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Abstract. The concept of fuzzy multigroup is an algebraic structure
of fuzzy multiset that generalizes both the theories of classical group and
fuzzy group. Fuzzy multigroup constitutes an application of fuzzy multiset
to the elementary theory of classical group. In this paper, we give a con-
cise note on α-cuts of fuzzy multigroups and propose the notion of α-cuts
homomorphism of fuzzy multigroups. Some properties of α-cuts homomor-
phism of fuzzy multigroups are explicated. The notions of quasi-surjective
mapping, pre-surjective mapping, surjective α-cuts homomorphic mapping
and α-cuts isomorphic mapping are established in α-cuts homomorphism
of fuzzy multigroups with some number of results.
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1. Introduction

The theory of fuzzy sets proposed by [25] is a method for representing impre-
cision or uncertainty in a collection. For a classical set X, a fuzzy set over X, or
a fuzzy subset of X, is characterized by a membership function µ which associates
values from the closed unit interval I = [0, 1] to members of X. Since the theory
of groups was built from the notion of set theory, Rosenfeld [15] proposed the con-
cept of fuzzy group as an algebraic structure of fuzzy set. In fact, fuzzy group is
an application of fuzzy set to group theory. Several works have been done on the
theory of fuzzy groups, for some details see [14, 16]. The idea of fuzzy groups has
been extended to intuitionistic fuzzy soft groups induced by (t,s)-norm in [24].

Yager [23] applied the idea of multiset [19, 20, 22], which is an extension of set
with repeated elements in a collection to propose fuzzy multiset. That is, fuzzy
multiset allows repetition of membership degrees of elements in multiset framework.
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In fact, fuzzy multiset generalizes fuzzy sets. With this, one can conveniently say
that, every fuzzy set is a fuzzy multiset but the reverse is not necessarily true.
Fuzzy multisets theory has been extensively studied and applied in real-life problems
[2, 3, 8, 11, 12, 13, 18, 21].

The concept of fuzzy multigroups was proposed in [17] as an algebraic structure
of fuzzy multisets that generalizes fuzzy groups. This algebraic structure is a mul-
tiset of X × [0, 1] satisfying some set of axioms, where X is a classical group. In
fact, since fuzzy multiset is a generalization of fuzzy set, it then follows that fuzzy
multigroup is an extension of fuzzy group. The concept of fuzzy multigroups con-
stitutes an application of fuzzy multisets to the notion of group. Fuzzy multigroups
and fuzzy groups are different generalizations of classical groups such that, every
fuzzy group is a fuzzy multigroup but the converse is not always true. The notion of
fuzzy submultigroups of fuzzy multigroups and some properties of fuzzy multigroups
were explicated in [5]. The ideas of abelian fuzzy multigroups and order of fuzzy
multigroups have been studied [1, 6], and the notion of normal fuzzy submultigroups
of fuzzy multigroups was proposed with some number of results in [7]. The ideas
of homomorphism and direct product in fuzzy multigroups context were extensively
explored in [4, 9, 10].

This paper is motivated to establish a structure that bridges fuzzy multigroups
and group theory. Hence the notion of α-cuts of fuzzy multigroups is germaine
to connect fuzzy multigroups to groups. The concept of α-cuts homomorphism of
fuzzy multigroups is informed because homomorphism in fuzzy multigroup context
has been hitherto established. To say the least, α-cuts homomorphism of fuzzy
multigroups links homomorphism of fuzzy multigroups to homomorphism in group
theory. In this paper, we give a precise note on α-cuts of fuzzy multigroups to
enhance the introduction of α-cuts homomorphism of fuzzy multigroups. Some
properties of α-cuts homomorphism of fuzzy multigroups are explicated with some
number of results.

The paper is organized as follows: In Section 2, some preliminary definitions and
results on fuzzy multisets and fuzzy multigroups are reviewed. Section 3 introduces
the concept of α-cuts of fuzzy multigroups to enhance the study of α-cuts homo-
morphism of fuzzy multigroups. In Section 4, the idea of α-cuts homomorphism
of fuzzy multigroups is explored with some number of results. Meanwhile, Section
5 discusses upper α-cut homomorphic properties of fuzzy multigroups. Section 6
draws conclusion to the paper and suggests areas of future works.

2. Preliminaries

In this section, we review some existing definitions and results for the sake of
completeness and reference.

Definition 2.1 ([23]). Assume X is a set of elements. Then, a fuzzy bag/multiset
A drwan from X can be characterized by a count membership function CMA such
that

CMA : X → Q,

where Q is the set of all crisp bags or multisets from the unit interval I = [0, 1].
74



P. A. Ejegwa/Ann. Fuzzy Math. Inform. 19 (2020), No. 1, 73–87

From [21], a fuzzy multiset can also be characterized by a high-order function. In
particular, a fuzzy multiset A can be characterized by a function

CMA : X → N I or CMA : X → [0, 1]→ N,

where I = [0, 1] and N = N ∪ {0}.
By [12], it implies that CMA(x) for x ∈ X is given as

CMA(x) = {µ1
A(x), µ2

A(x), ..., µnA(x), ...},
where µ1

A(x), µ2
A(x), ..., µnA(x), ... ∈ [0, 1] such that µ1

A(x) ≥ µ2
A(x) ≥ ... ≥ µnA(x) ≥

..., whereas in a finite case, we write

CMA(x) = {µ1
A(x), µ2

A(x), ..., µnA(x)},
for µ1

A(x) ≥ µ2
A(x) ≥ ... ≥ µnA(x).

A fuzzy multiset A can be represented in the form

A = {〈CMA(x)

x
〉 | x ∈ X} orA = {〈x,CMA(x)〉 | x ∈ X}.

In a simple term, a fuzzy multiset A of X is characterized by the count member-
ship function CMA(x) for x ∈ X, that takes the value of a multiset of a unit interval
I = [0, 1] [2, 13].

We denote the set of all fuzzy multisets by FMS(X).

Example 2.2. Assume that X = {a, b, c} is a set. Then for CMA(a) = {1, 0.5, 0.5},
CMA(b) = {0.9, 0.7, 0}, CMA(c) = {0, 0, 0}, A is a fuzzy multiset of X written as

A = {〈1, 0.5, 0.5
a

〉, 〈0.9, 0.7, 0
b

〉, 〈0, 0, 0
c
〉}.

Definition 2.3 ([11]). Let A,B ∈ FMS(X). Then, A is called a fuzzy submultiset
of B written as A ⊆ B if CMA(x) ≤ CMB(x) ∀x ∈ X. Also, if A ⊆ B and A 6= B,
then A is called a proper fuzzy submultiset of B and denoted as A ⊂ B.

Definition 2.4 ([21]). Let {Ai}i∈I be a family of fuzzy multisets over X. Then

(i) CM⋂
i∈I Ai

(x) =
∧
i∈I CMAi

(x) ∀x ∈ X,

(ii) CM⋃
i∈I Ai

(x) =
∨
i∈I CMAi(x) ∀x ∈ X,

where
∧

and
∨

denote minimum and maximum operations.

Definition 2.5 ([11]). Let A,B ∈ FMS(X). Then, we say A and B are compa-
rable to each other if and only if A ⊆ B and B ⊆ A, and A = B ⇔ CMA(x) =
CMB(x) ∀x ∈ X. Clearly, the comparability of two fuzzy multisets of X implies
equality.

Example 2.6. Supposing A = {〈1, 0.5, 0.5
a

〉, 〈0.9, 0.7, 0
b

〉, 〈0, 0, 0
c
〉} and

B = {〈1, 0.5, 0.5
a

〉, 〈0.9, 0.7, 0
b

〉} are fuzzy multisets of X = {a, b, c}. Then A and B

are comparable to each other or equal.

Definition 2.7 ([17]). Let X be a group. A fuzzy multiset A over X is called a
fuzzy multigroup of X if the count membership function of A, that is,

CMA : X → [0, 1]

satisfies the following conditions:
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(i) CMA(xy) ≥ CMA(x) ∧ CMA(y) ∀x, y ∈ X,
(ii) CMA(x−1) = CMA(x) ∀x ∈ X.

By implication, a fuzzy multiset A over X is called a fuzzy multigroup of a group
X, if

CMA(xy−1) ≥ CMA(x) ∧ CMA(y),∀x, y ∈ X.

It follows immediately from the definition that,

CMA(e) ≥ CMA(x) ∀x ∈ X,

where e is the identity element of X. We denote the set of all fuzzy multigroups of
X by FMG(X).

Example 2.8. Let X = {1,−1, i,−i} be group. Then, the fuzzy multiset A of X,
that is,

A = {〈1, 0.8
1
〉, 〈0.7, 0.6

−1
〉, 〈0.6, 0.5

i
〉, 〈0.6, 0.5

−i
〉}

is a fuzzy multigroup of X satisfying the conditions of Definition 2.7.

Definition 2.9 ([5]). Let {Ai}i∈I , I = 1, ..., n be an arbitrary family of fuzzy
multigroups of X. Then, {Ai}i∈I is said to have inf/sup assuming chain if either
A1 ⊆ A2 ⊆ ... ⊆ An or A1 ⊇ A2 ⊇ ... ⊇ An, respectively.

Definition 2.10 ([4]). Let X and Y be groups and let f : X → Y be a homomor-
phism. Suppose A and B are fuzzy multigroups of X and Y , respectively. Then, f
induces a homomorphism from A to B which satisfies

(i) CMA(f−1(y1y2)) ≥ CMA(f−1(y1)) ∧ CMA(f−1(y2)) ∀y1, y2 ∈ Y ,
(ii) CMB(f(x1x2)) ≥ CMB(f(x1)) ∧ CMB(f(x2)) ∀x1, x2 ∈ X,

where

(i) the image of A under f , denoted by f(A), is a fuzzy multiset over Y defined
by

CMf(A)(y) =

{ ∨
x∈f−1(y) CMA(x), f−1(y) 6= ∅

0, otherwise,

for each y ∈ Y .
(ii) the inverse image of B under f , denoted by f−1(B), is a fuzzy multiset over

X defined by

CMf−1(B)(x) = CMB(f(x)) ∀x ∈ X.

Theorem 2.11 ([4]). Let f be a homomorphic mapping from a group X onto a
group Y .

(1) For A,B ∈ FMG(X), if A ⊆ B, then f(A) ⊆ f(B).
(2) For A,B ∈ FMG(Y ), if A ⊆ B, then f−1(A) ⊆ f−1(B).

Proposition 2.12 ([4]). Let X,Y be two groups and f : X → Y be a homomor-
phism. If A ∈ FMG(X) and B ∈ FMG(Y ), respectively, then f(A) ∈ FMG(Y )
and f−1(B) ∈ FMG(X).
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3. Some basic notions of alpha-cuts of fuzzy multigroups

In this section, we propose the notion of α-cuts of fuzzy multigroups and explore
some of its basic properties. With these, α-cuts homomorphism of fuzzy multigroups
are established.

Definition 3.1. Let A ∈ FMG(X). Then for α ∈ [0, 1], the sets A[α] and A(α)

defined by

A[α] = {x ∈ X | CMA(x) ≥ α}
and

A(α) = {x ∈ X | CMA(x) > α}
are called strong and weak upper α-cuts of A.

Whenever the count membership values of x is greater than or equal to α, that is,

CMA(x) = {µ1, µ2, ..., µn} ≥ α,

the strong upper α-cut of A exist for such x ∈ X. Likewise the weak upper α-cut of
A can be listed.

For example, let X = {1,−1, i,−i} be group. Then

A = {〈1, 0.8
1
〉, 〈0.7, 0.6

−1
〉, 〈0.6, 0.5

i
〉, 〈0.6, 0.5

−i
〉}

is a fuzzy multigroup of X. Let α = 0.4, 0.6. Then

A[0.4] = {1,−1, i,−i}

A[0.6] = {1,−1}
and

A(0.4) = {1,−1, i,−i}
A(0.6) = {1}.

Definition 3.2. Let A ∈ FMG(X). Then for α ∈ [0, 1], the sets A[α] and A(α)

defined by

A[α] = {x ∈ X | CMA(x) ≤ α}
and

A(α) = {x ∈ X | CMA(x) < α}
are called strong and weak lower α-cuts of A.

The strong and weak lower α-cuts of A can be constructed similarly as in the case
of strong and weak upper α-cuts of A.

Remark 3.3. Let A ∈ FMG(X) and take any α ∈ [0, 1] such that A[α] and A[α]

exist. Then, it follows that
(1) A(α) ⊆ A[α] and A(α) ⊆ A[α],

(2) A[α] = B[α], A(α) = B(α), A
[α] = B[α] and A(α) = B(α) iff A = B.

For the purpose of this work, we are interested in the strong alpha–cuts of fuzzy
multigroups since A(α) ⊆ A[α] and A(α) ⊆ A[α]. Again from henceforth, we are

concerned with the situation where A[α] and A[α] exist.
77



P. A. Ejegwa/Ann. Fuzzy Math. Inform. 19 (2020), No. 1, 73–87

Proposition 3.4. Let A,B ∈ FMG(X) and α, α1, α2 ∈ [0, 1]. Then we have
(1) A[α1] ⊆ A[α2] iff α1 ≥ α2,
(2) A ⊆ B iff A[α] ⊆ B[α] ∀α ∈ [0, 1].

Proof. Straightforward �

Remark 3.5. Let A,B ∈ FMG(X) and α, α1, α2 ∈ [0, 1]. Then the following hold:
(1) A[α1] ⊆ A[α2] iff α1 ≥ α2,
(2) A ⊆ B iff A[α] ⊆ B[α] ∀α ∈ [0, 1].

Proposition 3.6. Let A ∈ FMG(X). For any α1, α2 ∈ [0, 1] such that α1 ≤ α2.
Then we have A(α2) ⊆ A[α2] ⊆ A(α1) and A(α1) ⊆ A(α2) ⊆ A[α2].

Proof. Straightforward �

Theorem 3.7. Let A ∈ FMG(X). Then A[α], α ∈ [0, 1] is a subgroup of X for all
α ≤ CMA(e), where e is the identity element of X.

Proof. Let x, y ∈ A[α]. Then CMA(x) ≥ α and CMA(y) ≥ α. Since A ∈ FMG(X),
we get

CMA(xy−1) ≥ (CMA(x) ∧ CMA(y)) ≥ α
= CMA(x) ≥ α ∧ CMA(y) ≥ α.

Thus xy−1 ∈ A[α]. So A[α], α ∈ [0, 1] is a subgroup of X for all α ≤ CMA(e). Also,
A(α), α ∈ [0, 1] is a subgroup of X, if α < CMA(e). �

Remark 3.8. Let A ∈ FMG(X). Then A[α], for α ∈ [0, 1] is a subgroup of X for
all α ≥ CMA(e), where e is the identity element of X.

4. Alpha-cuts homomorphism of fuzzy muligroups

Having established α-cuts of fuzzy muligroups, we proceed to propose and explore
α-cuts homomorphism of fuzzy muligroups in this section.

Definition 4.1. Let X, Y be groups, A ∈ FMG(X), B ∈ FMG(Y ) and f : X → Y
be a homomorphic mapping. If f is a homomorphic mapping from A[α] to B[α] for
any α ∈ [0, 1], then f is called an upper α-cut homomorphic mapping from A to B.

Definition 4.2. Let X, Y be groups, A ∈ FMG(X), B ∈ FMG(Y ) and f : X → Y
be a homomorphic mapping. If f is a homomorphic mapping from A[α] to B[α] for
at least one α ∈ [0, 1], then f is called a lower α-cut homomorphic mapping from A
to B.

Proposition 4.3. Let f : X → Y be a homomorphism, A ∈ FMG(X) and B ∈
FMG(Y ), respectively. For any α ∈ [0, 1], we have

(1) f(A[α]) ⊆ (f(A))[α],

(2) f−1(B[α]) = (f−1(B))[α],
(3) f(A(α)) ⊆ f(A[α]) ⊆ (f(A))[α],

(4) f−1(B(α)) ⊆ f−1(B[α]) = (f−1(B))[α].
78



P. A. Ejegwa/Ann. Fuzzy Math. Inform. 19 (2020), No. 1, 73–87

Proof. Suppose A ∈ FMG(X) and B ∈ FMG(Y ), where f : X → Y is a homomor-
phism.

(1) Let y ∈ f(A[α]). Then ∃ x ∈ A[α] such that f(x) = y and

CMA(x) ≥ α, α ∈ [0, 1].

Thus we get

CMA(f−1(y)) ≥ α, α ∈ [0, 1] implies CMf(A)(y) ≥ α, α ∈ [0, 1]

. So y ∈ (f(A))[α]. Hence f(A[α]) ⊆ (f(A))[α].

(2) For every x, x ∈ f−1(B[α]) ⇔ f(x) ∈ B[α] ⇔ CMB(f(x)) ≥ α, α ∈ [0, 1].
Then by Definitions 2.10 and 4.1, we see that

CMf−1(B)(x) = CMB(f(x)) ≥ α, α ∈ [0, 1],

that is, x ∈ (f−1(B))[α]. Thus f−1(B[α]) = (f−1(B))[α].
(3) Since A(α) ⊆ A[α], f(A(α)) ⊆ f(A[α]) by Theorem 2.11. Then the result

follows from (1).
(4) Also, B(α) ⊆ B[α]. Then f−1(A(α)) ⊆ f−1(A[α]) by the same reasons as in

(3). The proof is completed by (2). �

Corollary 4.4. Let f : X → Y be a homomorphism. Suppose A ∈ FMG(X) and
B ∈ FMG(Y ), respectively. Then for at least one α ∈ [0, 1],

(1) f(A[α]) ⊆ (f(A))[α],
(2) f−1(B[α]) = (f−1(B))[α],
(3) f(A(α)) ⊆ f(A[α]) ⊆ (f(A))[α],
(4) f−1(B(α)) ⊆ f−1(B[α]) = (f−1(B))[α].

Proof. Similar to Proposition 4.3. �

Theorem 4.5. Let f : X → Y be a homomorphism, A ∈ FMG(X) and B ∈
FMG(Y ), respectively. Then (f(A))[α] = f(A[α]) for any α ∈ [0, 1] if and only if

for each y ∈ Y there exists x0 ∈ f−1(y) such that CMf(A)(y) = CMA(x0).

Proof. Suppose (f(A))[α] = f(A[α]). For arbitrary y ∈ Y , let CMf(A)(y) = α. Then
y ∈ (f(A))[α] = f(A[α]). It follows that there exist x0 ∈ A[α] such that y = f(x0).

Thus we have x0 ∈ f−1(y) which satisfies CMA(x0) ≥ α. So we have

CMA(x0) ≥ CMf(A)(y) =
∨

x∈f−1(y)

CMA(x) ≥ CMA(x0).

Hence CMf(A)(y) = CMA(x0).

Conversely, suppose for each y ∈ Y , there exists x0 ∈ f−1(y) such that CMf(A)(y) =
CMA(x0). For α ∈ [0, 1], let y ∈ (f(A))[α]. We show that y ∈ f(A[α]). Since

CMA(x0) = CMf(A)(y) =
∨

x∈f−1(y)

CMA(x) ≥ α,

we have f(x0) = y. Then x0 ∈ A[α] implies y ∈ f(A[α]). Thus (f(A))[α] = f(A[α]).
�
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Corollary 4.6. Let f : X → Y be a homomorphic mapping, A ∈ FMG(X) and B ∈
FMG(Y ), respectively. Then (f(A))[α] = f(A[α]) for at least one α ∈ [0, 1] if and
only if for each y ∈ Y there exists x0 ∈ f−1(y) such that CMf(A)(y) = CMA(x0).

Proof. Similar to Theorem 4.5. �

Definition 4.7. Let X, Y be groups, f : X → Y and A ∈ FMG(X). Then for
every y ∈ Y , if there exists x0 ∈ f−1(y) such that CMf(A)(y) = CMA(x0), then f
is said to be quasi-surjective.

Lemma 4.8. Let X, Y be groups, f : X → Y and A ∈ FMG(X). Then for at least
one α ∈ [0, 1], we have (f(A))[α] = f(A[α]) or (f(A))[α] = f(A[α]) if and only if f
is quasi-surjective.

Proof. Combining Theorem 4.5, Corollary 4.6 and Definition 4.7, the result follows.
�

Theorem 4.9. Let X, Y be groups, A ∈ FMG(X), B ∈ FMG(Y ) and f : X → Y
be quasi-surjective. Then f is an upper α-cut homomorphic mapping from A to B
if and only if f is a homomorphic mapping from X to Y , and (f(A))[α] ⊆ B[α] for
any α ∈ [0, 1].

Proof. Suppose f is an upper α-cut homomorphic mapping from A to B. Then for
every α ∈ [0, 1], we can infer that f is a homomorphic mapping from A[α] to B[α].
Actually, X = A[0], Y = B[0]. Thus f is an homomorphic mapping from X to Y .
As f is quasi-surjective, in light of Lemma 4.8, we get

(f(A))[α] = f(A[α]) ⊆ B[α].

Conversely, suppose f is a homomorphic mapping from X to Y and (f(A))[α] ⊆
B[α] for α ∈ [0, 1]. Then for all α ∈ [0, 1], because f is quasi-surjective, for any
x ∈ A[α] ⊆ X, we have

f(x) ∈ f(A[α]) = (f(A))[α] ⊆ B[α].

Thus f is a homomorphism from A[α] to B[α]. Since f is a homomorphic mapping
from X to Y ,

f(xy) = f(x)f(y) holds for arbitrary x, y ∈ A[α] ⊆ X,

where f(x), f(y) ∈ B[α]. Thus by Theorem 3.7, this indicates that B[α] is a subgroup
of Y . So f(x)f(y) ∈ B[α], that is to say, f preserves the operation.
Synthesizing this discussion, f is a homomorphic mapping from A[α] to B[α]. Hence,
by Definition 4.1, we obtain that f is an upper α-cut homomorphic mapping from
A to B. �

Corollary 4.10. Let X, Y be groups such that f : X → Y is quasi-surjective, A ∈
FMG(X) and B ∈ FMG(Y ), respectively. Then f is a lower α-cut homomorphic
mapping from A to B if and only if f is a homomorphic mapping from X to Y , and
(f(A))[α] ⊆ B[α] for at least one α ∈ [0, 1].

Proof. Similar to Theorem 4.9. �
80



P. A. Ejegwa/Ann. Fuzzy Math. Inform. 19 (2020), No. 1, 73–87

Definition 4.11. Let X and Y be groups, f : X → Y , A ∈ FMG(X) and B ∈
FMG(Y ), respectively. If f is a surjective homomorphic mapping from A[α] to B[α]

for any α ∈ [0, 1], then f is called a surjective upper α-cut homomorphic mapping
from A to B.

Theorem 4.12. Let X and Y be groups, A and B be fuzzy multigroups of X and Y ,
respectively, and f : X → Y with f quasi-surjective. Then f is a surjective upper α-
cut homomorphic mapping from A to B if and only if f is a surjective homomophic
mapping from X to Y with f(A[α]) = B[α] for any α ∈ [0, 1].

Proof. Suppose f is a surjective upper α-cut homomorphic mapping from A to
B. Then by Definition 4.11, for any α ∈ [0, 1], it follows that f is a surjective
homomorphic mapping from A[α] to B[α]. Observe that, X = A[0] and Y = B[0],
evidently, f is a surjective homomorphic mapping from X to Y . Clearly, we have
f(A[α]) ⊆ B[α]. Similarly, B[α] ⊆ f(A[α]) is obvious. Thus f(A[α]) = B[α].

Conversely, suppose for any α ∈ [0, 1] and y ∈ B[α], f(A[α]) = B[α] implies that
∃ x ∈ A[α] such that f(x) = y, that is, f is a surjection from A[α] to B[α]. To prove
that f preserves the operation follows from the converse proof of Theorem 4.5, so
we omit it. Hence, for any α ∈ [0, 1], it follows that f is a surjective upper α-cut
homomorphic mapping from A to B. �

Definition 4.13. Let X and Y be groups, f : X → Y , A ∈ FMG(X) and B ∈
FMG(Y ), respectively. If f is a surjective homomorphic mapping from A[α] to B[α]

for at least one α ∈ [0, 1], then f is called a surjective lower α-cut homomorphic
mapping from A to B.

Corollary 4.14. Let X and Y be groups, A and B be fuzzy multigroups of X and Y ,
respectively, and f : X → Y with f quasi-surjective. Then f is a surjective lower α-
cut homomorphic mapping from A to B if and only if f is a surjective homomophic
mapping from X to Y with f(A[α]) = B[α] for at least one α ∈ [0, 1].

Proof. Similar to Theorem 4.12. �

Definition 4.15. Let X and Y be groups, A ∈ FMG(X), B ∈ FMG(Y ) and
f : X → Y . If f is an isomorphic mapping from A[α] to B[α] for any α ∈ [0, 1], then
f is called an upper α-cut isomorphic mapping from A to B.

Theorem 4.16. Let X and Y be groups, A ∈ FMG(X), B ∈ FMG(Y ) and f :
X → Y with f quasi-surjective. Then f is an upper α-cut isomorphic mapping from
A to B if and only if f is an isomorphic mapping from X to Y with f(A[α]) = B[α]

for any α ∈ [0, 1].

Proof. The Proof follows by combining Theorems 4.9 and 4.12. �

Definition 4.17. Let f : X → Y be homomorphism, A ∈ FMG(X) and B ∈
FMG(Y ), respectively. If f is an isomorphic mapping from A[α] to B[α] for at least
one α ∈ [0, 1], then f is called a lower α-cut isomorphic mapping from A to B.

Corollary 4.18. Let f : X → Y be homomorphism with f quasi-surjective, A ∈
FMG(X) and B ∈ FMG(Y ), respectively. Then f is a lower α-cut isomorphic
mapping from A to B if and only if f is an isomorphic mapping from X to Y with
f(A[α]) = B[α] for at least one α ∈ [0, 1].
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Proof. The Proof follows by combining Corollaries 4.10 and 4.14. �

Theorem 4.19. Let f : X → Y be an isomorphism, A ∈ FMG(X) and B ∈
FMG(Y ). Then f(A[α]) and f−1(B[α]) are subgroups of Y and X, respectively, for
all α ≤ (CMA(e), CMB(e′)), where α ∈ [0, 1] and e, e′ are the identities of X and
Y , respectively.

Proof. By Theorem 3.7, it is clear that A[α] is a subgroup ofX. We show that f(A[α])
is a subgroup of Y . Let y1, y2 ∈ f(A[α]) be any two elements. Then CMf(A)(y1) ≥ α
and CMf(A)(y2) ≥ α. By Proposition 4.3, f(A[α]) ⊆ (f(A))[α], α ∈ [0, 1]. Thus
∃ x1, x2 ∈ X such that

CMA(x1) = CMf(A)(y1) ≥ α and CMA(x2) = CMf(A)(y2) ≥ α
imply

CMA(x1) ≥ α and CMA(x2) ≥ α.
So

CMA(x1) ∧ CMA(x2) ≥ α.
Again, CMA(x1x

−1
2 ) ≥ CMA(x1) ∧ CMA(x2) ≥ α⇒ CMA(x1x2) ≥ α. Hence

x1x
−1
2 ∈ A[α]

⇔ f(x1x
−1
2 ) ∈ f(A[α]) ⊆ (f(A))[α]

⇔ f(x1)f(x−12 ) ∈ (f(A))[α] = f(x1)(f(x2))−1 ∈ (f(A))[α]
⇔ y1y

−1
2 ∈ (f(A))[α].

Therefore f(A[α]) is a subgroup of Y .
The proof of the second part is similar. �

Corollary 4.20. Let f : X → Y be an isomorphism, A ∈ FMG(X) and B ∈
FMG(Y ). Then f(A[α]) is a subgroup of Y and f−1(B[α]) is a subgroup of X for
all α ≥ (CMA(e), CMB(e′)), where α ∈ [0, 1] and e, e′ are the identities of X and
Y , respectively.

Proof. Similar to Theorem 4.19. �

Corollary 4.21. If f : X → Y be homomorphism of group X onto group Y and
{Ai}i∈I be family of fuzzy multigroups of X. Then for all α ≤ (CMAi

(e), CMBi
(e′)),

where α ∈ [0, 1] and e, e′ are the identities of X and Y , respectively,
(1) f(

⋂
i∈I Ai[α]) is a subgroup of Y ,

(2) f−1(
⋂
i∈I Bi[α]) is a subgroup of X,

(3) f(
⋃
i∈I Ai[α]) is a subgroup of Y provided {Ai}i∈I have sup/inf assuming

chain,
(4) f−1(

⋃
i∈I Bi[α]) is a subgroup of X provided {Bi}i∈I have sup/inf assuming

chain.

Proof. Similar to Theorem 4.19. �

Corollary 4.22. If f : X → Y be homomorphism of group X onto group Y and
{Ai}i∈I be family of fuzzy multigroups of X. Then for all α ≥ (CMAi

(e), CMBi
(e′)),

where α ∈ [0, 1] and e, e′ are the identities of X and Y , respectively,

(1) f(
⋂
i∈I A

[α]
i ) is a subgroup of Y ,

(2) f−1(
⋂
i∈I B

[α]
i ) is a subgroup of X,
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(3) f(
⋃
i∈I A

[α]
i ) is a subgroup of Y provided {Ai}i∈I have sup/inf assuming chain,

(4) f−1(
⋃
i∈I B

[α]
i ) is a subgroup of X provided {Bi}i∈I have sup/inf assuming

chain.

Proof. Similar to Theorem 4.19. �

5. Upper alpha-cut homomorphic properties of fuzzy multigroups

This section focuses on upper α-cut homomorphic properties of fuzzy multigroups.
We define a pre-surjective mapping f , introduce analogous concept of nested set and
obtain some results.

Definition 5.1. Let X,Y be sets, f : X → Y be a mapping and A ∈ FMS(X),
respectively. If for every α1, α2 ∈ [0, 1] with α1 < α2, we have (f(A))[α2] ⊆ f(A[α1]),
then f is called pre-surjective or it is said that f posses the pre-surjective property.

Theorem 5.2. Let f : X → Y be a mapping, A ∈ FMS(X) and α1, α2 ∈ [0, 1]
satisfies α1 < α2. Then f is pre-surjective if and only if for every y ∈ (f(A))[α2],
there exists x ∈ A[α1] such that f(x) = y.

Proof. By hypothesis and Definition 5.1, it follows that f is pre-surjective ⇔
(f(A))[α2] ⊆ f(A[α1])⇔ y ∈ (f(A))[α2] ⇒ y ∈ f(A[α1])⇔ ∃ x ∈ A[α1]

such that f(x) = y. �

Definition 5.3. Let h : N → P (X), α 7→ h(α) ∈ P (X) be a mapping, T be an index
set. Then h is called a nested set on X, if the following conditions are satisfied:

(i) α1 < α2 ⇒ h(α2) ⊆ h(α1),
(ii)

⋂
t∈T h(αt) ⊆

⋂
{h(α) | α <

∨
t∈T αt}.

We depicts the sets that posses such conditions on X by N(X).

Theorem 5.4. Let f : X → Y be a mapping, A ∈ FMS(X) and for all α ∈ [0, 1],
let h(α) = f(A[α]). Then h ∈ N(Y ) if and only if f is pre-surjective.

Proof. Suppose h ∈ N(Y ). In order to prove that f is pre-surjective, we only need
to show that (f(A))[α2] ⊆ f(A[α1]), where α1, α2 ∈ [0, 1] and α1 < α2. In fact, for
any y ∈ (f(A))[α2], we get

CMf(A)(y) =
∨

x∈f−1(y)

CMA(x) ≥ α2.

Putting T = {t ∈ T | f(t) = y} and CMA(t) = αt, we have∨
t∈T

αt = CMf(A)(y) ≥ α2.

For t ∈ T , we have t ∈ A[α] with y = f(t). Then y ∈ f(A[αt]).
Since the mapping h is an analogous of nested set on Y , by Definition 5.3, it is
straightforward to get

y ∈
⋂
t∈T

f(A[αt]) ⊆ {f(A[α]) |
∨
t∈T

αt > α}.

83



P. A. Ejegwa/Ann. Fuzzy Math. Inform. 19 (2020), No. 1, 73–87

Considering α1 < α2 6
∨
t∈T αt, we infer that y ∈ f(A[α1]), which implies (f(A))[α2] ⊆

f(A[α1]). In the light of Definition 5.1, f has pre-surjective property.
Conversely, suppose f is pre-surjective. On the one hand, whenever α1 < α2, by

using Propositions 3.4 and 3.6 and Theorem 2.11, f(A[α2]) ⊆ f(A[α1]) is clear.
On the other hand, for any y ∈

⋂
t∈T f(A[αt]) ∃ xt ∈ A[αt] such that f(xt) = y.

Consequently, for arbitrary t ∈ T , we get

CMf(A)(y) ≥
∨
t∈T

CMA(xt) ≥
∨
t∈T

αt.

Then y ∈ (f(A))[
∨

t∈T αt]. Since f is pre-surjective, for α <
∨
t∈T αt, by Theorem

5.2, we deduce that there exists x ∈ A[α] such that f(x) = y. This implies that
y ∈ f(A[α]). Thus

y ∈
⋂
{f(A[α]) | α <

∨
t∈T

αt}.

So ⋂
t∈T

f(A[α]) ⊆
⋂
{f(A[α]) | α <

∨
t∈T

αt}.

Hence by Definition 5.3, h ∈ N(Y ). �

Corollary 5.5. Let f : X → Y be a mapping and A ∈ FMS(X). For every α ∈
[0, 1], we define h(α) = f(A[α]), then h ∈ N(X) if and only if (f(A))[α] ⊆ f(A[α]).

Proof. Take any α1, α2 ∈ [0, 1] with α1 < α2. By Propositions 3.4 and 3.6 and
Theorem 2.11, we obtain

f(A[α2]) ⊆ f(A[α1]).

Combined with

(f(A))[α2] ⊆ f(A[α2]),

we get

(f(A))[α2] ⊆ f(A[α1]),

that is, f is pre-surjective. By Theorem 5.4, it follows that h ∈ N(X).
Conversely, suppose h ∈ N(X). The proof follows by adopting a similar method

to the proof of the necessity part of Theorem 5.4. �

Corollary 5.6. Let f : X → Y be a quasi-surjective mapping, A ∈ FMS(X) and
h(α) = f(A[α]) for any α ∈ [0, 1]. Then h ∈ N(X).

Proof. Combining Lemma 4.8 and Corollary 5.5, the result follows. �

Theorem 5.7. Let X be a set and A ∈ FMS(X). Then for arbitrary αt ∈ [0, 1], t ∈
T , ⋂

t∈T
A[αt] = A[

∨
t∈T αt].

Proof. For any x ∈
⋂
t∈T A[αt], we have x ∈ A[αt]∀t ∈ T . Then we get CMA(x) ≥ αt.

Thus

CMA(x) =
∨
t∈T

CMA(x) ≥
∨
t∈T

αt.
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So x ∈ A[
∨

t∈T αt], that is, ⋂
t∈T

A[αt] ⊆ A[
∨

t∈T αt].

Again, for all x ∈ A[
∨

t∈T αt] and t ∈ T , we get

CMA(x) ≥
∨
t∈T

αt ≥ αt.

This implies that CMA(x) ≥ αt, that is, x ∈
⋂
t∈T A[αt]. Hence

A[
∨

t∈T αt] ⊆
⋂
t∈T

A[αt].

Therefore
⋂
t∈T A[αt] = A[

∨
t∈T αt]. �

Theorem 5.8. Let X and Y be groups, f : X → Y be a homomorphism, where
f is quasi-surjective, A ∈ FMG(X) and B ∈ FMG(Y ). If f is an upper α-cut
homomorphic mapping from A to B with the pre-surjective property, then f(A) ∈
FMG(Y ), and f is also an upper α-cut homomorphic mapping from A to f(A).

Proof. As f is pre-surjective, it follows that h ∈ N(Y ), where h(α) = f(A[α]) for
every α ∈ [0, 1]. Since f is quasi-surjective, by Lemma 4.8, for arbitrary α ∈ [0, 1], we
have (f(A))[α] = f(A[α]). Then f(A) ∈ FMG(Y ). In addition, for A ∈ FMG(X),
it is clear that A[α] is a subgroup of X by Theorem 3.7. Consequently, f(A[α]) is a
subgroup of Y . Since

(f(A))[α] = f(A[α])⇒ (f(A))[α]

is a subgroup of Y . Hence, f(A) ∈ FMG(Y ).
Again, since f is an upper α-cut homomorphic mapping from A and B, we see

that f is a homomorphism from A[α] to B[α]. Then for every x, y ∈ A[α], it is clear
that f(x), f(y) ∈ f(A[α]). By Theorems 4.5 and 4.9,

f(A[α]) = (f(A))[α] ⊆ B[α].

Since f is a homomorphism from X to Y , f(xy) = f(x)f(y) and (f(A))[α] is a
subgroup of Y , we have f(x)f(y) ∈ (f(A))[α], that is, f preserves the operation.
Consequently, f is an upper α-cut homomorphism from A to f(A). �

Corollary 5.9. Let X and Y be groups, f : X → Y be a homomorphism, where
f is quasi-surjective, A ∈ FMG(X) and B ∈ FMG(Y ). If f is an upper α-cut
homomorphic mapping from A to B with the pre-surjective property, then f−1(B) ∈
FMG(X), and f is also a surjective homomorphism from f−1(B) to B.

Proof. For any α ∈ [0, 1], setting h(α) = f−1(B[α]), we show that h ∈ N(X). Given
α1, α2 ∈ [0, 1] with α1 < α2, by Proposition 3.6 and Theorem 2.11, we get

f−1(B[α2]) ⊆ f
−1(B[α1]).

By Proposition 4.3, we get⋂
t∈T

f−1(B[αt]) =
⋂
t∈T

(f−1(B))[αt].
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Thus by Theorem 5.7, it follows that⋂
t∈T

(f−1(B))[αt] = (f−1(B))[
∨

t∈T αt].

Since

(f−1(B))[
∨

t∈T αt] = f−1(B[
∨

t∈T αt]),

it is obvious that ⋂
t∈T

f−1(B[αt]) ⊆ {f
−1(B[α]) | α <

∨
t∈T

αt}.

Thus h ∈ N(X). Since (f−1(B))[α] 6= ∅, for every α ∈ [0, 1], for any x, y ∈
(f−1(B))[α] = f−1(B[α]), there exists x0, y0 ∈ B[α] such that f(x) = x0 and f(y) =
y0. As f is upper α-cut homomorphism from A to B, and B[α] is a subgroup of Y ,
we infer immediately that

f(xy−1) = f(x)(f(y))−1 = x0y
−1
0 ∈ B[α].

This implies that

xy−1 ∈ f−1(B[α]) = (f−1(B))[α].

So (f−1(B))[α] is a subgroup of X. Hence f−1(B) ∈ FMG(X). Since f is a
surjective upper α-cut homomorphic mapping from A to B, from Definition 4.11,
we know that f is a surjective homomorphism from A[α] to B[α]. For all x, y ∈
(f−1(B))[α], we notice that B ∈ FMG(Y ), f(xy) = f(x)f(y) ∈ B[α]. Therefore f

is a surjective upper α-cut homomorphism from f−1(B) to B. �

Theorem 5.10. Let f : X → Y be homomorphism of groups where f is quasi-
surjective, A ∈ FMG(X) and B ∈ FMG(Y ). If f is an upper α-cut isomorphic
mapping from A to B with the pre-surjective property, then

(1) f(A) ∈ FMG(Y ), and f is also an upper α-cut isomorphic mapping from A
to f(A),

(2) f−1(B) ∈ FMG(X), and f is also an upper α-cut isomorphic mapping from
f−1(B) to B.

Proof. Combining Theorem 5.8 and Corollary 5.9, the results follow. �

6. Conclusions

We have presented a precise study of α-cuts of fuzzy multigroups to enhance the
introduction of α-cuts homomorphism of fuzzy multigroups. The concept of α-cuts
homomorphism of fuzzy multigroups was explicated and some related results were
deduced. Some properties of α-cuts homomorphism of fuzzy multigroups were dis-
cussed in details. In future research, some homomorphic properties of α-cuts of
fuzzy multigroups could still be exploited and the analogous of isomorphism theo-
rems could be established in α-cuts homomorphism of fuzzy multigroups.
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