Annals of Fuzzy Mathematics and Informatics
Volume 19, No. 2, (April 2020) pp. 179–187
ISSN: 2093–9310 (print version)
ISSN: 2287–6235 (electronic version)
http://www.afmi.or.kr
https://doi.org/10.30948/afmi.2020.19.2.179

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Soft continuity and SP-continuity

@FMI © F M I © F M I **@** F M I 0 Π 0 F \mathbb{I} ©ℾМΙ @ F M I © **F** M I ®『M』 @ **F** M Ⅰ © **F** M Ⅰ @ **F** M Ⅰ $@ \mathbb{F} \mathbb{M} \mathbb{I}$ $@ \mathbb{F} \mathbb{M} \mathbb{I}$ $\odot \mathbb{F} \mathbb{M} \mathbb{I}$ $@ \mathbb{F} \mathbb{M} \mathbb{I}$ $\textcircled{0} \mathbb{F} \mathbb{M} \mathbb{I}$ @ **F** M Ⅰ $@ \mathbb{F} \mathbb{M} \mathbb{I}$ $@ \mathbb{F} \mathbb{M} \mathbb{I}$ **@ F @ F** \mathbb{M} \mathbb{M} 0 \mathbb{F} 0 \mathbb{M} \mathbb{M} 0 \mathbb{F} \mathbb{M}

Reprinted from the Annals of Fuzzy Mathematics and Informatics Vol. 19, No. 2, April 2020

MURAD M. ARAR

Annals of Fuzzy Mathematics and Informatics Volume 19, No. 2, (April 2020) pp. 179–187 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr https://doi.org/10.30948/afmi.2020.19.2.179

© Research Institute for Basic Science, Wonkwang University http://ribs.wonkwang.ac.kr

Soft continuity and SP-continuity

Murad M. Arar

Received 30 September 2019; Revised 2 November 2019; Accepted 26 November 2019

ABSTRACT. Soft points are first introduced in 2012, and in the same year the soft mapping $f_{pu} : SS(V)_A \to SS(V)_B$ and pu - continuity are introduced. In this paper we re-define a soft set (F, A) by its set of soft points (\ddot{F}, \ddot{A}) (will be called *sp*-set); and study *sp*-sets properties. Then we define sp - function and sp - continuity and study their properties. The main result is that any soft mapping f_{pu} is pu - continuous if and only if its corresponding $sp - function \ \ddot{f}_{pu}$ is sp - continuous.

2010 AMS Classification: 54A05, 54D10

Keywords: Soft sets, Soft function, Soft continuity, Soft topology.

Corresponding Author: Murad M. Arar (muradshhada@gmail.com)

1. INTRODUCTION AND PRELIMINARIES

In 1999, Molodtsov [3] introduced the soft set theory with various applications of the new theory. In 2003, Maji et al. [4] defined and studied the notation of soft subset, complement, union and intersections. In 2011, the concept of soft topology was introduced by [6] and [7]. In 2012, Zorlutuna et al. [9] defined soft points and soft continuous functions.

Definition 1.1 ([5]). Let U be the initial universe, E be the set of parameters, P(U) be the power set of U, and $A \subset E$.

(i) A soft set (F, A) on the universe U is defined by the set of ordered pairs

$$(F, A) = \{(x, F(x)); x \in E\},\$$

where $F: E \to P(U)$ with $F(x) = \emptyset$, if $x \notin A$. We let $SS(U)_E$ stands for the set of all soft sets on the universe U where E is a fixed set of parameters.

(ii) Let (F, A), (G, B) belong to $SS(U)_E$. Then (F, A) is called a soft subset of (G, B), denoted by $(F, A) \widetilde{\subset} (G, B)$, if $F(x) \subset G(x)$, for every $x \in E$.

(iii) Let $(F, A) \in SS(U)_E$. The soft complement of (F, A), denoted by $(F, A)^{\tilde{c}}$, is the soft set $(F^{\tilde{c}}, E)$ such that $F^{\tilde{c}}(x) = U \setminus F(x)$.

(iv) Let (F, A), $(G, B) \in SS(U)_E$. The union of (F, A) and (G, B), denoted by $(F, A)\widetilde{\cup}(G, B)$, is the soft set $(F\widetilde{\cup}G, E)$ such that $(F\widetilde{\cup}G)(x) = F(x) \cup G(x)$.

(v) Let (F, A), $(G, B) \in SS(U)_E$. The intersection of (F, A) and (G, B), denoted by $(F, A) \widetilde{\cap} (G, B)$, is the soft set $(F \widetilde{\cap} G, E)$ such that $(F \widetilde{\cap} G)(x) = F(x) \cap G(x)$.

(vi) Let (F, A), $(G, B) \in SS(U)_E$. The difference of (F, A) and (G, B), denoted by $F \setminus G$, is the soft set $(F \setminus G, E)$ such that $(F \setminus G)(x) = F(x) \setminus G(x)$.

(vii) The empty soft set is the only $(F, A) \in SS(U)_E$ with $F(e) = \emptyset$, for every $e \in E$ and will be denoted by \emptyset_E . The universal soft set is the only soft set $(F, A) \in SS(U)_E$ with F(e) = U, for every $e \in E$ and will be denoted by U_E .

Definition 1.2 ([9]). The soft set $(F, A) \in SS(U)_E$ is called a soft point in U_E , denoted by e_F , where $e \in A$, if $F(e) \neq \emptyset$ and $F(x) = \emptyset$, for every $x \neq e$.

Definition 1.3 ([9]). The soft point e_F is said to be in the soft set (G, B), denoted by $e_F \tilde{\in} (G, B)$, if $F(e) \subset G(e)$.

Proposition 1.4 ([9]). If $e_F \widetilde{\in} (G, B)$, then $e_F \widetilde{\notin} (G, B)^{\widetilde{c}}$

The converse of the above proposition is not true, i.e. there are a soft point e_F and a soft set (G, A) such that $e_F \widetilde{\notin}(G, A)$ and $e_F \widetilde{\notin}(G, A)^{\widetilde{c}}$ (See Example 3.11 in [9]).

Definition 1.5. For any soft set $(F, A) \in SS(U)_A$, the soft power set of (F, A), denoted by $2^{(F,A)}$, is defined as follows: $(F_1, A) \in 2^{(F,A)}$ if and only if $F_1(a) \subset F(a)$, for every $a \in A$.

Definition 1.6 ([2]). Let $SS(U)_A$ and $SS(V)_B$ be two families of soft sets. Let $u : U \to V$ and $p : A \to B$ be mappings. Then the mapping $f_{pu} : SS(U)_A \to SS(V)_B$ is called a soft mapping, if it is defined as follows:

(i) for any soft set $(F, A) \in SS(U)_A$, the image of (F, A) under f_{pu} , denoted by $f_{pu}(F, A)$, is the soft set $(f_{pu}(F), B) \in SS(V)_B$ such that for every $b \in B$,

$$f_{pu}(F)(b) = \bigcup_{x \in p^{-1}(b)} u(F(x)), \text{ if } b \in p(A) \text{ and } f_{pu}(F)(b) = \emptyset \text{ if } b \in B - p(A),$$

(ii) for any soft set $(G, B) \in SS(V)_B$, the inverse image of (G, B) under f_{pu} , denoted by $f_{pu}^{-1}(G, B)$, is the soft set $(f_{pu}^{-1}(G), A) \in SS(U)_A$ such that for every $a \in A$, $f_{pu}^{-1}(G)(b) = u^{-1}(G(p(b)))$.

The properties of soft functions can be found in [9].

Since for any soft sets (F, A) and (G, B) in $SS(U)_A$ and $SS(V)_B$ respectively, we have $2^{(F,A)} \subset SS(U)_A$ and $2^{(G,B)} \subset SS(V)_B$, we can define the soft mapping $f_{pu}: 2^{(F,A)} \to 2^{(G,B)}$ as in the above definition subject to the following conditions:

(i) for any soft set $(F_1, A) \in 2^{(F,A)}$, we have $f_{pu}(F_1, A) \in 2^{(G,B)}$,

(ii) for any soft set $(G_1, B) \in 2^{(G,B)}$, we have $f_{pu}^{-1}(G_1, B) \in 2^{(F,A)}$.

The above two conditions makes $f_{pu}: 2^{(F,A)} \to 2^{(G,B)}$ well defined.

Restricting soft mapping to mappings between soft power sets of given soft sets is very important for soft topology and soft continuity, since topology, basically, is a sub-collection of the power set of a given set.

Definition 1.7 ([7]). Let $(F, A) \in SS(U)_A$. A soft topology on (F, A), denoted by $\tilde{\tau}$, is a collection of soft subsets of (F, A) having the following three properties:

(i) $\emptyset_A, (F, A) \in \widetilde{\tau},$

(ii) if $(F_1, A), (F_2, A) \in \widetilde{\tau}$, then $(F_1, A) \widetilde{\cap} (F_2, A) \in \widetilde{\tau}$, (iii) if $(F_\alpha, A) \in \widetilde{\tau}$ for every $\alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} (F_\alpha, A) \in \widetilde{\tau}$.

A soft subset (F_1, A_1) of (F, A) is called soft open, if $(F_1, A_1) \in \tilde{\tau}$, and it is called soft closed, if $(F_1, A_1)^{\widetilde{c}} \in \widetilde{\tau}$.

Definition 1.8 ([9]). Let $(F, A, \tilde{\tau}_1)$ and $(G, B, \tilde{\tau}_2)$ be two soft topological spaces and let $u: U \to V$ and $p: A \to B$ be mappings. Then the soft mapping f_{pu} : $SS(U)_A \to SS(V)_B$ is said to be:

(i) pu-continuous at $e_F \in (F, A)$, if for each soft open set $(G_1, B) \in \widetilde{\tau}_2$ soft containing $f_{pu}(e_F)$ there exists a soft open set $(F_1, A) \in \tilde{\tau}_1$ soft containing e_F such that $f_{pu}(F_1, A) \subset (G_1, B),$

(ii) pu-continuous on (F, A), if it is pu-continuous at every $e_F \in (F, A)$.

Theorem 1.9 ([9]). Let $(F, A, \tilde{\tau}_1)$ and $(G, B, \tilde{\tau}_2)$ be two soft topological spaces. and $u: U \to V$ and $p: A \to B$ be mappings. Then the following two statements are equivalent:

(1) the mapping $f_{pu}: SS(U)_A \to SS(V)_B$ is pu - continuous on U_A ,

(2) for every $(G_1, B) \in \widetilde{\tau}_2$, we have $f_{pu}^{-1}(G_1, B) \in \widetilde{\tau}_1$,

(3) for every soft closed set (G_1, B) over V, we have $f_{pu}^{-1}(G_1, B)$ is soft closed over U.

2. Soft Points and Sp-continuity

Let U be the initial universe, A be a fixed set of parameters. Since any soft point e_F in U_A is a soft set (F, A) where $F(a) = \emptyset$ if $a \neq e$ and $F(a) \neq \emptyset$ only for a = e, we can rewrite the soft point e_F as an ordered pair (e, D) where F(e) = D. To be more precise we begin by the following definition.

Definition 2.1. Let U be the initial universe, let E be a fixed set of parameters and let $e \in E$ and $\emptyset \neq D \subset U$. Then the ordered pair (e, D) is called a soft point in $SS(U)_E$. The set of all soft point in $SS(U)_E$ will be denoted by $SS(U)_E$.

For a soft set (F, A) in $SS(U)_E$, we say that the soft point (e, D) in (F, A), denoted by $(e, D) \in (F, A)$, if $e \in A$ and $D \subset F(e)$. The set of all soft points of (F, A)will be denoted by (\ddot{F}, \ddot{A}) and will be called the sp - set of (F, A).

Example 2.2. Let $A = \{a, b, c\}$ and $U = \{1, 2, 3\}$. Consider the soft set (F, A) = $\{(a, \{1, 3\}), (b, \{1, 2\}), (c, \{2\})\}$. Then the sp - set of (F, A) is

 $(\ddot{F}, \ddot{A}) = \{(a, \{1\}), (a, \{3\}), (a, \{1,3\}), (b, \{1\}), (b, \{2\}), (b, \{1,2\}), (c, \{2\})\}.$

Definition 2.3. For any subset K of $SS(U)_E$, we define the soft set $(F, A)_K$ in $SS(U)_E$ as follows:

- (i) $A = \{a \in E : (a, D) \in K \text{ for some } D \subset U\},\$
- (ii) $F(x) = \bigcup_{(x,D)\in K} D$, if $x \in A$ and $F(x) = \emptyset$, if $x \in E \setminus A$.

 $(F, A)_K$ will be called the soft set generated by the set of soft points K.

Let (F, A) be a soft set, (\ddot{F}, \ddot{A}) be its sp-set and $(F, A)_{(\ddot{F}, \ddot{A})}$ be the soft set generated by the set of soft points (\ddot{F}, \ddot{A}) . Then one can easily show that $(F, A) = (F, A)_{(\ddot{F}, \ddot{A})}$. But the converse is not true, i.e. if we start with a set of soft point K, then $(\ddot{F}, \ddot{A})_K \neq K$ where $(\ddot{F}, \ddot{A})_K$ is the sp - set of the soft set $(F, A)_K$ (See the above definition). It is easy to show that $(\ddot{F}, \ddot{A})_K \supset K$.

sp-sets behave similar to power sets and the following properties of power sets are well-known:

(1) A = B if and only if $\mathcal{P}(A) = \mathcal{P}(B)$,

(2) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B),$

(3) $\mathcal{P}(A \cup B) \supset \mathcal{P}(A) \cup \mathcal{P}(B)$.

The following proposition shows that the above properties of power sets have a corresponding versions for sp - sets, and its proof analogues to its analogue in set theory.

Proposition 2.4. Let (F, A) and (G, B) be two soft sets in U_X . Then we have:

- (1) (F, A) = (G, B) if and only if $(\ddot{F}, \ddot{A}) = (\ddot{G}, \ddot{B})$,
- (2) if $(F,A)\widetilde{\cap}(G,B) = (H,C)$, then $(\ddot{H},\ddot{C}) = (\ddot{F},\ddot{A}) \cap (\ddot{G},\ddot{B})$,
- (3) if $(F, A)\widetilde{\cup}(G, B) = (H, C)$, then $(\ddot{H}, \ddot{C}) \supset (\ddot{F}, \ddot{A}) \cup (\ddot{G}, \ddot{B})$.

Theorem 2.5. Let (F, A) and (G, B) be two soft set with $(F, A) \notin (G, B)$, then there exists a soft point $(x, D) \in \ddot{U}_X$ such that $(x, D) \in (\ddot{F}, \ddot{A})$ and $(x, D) \in (\ddot{G}, \ddot{B})^{\tilde{c}}$ where $(\ddot{G}, \ddot{B})^{\tilde{c}}$ refers to the sp-set of $(G, B)^{\tilde{c}}$.

Proof. Since $(F, A) \nsubseteq (G, B)$, there exists $x \in A$ such that $f(x) \nsubseteq g(x)$, which implies $f(x) \setminus g(x)$ is nonempty. Set $(x, D) = (x, f(x) \setminus g(x))$. It is clear that $(x, D) \in (\ddot{F}, \ddot{A})$ and $(x, D) \in (\ddot{G}, \ddot{B})^{\tilde{c}}$.

Definition 2.6. Let (F, A) and (G, B) be two soft sets. A mapping $f : (\ddot{F}, \ddot{A}) \to (\ddot{G}, \ddot{B})$ (sends a soft point $(x, D) \in (\ddot{F}, \ddot{A})$ to a soft point f(x, D) = (y, C) in (\ddot{G}, \ddot{B})) is called an sp-mapping, if its image and pre-image for soft subsets of (F, A) and (G, B), respectively, are defined as follows:

(i) for every $(F_1, A) \widetilde{\subset} (F, A)$, we have $f(F_1, A) = (f(F_1), B) \widetilde{\subset} (G, B)$ such that for every $y \in B$, $f(F_1)(y) = \bigcup \{C : (y, C) = f(x, D) \text{ for some } (x, D) \in (F_1, A) \}$,

(ii) for every $(G_1, B) \widetilde{\subset} (G, B)$, we have $f^{-1}(G_1, B) = (f^{-1}(G_1), A) \widetilde{\subset} (F, A)$ such that $f^{-1}(G_1)(x) = \bigcup \{D : (x, D) \widetilde{\in} (F, A) \text{ and } f(x, D) \widetilde{\in} (G_1, B)\}$, for every $x \in A$.

That is sp-mapping is a point-set function who sends a soft point to a soft point and its image and pre-images of soft subset are defined as mentioned above.

Definition 2.7. Let $(F, A, \tilde{\tau})$ and $(G, B, \tilde{\mu})$ be two soft topological spaces and f: $(\ddot{F}, \ddot{A}) \to (\ddot{G}, \ddot{B})$ be an sp-mapping. Then f is said to be sp-continuous at the soft point $(x, D) \in (\ddot{F}, \ddot{A})$, if for any soft open set $(G_1, B) \in \tilde{\mu}$ with $f(x, D) \in (\ddot{G}_1, \ddot{B})$, there exists $(F_1, A) \in \tilde{\tau}$ such that $(x, D) \in (\ddot{F}_1, \ddot{A})$ and $f(F_1, A) \subset (G_1, B)$. For the sake of simplicity we write $f : (\ddot{F}, \ddot{A}, \tilde{\tau}) \to (\ddot{G}, \ddot{B}, \tilde{\mu})$ is an sp-continuous mapping. **Theorem 2.8.** An sp – mapping $f : (\ddot{F}, \ddot{A}, \tilde{\tau}) \to (\ddot{G}, \ddot{B}, \tilde{\mu})$ is sp – continuous if and only if for every soft open set (H, B) in $(G, B, \tilde{\mu})$, $f^{-1}(H, B)$ is a soft open set in $(G, B, \tilde{\mu})$.

Proof. Suppose that f is sp-continuous and (H, B) be a soft open set in $\tilde{\mu}$. Let $(x, D) \in f^{-1}(H, B)$. Then $f(x, D) = (y, M) \in (H, B)$. Since f is sp-continuous, there exists a soft open set (K, A) in $\tilde{\tau}$ soft containing (x, D) such that $f(K, A) \in (H, B)$. It is clear that $(x, D) \in (K, A) \in f^{-1}(H, B)$, which implies $f^{-1}(H, B)$ is soft open.

Conversely, suppose that for every soft open set (H, B) in $(G, B, \tilde{\mu})$, $f^{-1}(H, B)$ is a soft open set in $(G, B, \tilde{\mu})$. Let $(x, D) \in (\ddot{F}, \ddot{A})$ and let (H, B) be a soft open set in $\tilde{\mu}$ with $f(x, D) \in (H, B)$. Since (H, B) is soft open in $\tilde{\mu}, f^{-1}(H, B)$ is soft open in $\tilde{\tau}$, and since $f(x, D) \in (H, B), (x, D) \in f^{-1}(H, B)$. But $f(f^{-1}(H, B)) \subset (H, B)$; and this shows f is sp-coninuous.

For notational purpose, one must note that the following statements are equivalent:

(1) $(x, D) \in (\ddot{F}, \ddot{A}),$

 $(2) (x, D) \widetilde{\in} (F, A),$

(3) (x, D) is soft contained in (F, A).

Example 2.9. Let $A = \{1, 2, 3\}$ and $U = \{a, b, c\}$. Consider the two soft sets (F, A) and (G, A) in $SS(U)_A$ given by:

 $(F,A) = \{(1,\{a\}), (2,\{a,b\}), (3,\{b,c\})\}, \ (G,A) = \{(1,\{a,b\}), (2,\{c\}), (3,\{b,c\})\}.$

Let $\tau_1 = \{ \varnothing_A, (F, A), (F_1, A), (F_2, A), (F_3, A) \}$, where

$$(F_1, A) = \{(1, \emptyset), (2, \{a, b\}), (3, \{b, c\})\}, (F_2, A) = \{(1, \{a\}), (2, \{a\}), (3, \emptyset)\}, (F_3, A) = \{(1, \emptyset), (2, \{a\}), (3, \emptyset)\}.$$

Then we can easily show that τ_1 is a soft topology on (F, A).

Again, let $\tau_2 = \{ \emptyset_A, (G, A), (G_1, A), (G_2, A), (G_3, A) \}$, where

$$\begin{aligned} (G_1, A) &= \{ (1, \{a, b\}), (2, \emptyset), (3, \{b, c\}) \}, \\ (G_2, A) &= \{ (1, \{a\}), (2, \{c\}), (3, \emptyset) \}, \\ (G_3, A) &= \{ (1, \{a\}), (2, \emptyset), (3, \emptyset) \}. \end{aligned}$$

Then we can easily show that τ_2 is also a soft topology on (G, A).

It is clear that

$$(\ddot{F},\ddot{A})=\{(1,\{a\}),(2,\{a\}),(2,\{b\}),(2,\{a,b\}),(3,\{b\}),(3,\{c\}),(3,\{b,c\})\},$$

 $(\ddot{G}, \ddot{A}) = \{(1, \{a\}), (1, \{b\}), (1, \{a, b\}), (2, \{c\}), (3, \{b\}), (3, \{c\}), (3, \{b, c\})\}.$ Define the sp-function $f : (\ddot{F}, \ddot{A}, \tilde{\tau_1}) \to (\ddot{G}, \ddot{A}, \tilde{\tau_2})$ as follows:

 $f(1, \{a\}) = (2, \{c\}),$

$$\begin{split} f(2,\{a\}) &= (2,\{c\}), \ f(2,\{b\}) = (3,\{b\}), \ f(2,\{a,b\}) = (1,\{a,b\}), \\ f(3,\{b\}) &= (3,\{c\}), \ f(3,\{c\}) = (3,\{c\}), \ f(3,\{b,c\}) = (1,\{a,b\}). \end{split}$$

We will show that f is sp-continuous, it suffices to show that for every $(K, A) \in \tau_2$, we have $f^{-1}(K, A) \in \tau_1$, this can be established step by step as follows: we first find

the sp-set (\ddot{K}, \ddot{A}) , then we find its inverse under f; which is the sp-set $f^{-1}(\ddot{K}, \ddot{A})$, after this we find $f^{-1}(K, A)$ which is the soft set generated by the sp-set $f^{-1}(\ddot{K}, \ddot{A})$ and then we show it is in τ_2 . For example, for the soft open set $(G_1, A) \in \tau_2$, we have

$$(\ddot{G}_1, \ddot{A}) = \{(1, \{a\}), (1, \{b\}), (1, \{a, b\}), (3, \{b\}), (3, \{c\}), (3, \{b, c\})\},\$$

so that $f^{-1}(\ddot{G}_1, \ddot{A}) = \{(2, \{a, b\}), (3, \{b, c\}), (2, \{b\}), (3, \{b\}), (3, \{c\})\}$, which implies that $f^{-1}(G_1, A) = \{(1, \emptyset), (2, \{a, b\}), (3, \{b, c\})\} = (F_1, A) \in \tau_1$. Similarly, we show that $f^{-1}(\emptyset_A) = \emptyset_A \in \tau_1, f^{-1}(G, A) = (F, A) \in \tau_1, f^{-1}(G_2, A) = (F_2, A) \in \tau_1$ and $f^{-1}(G_3, A) = \emptyset_A \in \tau_1$. So that f is sp-continuous.

Definition 2.10. Let $(F, A, \tilde{\tau})$ and $(G, B, \tilde{\mu})$ be two soft topological spaces and $f : (\ddot{F}, \ddot{A}) \to (\ddot{G}, \ddot{B})$ be a sp-mapping. Then f is said to be sp-open (sp-closed), if for every soft open (soft closed) set (F_1, A) in (F, A), we have $f(F_1, A)$ is soft open (soft closed) in (G, B). For the sake of simplicity we write $f : (\ddot{F}, \ddot{A}, \tilde{\tau}) \to (\ddot{G}, \ddot{B}, \tilde{\mu})$ is a sp-open (sp-closed) mapping.

Definition 2.11. For any soft set $(F, A) \in SS(U)_A$ and $(G, B) \in SS(V)_B$, let $f_{pu}: 2^{(F,A)} \to 2^{(G,B)}$ be a soft mapping such that $u: U \to V$ and $p: A \to B$. The sp-mapping corresponding to f_{pu} is $f_{pu}: (\ddot{F}, \ddot{A}) \to (\ddot{G}, \ddot{B})$ such that for every soft point $(a, D) \in (\ddot{F}, \ddot{A})$, we have $f_{pu}(a, D) = (p(a), u(D))$.

Theorem 2.12. For any soft mapping $f_{pu} : 2^{(F,A)} \to 2^{(G,B)}$ the sp – mapping $\ddot{f}_{pu} : (\ddot{F}, \ddot{A}) \to (\ddot{G}, \ddot{B})$ corresponding to f_{pu} is well-defined.

Proof. It suffices to show that for any soft point $(a, D) \in (\ddot{F}, \ddot{A})$ we have $f_{pu}(a, D) = (p(a), u(D)) \in (\ddot{G}, \ddot{B})$. Since $f_{pu} : 2^{(F,A)} \to 2^{(G,B)}$ is well defined (sends a soft subset of (F, A) to a soft subset of (G, B)), we have $f_{pu}(F, A) = (f_{pu}(F), B)$ is a soft subset of (G, B), which implies that $f_{pu}(F)(p(a)) = \bigcup_{x \in p^{-1}(p(a))} u(F(x)) \subset G(p(a))$. Since $(a, D) \in (\ddot{F}, \ddot{A})$, we have $D \subset F(a)$, but $a \in p^{-1}(p(a))$ so that $u(D) \subset u(F(a)) \subset f_{pu}(F)(p(a)) \subset G(p(a))$, which means $(p(a), u(D)) \in (\ddot{G}, \ddot{B})$.

The following two lemma are very important to the theorem next to them.

Lemma 2.13. Let (F, A) and (G, B) be any two soft sets and $f_{pu} : 2^{(F,A)} \to 2^{(G,B)}$ be a soft mapping. If $f_{pu} : (\ddot{F}, \ddot{A}) \to (\ddot{G}, \ddot{B})$ is the sp – mapping corresponding to f_{pu} , then for every soft subset (F_1, A) of (F, A), we have $f_{pu}(F_1, A) = f_{pu}(F_1, A)$.

Proof. Before we begin our proof, we must call Definition 1.6 and Definition 2.6. From Definition 1.6, we have $f_{pu}(F_1, A) = (f_{pu}(F_1), B)$ such that for every $b \in B$, we have

$$f_{pu}(F_1)(b) = \bigcup_{x \in p^{-1}(b)} u(F_1(x)), \text{ if } b \in p(A) \text{ and } f_{pu}(F_1)(b) = \emptyset, \text{ if } b \in B - p(A).$$

From Definition 2.6, we have $f_{pu}^{\cdot}(F_1, A) = (f_{pu}^{\cdot}(F_1), B)$ such that for every $b \in B$, $\ddot{f}_{pu}(F_1)(b) = \bigcup \{C : (b, C) = f_{pu}^{\cdot}(a, D) \text{ for some } (a, D) \in (\ddot{F}_1, \ddot{A}) \text{ with } p(a) = b\}$. It is suffices to show that for every $b \in B$, we have $f_{pu}(F_1)(b) = f_{pu}^{\cdot}(F_1)(b)$. Let $y \in f_{pu}(F_1)(b)$. Then there exists $x \in p^{-1}(b)$ such that $y \in u(F_1(x))$. It is clear that $(x, F_1(x)) \in (\ddot{F}_1, \ddot{A})$ so $\ddot{f}_{pu}(x, F_1(x)) = (p(x), uF_1(x)) = (b, u(F_1(x)))$. Thus $y \in uF_1(x) \subset \bigcup \{C : (b, C) = f_{pu}(a, D) \text{ for some } (a, D) \in (\ddot{F}_1, \ddot{A}) \}$.

Conversely, suppose that $y \in f_{pu}(F_1)(b)$. Then there exists $(a, D) \in (F_1, A)$ such that $f_{pu}(a, D) = (b, C)$ with p(a) = b and $y \in C$. Since $D \subset F_1(a), u(D) \subset u(F_1(a))$, but $a \in p^{-1}(b)$. Thus we have $y \in u(F_1(a)) \subset f_{pu}(F_1)(b) = \bigcup_{x \in p^{-1}(b} u(F_1(x)))$. So $f_{pu}(F_1)(b) \subset f_{pu}(F_1)(b)$. Hence the proof is complete.

Lemma 2.14. Let (F, A) and (G, B) be any two soft sets and $f_{pu} : 2^{(F,A)} \to 2^{(G,B)}$ be a soft mapping. If $\ddot{f}_{pu} : (\ddot{F}, \ddot{A}) \to (\ddot{G}, \ddot{B})$ is the sp-mapping corresponding to f_{pu} , then for every soft subset (G_1, B) of (G, B), we have $f_{pu}^{-1}(G_1, B) = \ddot{f}_{pu}^{-1}(G_1, B)$.

Proof. Before we begin our proof, we must call Definition 1.6 and Definition 2.6. From Definition 1.6, we have $f_{pu}^{-1}(G_1, B) = (f_{pu}^{-1}(G_1), A)$ such that for every $a \in A$, $f_{pu}^{-1}(G_1)(a) = u^{-1}(G_1(p(a))$.

From Definition 2.6, we have $f_{pu}^{-1}(G_1, B) = (f_{pu}^{-1}(G_1), A)$ such that for every $a \in A, f_{pu}^{-1}(G_1)(a) = \bigcup \{D : (a, D) \in (\ddot{F}, \ddot{A}) \text{ with } f_{pu}(a, D) \in (\ddot{G}, \ddot{B})\} = \bigcup \{D : (a, D) \in (\ddot{F}, \ddot{A}) \text{ with } (p(a), u(D)) \in (\ddot{G}, \ddot{B})\}.$ It is sufficient to show that for every $a \in A$ we have $f_{pu}^{-1}(G_1)(a) = f_{pu}^{-1}(G_1)(a)$. Let $x \in f_{pu}^{-1}(G_1)(a)$. Since f_{pu} is well-defined (See the above theorem), $(a, \{x\}) \in (\ddot{F}, \ddot{A})$. Since $x \in f_{pu}^{-1}(G_1)(a) = u^{-1}(G_1(p(a)))$, we have $u(x) \in G_1(p(a))$. Then $(p(a), u(\{x\})) \in (\ddot{G}_1, \ddot{B})$ and $\{x\} \subset \bigcup \{D : (a, D) \in (\ddot{F}, \ddot{A}) \text{ with } (p(a), u(D)) \in (\ddot{G}_1, \ddot{B})\} = f_{pu}^{-1}(G_1)(a)$. Thus $f_{pu}^{-1}(G_1)(a) \subset f_{pu}^{-1}(G_1)(a)$.

Conversely, let $x \in \dot{f_{pu}}^{-1}(G_1)(a)$. Then $x \in D$, for some $(a, D) \in (\ddot{F}, \ddot{A})$ with $(p(a), u(D)) \in (\ddot{G}_1, \ddot{B})$. Thus $u(D) \subset G_1(p(a))$. So $x \in D \subset u^{-1}(G_1(p(a))) = f_{pu}^{-1}(G_1)(a)$. Hence $\dot{f_{pu}}^{-1}(G_1)(a) \subset f_{pu}^{-1}(G_1)(a)$. This completes the proof. \Box

The following definition is aboutpu-open and pu-closed functions and can be found in [1] and [8].

Definition 2.15. Let $(F, A, \tilde{\tau}_1)$ and $(G, B, \tilde{\tau}_2)$ be two soft topological spaces, and let $u: U \to V$ and $p: A \to B$ be mappings. Then the soft mapping $f_{pu}: SS(U)_A \to SS(V)_B$ is said to be:

(i) [1] pu-open, if $f_{pu}(F_1, A) \in \widetilde{\tau}_2$ for every $(F_1, A) \in \widetilde{\tau}_1$,

(ii) [8] pu-closed, if $f_{pu}(F_1, A)$ is soft closed in $\tilde{\tau}_2$ for every (F_1, A) soft closed in $\tilde{\tau}_1$.

Theorem 2.16. Let $(F, A, \tilde{\tau}_1)$ and $(G, B, \tilde{\tau}_2)$ be two soft topological spaces. Let $f_{pu} : 2^{(F,A)} \to 2^{(G,B)}$ be a soft mapping where $u : U \to V$ and $p : A \to B$, and $f_{pu} : (\ddot{F}, \ddot{A}) \to (\ddot{G}, \ddot{B})$ is the sp-mapping corresponding to f_{pu} . Then

185

(1) f_{pu} is pu - continuous if and only if f_{pu} is sp - continuous,

(2) f_{pu} is pu-closed if and only if \ddot{f}_{pu} is sp-closed,

(3) f_{pu} is pu - open if and only if f_{pu} is sp - open.

Proof. The proof is easy! we just apply the above two lemmas.

we close our paper by an example to clarify the above concept where we introduce a pu-continuous mapping f_{pu} , then we show that the sp-mapping f_{pu} corresponding to f_{pu} is sp-continuous.

Example 2.17. Let $A = \{1, 2, 3\}$ and $U = \{a, b, c\}$. Consider the soft sets (F, A)and (G, A) given by, respectively:

$$\begin{split} (F,A) &= \{(1,\{b,c\}), (2,\{b,c\}), (3,\{a\})\}, \ (G,A) &= \{(1,\{a,b\}), (2,\{c\}), (3,\{b,c\})\}. \\ \text{Let } \tau_1 &= \{\varnothing_A, (F,A), (F_1,A), (F_2,A), (F_3,A)\} \text{ be a family of soft sets given by:} \\ &\quad (F_1,A) &= \{(1,\varnothing), (2,\{b,c\}), (3,\{a\})\}, \\ &\quad (F_2,A) &= \{(1,\{b,c\}), (2,\varnothing), (3,\{a\})\}, \\ &\quad (F_3,A) &= \{(1,\emptyset), (2,\emptyset), (3,\{a\})\}, \\ &\quad (F_3,A) &= \{(1,\emptyset), (2,\emptyset), (3,\{a\})\}, \\ \text{and let } \tau_2 &= \{\varnothing_A, (G,A), (G_1,A), (G_2,A), (G_3,A)\} \text{ be a family of soft sets given by:} \\ &\quad (G_1,A) &= \{(1,\{a,b\}), (2,\emptyset), (3,\{b,c\})\}, \end{split}$$

$$(G_2, A) = \{(1, \{a\}), (2, \{c\}), (3, \emptyset)\},\$$
$$(G_3, A) = \{(1, \{a\}), (2, \emptyset), (3, \emptyset)\}.$$

Then we can easily show that τ_1 is a soft topology on (F, A) and τ_2 is a soft topology on (G, A).

Define $u : U \to U$ by $u = \{(a, a), (b, c), (c, c)\}$, and define $p : A \to A$ by $p = \{(1,2), (2,3), (3,1)\}$. Since u and p are well-defined, f_{pu} is well-defined as in Definition 1.6. f_{pu} is soft continuous mapping, because one can easily show that: $f_{pu}^{-1}(G,A) = (F,A) \in \tau_1, f_{pu}^{-1}(G_1,A) = (F_1,A) \in \tau_1, f_{pu}^{-1}(G_2,A) = (F_2,A) \in \tau_1 \text{ and } f_{pu}^{-1}(G_2,A) = (F_2,A) \in \tau_2 \text{ and } f_{pu}^{-1}(G_2,A) = (F_2,A) = (F_$ $f_{pu}^{-1}(G_3, A) = (F_3, A) \in \tau_1$. Now to construct the sp-mapping $\ddot{f}_{pu}: (\ddot{F}, \ddot{A}) \to (\ddot{G}, \ddot{A})$ corresponding to f_{pu} we call Definition 2.11 to get $\ddot{f}_{pu}(x,D) = (p(x), u(D))$, for every $(x, D) \in (\ddot{F}, \ddot{A})$. Note that

$$(\ddot{F}, \ddot{A}) = \{(1, \{b\}), (1, \{c\}), (1, \{b, c\}), (2, \{b\}), (2, \{c\}), (2, \{b, c\}), (3, \{a\})\}$$

and

$$(\ddot{G}, \ddot{A}) = \{(1, \{a\}), (1, \{b\}), (1, \{a, b\}), (2, \{c\}), (3, \{b\}), (3, \{c\}), (3, \{b, c\})\}.$$

Then we have

$$\begin{split} \ddot{f}_{pu}(1,\{b\}) &= (p(1),u(\{b\})) = (2,\{c\}), \\ \ddot{f}_{pu}(1,\{c\}) &= (p(1),u(\{c\})) = (2,\{c\}), \\ \ddot{f}_{pu}(1,\{b,c\}) &= (p(1),u(\{b,c\})) = (2,\{c\}), \\ \ddot{f}_{pu}(2,\{b\}) &= (p(2),u(\{b,c\})) = (2,\{c\}), \\ \ddot{f}_{pu}(2,\{c\}) &= (p(2),u(\{b\})) = (3,\{c\}), \\ \ddot{f}_{pu}(2,\{b,c\}) &= (p(2),u(\{b,c\})) = (3,\{c\}), \\ \ddot{f}_{pu}(2,\{b,c\}) &= (p(2),u(\{b,c\})) = (3,\{c\}), \\ \ddot{f}_{pu}(3,\{a\}) &= (p(3),u(\{a\})) = (1,\{a\}). \end{split}$$

As in Example 2.9, we can show that $f_{pu}^{"}$ is sp-continuous; actually, we have: $f_{pu}^{"-1}(G, A) = (F, A) \in \tau_1, \ f_{pu}^{"-1}(G_1, A) = (F_1, A) \in \tau_1,$ 186

 $\ddot{f_{pu}}^{-1}(G_2, A) = (F_2, A) \in \tau_1, \ \ddot{f_{pu}}^{-1}(G_3, A) = (F_3, A) \in \tau_1.$ It is worth noting that

$$\begin{split} \ddot{f}_{pu}^{-1}(G,A) &= f_{pu}^{-1}(G,A) = (F,A), \ f_{pu}^{-1}(G_1,A) = f_{pu}^{-1}(G_1,A) = (F_1,A), \\ f_{pu}^{-1}(G_2,A) &= \ddot{f}_{pu}^{-1}(G_2,A) = (F_2,A), \ \ddot{f}_{pu}^{-1}(G_3,A) = f_{pu}^{-1}(G_3,A) = (F_3,A) \\ \text{which is consistent with Lemma 2.14.} \end{split}$$

References

- A. Aygunoglu and H. Aygun, Some Notes on Soft Topological Spaces, Neural Comput. Applic. 21 (2012) 113–119.
- [2] A. Kharal and B. Ahmad, Mappings on soft classes, New Math. Nat. Comput. 7 (3) (2011) 471–481.
- [3] D. Molodtsov, Soft Set Theory-First Results, Computer and Mathematics with applications 37 (1999) 19–31.
- [4] P. K. Maji, R. Biswas and A. R. Roy, Soft Set Theory, Computer and Mathematics with applications 45 (2003) 555–562.
- [5] Naim Cagman and S. Enginoglu, Soft Set Theory and Uni-Int Decision Making, European Journal of Operational Research 207 (2010) 848–855.
- [6] M. Shabir and M. Naz, On Soft Topological Spaces, Computer and Mathematics with applications 61 (2011) 1786–1799.
- [7] N. Cagman, S. Karatas and S. Enginoglu, Soft Topology, Computer and Mathematics with applications 62 (2011) 351–358.
- [8] I. Zorlutuna and Hatice Cakir, On Continuity of Soft Mappings, Appl. Math. Inf. Sci. 9 (1) (2015) 403–409.
- [9] I. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, Remarks on Soft Topological Spaces, Ann. Fuzzy Math. Inform. 3 (2) (2012) 171–185.

MURAD M. ARAR (muradshhada@gmail.com)

Department of Mathematics at Al-Aflaj, Prince Sattam Bin Abdulaziz University