$@\mathbb{FMI}$

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

On symmetric bi-derivations of *BL*-algebras

Kyung Ho Kim

Reprinted from the Annals of Fuzzy Mathematics and Informatics Vol. 19, No. 2, April 2020

Annals of Fuzzy Mathematics and Informatics Volume 19, No. 2, (April 2020) pp. 189–198 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr https://doi.org/10.30948/afmi.2020.19.2.189

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

On symmetric bi-derivations of *BL*-algebras

Kyung Ho Kim

Received 22 November 2019; Revised 9 December 2019; Accepted 16 December 2019

ABSTRACT. In this paper, we introduce the notion of two types of symmetric bi-derivations in *BL*-algebra and obtain some results. We study (\otimes, \lor) -symmetric bi-derivations on *Gödel BL*-algebras and consider isotone symmetric bi-derivations on *BL*-algebra *A*.

2010 AMS Classification: 08A05, 08A30, 20L05, Primary 16Y30

Keywords: *BL*-algebra, Symmetric mapping, Symmetric bi-derivation, Isotone, $Fix_a(A)$, Boolean center.

1. INTRODUCTION

The notion of *BL*-algebra was introduced by P. $H\ddot{a}jek$ [2] in order to provide an algebraic proof of the completeness theorem of Basic Logic. The main example of an *BL*-algebra is an interval [0, 1] endowed with the structure induced by a continuous *t*-norm. *MV*-algebra, *Gödel* algebras, and product algebras are the most known classes of *BL*-algebras. In this paper, we introduce the notion of two types of symmetric bi-derivations in *BL*-algebra and obtain some results. We study (\otimes, \vee) -symmetric bi-derivations on *Gödel BL*-algebras and consider isotone symmetric bi-derivations on *BL*-algebra *A*.

2. Preliminary

An *BL*-algebra is a structure $(A, \land, \lor, \otimes, \rightarrow, 0, 1)$ with four binary operations $\land, \lor, \otimes, \rightarrow$ and two constants 0, 1 such that

- (BL1) $(A, \land, \lor, 0, 1)$ is a bounded lattice,
- (BL2) $(A, \otimes, 1)$ is a commutative monoid,
- (BL3) \otimes and \rightarrow form a adjoint pair, i.e., $c \leq a \rightarrow b$ if and only if $a \otimes c \leq b$ for all $a, b, c \in A$,
- (BL4) $a \wedge b = a \otimes (a \rightarrow b)$ for any $a, b \in A$,
- (BL6) $(a \rightarrow b) \lor (b \rightarrow a) = 1$ for any $a, b \in A$ (see [2]).

For any $a \in A$, we define $a^* = x \to 0$ for any $a \in A$ and denote $(a^*)^* = a^{**}$. Also, we denote the set of natural numbers by ω and define $a^0 = 1$ and $a^n = a^{n-1} \otimes a$ for $a \in \omega \setminus \{0\}$.

We define the binary operations \oplus and \ominus by

$$x \oplus y = (x^* \otimes y^*)^*, \quad x \ominus y = x \otimes y^*$$

for any $x, y \in A$.

Theorem 2.1. In any BL-algebra A, the following properties hold for any $x, y, z \in A$,

(1) $x \leq y$ if and only if $x \to y = 1$, (2) $x \to (y \to z) = (x \otimes y) \to z = y \to (x \to z)$, (3) If $x \leq y$, then $y \to z \leq x \to z, z \to x \leq z \to y, x \otimes z \leq y \otimes z$ and $y^* \leq x^*$, (4) $x, y \leq (y \to x) \to x$ and $x \lor y = ((x \to y) \to y) \lor ((y \to x) \to x)$, (5) $x \otimes y \leq x, y, x \otimes y \leq x \land y, x \otimes 0 = 0$ and $x \otimes x^* = 0$, (6) $1 \to x = x, x \to x = 1, x \leq y \to x, x \to 1 = 1$ and $0 \to x = 1$, (7) $x \otimes y = 0$ if and only if $x \leq y^*$, (8) $x \otimes (y \land z) = (x \otimes y) \land (x \otimes z)$ and $x \otimes (y \lor z) = (x \otimes y) \lor (x \otimes z)$ (see [1]).

For a BL-algebra A, if we define

$$B(A) = \{x \in A \mid x \oplus x = x\} = \{x \in A \mid x \otimes x = x\},\$$

then $(B(A), \oplus, *, 0)$ is both a largest subalgebra of A and a Boolean algebra. Elements of B(A) are called *Boolean center* of A. If $e \in B(A)$, then $e \otimes x = e \wedge x$ for any $x \in A$.

Theorem 2.2. For every element $x \in A$ in any *BL*-algebra, the following conditions are equivalent:

(1) $x \in B(A)$, (2) $x \otimes x = x$ and $x^{**} = x$, (3) $x \otimes x = x$ and $x^* \to x = x$, (4) $x^* \lor x = 1$, (5) $(x \to y) \to x = x$ for any $y \in A$, (6) $x \land y = x \otimes y$ for any $y \in A$ (see [1]).

We recall that a *t*-norm is a function $t: [0,1] \times [0,1] \rightarrow [0,1]$ such that

- (1) t is commutative and associative,
- (2) t(x, 1) = x for any $x \in [0, 1]$,
- (3) t is nondecreasing in both components.

The following three structures are main examples of BL-algebras on the real unit interval [0, 1].

Example 2.3. Let A be an *BL*-algebra and $x, y \in A$.

Lukasiewicz: $x \otimes y = \max\{x + y - 1, 0\}$ and $x \to_L y = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{otherwise.} \end{cases}$

Example 2.4. Let A be an *BL*-algebra and $x, y \in A$.

Gödel structure : $x \otimes y = \min\{x, y\}$ and $x \to_G y = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{otherwise.} \end{cases}$ It is well-known that $\min\{x, y\}$ is the greatest *t*-norm on [0, 1].

Example 2.5. Let A be an *BL*-algebra and $x, y \in A$.

Product:
$$x \otimes y = xy$$
 and $x \to_P y = \begin{cases} 1 & \text{if } x \leq y \\ x/y & \text{otherwise} \end{cases}$

Definition 2.6. Let A be an *BL*-algebra. A mapping $D(.,.): A \times A \to A$ is called symmetric, if D(x, y) = D(y, x) holds for all $x, y \in A$.

Definition 2.7. Let A be an *BL*-algebra. A mapping d(x) = D(x, x) is called a trace of D(., .), where $D(., .) : A \times A \to A$ is a symmetric mapping.

3. (\otimes, \lor) -symmetric bi-derivations of *BL*-algebras

In what follows, let A denote an BL-algebra unless otherwise specified.

Definition 3.1. Let *A* be a *BL*-algebra and $D : A \times A \to A$ be a symmetric mapping. We call $D \in (\otimes, \vee)$ -symmetric bi-derivation on *A*, if it satisfies the following condition

$$D(x\otimes y,z)=(D(x,z)\otimes y)\vee (x\otimes D(y,z))$$

for all $x, y, z \in A$.

Obviously, a (\otimes, \lor) -symmetric bi-derivation D on A satisfies the relation

$$D(x, y \otimes z) = (D(x, y) \otimes z) \lor (y \otimes D(x, z))$$

for all $x, y, z \in A$.

Example 3.2. Let $A = \{0, a, b, 1\}$ be a set where 0 < a < b < 1 and " \otimes " and " \rightarrow " are defined by

\otimes	0	a	b	1	\rightarrow	0	a	b	1
0	0	0	0	0	0	1	1	1	1
a	0	a	a	a	a	0	1	1	1
b	0	a	b	b	b	0	a	1	1
1	0	a	b	1	1	0	a	b	1

Then $(A, \land, \lor, \otimes, \rightarrow, 0, 1)$ is a *BL*-algebra. Define a map $D: A \times A \to A$ by

$$D(x,y) = \begin{cases} a & \text{if } (x,y) = (a,a), (a,b), (b,a) \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to verify that D is a (\otimes, \vee) -symmetric bi-derivation on A.

Proposition 3.3. Let D be a (\otimes, \lor) -symmetric bi-derivation on A and let d be a trace of D. Then the following properties hold, for all $x, y \in A$:

- (1) d(0) = 0,
- (2) $d(x) \otimes x^* = x \otimes d(x^*) = 0$,
- (3) $d(x) = d(x) \lor (x \otimes D(x, 1)),$
- (4) $x \in B(A)$ implies $x \le (D(x, x^*))^*$,

191

(5) $x \in B(A)$ implies $D(x, y) \leq x$ and $D(x^*, y) \leq x^*$.

Proof. (1) For every $x \in A$, we have

$$D(x,0) = D(x,0 \otimes 0) = (D(x,0) \otimes 0) \lor (0 \otimes D(x,0))$$

= 0 \land 0 = 0.

Since d is a trace of D, we get

$$d(0) = D(0,0) = D(0 \otimes 0,0) \lor (0 \otimes D(0,0))$$

= 0 \land 0 = 0.

(2) For any $x \in A$, we have

$$0 = D(x, 0) = D(x, x \otimes x^*)$$
$$= (D(x, x) \otimes x^*) \lor (x \otimes D(x, x^*))$$

Then $d(x) \otimes x^* = 0$ and $x \otimes D(x, x^*) = 0$. Similarly, for any $x \in A$, we have

$$0 = D(x^*, 0) = D(x^*, x \otimes x^*)$$

= $(D(x^*, x) \otimes x^*) \lor (x \otimes D(x^*, x^*)).$

Thus $x \otimes D(x^*, x^*) = 0$ for all $x \in A$. So $x \otimes d(x^*) = 0$. (3) For every $x \in A$, we have

$$d(x) = D(x, x) = D(x, x \otimes 1) = (D(x, x) \otimes 1) \lor (x \otimes D(x, 1))$$
$$= d(x) \lor (x \otimes D(x, 1)).$$

(4) Let $x \in B(A)$. Since $x \otimes D(x, x^*) = 0$, we get $D(x, x^*) \leq x^*$. Then $x \leq (D(x, x^*))^*$.

(5) Let $x \in B(A)$. For all $x, y \in A$, since

$$0 = D(x \otimes x^*, y) = (D(x, y) \otimes x^*) \lor (x \otimes D(x^*, y))$$

we have $D(x,y) \otimes x^* = 0$ and $x \otimes D(x^*,y) = 0$, which implies $D(x,y) \leq x$ and $D(x^*,y) \leq x^*$.

Proposition 3.4. Let D be a (\otimes, \lor) -symmetric bi-derivation on A and let d be a trace of D. If $x \leq y$ for $x, y \in A$, then the following properties hold:

- (1) $d(x \otimes y^*) = 0,$
- $(2) \ d(y^*) \le x^*,$
- (3) $x \in B(A)$ implies $d(x) \otimes d(y^*) = 0$.

Proof. (1) Let $x \leq y$ for $x, y \in A$. Since $x \otimes y^* \leq y \otimes y^* = 0$, we have $x \otimes y^* = 0$. Since d(0) = 0, we obtain $d(x \otimes y^*) = 0$.

(2) Let $x \leq y$ for $x, y \in A$. Since $x \otimes d(y^*) \leq y \otimes y^* = 0$, we have $x \otimes d(y^*) = 0$, which implies $d(y^*) \leq x^*$.

(3) Let $x \in B(A)$. By Proposition 3.3 (5), we have $D(x,y) \leq x$. Replacing y by x in this relation, we have $D(x,x) \leq x$. Then $d(x) \leq x$. Since $d(x) \leq x$, we have $d(x) \leq y$. Thus $d(x) \otimes d(y^*) \leq y \otimes d(y^*) \leq y \otimes y^* = 0$ by part (2). So $d(x) \otimes d(y^*) = 0$.

Proposition 3.5. Let D be a (\otimes, \lor) -symmetric bi-derivation on A and let d be a trace of D. If $x \in B(A)$, the following properties hold, for all $x \in A$.

- $(1) \ d(x) \otimes d(x^*) = 0,$
- (2) Let $x \in B(A)$. Then $d(x^*) = (d(x))^*$ if and only if d is an identity map on A.

Proof. (1) In $d(x) \otimes d(y^*) = 0$, replacing y by x in this relation, we have $d(x) \otimes d(x^*) = 0$.

(2) Since $x \otimes d(y^*) = 0$ for all $x, y \in A$, we obtain $x \otimes d(x^*) = x \otimes (d(x))^* = 0$. Since $x \leq d(x)$ and $d(x) \leq x$, we get d(x) = x. Hence d is an identity map on A. If d is an identity map on A, then $d(x^*) = (d(x))^*$ for all $x \in A$.

Definition 3.6. Let $D : A \times A \to A$ be a bi-symmetric mapping. If $x \leq y$ implies $D(x, z) \leq D(y, z)$ for all $x, y, z \in A$, then D is said to be isotone.

If d is a trace of D and D is isotone, $x \leq y$ implies $d(x) \leq d(y)$ for all $x, y \in A$.

Example 3.7. Let A be an *BL*-algebra as Example 3.2. Define a map $D : A \times A \to A$ by

$$D(x) = \begin{cases} 0 & \text{if } (x,y) = (0,0), (a,0), (0,a), (0,b), (b,0), (1,0), (0,1), (b,a), (a,b) \\ b & \text{if } (x,y) = (b,b), (b,1), (1,b) \\ a & \text{if } (x,y) = (a,a), (a,1), (1,a) \\ 1 & \text{if } (x,y) = (1,1). \end{cases}$$

Then we can see that D is an isotone (\otimes, \vee) -symmetric bi-derivation on A.

Proposition 3.8. Let D be a (\otimes, \lor) -symmetric bi-derivation on A and let d be a trace of D. If $d(x^*) = d(x)$ for all $x \in A$, we have

- (1) d(1) = 0,
- $(2) \ d(x) \otimes d(x) = 0,$
- (3) if D is isotone, then d = 0.

Proof. (1) In the relation $d(x) = d(x^*)$, replacing x by 0, we obtain d(1) = 0.

(2) For every $x \in A$, $d(x) \otimes d(x) = d(x) \otimes d(x^*) = 0$ by hypothesis.

(3) Let D be isotone. For any $x \in A$, we have d(1) = 0 since $d(x) \le d(1) = 0$. \Box

Definition 3.9. Let *D* be a (\otimes, \lor) -symmetric bi-derivation on *A*. If $D(x \otimes y, z) = D(x, z) \otimes D(y, z)$ for all $x, y, z \in A$, then *D* is called a bi-multiplicative mapping on *A*.

Theorem 3.10. Let D be a multiplicative (\otimes, \vee) -symmetric bi-derivation on A and let d be a trace of D. Then $d(B(A)) \subseteq B(A)$.

Proof. Let $y \in d(B(A))$. Then y = d(x) for some $x \in B(A)$. Thus

$$y \otimes y = d(x) \otimes d(x) = D(x, x) \otimes D(x, x) = D(x \otimes x, x)$$
$$= D(x, x) = y$$

So $y \in B(A)$. Hence $d(B(A)) \subseteq B(A)$.

Theorem 3.11. Let D be a (\otimes, \lor) -symmetric bi-derivation on Gödel BL-algebra A and let d be a trace of D. Then the following conditions hold for all $x, y \in A$.

by (1).

(3) Let $x \ge D(1, x)$ for any $x \in A$. Then

$$d(x) = D(x, x) = D(x \otimes 1, x) = (D(x, x) \otimes 1) \lor (x \otimes D(1, x))$$
$$= d(x) \lor (x \otimes D(1, x)) = d(x) \lor (\min\{x, D(1, x)\})$$
$$= d(x) \lor D(1, x).$$

Thus $D(1, x) \leq d(x)$.

(1) $d(x) \leq x$.

(4) Let $x \leq y$. Then by (1), $d(x) \leq x \leq y$, which implies $d(x) \leq y$. Thus $d(x) = D(x, x) = D(x \otimes y, x) = (D(x, x) \otimes y) \lor (x \otimes D(y, x)) = d(x) \lor (x \otimes D(y, x))$. If $x \leq D(x, y)$, then by (1), d(x) = x. If $x \geq D(x, y)$, then $d(x) = d(x) \lor D(x, y)$. So $d(x) \geq D(x, y)$.

Theorem 3.12. Let D be a (\otimes, \lor) -symmetric bi-derivation on A. If there exist $a \in A$ such that $a \otimes D(x, z) = 1$, for all $x, z \in A$, then we have a = 1.

Proof. Let D be a (\otimes, \vee) -symmetric bi-derivation on A. Assume that there exist $a \in A$ such that $D(x, z) \otimes a = 1$, for all $x, z \in A$. Since D is a (\otimes, \vee) -symmetric bi-derivation on A, we get

$$\begin{split} 1 &= D(x \otimes a, z) \otimes a = ((D(x, z) \otimes a) \lor x \otimes (D(a, z))) \otimes a \\ &= (1 \lor (x \otimes D(a, z))) \otimes a = 1 \otimes a = a. \end{split}$$

This completes the proof.

Theorem 3.13. Let A be a BL-algebra. Define a mapping $D : A \times A \rightarrow A$ by $D(x,z) = x \otimes z$ for all $x, z \in A$. Then D is an (\otimes, \vee) -symmetric bi-derivation on A.

Proof. For every $x, y, z \in A$, we have

$$D(x \otimes y, z) = (x \otimes y) \otimes z.$$

On the other hand,

$$(D(x,z) \otimes y) \lor (x \otimes D(y,z)) = ((x \otimes z) \otimes y) \otimes (x \otimes (y \otimes z))$$
$$= (x \otimes y) \otimes z.$$

Hence D is an (\otimes, \vee) -symmetric bi-derivation on A.

Proposition 3.14. Let D be an (\otimes, \vee) -symmetric bi-derivation on B(A). Then D is a symmetric bi-derivation on lattice, that is,

$$D(x \wedge y, z) = (D(x, z) \wedge z) \vee (x \wedge D(y, z))$$

for all $x, y, z \in B(A)$.

Proof. Let $x, y, z \in B(A)$. Then we have

$$D(x \wedge y, z) = D(x \otimes y, z) = (D(x, z) \otimes y) \lor (x \otimes D(y, z))$$
$$= (D(x, z) \land y) \lor (x \land D(y, z)).$$

Theorem 3.15. Let A be a BL-algebra and $D : A \times A \to A$ be a symmetric mapping. If D is an (\otimes, \vee) -symmetric bi-derivation on A = B(A), then $D(x, z) = D(x, z) \wedge x$ for all $x, z \in B(A)$.

Proof. Let $x, z \in B(A)$. Then we have $x \otimes x = x$. Thus we get

$$D(x,z) = D(x \otimes x, z) = (D(x,z) \otimes x) \lor (x \otimes D(x,z))$$
$$= D(x,z) \otimes x = D(x,z) \land x.$$

Let D be an (\otimes, \lor) -symmetric bi-derivation of A and $a \in A$. Define a set $Fix_a(A)$ by

$$Fix_a(A) := \{ x \in A \mid D(x,a) = x \}$$

Proposition 3.16. Let D be a (\otimes, \vee) -symmetric bi-derivation of A. If $x, y \in Fix_a(A)$, then $x \otimes y \in Fix_a(A)$.

Proof. Let $x, y \in Fix_a(A)$. Then we have D(x, a) = x and D(y, a) = y. Thus

$$D(x \otimes y, a) = (D(x, a) \otimes y) \lor (x \otimes D(y, a))$$
$$= (x \otimes y) \lor (x \otimes y) = x \otimes y.$$

So we get $x \otimes y \in Fix_a(A)$. This completes the proof.

Proposition 3.17. Let D be a (\otimes, \lor) -symmetric bi-derivation of A and A = B(A). If $x, y \in Fix_a(A)$, then we have $x \land y \in Fix_a(A)$.

Proof. Let $x, y \in Fix_a(A)$. Then we have D(x, a) = x and D(y, a) = ., Thus

$$D(x \wedge y, a) = D(x \otimes y, a) = (D(x, a) \otimes y) \lor (x \otimes D(y, a))$$
$$= (x \otimes y) \lor (x \otimes y) = x \otimes y = x \land y.$$

So we get $x \wedge y \in Fix_a(A)$. This completes the proof.

4. (\otimes, \ominus) -symmetric bi-derivations of *BL*-algebras

Definition 4.1. Let A be a *BL*-algebra and $D : A \times A \to A$ be a symmetric mapping. We call D an (\ominus, \otimes) -symmetric bi-derivation on A, if it satisfies the following condition

$$D(x \ominus y, z) = (D(x, z) \ominus y) \otimes (x \ominus D(y, z))$$

for all $x, y, z \in A$.

Example 4.2. Let $A = \{0, a, b, 1\}$ be a set where 0 < a < b < 1 and " \otimes " and " \rightarrow " are defined by

¢	\otimes	0	a	b	1	\rightarrow	0	a	b	1
	0	0	0	0	0	0	1	1	1	1
	a	0	a	0	a	a	b	1	b	1
	b	0	0	b	b	b	a	a	1	1
	1	0	a	b	1	1	0	a	b	1

Then $(A, \land, \lor, \otimes, \rightarrow, 0, 1)$ is a *BL*-algebra. Define a map $D: A \times A \to A$ by

$$D(x,y) = \begin{cases} a & \text{if } (x,y) = (a,a), (a,1), (1,a), (1,1) \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to verify that D is a (\otimes, \ominus) -symmetric bi-derivation on A.

Proposition 4.3. Let D be a (\otimes, \ominus) -symmetric bi-derivation on A and let d be a trace of D. Then the following conditions hold:

- (1) d(0) = 0,
- (2) $D(x,0) = D(x,0) \otimes x$ for any $x \in A$,
- (3) $D(x,0) \leq x$ for any $x \in A$.

Proof. (1) Let D be a (\otimes, \ominus) -symmetric bi-derivation on A and let d be a trace of D. Then we have

$$d(0) = D(0,0) = D(0 \ominus 0,0) = (D(0,0) \ominus 0) \times (0 \ominus D(0,0))$$

= D(0,0) \otimes 0 = 0.

(2) For every $x \in A$, we get

$$D(x,0) = D(x \ominus 0,0) = (D(x,0) \ominus 0) \otimes (x \ominus D(0,0))$$
$$= (D(x,0) \otimes 1) \otimes (x \otimes 1) = D(x,0) \otimes x.$$

(3) From (2), for any $x \in A$, we have

$$D(x,0) = D(x,0) \otimes x \le x.$$

Proposition 4.4. Let D be a (\otimes, \ominus) -symmetric bi-derivation on A and let d be a trace of D. Then the following conditions hold:

- (1) D(x,0) = 0 for any $x \in A$,
- (2) $D(x^*, 0) = D(1, 0) \otimes x^*$ for any $x \in A$.

Proof. (1) Let D be a (\otimes, \ominus) -symmetric bi-derivation on A and let d be a trace of D. Then we have

$$D(x,0) = D(0,x) = D(x \ominus 1, x) = (D(x,x) \ominus 1) \otimes (x \ominus D(1,0))$$
$$= (d(x) \otimes 0) \otimes (x \otimes (D(1,0))^*)$$
$$= 0 \otimes (x \otimes (D(1,0))^*) = 0.$$

(2) For every $x \in A$, we obtain

$$D(x^*, 0) = D(1 \ominus x, 0) = (D(1, 0) \ominus x) \otimes (1 \ominus D(x, 0))$$
$$= (D(1, 0) \otimes x^*) \otimes (1 \otimes 1)$$
$$= D(1, 0) \otimes x^*.$$

Proposition 4.5. Let D be a (\otimes, \ominus) -symmetric bi-derivation on A. Then D is an isotone (\otimes, \ominus) -symmetric bi-derivation on B(A).

Proof. Let $x, y, z \in B(A)$ and $x \leq y$. Then we have

$$D(x,z) = D(y \land x, z) = D(y \otimes x, z) = (D(y \ominus x^*, z))$$
$$= (D(y,z) \ominus x^*) \otimes (y \ominus D(x^*, z))$$
$$\leq D(y,z) \ominus x^* = D(y,z) \otimes x \leq D(y,z).$$

This completes the proof.

Theorem 4.6. Let D be a (\otimes, \ominus) -symmetric bi-derivation on A. If $D(A, A) \subseteq B(A)$ and $D(x \ominus y, z) = D(x, z) \ominus D(y, z)$ for all $x, y, z \in A$, then D is an isotone mapping on A.

Proof. Let $D(A, A) \subseteq B(A)$ and $x \leq y$. Then $0 = x \otimes y^*$. Thus

$$0 = D(x \otimes y^*, z) = D(x \ominus y, z)$$

= $D(x, z) \ominus D(y, z) = D(x, z) \otimes (D(y, z))^*,$

for every $z \in A$. So by Theorem 2.1 (7), $D(x,z) \leq (D(y,z))^{**}$. Hence $D(x,z) \leq D(y,z)$.

Proposition 4.7. Let D be a (\otimes, \ominus) -symmetric bi-derivation on A. Then the following conditions hold:

(1) $D(x,z) = D(x,z) \otimes x$ for every $x, z \in A$, (2) $D(x,z) \leq x$ for every $x, z \in A$.

Proof. (1) Let $x, z \in A$. Then

$$D(x,z) = D(x \ominus 0, z) = (D(x,z) \ominus 0) \otimes (x \ominus D(0,z))$$
$$= (D(x,z) \otimes 1) \otimes (x \otimes 0^*) = D(x,z) \otimes x.$$

(2) From (1), we obtain $D(x,z) = D(x,z) \otimes x \leq x$ for every $x, z \in A$.

Proposition 4.8. Let D be $a (\otimes, \ominus)$ -symmetric bi-derivation on A. Then $x = x \otimes x$ for every $x \in Fix_a(A)$.

Proof. Let $x \in Fix_a(A)$. Then D(x, a) = x. Thus by Proposition 4.7, we have $D(x, a) = D(x, a) \otimes x$. So $x = x \otimes x$.

5. Conclusions

In this work, we first introduced the notion for two types of symmetric biderivations in *BL*-algebra and obtained some results. We also studied (\otimes, \vee) symmetric bi-derivations on *Gödel BL*-algebras. Furthermore, we took into account isotone symmetric bi-derivations on *BL*-algebra *A*. In the future, we will study (\otimes, \vee) -symmetric bi-*f*-derivations and (\otimes, \ominus) -symmetric bi-*f*-derivations on *A*.

References

- A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo *BL*-algebra: Part I, Multi-valued Log 8(5-6) (2002) 673–714.
- [2] P. Häjek, Metamathematics of fuzzy logic, Trends in Logic-Studia Logica Library 4(Kluwer Academic Publishers Dordrecht (1998).

KYUNG HO KIM (ghkim@ut.ac.kr)

Department of Mathematics, Korea National University of Transportation Chungju 27469, Korea