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Abstract. Attribute reduction plays an important role in formal con-
cept analysis. The existing work on attribute reduction of fuzzy formal
context focuses mainly on one-sided fuzzy formal concepts. This paper is
devoted to the study of attribute reduction for general L-fuzzy formal con-
text. Some judgement theorems for a set of attributes to be consistent are
presented. By using the discernibility function composed of discernibility
attributes between related L-fuzzy formal concepts, an approach to com-
pute attribute reductions is proposed. An illustrative example is presented
which justify the method presented in this study.
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1. Introduction

The theory of formal concept analysis (FCA), proposed by Wille [20] in 1982, is
one of the effective mathematical tools in conceptual data analysis and knowledge
processing [14, 18, 19]. The main research object of FCA is formal context and
formal concept. A formal context is a triple (G,M, I), where G is a set of objects,
M is a set of attributes, and I is a crisp binary relation on G ×M . The formal
concept, generated by using a pair of antitone Galois connection operators, is a
pair (X,B) of a set X of objects and a set B of attributes determined by a pair of
derivation operators. The set of all formal concepts forms a complete lattice, called
concept lattice.

In real life questions, fuzzy information is more ordinary than certain information.
In this case, it is difficult to describe knowledge more accurately with classical formal
context. Therefore, some scholars have applied fuzzy set theory to the formal concept
analysis and proposed the fuzzy formal concept analysis. The binary relation in
formal context is replaced by a fuzzy relation between objects and attributes, which
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induced the fuzzy formal context. For example, Bělohlávek [1] proposed the fuzzy
formal concept in fuzzy formal contexts based on some implication operators of
residuated lattice, and proved that the pair of operators forms a Galois connection.
Popescu [15] presented a general method for constructing fuzzy concepts of a fuzzy
formal context. Medina and Ojeda-Aciego [23] developed so-called t-concept lattice
as a set of triples, which are related to graded tabular information interpreted in a
non-commutative fuzzy logic. Jaoua and Elloumi [7] generalized the binary fuzzy
relation to a real-set binary relation and studied the corresponding concept lattice
theory. Krajči [8], Yahia and Jaoua [22] put forward the ‘one-sided fuzzy concept’
independently so that the number of fuzzy formal concepts generated by fuzzy formal
context is reduced. Zhang et al. [24] further defined variable threshold concept
lattice in fuzzy formal context.

Attribute reduction has always been a hot topic in the study of concept lattice
theory, and its purpose is to find a minimal subset of attributes that keep some
properties of formal context unchanged. Research on attribute reduction of classical
formal context has been relatively mature. The criterion attribute reduction in
classical formal contexts can be roughly divided into two categories: Firstly, attribute
reduction to keep the concept lattice structure unchanged. In [25], Zhang et al. put
forward the theory of attribute reduction based on concept lattice structure, and
used the method of discernibility matrix and discernibility function(DM method) to
calculate all reductions. Secondly, attribute reduction to keep the set of all object
concepts. This kind of attribute reduction is also called granular reduction [?].
Additionally, Cao et al. in [9] proposed a method of concept reduction to keep the
binary relation of formal context unchanged.

In recent years, many scholars have studied the approaches of attribute reduction
for generalization model of concept lattice. For instance, Li. et al. [10] proposed the
method of knowledge reduction in decision formal contexts. And Li et al. [11] pre-
sented a rule acquisition oriented framework of knowledge reduction for real decision
formal contexts and formulated a reduction method. Li et al. [21] also proposed an
approach for extracting non-redundant approximate decision rules from incomplete
decision contexts and presented a knowledge reduction framework. There are also
many studies on knowledge reduction in fuzzy formal contexts. Bělohlavek et al. [4]
proposed a method to reduce the number of formal fuzzy concepts by only keep-
ing the so-called crisply generated fuzzy concepts which are generated from some
crisp subset of attributes, leaving out non-crisply generated fuzzy concepts. In some
cases, this method will lead to a loss of formal contexts knowledge. Based on the
Lukasiewicz implication, Elloumi et al. [6] gave a multi-level conceptual data reduc-
tion approach via the reduction of the object sets by keeping the minimal rows in
a formal context. Li and Zhang [12] reconsidered the reduction issue in the formal
fuzzy contexts by replacing the Lukasiewicz implication in [8] with T-implication.
Based on the idea of variable threshold concept lattices [24], Shao et al. [16] proposed
a method to reduce the attributes or objects of one-sided fuzzy formal concept. Li et
al. [13] proposed a method of attribute reduction for formal fuzzy context by using
the cut set of extent of formal fuzzy concepts.

We note that most of the existing work on attribute reduction of fuzzy formal
context focused on one-sided fuzzy formal concepts or on the fuzzy formal concepts
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containing classical information. There are few researches on attribute reduction
based on general fuzzy formal concepts in fuzzy formal contexts. In view of the
conceptual induction operator defined by Bělohlávek [1], this paper proposed a new
method to reduced attributes of fuzzy formal contexts similarly to the research on
reduction for classical formal contexts [13]. In addition, this method is also applicable
when objects sets and attributes sets are fuzzy sets on general complete residuated
lattices.

2. Preliminaries

In this section, we briefly review some notions of fuzzy formal contexts and fuzzy
concept lattice which are used in this paper.

Definition 2.1 ([1, 3]). A residuated lattice is a structure L = (L,∧,∨,⊗,→, 0, 1)
such that:

(i) (L,∧,∨, 0, 1) is a lattice with the least element 0 and the greatest element 1,
(ii) (L,⊗, 1) is a commutative monoid (i.e. ⊗ is commutative, associative, and

a⊗ 1 = 1⊗ a = a for each a ∈ L)
(iii) ⊗,→ form an adjoint pair, i.e., x ≤ y → z iff x⊗y ≤ z hold for all x, y, z ∈ L.

If the lattices (L,∧,∨, 0, 1) is complete, the residuated lattice L is called complete.
In a fuzzy setting, the lattices L defines the scale of degrees of truth. A common
choice of L is a structure with L = [0, 1], there are typically three kinds of companion
pairs (⊗,→): If x⊗ y = max(x+ y− 1, 0) and x→ y = min(1−x+ y, 1), we obtain
the Lukasiewicz residuated lattices. If (x ⊗ y = min(x, y) and x → y = 1 if x ≤ y,
x→ y = y otherwise, we get the Godel residuated lattices. If x⊗y = x·y, x→ y = 1
if x ≤ y and x→ y = y/x otherwise, we obtain the product residuated lattices.

Proposition 2.2. Let L = (L,∧,∨,⊗,→, 0, 1) be a complete residuated lattice. The
following properties are established ([17]):

(1) the multiplication operation ⊗ is isotone in every argument, i.e., for all
x1, x2, y1, y2 ∈ L, if x1 ≤ x2 and y1 ≤ y2, then x1 ⊗ x2 ≤ y1 ⊗ y2,

(2) the operation → is antitone in its first argument, and isotone in its second
argument, i.e., for all x1, x2, y ∈ L, if x1 ≤ x2, then x2 → y ≤ x1 → y, and for all
x, y1, y2 ∈ L, if y1 ≤ y2, then x→ y1 ≤ x→ y2,

(3) ⊗ distributes over arbitrary joins, i.e., for all x ∈ L, {yi ; i ∈ I} ⊆ L,

x⊗ (
∨
i∈I

yi) =
∨
i∈I

(x⊗ yi),

(4) for all x ∈ L, {yi ; i ∈ I} ⊆ L, x →
∧
i∈I

yi =
∨
i∈I

(x → yi),
∨
i∈I

yi → x =∧
i∈I

(yi → x),

(5) for all x, y ∈ L, x→ y =
∨
{z ∈ L|x⊗ z ≤ y},

(6) 1→ x = x, x→ 1 = 1,
(7) x→ y = 1 iff x ≤ y,
(8) 0⊗ x = x⊗ 0 = 0,
(9) x⊗ y ≤ x, x⊗ y ≤ y,
(10) (x→ y)⊗ (y → z) ≤ x→ z,
(11) x ≤ ¬(¬x),

129



Li and Qin /Ann. Fuzzy Math. Inform. 19 (2020), No. 2, 127–137

(12) x→ y ≤ ¬y → ¬x,
where ¬y = y → 0.

Definition 2.3 ([24]). An L-fuzzy formal context is a triple (G, M, I), where
G = {g1, g2, · · · , gn} is a nonempty finite set of objects, M = {m1,m2, · · · ,mt} is
a nonempty finite set of attributes, I is a L-fuzzy relation between G and M , i.e.,
I : G×M → L, and L is a finite residuated lattice.

An L-fuzzy formal context can be represented by a table in which the rows are
headed by the object names and the columns are headed by the attribute names.
Table 1 depicts an example of L-fuzzy formal context, where the set of objects
G = {x1, x2, x3} and the set of attributes M = {a1, a2, a3, a4, a5}, L = {0, 0.5, 1}
defines the scale of degree of truth. Example (x1, a2) = 0.5 indicated that the degree
of the object x1 with the attribute a2 is 0.5.

Table 1. The fuzzy formal concepts

I a1 a2 a3 a4 a5
x1 1 0.5 0 1 1
x2 0.5 1 0.5 0 0
x3 0 1 1 0.5 0.5

The knowledge of a formal context is the formal concept, Bělohlávek [1] define
the operators as follows:

Definition 2.4 ([1]). Let (G, M, I) be an L-fuzzy formal context. For A ∈ LG

and B ∈ LM , two operators are defined as below:

A↑(m) =
∧
x∈G

(A(x)→ I(x,m)),m ∈M,

B↓(g) =
∧

m∈M
(B(m)→ I(g,m)), g ∈ G.

By Definition 2.4, it is straightforward to conclude the following properties:

Proposition 2.5. Let (G, M, I) be an L-fuzzy formal context, X, X1, X2, Xi ∈
LG, and B, B1, B2, Bi ∈ LM , i ∈ I, I is an index set, then

(1) X1 ⊆ X2 ⇒ X↑2 ⊆ X↑1 , B1 ⊆ B2 ⇒ B↓2 ⊆ B↓1 ,
(2) X ⊆ X↑↓, B ⊆ B↓↑,
(3) X↑ = X↑↓↑, B↓ = B↓↑↓,
(4) X ⊆ A↓ ⇐⇒ A ⊆ X↑,

(5) (
⋃
i∈I

Xi)
↑ =

⋂
i∈I

X↑i , (
⋃
i∈I

Bi)
↓ =

⋂
i∈I

B↓i .

It is shown that the pair (↑, ↓) forms a Galois connection between LG and LM .
A pair (A,B) is called an L-fuzzy formal concept, if A↑ = B and B↓ = A, where
A is referred to as the extent of the L-formal fuzzy concept (A,B) and B is called
its intent. The set of all L-fuzzy formal concepts forms a complete lattice called an
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L-fuzzy concept lattice and is denoted by L(G,M, I). The meet ∧ and join ∨ of the
fuzzy lattice are given by: for any (X1, B1), (X2, B2) ∈ L(G,M, I),

(X1, B1) ∧ (X2, B2) = (X1 ∩X2, (B1 ∪B2)↓↑),

(X1, B1) ∨ (X2, B2) = ((X1 ∪X2)↓↑, B1 ∩B2).

The corresponding partial order relation ≤ on the fuzzy formal concept lattice
L(G,M, I) is given by:

(X1, B1) ≤ (X2, B2) ⇐⇒ X1 ⊆ X2 (or equally B2 ⊆ B1)
If (X1, B1) ≤ (X2, B2), (X1, B1) is called a sub-concept of (X2, B2) and (X2, B2)

is called a super-concept of (X1, B1). The notation (X1, B1) < (X2, B2) denotes
that (X1, B1) ≤ (X2, B2) and (X1, B1) 6= (X2, B2). If (X1, B1) < (X2, B2) and
there does not exist a concept (X,B) such that (X1, B1) < (X,B) < (X2, B2), then
(X1, B1) is called an immediate sub-concept of (X2, B2) and (X2, B2) is called an
immediate super-concept of (X1, B1), which is denoted by (X1, B1) ≺ (X2, B2).

3. Attribute reduction in L-fuzzy formal contexts

Let (G, M, I) be an L-fuzzy formal context, D ⊆ M . D induces an L-fuzzy
formal context (G, D, ID) which is called a subcontext of (G, M, I), and ID is
given by ID = I

∣∣
G×D. To avoid confusion, the operators defined for (G, D, ID) will

be denoted by ↑D and ↓D respectively. One can conclude the following property:
(1) for any A ∈ LG, A↑D = A↑

∣∣
D

,

(2) for any B ∈ LD, B↓D = B
↓
, where B ∈ LM is given by:

B(m) =

{
B(m), m ∈ D

0, m ∈M −D

Definition 3.1. Let L(G, M1, I1) and L(G, M2, I2) be two L-fuzzy formal concept
lattices. L(G, M1, I1) is called finer than L(G, M2, I2), denoted by L(G, M1, I1) ≤
L(G, M2, I2), if for each (A,B) ∈ L(G, M2, I2), there always exists C ∈ LM1 such
that (A,C) ∈ L(G, M1, I1).

Clearly, L(G, M1, I1) ≤ L(G, M2, I2) if and only if ExtL(G, M2, I2) ⊆
ExtL(G, M1, I1), where

ExtL(G, M1, I1) = {X ∈ LG; ∃A ∈ LM1 ((X,A) ∈ L(G, M1, I1))}

is the set of all extents of concepts in L(G, M1, I1). If L(G, M1, I1) ≤ L(G, M2, I2)
and L(G, M2, I2) ≤ L(G, M1, I1), then the lattices L(G, M1, I1) and L(G, M2, I2)
are isomorphic, and denoted by L(G, M1, I1) ∼= L(G, M2, I2).

Theorem 3.2. Let (G, M, I) be an L-fuzzy formal context, D ⊆ M , (G, D, ID)
is a subcontext of (G, M, I). Then L(G, M, I) ≤ L(G, D, ID).

Proof. It suffices to show that for any (A,B) ∈ L(G, D, ID) , we have (A,A↑) ∈
L(G, M, I). In fact, since A↑ ⊇ A↑

∣∣
D

, from properties of the operator, we have

A ⊆ A↑↓ ⊆ (A↑
∣∣
D

)
↓

= (A↑
∣∣
D

)↓D = A↑D↓D = A.

Thus A = A↑↓. So (A,A↑) ∈ L(G, M, I). �
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Definition 3.3. Let (G,M, I) be an L-fuzzy formal context, D ⊆ M , D is called
a consistent set of (G, M, I), if L(G, D, ID) ∼= L(G, M, I). Furthermore, if D
is a consistent set of (G, M, I), and no proper subset of D is a consistent set of
(G, M, I), i.e., for any d ∈ D, L(G, D−{d}, ID−{d}) 6∼= L(G, M, I), then we say
D is an attribute reduction of (G, M, I).

In [16], Shao et al. solved the problem of attribute reduction in fuzzy formal
contexts, but his work is different from that in this paper. He proposed the object
consistent set and the attribute consistent set for the one-sided variable threshold
fuzzy concepts, and calculated all reductions of fuzzy formal context by discernibility
matrices and discernibility functions. In [5], Shao et al. also discussed the granular
reduction of fuzzy formal contexts. The lattice structure of concepts involved in
their paper is based on the ‘crisp-fuzzy concept’ proposed independently by Yahia
[8] and Krajča [22]. Its granular reduction method is to obtain a minimal attribute
set preserving all the object granules of a concept lattice. But in this paper the
extension and intension of fuzzy formal concepts are both fuzzy set on a complete
residuated lattice L, which is generated by the concept derivation operators proposed
by Bělohlávek. Under certain conditions, this model is closer to people’s minds.

Theorem 3.4. Let (G, M, I) be an L-fuzzy formal context, D ⊆M . Then D is a
consistent set of (G, M, I) if and only if L(G, D, ID) ≤ L(G, M, I).

Proof. It follows directly from Definition 3.3 and Theorem 3.2. �

Theorem 3.5. Let (G, M, I) be an L-fuzzy formal context, D ⊆M . Then D is a
consistent set of (G, M, I) if and only if for any (A1, B1), (A2, B2) ∈ L(G, M, I),
there exist d ∈ D such that B1(d) 6= B2(d) if (A1, B1) 6= (A2, B2).

Proof. (=⇒) Assume that D is a consistent set of (G, M, I) and (A1, B1), (A2, B2) ∈
L(G, M, I) such that (A1, B1) 6= (A2, B2). Then (A1, A↑D1 ) , (A2, A↑D2 ) ∈
L(G, D, ID) and (A1, A↑D1 ) 6= (A2, A↑D2 ) by A1 6= A2. Thus we have A↑D1 6= A↑D2 ,

i.e., A↑1
∣∣
D
6= A↑2

∣∣
D

. So there exist d ∈ D such that B1(d) 6= B2(d).

(⇐=) By Theorem 3.4, we have L(G, M, I) ≤ L(G, D, ID). Then it suffices
to prove that L(G, D, ID) ≤ L(G, M, I), i.e., (A, A↑D ) ∈ L(G, D, ID) for any
(A, B) ∈ L(G, M, I).

That is need to prove A = A↑D↓D . If not, by A ⊆ A↑D↓D , it follows that A ⊂
A↑D↓D . Notice that A↑D↓D = A↑D

↓
. Thus

(A↑D↓D , A↑D↓D↑) = (A↑D
↓
, A↑D

↓↑
) ∈ L(G, M, I).

By (A, B) ∈ L(G, M, I) and A↑D↓D 6= A, we have

(A, B) 6= (A↑D↓D , A↑D↓D↑).

By assumption, we conclude that there exists d ∈ D such that B(d) 6= A↑D
↓↑

(d),
i.e., B(d) 6= A↑D↓D↑(d). Moreover, by A ⊆ A↑D↓D , we know thatA↑D↓D↑ ⊆ A↑. So

A↑D↓D↑(d) ≤ A↑(d).

Besides, from the properties of the operator, we have

A↑D↓D↑(d) = (A↑D )↓↑(d) ≥ A↑D (d).
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By the properties of operators, we know that A↑D = A↑D , when d ∈ D. Hence

A↑D (d) = A↑D (d) = A↑|D(d) = A↑(d) = B(d). It follows that B(d) = A↑D↓D↑(d).
This is a contradiction. Therefore A↑D↓D = A and (A, A↑D ) ∈ L(G, D, ID). �

Definition 3.6. Let (G, M, I) be an L-fuzzy formal context. For (A1, B1), (A2, B2) ∈
L(G, M, I) with (A1, B1) 6= (A2, B2), the set of discernibility attributes of (A1, B1),
(A2, B2) is K((A1, B1), (A2, B2)), where K((A1, B1), (A2, B2)) is given by:

K((A1, B1), (A2, B2)) = {a ∈M ; B1(a) 6= B2(a)}

From Theorem 3.5 and the definition of discernibility attributes, it is obvious that
the following theorem holds.

Theorem 3.7. Let (G, M, I) be an L-fuzzy formal context, D ⊆M . Then D is a
consistent set of (G, M, I) if and only if for any (X1, A1), (X2, A2) ∈ L(G, M, I),
(X1, A1) 6= (X2, A2) implies that D ∩K((X1, A1), (X2, A2)) 6= ∅.

In general, there are a large number of L-fuzzy formal concepts generated by
L-fuzzy formal context. For simplicity, we also prove the following method for cal-
culation the consistent set.

Theorem 3.8. Let (G, M, I) be an L-fuzzy formal context, D ⊆M . Then D is a
consistent set of (G, M, I) if and only if for any (A1, B1), (A2, B2) ∈ L(G, M, I),
(A1, B1) ≺ (A2, B2) implies that D ∩K((A1, B1), (A2, B2)) 6= ∅.

Proof. (=⇒) Obviously.
(⇐=) Let (X1, A1), (X2, A2) ∈ L(G, M, I). If (X1, A1) 6= (X2, A2), we have

(X1, A1) < (X1, A1) ∨ (X2, A2) or (X2, A2) < (X1, A1) ∨ (X2, A2). Might as
well assume (X1, A1) < (X1, A1) ∨ (X2, A2), and notice that

(X1, A1) ∨ (X2, A2) = ((X1 ∪X2)↑↓, A1 ∩A2)

There must exists (X3, A3) such that

(X1, A1) ≺ (X3, A3) ≤ ((X1 ∪X2)↑↓, A1 ∩A2)

By assumption, it follows that D ∩ K((X1, A1), (X3, A3)) 6= ∅. By the prop-
erty of the discernibility attribute set, we know that K((X1, A1), (X3, A3)) ⊆
K(((X1 ∪X2)↑↓, A1 ∩A2)) ⊆ K((X1, A1), (X2, A2)). Then

D ∩K((X1, A1), (X2, A2)) 6= ∅.

Thus by Theorem 3.5, D is a consistent of (G, M, I). �

Given an L-fuzzy formal context (G, M, I). Denote

f =
∧

(A1, B1)≺(A2, B2)

∨
a∈K((A1, B1),(A2, B2))

a

f is called the discernibility function of (G, M, I). By using the discernibility
function, we can compute all the reductions of L-fuzzy formal context.

Theorem 3.9. For an L-fuzzy formal context (G, M, I), let

f =

k∨
t=1

(

rt∧
s=1

at,s)
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be the minimal disjunctive normal form of the discernibility function of (G, M, I).
Then {at,s|1 ≤ s ≤ rt}(t ≤ k) are all the reductions of (G, M, I).

Example 3.10. Take the fuzzy formal context (G, M, I) in Table 1 as an example.
Assume that x → y = min(1 − x + y, 1). We can conclude that there are 19 fuzzy
formal concepts in the formal context determined by the operators in this paper, as
is shown below:

FC1. (∅, 1
a1

+ 1
a2

+ 1
a3

+ 1
a4

+ 1
a5

),

FC2. ( 1
x1

+ 0
x2

+ 0
x3
, 1
a1

+ 0.5
a2

+ 0
a3

+ 1
a4

+ 1
a5

),

FC3. (0.5
x1

+ 0
x2

+ 0
x3
, 1
a1

+ 1
a2

+ 0.5
a3

+ 1
a4

+ 1
a5

),

FC4. ( 0
x1

+ 0.5
x2

+ 0
x3
, 1
a1

+ 1
a2

+ 1
a3

+ 0.5
a4

+ 0.5
a5

),

FC5. (0.5
x1

+ 0
x2

+ 0
x3
, 1
a1

+ 1
a2

+ 0.5
a3

+ 1
a4

+ 1
a5

),

FC6. ( 0
x1

+ 0.5
x2

+ 0
x3
, 1
a1

+ 1
a2

+ 1
a3

+ 0.5
a4

+ 0.5
a5

),

FC7. ( 0
x1

+ 0.5
x2

+ 1
x3
, 0
a1

+ 1
a2

+ 1
a3

+ 0.5
a4

+ 0.5
a5

),

FC8. (0.5
x1

+ 0.5
x2

+ 0
x3
, 1
a1

+ 1
a2

+ 0.5
a3

+ 0.5
a4

+ 0.5
a5

),

FC9. ( 1
x1

+ 0.5
x2

+ 0
x3
, 1
a1

+ 0.5
a2

+ 0
a3

+ 0.5
a4

+ 0.5
a5

),

FC10. ( 1
x1

+ 1
x2

+ 0.5
x3

, 0.5
a1

+ 0.5
a2

+ 0
a3

+ 0
a4

+ 0
a5

),

FC11. (0.5
x1

+ 0
x2

+ 0.5
x3

, 0.5
a1

+ 1
a2

+ 0.5
a3

+ 1
a4

+ 1
a5

),

FC12. (0.5
x1

+ 0.5
x2

+ 1
x3
, 0
a1

+ 1
a2

+ 0.5
a3

+ 0.5
a4

+ 0.5
a5

),

FC13. ( 1
x1

+ 0
x2

+ 0.5
x3

, 0.5
a1

+ 0.5
a2

+ 0
a3

+ 1
a4

+ 1
a5

),

FC14. ( 1
x1

+ 0.5
x2

+ 1
x3
, 0
a1

+ 0.5
a2

+ 0
a3

+ 0.5
a4

+ 0.5
a5

),

FC15. ( 0
x1

+ 0.5
x2

+ 0.5
x3

, 0.5
a1

+ 1
a2

+ 1
a3

+ 0.5
a4

+ 0.5
a5

),

FC16. (0.5
x1

+ 1
x2

+ 1
x3
, 0
a1

+ 1
a2

+ 0.5
a3

+ 0
a4

+ 0
a5

),

FC17. (0.5
x1

+ 0.5
x2

+ 0.5
x3

, 0.5
a1

+ 1
a2

+ 0.5
a3

+ 0.5
a4

+ 0.5
a5

),

FC18. ( 1
x1

+ 0.5
x2

+ 0.5
x3

, 0.5
a1

+ 0.5
a2

+ 0
a3

+ 0.5
a4

+ 0.5
a5

),

FC19. ( 1
x1

+ 1
x2

+ 1
x3
, 0
a1

+ 0.5
a2

+ 0
a3

+ 0
a4

+ 0
a5

).
The fuzzy concept lattice generated by all the fuzzy formal concepts is shown in

Figure 1. For convenience, we use serial numbers 1 to 19 to represent concepts FC1
to FC19.

According to Theorem 3.8, two concepts need to be distinguished when they
have an immediate sub-concept (super-concept) relationship. From the concept
lattice shown in Figure 1, we can see that the discernibility attributes set are as
follows:where K1,3 denotes the set of discernibility attributes of concepts FC1 and
FC3.

K1,3 = {a3}, K1,4 = {a4, a5}, K1,6 = {a1}, K3,2 = {a2, a3},
K3,8 = {a4, a5}, K4,8 = {a3}, K4,11 = {a1, a3, a4, a5}, K4,15 = {a1},
K6,11 = {a3}, K6,15 = {a4, a5}, K2,9 = {a4, a5}, K2,13 = {a1},
K8,9 = {a2, a3}, K8,17 = {a1}, K11,17 = {a4, a5}, K11,13 = {a2, a3},
K15,17 = {a3}, K15,7 = {a1}, K9,18 = {a1}, K17,5 = {a4, a5},
K17,18 = {a2, a3}, K13,18 = {a4, a5}, K7,12 = {a3}, K5,10 = {a2, a3},
K18,10 = {a4, a5}, K18,14 = {a1}, K12,14 = {a2, a3}, K12,16 = {a4, a5},
K10,19 = {a1}, K14,19 = {a4, a5}, K16,19 = {a2, a3}.
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Figure 1. The fuzzy concept lattice

Its discernibility function is as follows:

f = a3 ∧ (a4 ∨ a5) ∧ a1 ∧ (a2 ∨ a3) ∧ (a1 ∨ a3 ∨ a4 ∨ a5)

= a3 ∧ a1 ∧ (a4 ∨ a5) = (a1 ∧ a3 ∧ a4) ∨ (a1 ∧ a3 ∧ a5)

So the fuzzy formal context shown in Table1 has two attribute reductions {a1, a3, a4}
and {a1, a3, a5} .

4. Conclusion

Fuzzy formal concept analysis is a theory of information processing and knowledge
discovery. Attribute reduction of formal context is also a hot research topic. In this
paper, we proposed a more general approach of attribute reduction of L-fuzzy formal
context. Based on Bělohlávek fuzzy concept operator, we define the discernibility
attributes set and discernibility function of fuzzy formal concepts, and propose a
method to obtain all reductions of L-fuzzy formal context by distinguishing function.
However, a sufficient and necessary condition for attribute characteristics similar
to[13] has not been given, and further research is needed.
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