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Abstract. This paper aims at providing a framework to combine fuzzy
sets and rough sets together via multifunction, which gives rise to several
interesting new concepts such as rough sets, rough fuzzy sets via multi-
function and some properties of them. Although many results reported
here are only concerned with basic properties about these new notions,
one could see that this study presents a very preliminary, but potentially
interesting research direction.
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1. Introduction

Fuzzy set theory and rough set theory are mathematical tools for dealing with
uncertainties and are closely related [2]. In 1981, Pawlak [6] introduced the concept
of rough sets and studied some of its properties. After then, Dubois and Prade [3]
investigated the problem of combining fuzzy sets with rough sets whereas Maritz and
Pawlak [5] proposed rough sets in terms of multifunction to obtain a hybrid model
called rough sets via multifunction. Alternatively, a rough sets via multifunction
instead of an equivalence relation can be used to granulate the universe. This leads
to a deviation of Pawlak approximation space called a Maritz approximation space,
in which rough approximations, rough sets and rough topology via multifunction [1]
can be introduced accordingly. Furthermore, we also consider approximation of a
fuzzy set in a Maritz approximation space, and initiate a concept called rough fuzzy
sets via multifunction, which extends Dubois and Prade´s rough fuzzy sets. Further
research will be needed to establish whether the notions put forth in this paper may
lead to a fruitful theory.
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2. Preliminaries

In this section, we have discussed some definitions and results which are relevant
of this paper.

In 1965, the theory of fuzzy sets initiated by Zadeh [8] provides an appropri-
ate framework for representing and processing vague concepts by allowing partial
memberships.

A fuzzy set λ in a universe U is defined by a membership function λ : U → [0, 1].
For x ∈ U , the membership value λ(x) essentially specifies the degree to which x ∈ U
belongs to the fuzzy set λ. For any fuzzy sets λ and µ in UI, the intersection and
union of λ and µ, and the complement of λ are defined as follows: for each x ∈ U ,

(λ ∩ µ)(x) = λ(x) ∧ µ(x),

(λ ∪ µ)(x) = λ(x) ∨ µ(x),

λc(x) = 1− λ(x).

By λ ⊆ µ we mean that λ(x) ≤ µ(x), for all x ∈ U . Clearly λ = µ, if both λ ⊆ µ
and µ ⊆ λ, i.e., λ(x) = µ(x), for all x ∈ U .

By a multifunction F : T → U , we mean a point-to-set correspondence from T
into U , and always assume that F (t) 6= ∅, for all t ∈ T .

Definition 2.1 ([5]). Let F : T → U be a multifunction. Then F (t) said to be an
atom and z(T ) = {F (t) : t ∈ T} denotes the collection of all atoms.
F+(B) = {t ∈ T : F (t) ⊂ B} and F−(B) = {t ∈ T : F (t) ∩ B 6= ∅} called

strong(resp.weak) inverse of F .

Definition 2.2 ([5]). Let F : T → U be a surjective multifunction. Then the pair
(U,z(T )) is the Approximation space (called a Maritz space).

Definition 2.3 ([5]). Let ΛM = (U,z(T )) be a Maritz space and A ⊂ U then.
The upper approximation of A in (U,z(T )) is the set F (F−(A)) = F ({t ∈ T :
F (t)∩A 6= φ}) = ∪{F (t) ∈ z(T ) : F (t)∩A 6= φ}. The lower approximation of A in
ΛM = (U,z(T )) is the set F (F+(A)) = F ({t ∈ T : F (t) ⊂ A}) = ∪{F (t) ∈ z(T ) :
F (t) ⊂ A}. A is F− rough set if and only if F (F−(A) 6= F (F+(A).

Based on an equivalence relation on the universe of discourse, Dubois and Prade
[3] introduced the lower and upper approximations of fuzzy sets in a Pawlak approx-
imation space and obtained a new notion called rough fuzzy sets [4].

Definition 2.4 ([3]). Let (U,R) be a Pawlak approximation space. For a fuzzy set
µ, the lower and upper rough approximations of µ in (U,R) are denoted by R(µ)
and R(µ), respectively, which are fuzzy sets in U defined as follows: for all x ∈ U ,

R(µ)(x) =
∧
{µ(y) : y ∈ [x]R},

R(µ)(x) =
∨
{µ(y) : y ∈ [x]R}.

The operators R and R are called the lower and upper rough approximation oper-
ators on fuzzy sets. If R(µ) = R(µ), then the fuzzy set µ is said to be definable;
otherwise, µ is called a rough fuzzy set.
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By definition, it is easy to see that if µ = X is a crisp subset of U . Then we have

R(X) = R∗X = {x ∈ U : [x]R} ⊆ X,

R(X) = R∗X = {x ∈ U : [x]R} ∩X 6= φ.

In this case, it follows that X is a rough fuzzy set if and only if X is a rough
set. Thus, one can say that rough fuzzy sets are natural extensions of rough sets.
In general, a rough fuzzy set can be seen as an approximation of a fuzzy set in a
crisp approximation space. This hybrid model combining the concepts of both fuzzy
sets and rough sets may be used to deal with knowledge acquisition in information
systems with fuzzy decisions [7].

3. Rough Fuzzy Sets via Multifunction

In this section, we shall consider lower and upper rough approximations of fuzzy
sets in Maritz approximation space, and obtain a new hybrid model called rough
fuzzy sets via multifunction, which can be seen as an extension of Dubois and Prade´s
rough fuzzy sets.

Definition 3.1. Let ΛM = (U,z(T )) be a Maritz space. For a fuzzy set µ in U , the
lower and upper rough approximations via multifunction of µ with respect to ΛM

are denoted by RF (µ)(x) and RF (µ), respectively, which are fuzzy sets in U given
by: for all x ∈ U ,

RF (µ)(x) =
∧
{µ(y) : z(t) ∈ z(T )[{x, y} ⊆ z(T )]},

RF (µ)(x) =
∨
{µ(y) : z(t) ∈ z(T )[{x, y} ⊆ F (T )]}.

If RF (µ) = RF (µ), µ is said to be definable; otherwise µ is called a rough fuzzy
set via multifunction.

Proposition 3.2. Let F : T → U be a surjective multifunction and ΛM = (U,z(T ))
a Maritz space. Suppose λ, µ are fuzzy sets in U . Then we have

(1) RF (φ) = RF (φ) = φ,

(2) RF (U) = RF (U) = U,

(3) RF (λ) ⊆ λ ⊆ RF (λ),

(4) λ ⊆ µ⇒ RF (λ) ⊆ RF (µ) and RF (λ) ⊆ RF (µ).

Proof. (1), (2) The proofs are straightforward.
(3) Let λ be a fuzzy set in U and let x ∈ U . Since F : T → U is a surjective

multifunction over U , there exists some t◦ ∈ T such that x ∈ F (t◦). Then by
definition, we have

RF (λ)(x) =
∧
{λ(y) : z(t) ∈ z(T )[{x, y} ⊆ z(T )]},

RF (λ)(x) =
∨
{λ(y) : z(t) ∈ z(T )[{x, y} ⊆ z(T )]}.

Thus it follows that RF (λ)(x) ≤ λ(x) ≤ RF (λ)(x). So RF (λ) ⊆ λ ⊆ RF (λ).
(4) Let λ, µ be fuzzy sets in U , x ∈ U and N(x) = {y : ∃t ∈ T [{x, y} ⊆ F (t)]}.
Suppose λ ⊆ µ. Then it is easy to see that: for all y ∈ N(x),

RF (λ)(x) =
∧
{λ(y) : y ∈ N(x)} ≤ λ(y) ≤ µ(y),
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RF (µ)(x) =
∨
{µ(y) : y ∈ N(x)} ≤ µ(y) ≤ µ(y).

�

Proposition 3.3. Let F : T → U be a surjective multifunction,and ΛM = (U,z(T ))
a Maritz space. Suppose λ, µ are fuzzy sets in U . Then we have

(1) RF (λ ∩ µ) ⊆ RF (λ) ∩RF (µ),

(2) RF (λ ∪ µ) ⊃ RF (λ) ∪RF (µ),
(3) RF (λ ∪ µ) ⊇ RF (λ) ∪RF (µ),

(4) RF (λ ∩ µ) ⊆ RF (λ) ∩RF (µ).

Proof. (1) Let λ, µ be fuzzy sets in U , x ∈ U and N(x) = {y : ∃t ∈ T [{x, y} ⊆
F (t)]}. Note that RF (λ ∩ µ)(x) =

∧
{λ(y) ∩ µ(y) : y ∈ N(x)}. Then

RF (λ ∩ µ)(x) ≤ λ(y) ∧ µ(y) ≤ λ(y), ∀y ∈ N(x).

Since RF (λ)(x) =
∧
{µ(y) : y ∈ N(x)}, it follows that RF (λ ∩ µ)(x) ≤ RF (λ)(x).

Similarly, we obtain RF (λ ∩ µ)(x) ≤ RF (µ)(x). Thus

RF (λ ∩ µ)(x) ≤ RF (λ)(x) ∧RF (µ)(x).

So RF (λ ∩ µ)(x) ⊆ RF (λ)(x) ∩RF (µ)(x).
(2) The proof is similar to (1).
(3) Let λ, µ be fuzzy sets in U , x ∈ U and N(x) = {y : ∃t ∈ T [{x, y} ⊆ F (t)]}.

It is clear that RF (λ)(x) =
∧
{λ(y) : y ∈ N(x)} ≤ λ(y) ≤ λ(y) ∨ µ(y),∀y ∈ N(x).

Then we have RF (λ ∪ µ)(x) =
∧
{λ(y) ∨ µ(y) : y ∈ N(x)} ≥ RF (λ)(x). Similarly,

we obtain that RF (λ ∪ µ)(x) ≥ RF (µ)(x). Thus

RF (λ ∪ µ)(x) ≥ RF (λ)(x) ∨RF (µ)(x) = (RF (λ) ∪RF (µ))(x).

So RF (λ ∪ µ) ⊇ RF (λ) ∪RF (µ).
(4) The proof is similar to (3). �

Remark 3.4. The inclusions in the above proposition may hold strictly as seen in
the following example.

Example 3.5. Let U = {a, b, c, d, e}, T = {1, 2, 3, 4} and F : T → U defined by:
F (1) = {e}, F (2) = {a, d}, F (3) = {a, b, c}, F (4) = {c, e}. Then (U,z(T )) is a
Maritz space. Consider two fuzzy sets

λ = {0.8/a, 0.5/b, 0.7/c, 0.2/d, 0.3/e}
and

µ = {0.1/a, 0.3/b, 0.6/c, 0.8/d, 0.5/e}.
Then we have

RF (λ) = {0.2/a, 0.5/b, 0.3/c, 0.2/d, 0.3/e},
RF (λ) = {0.8/a, 0.8/b, 0.8/c, 0.8/d, 0.7/e},
RF (µ) = {0.1/a, 0.1/b, 0.1/c, 0.1/d, 0.5/e},
RF (µ) = {0.8/a, 0.6/b, 0.6/c, 0.8/d, 0.6/e}.

Thus we can easily see that

λ ∪ µ = {0.8/a, 0.5/b, 0.7/c, 0.8/d, 0.5/e},
λ ∩ µ = {0.1/a, 0.3/b, 0.6/c, 0.2/d, 0.3/e},
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RF (λ ∪ µ) = {0.5/a, 0.5/b, 0.5/c, 0.8/d, 0.5/e},
RF (λ ∩ µ) = {0.6/a, 0.6/b, 0.6/c, 0.2/d, 0.6/e}.

Furthermore, we have

RF (λ) ∪RF (µ) = {0.2/a, 0.5/b, 0.3/c, 0.2/d, 0.5/e},

RF (λ) ∩RF (µ) = {0.8/a, 0.6/b, 0.6/c, 0.8/d, 0.6/e}.

Definition 3.6. A multifunction F : T → U is called a partition multifunction, if
{F (t) : t ∈ T} forms a partition of U.

Theorem 3.7. Let F : T → U be a partition multifunction over U and ΛM =
(U,z(T )) a Maritz space. Define a binary relation R on U as follows: for each
(x, y) ∈ U × U ,

(x, y) ∈ R⇔ ∃ t ∈ T, {x, y} ⊆ F (t).

Then R is an equivalence relation on U such that

RF (λ)(x) =
∧
{λ(y) : y ∈ [x]R},

and

RF (λ)(x) =
∨
{λ(y) : y ∈ [x]R},

where λ is a fuzzy set in U and x ∈ U . Thus in this case, λ is a rough fuzzy set
via multifunction with respect to Maritz approximation space ΛM = (U,z(T )) if and
only if µ is a rough fuzzy set via multifunction with respect to the approximation
space (U,R).

Proof. First, we show that the relation R induced by the partition multifunction
F : T ⇒ U is an equivalence relation on U .

Let x ∈ U . Then exists t ∈ T such that x ∈ F (T ). Thus (x, x) ∈ R. So R is
reflexive.

Suppose (x, y) ∈ R. then there exists t ∈ T such that {x, y} = {y, x} ⊆ F (t).
Thus we deduce that (y, x) ∈ R. Sot R is symmetric.

Suppose (x, y) ∈ R and (y, z) ∈ R. Then there exist t1, t2 ∈ T such that {x, y} ⊆
F (t1) and {y, z} ⊆ F (t2). Thus F (t1) ∩ F (t2) 6= φ. But {F (t) : t ∈ T} is a partition
of U , since ΛM = (U,z(T )) is a partition multifunction over U . It follows that
F (t1) = F (t2). So (x, z) ∈ R. Hence R is transitive.

Now let λ be a fuzzy set in U and x ∈ U . Then by definition,
RF (λ)(x) =

∧
{λ(y) : ∃t ∈ T, {x, y} ⊆ z(T )}

=
∧
{λ(y) : (x, y) ∈ R}

=
∧
{µ(y) : y ∈ [x]R}.

The second assertion RF (µ)(x) =
∨
{µ(y) : y ∈ [x]R} can be proved in a similar

way. �

4. Conclusions

In this work, one can easily see that (classical) rough fuzzy sets can be identified
with rough fuzzy sets via multifunction when the underlying multifunction in the
maritz approximation space is a partition multifunction. Consequently, every rough
fuzzy set may be considered a rough fuzzy set via multifunction. In this sense, the
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notion of rough fuzzy sets via multifunction can be seen as a natural generalization
of rough fuzzy sets.
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