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Abstract. Rough set theory is a powerful mathematical tool for dealing
with inexact, uncertain or vague information. The core concept of rough set
theory are information systems and approximation operators of approxi-
mation spaces. In this paper, we study the relationships between mset
relations and mset topology. Moreover, this paper concerns generalized
mset approximation spaces via topological methods and studies topolog-
ical properties of rough msets. Classical compactness and connectedness
for M-topological spaces are extended to generalized mset approximation
spaces. Also, some properties of M-topological spaces induced by reflex-
ive mset relation and some properties of M-topological spaces induced by
tolerance mset relation are investigated.
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1. Introduction

In classical set theory, a set is a well-defined collection of distinct objects. If
repeated occurrences of any object is allowed in a set, then a mathematical structure,
that is known as multiset (mset or bag, for short). Thus, a multiset differs from a set
in the sense that each element has a multiplicity – a natural number not necessarily
one – that indicates how many times it is a member of the multiset. One of the most
natural and simplest examples is the multiset of prime factors of a positive integer
n. The number 504 has the factorization 504 = 233271 which gives the multiset
{2, 2, 2, 3, 3, 7}.

In any information system, some situations may occur, where the respective
counts objects in the universe of discourse are not single. In such situations we
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replace its universe of discourse by multisets called rough multisets. The motiva-
tion to use rough multisets has come from the need to represent sub multisets of a
multiset in terms of m-equivalence classes of a partition of that multiset (universe).
The mset equivalence relation and mset partitions are explained in [9]. The mset
partition characterizes an M-topological space, called an approximation mset space
(M,E) where M is an mset called the universe and E is an equivalence mset rela-
tion. The m- equivalence classes of E are also known as granules with repetition
or elementary msets or blocks. [m/x] ⊆ M is used to denote the m-equivalence
class containing m/x in M . In the approximation mset, there are two operators, the
upper mset approximation and lower mset approximation of submsets. The concept
of rough multisets and related properties with the help of lower mset approxima-
tion and upper mset approximations are important frameworks for certain types of
information multisystems [6, 7].

Topology is an important branch of mathematics, which has the independent the-
oretic framework, background and broad applications. We can introduce topological
methods to rough set theory and study the relationship between topological theory
and rough set theory. This have deep theoretical and practical significance beyond
doubt. Some researchers carried out this exploration. For example, Kondo [16]
proved that every reflexive relation in a set can induce a topology, proposed a kind
of compactness condition and got that a topology which satisfies the compactness
condition can determine the lower and upper approximation operators induced by a
similarity relation. Another kind of compactness condition was proposed in [18]. As
a further result, a one-to-one correspondence between the set of all similarity rela-
tions and the set of all topologies which satisfy the proposed compactness condition
was proved. The fact that the topology satisfying the compactness condition in [18]
is exactly an Alexandrov topology was pointed out in [25]. Topological properties
of different rough operators were discussed in [27].

We may relax equivalence relations so that rough set theory is able to solve more
complicated problems in practice. The classical rough set theory based on equiva-
lence relations has been extended to tolerance relations [5, 19], similarity relations
[2, 20, 21], dominance relations [14], general binary relations [16, 23, 24, 28, 29], and
coverings [4, 8, 17, 26, 30]. We call a pair (M,R) a generalized multiset approxima-
tion space (GMA-space for short), where M is a non-empty mset (maybe infinite)
and R is a binary mset relation on M . Topological properties of GMA-space may
have some application in information sciences. The purpose of this paper is to in-
vestigate further properties of the M-topological spaces induced by different binary
mset relations.

We first introduce and study in Section 2 some properties of msets, mset re-
lations and rough mset theory. Section 3 is concerned with the compactness and
connectedness for GMA-spaces. In section 4, several basic concepts and results are
introduced, Moreover, some properties of (M, τR) induced by a reflexive mset rela-
tion R, and some properties of (M, τR) induced by a tolerance mset relation R on
M are investigated. At last, some conclusion is presented in section 5.
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2. M-relations and M-topology

In this subsection, a brief survey of the notion of msets introduced by Yager [22],
the different types of collections of msets and the basic definitions and notions of rela-
tions in mset context introduced by Girish and John [9, 10, 11, 12, 13] are presented.

Definition 2.1 ([15]). An mset M drawn from the set X is represented by a function
Count M or CM defined as CM : X → N , where N represents the set of non negative
integers.

In Definition 2.1, CM (x) is the number of occurrences of the element x in the
mset M . However those elements which are not included in the mset M have zero
count.

Let M1 and M2 be two msets drawn from a set X. Then the following are defined
[13]:

(i) M1 = M2, if CM1
(x) = CM2

(x) for all x ∈ X,
(ii) M1 ⊆M2, if CM1

(x) ≤ CM2
(x) for all x ∈ X,

(iii) P = M1 ∪M2, if CP (X) = Max{CM1
(x), CM2

(x)} for all x ∈ X,
(iv) P = M1 ∩M2, if CP (x) = Min{CM1(x), CM2(x)} for all x ∈ X.

Definition 2.2 ([15]). A domain X, is defined as a set of elements from which msets
are the mset space [X]m is the set of all msets whose elements are X such that no
element in the mset occurs more than m times.

If X = {x1, x2, ..., xk}, then

[X]m = {{m1/x1,m2/x2, ...,mk/xk} : fori = 1, 2, ..., k;mi ∈ {0, 1, 2, ...,m}}.

Henceforth M stands for a multiset drawn from the multiset space [X]m.

Definition 2.3 ([15]). Let M be an mset drawn from a set X. The support set of
M denoted by M∗ is a subset of X and M∗ = {x ∈ X : CM (x) > 0}, i.e., M∗ is an
ordinary set and it is also called root set.

Definition 2.4 ([15]). Let X be a support set and [X]m be the mset space defined
over X. Then for any mset M ∈ [X]m, the complement M c of M in [X]m is an
element of [X]m such that CcM (x) = m− CM (x) for all x ∈ X.

Let M be an mset from X = {x1, x2, ..., xn} with x appearing n times in M . It
is denoted by x ∈n M . The mset M = {k1/x1, k2/x2, ..., kn/xn} drawn from X
means that M is an mset with x1 appearing k1 times, x2 appearing k2 times and so
on. A new notation can be introduced for the purpose of defining Cartesian product
M1 ×M2 of two multisets M1 and M2, relation on multisets and its domain and
co-domain. The entry of the form (m/x, n/y)/mn denotes that x is repeated m-
times in M1, y is repeated n-times in M2 and the pair (x, y) is repeated mn-times in
M1×M2. The counts of the members of the domain and co-domain vary in relation
to the counts of the x co-ordinate and y co-ordinate in (m/x, n/y)/k. The notation
C1(x, y) and C2(x, y) is therefore introduced. C1(x, y) denotes the count of the first
co-ordinate in the ordered pair (x, y) and C2(x, y) denotes the count of the second
co-ordinate in the ordered pair (x, y).
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Definition 2.5 ([3]). Let M ∈ [X]m be an mset. The power mset P (M) of M is
the set of all the sub msets of M , i.e., A ∈ P (M) if and only if A ⊆M .

If A = ∅, then A ∈1 P (M); and if A 6= ∅, then A ∈k P (M) where k =
∏
z(
|[M ]z|
|[A]z| ),

the product
∏
z is taken over by distinct elements of z of the mset A and |[M ]z| = m

iff z ∈m M , |[A]z| = n iff z ∈n A, then
∏
z(
|[M ]z|
|[A]z| ) = (mn ) = m!/n!(m− n)!.

The power set of an mset is the support set of the power mset and is denoted by
P ∗(M). Power mset is an mset but its support set is an ordinary set whose elements
are msets.

Definition 2.6 ([9]). A sub mset R of M ×M is said to be an mset relation on M ,
if every member (m/x, n/y) of R has a count, the product of C1(x, y) and C2(x, y).
m/x related to n/y is denoted by (m/x)R(n/y).

Definition 2.7 ([9]). Let M be an mset in [X]m and let R be an mset relation on
M . Then R is said to be:

(i) reflexive, if (m/x)R(m/x) for each m/x in M ,
(ii) irreflexive, if (m/x)R(m/x) never holds for each m/x in M ,
(iii) symmetric, if (m/x)R(n/y) implies (n/y)R(m/x) for any x, y ∈ X,
(iv) antisymmetric, if (m/x)R(n/y) and (n/y)R(m/x) imply m/x = n/y,
(v) transitive, if (m/x)R(n/y) and (n/y)R(k/z) imply (m/x)R(k/z).

A mset relation R on a mset M is called an equivalence mset relation, if it is
reflexive, symmetric and transitive. A mset relation R on a mset M is called a
partial ordered mset relation, if it is reflexive, antisymmetric and transitive. A mset
relation R on a mset M is called a preorder relation, if it is reflexive and transitive.

Definition 2.8 ([13]). Let M ∈ [X]m and P ∗(M). Then τ is called a multiset
topology, if τ satisfies the following properties:

(i) ∅, M ∈ τ ,
(ii) The union of the elements of any sub collection of τ is in τ ,
(iii) The intersection of the elements of any finite sub collection of τ is in τ .

Mathematically, a multiset topological space is an ordered pair (M, τ) consisting
of an mset M ∈ [X]m and a multiset topology τ ⊆ P ∗(M) on M . Note that τ is an
ordinary set whose elements are msets and the multiset topology is abbreviated as
an M -topology. A submset U of an M -topological space M is an open mset of M ,
if U belongs to the M -topology. Also, a submset U of an M -topological space M is
called closed, if U c is open (See[13]).

Definition 2.9 ([13]). Let R be an mset relation on M .
(i) The successor-mset of x ∈m M is defined as:

(m/x)R = {n/y : ∃ k with (k/x)R(n/y)}.
(ii) The successor-mset of A ⊆M is defined as:

(A)R = {n/y : ∃ k with (k/x)R(n/y) for some k/x ∈ A}.
(iii) The predecessor-mset of x ∈m M is defined as:

R(m/x) = {n/y : ∃ k with (n/y)R(k/x)}.
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(iv) The predecessor-mset of A ⊆M is defined as:

R(A) = {n/y : ∃ k with (n/y)R(k/x) for some k/x ∈ A}.
Definition 2.10 ([13]). Let R be any binary mset relation on a nonempty multiset
M . For any submset A ⊆ M , the lower and the upper mset approximations of A
according to R are defined as:

R(A) = {m/x : (m/x)R ⊆ A},
R(A) = {m/x : (m/x)R ∩A 6= φ}.

Theorem 2.11 ([13]). If R is an mset relation on M , then the successor class
= {(m/x)R : x ∈m M} form a sub M-base for an M -topology τ on M and the
predecessor class = {R(m/x) : x ∈m M} form a sub M-base for a dual M -topology
of τ on M .

Definition 2.12 ([13]). If M is an mset, an M -basis for an M -topology on M is a
collection B of partial whole submsets of M (called M -basis element) such that

(i) for each x ∈m M , for some m > 0, there is at least one M -basis element
B ∈ B containing m/x, i.e., for each mset in B there is at least one element with
full multiplicity as in M ,

(ii) if m/x belongs to the intersection of two M -basis elements M1 and M2, then
there is an M -basis element M3 containing m/x such that M3 ⊆M1∩M2, i.e., there
is an M -basis element M3 containing an element with full multiplicity as in M and
that element must be in M1 and M2 also.

3. Compactness and connectedness of GMA-spaces

In this section we consider some global properties of GMA-spaces such as com-
pactness and connectedness. We recall first compactness of M-topological spaces.

Definition 3.1 ([1]). Let (M,R) be a GMA-space. If for all m/x, n/y ∈M , m/x 6=
n/y implies (n/y)R ∩ (m/x)R = ∅, then (M,R) is called a T a2 GMA-space.

Proposition 3.2 ([1]). If (M,R) is a normal GMA-space, then for all m/x, n/y ∈
M , (m/x)R(n/y) implies that there is v ∈t M such that (t/v)R(m/x) and (t/v)R(n/y).

Definition 3.3. An M-topological space M is called compact, if every open cover
of M has a finite subcover.

Corollary 3.4. Let (M,R) be a M-topological GMA-space. Then (M, τR) is a com-
pact space iff there is a finite mset A ⊆M such that (A)R = M .

By Corollary 3.4, for general GMA-spaces, we give the following definition.

Definition 3.5. Let (M,R) be a GMA-space. If there is a finite A ⊆M such that
for any m/x ∈ M , there exists l/a ∈ A with (l/a)R(m/x), then we call (M,R) a
compact GMA-space.

Remark 3.6. It is easy to see by Definition 2.3 that the mset relation R of a
compact GMA-space (M,R) is inverse serial, that is, for each m/x ∈ M , there is
n/y ∈M such that (n/y)R(m/x). Conversely, if M is finite and R is inverse serial,
then (M,R) is compact.
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For an M-topological space (M, τ) and its induced GMA-space (M,Rτ ), we have

Theorem 3.7. Let (M, τ) be an M-topological space. If (M,Rτ ) is a compact GMA-
space, then (M, τ) is a compact M-topological space.

Proof. Since (M,Rτ ) is an M-topological GMA-space, (M,Rτ ) is compact implies
that (M, (τR)τ ) is compact. It follows from τ ⊆ (τR)τ that (M, τ) is compact too. �

It is well known that for M-topological spaces compactness and T2 imply normal-
ity. But for GMA-spaces, we have the following counterexample.

Example 3.8. LetM = {2/a, 3/b, 2/c, 4/d} andR = {(2/a, 2/a), (3/b, 3/b), (3/b, 2/c)
, (2/c, 4/d)}. Then (2/a)R = {2/a}, (3/b)R = {3/b, 2/c}, (2/c)R = {4/d}and(4/dR) =
φ. Clearly (M,R) is a T a2 GMA-space. Since M is finite and R is inverse serial,
(M,R) is compact by Remark 3.6. But for 2/c, 4/d ∈M with (2/c)R(4/d), there is
no 2/x ∈M satisfying (2/x)R(2/c) and (2/x)R(4/d). By Proposition 3.2, (M,R) is
not a normal GMA-space.

Now we pass to connectedness.

Definition 3.9. An M-topological space M is said to be connected, if its only clopen
submsets are φ and M ; otherwise, M is said to be disconnected.

Let M be an M-topological space and A,B ⊆ M . If A ∩ cl(B) = B ∩ cl(A) = φ,
then we call A and B a pair of separated submsets of M . It is well known that
M is disconnected iff there are two non-empty separated submsets A,B ⊆ M such
that M = A ∪ B iff there are two non-empty closed msets A,B ⊆ M satisfying
A ∩ B = φ and A ∪ B = M iff there are two non-empty open msets A,B ⊆ M
satisfying A ∩B = φ and A ∪B = M .

Corollary 3.10. Let (M,R) be an M-topological GMA-space. Then (M, τR) is a
disconnected space iff there is A ⊆M with φ 6= A 6= M such that (A)R = A = R(A).

To consider connectedness of GMA-spaces, we introduce the concepts of R-open
msets, R-closed msets, R-clopen msets and R-separated submsets first.

Definition 3.11. Let (M,R) be a GMA-space and A,B ⊆ M . If R(A) ⊆ A, then
A is called an R-closed mset of (M,R). If B ⊆ R(B), then B is called an R-open
mset of (M,R). If A is both R-closed and R-open, then we call A an R-clopen mset.
If A ∩ B = φ and R(A) ∩ B = R(B) ∩ A = φ, then we call A and B a pair of
R-separated submsets of (M,R).

It is easy to see that A is R-closed iff (A)C is R-open. If R is a preorder, then
R(A) ⊆ A ⊆ R(A) and the R-open (R-closed, R-clopen) msets of GMA-space (M,R)
are exactly the open (closed, clopen) msets of M-topological space (M, τR).

Proposition 3.12. Let (M,R) be a GMA-space and A,B ⊆M . Then A and B are
R-separated iff A∩B = φ, (m/x)RC(n/y) and (n/y)RC(m/x) for all m/x ∈ A and
n/y ∈ B.

Proof. Assume that A and B are R-separated. Then trivially, A ∩B = φ. Suppose
that there are m/x ∈ A and n/y ∈ B such that (m/x)R(n/y). Then n/y ∈ (m/x)R∩
B 6= φ. Thus m/x ∈ R(B). This contradicts R(B) ∩ A = φ. So (m/x)RC(n/y) for
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all m/x ∈ A and n/y ∈ B. By the same argument, we have that (n/y)RC(m/x) for
all m/x ∈ A and n/y ∈ B.

Conversely, for all m/x ∈ A, since (m/x)RC(n/y) for all n/y ∈ B, we have
(m/x)R ∩ B = φ and m/x ∈ R(B). Then R(B) ∩ A = φ. By the same argument,
we have R(A) ∩B = φ. Thus A and B are R-separated. �

Definition 3.13. A GMA-space (M,R) is said to be connected, if its only R-clopen
submsets are φ and M ; otherwise, (M,R) is said to be disconnected.

Theorem 3.14. Let (M,R) be a GMA-space. Then the following are equivalent:
(1) (M,R) is a disconnected GMA-space,
(2) there are two non-empty R-separated submsets A, B ⊆M such thatA∪B = M

,
(3) there are two non-empty R-closed msets A, B ⊆M satisfying A∩B = φ and

A ∪B = M ,
(4) there are two non-empty R-open msets A, B ⊆ M satisfying A ∩ B = φ and

A A ∪B = M .

Proof. (1)⇒(2): Since (M,R) is a disconnected GMA-space, there is an R-clopen
mset A ⊆ M with φ 6= A 6= M . Let B = AC . Then A, B 6= φ, A ∩ B = φ and A
A ∪ B = M . Since A and B are both R-clopen, we have that R(A) ∩ B = φ and
R(B) ∩A = φ. Thus A and B are R-separated.

(2)⇒(3): By (2), there are two non-empty R-separated submsets A, B ⊆M such
that A ∪B = M . Then A ∩B = φ and R(A) ∩B = R(B) ∩A = φ. Thus

R(B) = R(B) ∩M = R(B) ∩ (A ∪B) = (R(B) ∩A) ∪ (R(B) ∩B) = R(B) ∩B.
It follows that R(B) ⊆ B. Similarly, R(A) ⊆ A. So A and B are R-closed msets.

(3)⇒ (4) : For the two R-closed msets A,B in (3), we have A = BC and B = AC .
Then A, B are also R-open. Thus (4) holds.

(4) ⇒ (1) : If A, B ⊆ M are the two R-open msets satisfying the conditions
in (4), then A = BC is also R-closed. Thus A is an R-clopen mset of (M,R) and
φ 6= A 6= M . So (M,R) is a disconnected GMA-space. �

For an M-topological space (M, τ) and its induced GMA-space (M,Rτ ), we have

Theorem 3.15. Let (M, τ) be an M-topological space. If (M,Rτ ) is a connected
GMA-space, then (M, τ) is a connected M-topological space.

Proof. Since (M,Rτ ) is an M-topological GMA-space, (M,Rτ ) is connected implies
that (M, (τR)τ ) is connected. It follows from τ ⊆ (τR)τ that (M, τ) is connected. �

4. On the structure of generalized rough msets

4.1. Definitions and proposition. In this section, we introduce some basic con-
cepts and relational propositions. Let M be a nonempty mset and R a binary mset
relation on M . For any A ⊆M , we define τR = {A ⊆M : R(A) = A}.

The author [1] proved that if R is a reflexive mset relation on M , then τR is a
mset topology on M , which may be called the M-topology induced by R on M .

Definition 4.1. Let R be a reflexive mset relation on M . Then (M, τR) is called
the M-topological space induced by R on M .
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Definition 4.2. Let R be a binary mset relation on M . Then R is called a tolerance
mset relation on M , if R is both reflexive and symmetric.

Definition 4.3. Let R and Rs be two binary mset relations on M . If for all
m/x, n/y ∈M, (m/x)Rs(n/y) if and only if (m/x)R(n/y) or there exists {m1/v1,m2/v2
, ...,mn/vn} ⊆M such that (m/x)R(m1/v1), (m1/v1)R(m2/v2), ..., (mn/vn)R(n/y),
then Rs is called the transmitting expression of R.

Proposition 4.4. Let R be a binary mset relation on M and Rs the transmitting
expression of R. Then Rs is a transitive relation on M . Moreover,

(1) if R is reflexive, then Rs is also reflexive,
(2) if R is transitive, then Rs = R,
(3) if R is symmetric, then Rs is also symmetric.

Proof. Suppose (m/x)Rs(n/y) and (n/y)Rs(k/z). Then there exists

{m1/v1,m2/v2, ...,mn/vn} ⊆M such that

(m/x)R(m1/v1), (m1/v1)R(m2/v2), ..., (mn/vn)R(n/y)

and there exists {n1/u1, n2/u2, ..., nn/un} ⊆M such that

(n/y)R(n1/u1), (n1/u1)R(n2/u2), ..., (nn/un)R(k/z).

Thus there exists {m1/v1,m2/v2, ...,mn/vn, n1/u1, n2/u2, ..., nn/un} ⊆M such that
(m/x)R(m1/v1), (m1/v1)R(m2/v2), ...,

(mn/vn)R(n/y), (n/y)R(n1/u1), (n1/u1)R(n2/u2), ..., (nn/un)R(k/z).
So (m/x)Rs(k/z). Hence Rs is a transitive mset relation.

(1) Suppose R is reflexive. Then (m/x)R(m/x) for all m/x ∈M . Thus
(m/x)Rs(m/x), for all m/x ∈M . So Rs is reflexive.

(2) Suppose R is transitive and Rs 6= R. then there exists m/x, n/y ∈ M such
that (m/x)Rs(n/y) and (n/y)Rs(m/x). Thus there exists {m1/v1,m2/v2, ...,mn/vn}
⊆ M such that (m/x)R(m1/v1), (m1/v1)R(m2/v2), ..., (mn/vn)R(n/y). Since R is
transitive, (m/x)R(n/y), which it is a contradiction. So Rs = R.

(3) SupposeR is symmetric and (m/x)Rs(n/y). Then by definition, (m/x)R(n/y).
Thus (n/y)R(m/x). So (n/y)Rs(m/x). Hence Rs is symmetric. �

Definition 4.5. (i) Let ϑR be a base of M-topological space (M, τR), which is
induced by a reflexive mset relation R on M . For P ∈ ϑR, if there does not exist
P ′ ∈ ϑR − {P} such that P ⊆ P ′, then P is called a maximal element of ϑR.

(ii) ϑ∗R denotes the mset of all maximal elements of ϑR. Since
⋃
ϑ∗R = M , ϑ∗R is

called the minimal complete cover of (M, τR) relative to the base ϑR.

4.2. The properties of M-topological spaces induced by a reflexive M-
relation. In this section, we will investigate the properties of (M, τR) induced by a
reflexive mset relation R on M .

Lemma 4.6. Let R be a reflexive mset relation on M and Rs the transmitting ex-
pression of R. For each m/x ∈M , put Lx = {n/y ∈M : for somek(k/x)Rs(n/y)}.
Then

(1) Lx ∈ τR,
(2) {Lx} is an open neighborhood base of m/x,
(3) βR = {Lx : m/x ∈M} is a base for (M, τR),
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(4) Lx is a compact submset of (M, τR).

Proof. (1) Supposet m/x ∈ R(Lx). Then (m/x)R ⊆ Lx, i.e.,

{n/y ∈M : ∃ k with (k/x)R(n/y)} ⊆ Lx.

Since R is reflexive, Rs is also reflexive. Thus m/x ∈ Lx, i.e., R(Lx) ⊆ Lx.
Conversely, suppose m/x ∈ Lx. Then (m/x)Rs(m/x). Thus (m/x)R(m/x) or

there exists {m1/v1,m2/v2, ...,mn/vn} ⊆M such that

(m/x)R(m1/v1), (m1/v1)R(m2/v2), ..., (mn/vn)R(m/x).

.
If (m/x)R(m/x), then m/x ∈ (m/x)R. Thus (m/x)R ⊆ Lx, i.e, m/x ∈ R(Lx).
If there exists {m1/v1,m2/v2, ...,mn/vn} ⊆M such that

(m/x)R(m1/v1), (m1/v1)R(m2/v2), ..., (mn/vn)R(m/x),

then m/x ∈ (m/x)R. Thus (m/x)R ⊆ Lx, i.e, m/x ∈ R(Lx). So Lx ⊆ R(Lx).
Hence Lx ∈ τR.

(2) Since Lx ∈ τR and m/x ∈ Lx, {Lx} is an open neighborhood base of m/x.
(3) Since R is reflexive, by Definition 2.10,

⋃
m/x∈M (Lx) = M . Let A ∈ τR and

m/x ∈ A. Then (m/x)R ⊆ A. Thus from (1), we get Lx ⊆ A. So βR is a base for
(M, τR).

(4) From Definition 4.5 and (3), the proof is immediately. �

Remark 4.7. (1) Let R be a binary mset relation on M . For all m/x, n/y ∈M , if
(m/x)R(n/y) and (n/y)R(m/x), then Lx = Ly.

(2) Let ϑR be a base for (M, τR). Then βR ⊆ ϑR. Otherwise, there exists B ∈ βR
but B ∈ ϑR. Notice that B ∈ βR, there exists m/x ∈ B such that B = Lx.
Since ϑR is a base for (M, τR), there exists ϑ∗R ⊆ ϑR such that B =

⋃
ϑ∗R. Thus

m/x ∈ P ⊆ B for some P ∈ ϑ′R. By Lemma 4.6, B ⊆ P . So B = P ∈ ϑR and this
is a contradiction. Hence βR ⊆ ϑR.

Theorem 4.8. Let (M, τR) be the M-topological space induced by a reflexive mset
relation R on M . Then

(1) (M, τR) is a first countable space,
(2) (M, τR) is a locally compact space,
(3) if M is countable, then (M, τR) is a second countable space.

Theorem 4.9. Let R be a reflexive mset relation on M and Rs the transmitting
expression of R. Then (M, τR) = (M, τRs).

Lemma 4.10. Let (M, τR) be the M-topological space induced by a reflexive mset
relation R on M , β∗R the minimal complete cover of (M, τR) relative to the base βR
. Then, for each F ∈ β∗R,

⋃
(βR − {F}) 6= M and

⋃
(β∗R − {F}) 6= M .

Proof. Suppose that
⋃

(βR − {F}) = M . Then there exists β′R ⊆ βR − {F} such
that F ⊆

⋃
β′R. Since F ∈ β∗R ⊆ βR, there exists m/x ∈ M such that F = Lx.

Thus m/x ∈ F ′, for some F ′ ∈ β∗R. By Lemma 4.6, F = Lx ⊆ F ′. So F is not a
maximal element of βR and this implies a contradiction. Hence

⋃
(βR − {F}) 6= M ,

since
⋃

(βR − {F}) 6= M and
⋃

(β∗R − {F}) 6= M . �
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Lemma 4.11. Let (M, τR) be the M-topological space induced by a reflexive mset
relation R on M , β∗R the minimal complete cover of (M, τR) relative to the base βR
and ϑR an open cover of (M, τR). Then, for each F ∈ β∗R, there exists P ∈ ϑR such
that F ⊆ P .

Proof. Since ϑR is an open cover of (M, τR), for each F ∈ β∗R, there exists ϑ
′

R ⊆ ϑR
such that F ⊆

⋃
ϑ

′

R. Because F ∈ β∗R ⊆ βR, F = Lx, for some m/x ∈ F . Then

there exists P ∈ ϑ′

R ⊆ ϑR such that m/x ∈ P . Thus by Lemma 4.6, F ⊆ P . �

Lemma 4.12. Let (M, τR) be the M-topological space induced by a reflexive relation
R on M , β∗R the minimal complete cover of (M, τR) relative to the base βR and
ϑR an open cover of (M, τR), which is constituted by some elements of β∗R. Then
β∗R ⊆ ϑR.

Proof. For each F ∈ β∗R, we claim F ∈ ϑR. Otherwise, F ∈ ϑR. Since
⋃
ϑR = M ,⋃

ϑR {F} = M . Then
⋃
βR − {F} = M . By Lemma 4.10,

⋃
βR − {F} 6= M and

this is a contradiction. Thus β∗R ⊆ ϑR. �

Theorem 4.13. Let (M, τR) be the topological space induced by a reflexive mest
relation R on M , β∗R is the minimal complete cover of (M, τR) relative to the base
βR. Then (M, τR) is a compact space if and only if β∗R is a finite set.

Proof. The if part follows from Lemma 4.11. We will prove the only if part. Suppose
that (M, τR) is compact. Since βR is an open cover of (M, τR), βR has a finite

subcover β
′

R. By Lemma 4.12, β∗R ⊆ β
′

R. Then | β∗R |≤| β
′

R |. Thus β∗R is a finite
set. �

4.3. The properties of M-topological spaces induced by a tolerance M-
relation. In this section, we will investigate the properties of (M, τR) induced by a
tolerance mset relation R on M .

Lemma 4.14 ([1]). Let (M, τR) be the M-topological space induced by a tolerance
mset relation R on M . Then for any A ⊆M , A is open if and only if A is closed.

Theorem 4.15. Let (M, τR) be the M-topological space induced by a tolerance mset
relation R on M . Then (M, τR) is T0 if and only if (M, τR) is discrete.

Proof. The if part is obvious. We will prove the only if part. By Lemma 4.6, we
know that if R is reflexive, then {Lx : m/x ∈ M} is a base for (M, τR). We claim
that Lx = {m/x} for any m/x ∈ M . In fact. Suppose Lx 6= {m/x}, for some
m/x ∈ M . By Proposition 4.4, Rs is an equivalence mset relation on M. Then
Lx = [x]Rs. Pick n/y ∈ [x]Rs such that n/y 6= m/x. Since (M, τR) is T0, there
exists an open submset U such that m/x ∈ U and n/y ∈ U , or there exists an open
submset V such that n/y ∈ V and m/x ∈ V .

If there exists an open submset U such that m/x ∈ U and n/y ∈ U , then m/x ∈
Lz ⊆ U , for some k/z ∈ M , by Lemma 4.6. It follows that n/y ∈ Lz. Since Rs is
an equivalence mset relation on M , [x]Rs = [z]Rs = Lz. Thus n/y ∈ [x]Rs = Lz is
a contradiction.

If there exists an open submset V such that n/y ∈ V and m/x ∈ V , then the
proof is similar. So {m/x} is open for any m/x ∈M . Therefore, all submsets of M
are open and this means that (M, τR) is discrete. �
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Theorem 4.16. Let (M, τR) be the M-topological space induced by a tolerance mset
relation R on M . Then following are equivalent:

(1) M/Rs is countable,
(2) (M, τR) is a second countable space,
(3) (M, τR) is a separable space,
(4) (M, τR) is a Lindelof space.

Proof. (1) ⇒ (2): Since Rs is an equivalence mset relation on M , {Lx : m/x ∈
M} = M/Rs. By Lemma 4.6, (M, τR) is a second countable space.

(2) ⇒ (1): Suppose that G is a countable base for (M, τR). Then for m/x ∈ M ,
there exists gx ∈ G such that m/x ∈ gx ⊆ Lx. By Lemma 4.6, m/x ∈ Ly ⊆ gx, for
some n/y ∈ M . Since Lx = [m/x]Rs = [n/y]Rs = Ly, gx = [m/x]Rs. We define
f : M/Rs → G by f([m/x]Rs) = gx, then f is injective. Thus |M/Rs| ≤ |G|. So
M/Rs is countable.

(2)⇒ (3) and (2)⇒ (4) are obvious.
(3) ⇒ (2): Suppose that C is a countable dense submset of (M, τR). Put z =

{Lx : m/x ∈ C}. Then z is countable. By Lemma 4.6, for each m/x ∈M and open
submset U with m/x ∈ U , we have m/x ∈ Ly ⊆ U for some n/y ∈ M . Since C is
dense, Ly ∩ C 6= φ. Pick k/z ∈ Ly ∩ C. Then Lz ∈ z. Since Rs is an equivalence
mset relation on M , Lz = [k/z]Rs = [n/y]Rs = Ly. It follows m/x ∈ Lz ⊆ U . Thus
z is a base for (M, τR). So (M, τR) is a second countable space.

(4)⇒ (2): Suppose that M/Rs is not countable. Since Rs is an equivalence mset
relation on M , {Lx : m/x ∈M} = M/Rs. It is obvious that {Lx : m/x ∈M} is an
open cover of (M, τR). But {Lx : m/x ∈ M} do not have any countable subcover
and we obtain a contradiction. �

Theorem 4.17. Let (M, τR) be the topological space induced by a tolerance mset
relation R on M . Then (M, τR) is a connected space if and only if Rs = M ×M .

Proof. Suppose that (M, τR) is connected. If Rs 6= M×M , then (M×M)−Rs 6= φ.
Pick (m/x, n/y) ∈ (M ×M) − Rs 6= φ. Then n/y ∈ [x]Rs = Lx. So Lx 6= M and
Lx 6= φ. By Lemma 4.14, Lx is both open and closed. This gives a contradiction.
Now suppose that Rs = M ×M . Then M/Rs = {M}. Thus τR = {M,φ}. So
(M, τR) is connected. �

Theorem 4.18. Let (M, τR) be the topological space induced by a tolerance mset
relation R on M . Then

(1) (M, τR) is a locally connected space,
(2) (M, τR) is a locally separable space,
(3) (M, τR) is a regular space,
(4) (M, τR) is a normal space.

5. Conclusions

In this paper, we studied GMA-spaces in terms of topological methods and gave
further connections between M-topology and rough mset theory. we first charac-
terized the compactness and connectedness of M-topological GMA-spaces and then
extended all these properties to general GMA-spaces.
Secondly, we studied some M-topological structure of generalized rough msets, where
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the M-topology is induced by a reflexive mset relation and a tolerance mset relation
respectively. Also, we investigated approximating spaces and obtained sufficient and
necessary conditions that M-topological spaces are approximating spaces. In future
work, we will continue the study of M-topological properties of rough msets.
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