intuitionistic octahedron set, soft octahedron set, neutrosophic
octahedron set, etc.

Funding: This research was supported by the Basic Science Research Program
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