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Abstract. Single-valued neutrosophic set (SVNS) handling the un-
certainties characterized by truth, indeterminacy, and falsity membership
degrees, is an extension of fuzzy set and intuitionistic fuzzy set. It provides
a more flexible way to capture uncertainty. This paper is devoted to the
disscussion of relationships among several existing similarity measures of
SVNSs. In addition, it is shown that some existing similarity measures are
equivalent. The comparative results of this study provide convenience for
applying similarity measures of SVNSs to practical problems.
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1. Introduction

Uncertainty, incomplete, and inconsistent information can be found in many
real-life systems and may enter some problems in a much more complex ways. The
theory of fuzzy set(FS) proposed by Zadeh [23] in 1965 has achieved a great success
in various real applications to handle uncertainty. Subsequently, several new con-
cepts of high-order fuzzy sets have been presented. Among them, The intuitionistic
fuzzy set(IFS) on a universe X introduced by Atanassov [1] is a typical generaliza-
tion of fuzzy set. An IFS consists of a membership function and a non-membership
function of the universe and provides a flexible mathematical framework to incom-
plete and uncertain information processing. Smarandache [13] originally introduced
the concept of neutrosophic set(NS) in 1998 which is a generalization of fuzzy set
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and intuitionistic fuzzy set [15]. A neutrosophic set A in a universal set X is char-
acterized independently by a truth-membership function TA(x), an indeterminacy-
membership function IA(x) and a falsity-membership function FA(x), and neutros-
ophy [14] is a branch of philosophy and a mathematical tool for studying the origin,
nature, and scope of neutralities. On the other hand, the original neutrosophic set
is mainly used for philosophical applications, especially when distinction is required
between absolute and relative truth (falsity, indeterminacy). In order to easily use
the neutrosophic set in real scientific and engineering fields, Smarandache [13] in
1998 and Wang et al. [17] in 2010 proposed the concept of single-valued neutro-
sophic set(SVNS), which is an instance of neutrosophic set, and also introduced the
set-theoretic operations and a series of properties of single-valued neutrosophic sets.
The single-valued neutrosophic set theory has been proven to be useful in many
scientific fields, such as multi-attribute decision making, machine learning, fault di-
agnosis, and so on. Dimple and Harish [12] proposed the subtraction and division
operations on interval neutrosophic set. The deficiencies of the existing operations
are validated through some counter-examples. Harish and Nancy [5] presented some
new operational laws called logarithm operational laws for the single-valued neutro-
sophic numbers (SVNN). Various desirable properties of the proposed operational
laws are contemplated. Further, based on these laws, different weighted averaging
and geometric aggregation operators are developed. In addition, the related results
have been extended to linguistic single-valued neutrosophic sets [6], a multi-criteria
decision making method based on prioritized muirhead mean aggregation operator
under neutrosophic set environment is presented [7]. Harish and Nancy [10] proposed
an improved score function for ranking the single as well as interval-valued neutro-
sophic sets by incorporating the idea of hesitation degree between the truth and
false degrees. Moreover, a decision-making method is presented based on proposed
function.

The study of similarity measure is of particular importance because, in many
practical situations, we need to compare two objects in order to determine whether
they are identical or approximately identical or at least to what degree they are
identical. Up to now, a lot of research has been done about these information mea-
sures with applications in the field of neutrosophic set theory. Harish and Nancy [8]
developed a nonlinear programming (NP) model based on the technique of TOPSIS.
A likelihood-based comparison relation for interval neutrosophic numbers (INNs) is
proposed to determine the ranking of considered alternatives and the related decision
making method is presented. In addition, some new biparametric distance measures
on single-valued neutrosophic sets are presented [4]. The application of these mea-
sures to pattern recognition and medical diagnosis are surveyed. Nancy and Harish
[11] proposed an axiomatic definition of divergence measure for single-valued neutro-
sophic sets (SVNSs). The properties of the proposed divergence measure have been
studied. Broumi and Smarandache [2] presented a method to calculate the distance
between SVNSs on the basis of Hausdorff distance and proposed some similarity
measures based on the distance and matching function to calculate the similarity
degree between SVNSs. Majumdar and Samanta [9] presented several similarity
measures for SVNSs based on the Hamming (Euclidian) distance and normalized
Hamming (Euclidian) distance between two SVNSs. Majumdar and Samanta [9]
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presented a similarity measure of SVNSs based on the min and max operators and
Ye [22] proposed another new similarity measure of SVNSs based on the min and
max operators. The vector similarity measure is one of important tools for the
degree of similarity between objects. The Jaccard, Dice, and cosine similarity mea-
sures ([18, 19, 20]) are often used for this purpose. Therefore, Ye [21] proposed three
vector similarity measures for SVNSs based on the extension of the Jaccard, Dice,
and cosine similarity measures between vectors and applied them to multi-criteria
decision-making problems with simplified neutrosophic information.

The similarity measures of SVNSs have been extensively studied. Based on dif-
ferent application background, researchers have proposed many kinds of similarity
measures for SVNSs and applied them to decision making, pattern recognition, med-
ical diagnosis and so on. We note that the relationships among these similarity mea-
sures have not been systematically investigated. The main purpose of this paper is
to make comparative analysis of some existing similarity measures for SVNSs. It
will enrich the theory and application of similarity measures and provide the thread
for constructing general similarity measures for SVNSs. The rest of this manuscript
is organized as follows. In Section 2, we recall some basic concepts and similarity
measures of SVNSs. In Section 3, we put forward the definition of equivalence for
similarity measures, and investigate the relationships among some similarity mea-
sures of SVNSs, such as distance based similarity measures, the min and max opera-
tors based similarity measures, and vector similarity measures in terms of inequality
and equivalence. Some examples are presented to illustrate the equivalence. Finally,
some conclusions and future research possibilities are provided in Sect. 4.

2. Some concepts and similarity measures of SVNSs

In this section, we review some basic concepts and existing similarity measures
related to SVNSs, which will be used in the rest of the paper .
2.1. Basic Definitions.

Definition 2.1 ([13]). Let X be a space of points (objects), with a generic ele-
ment in X denoted by x. A neutrosophic set A in X is characterized by a truth-
membership function TA(x), an indeterminacy-membership function IA(x) and a
falsity-membership function FA(x), where TA(x), IA(x), and FA(x) are real stan-

dard or non-standard subsets of ]−0, 1
+

[ such that TA(x) : X →]−0, 1
+

[, IA(x) :

X →]−0, 1
+

[ and FA(x) : X →]−0, 1
+

[, and the sum of TA(x), IA(x), and FA(x)

satisfies the condition −0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3
+

.

In order to easily apply neutrosophic set theory to science and engineering,
Smarandache [13] and Wang et al. [17] presented the concept of single-valued neu-
trosophic set(SVNS) as follows.

Definition 2.2 ([17]). Let X be a space of points (objects), with a generic element
in X denoted by x. A single-valued neutrosophic set A in X is characterized by
a truth-membership function TA(x) , an indeterminacy-membership function IA(x)
and a falsity-membership function FA(x) . A single-valued neutrosophic set A can
be denoted by

A = {(x, TA(x), IA(x), FA(x))|x ∈ X},
47
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where TA(x), IA(x), FA(x) ∈ [0, 1] for each x ∈ X, and the sum of TA(x), IA(x), and
FA(x) satisfies the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

In this paper, a single-valued neutrosophic set A in X is also denoted by

A = {(x,A(x))|x ∈ X},
where A(x) = (TA(x), IA(x), FA(x)) and TA(x), IA(x), FA(x) ∈ [0, 1], for each x ∈
X. We use the symbol SV NS(X) to denote the set of all single-valued neutrosophic
sets in X.

Two single-valued neutrosophic sets A and B are equal, written as A = B, if and
only if TA(x) = TB(x), IA(x) = IB(x), and FA(x) = FB(x) for any x ∈ X. There are
three types of inclusion relation for single-valued neutrosophic sets ([24, 25]). In this
paper, we consider the widely used definition proposed by Smarandache ([9, 13]).

Definition 2.3 ([13, 16]). Let X be a finite set and A,B ∈ SV NS(X). A is
contained in B, denoted by A ⊆ B, if TA(x) ≤ TB(x) ,IA(x) ≥ IB(x), and FA(x) ≥
FB(x), for any x ∈ X .

For two SV NSsA = {(x, TA(x), IA(x), FA(x))|x ∈ X} and B = {(x, TB(x), IB(x),
FB(x))|x ∈ X}, there are the following operations [14]:

(i) Complement

Ac = {(x, FA(x), 1− IA(x), TA(x))|x ∈ X},

(ii) Union

A ∪B = {(x, TA(x)
∨

TB(x), IA(x)
∧

IB(x), FA(x)
∧

FB(x))|x ∈ X},

(iii) Intersection

A ∩B = {(x, TA(x)
∧

TB(x), IA(x)
∨

IB(x), FA(x)
∨

FB(x))|x ∈ X}.

2.2. Existing similarity measures.

Definition 2.4 ([3]). A real function d : SV NS(X)× SV NS(X)→ [0, 1] is called
a distance measure, where d satisfies the following axioms for A,B,C ∈ SV NS(X):

(P1) 0 ≤ d(A,B) ≤ 1,
(P2) d(A,B) = 0 iff A = B,
(P3) d(A,B) = d(B,A),
(P4) if A ⊆ B ⊆ C, then d(A,C) ≥ d(A,B) and d(A,C) ≥ d(B,C).

Definition 2.5 ([2, 9]). Let X be a finite set of objects. A function S : SV NS(x)×
SV NS(x)→ [0, 1] is called a similarity measure for single-valued neutrosophic sets
in X, if it satisfy the following properties:

(S1) S(A,B) = 1 if and only if A = B,
(S2) S(A,B) = S(B,A),
(S3) S(A,C) ≤ S(A,B), S(A,C) ≤ S(B,C), if A ⊆ B ⊆ C,
(S4) S(A,B) = 0 if and only if |TA(x) − TB(x)| = 1, |IA(x) − IB(x)| = 1 and

|FA(x)− FB(x)| = 1, for any x ∈ X.
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Several researchers have addressed the various types of distance and similarity
measures. We introduce some existing distance measures, similarity measures based
on the min and max operators, and vector similarity measures for SVNSs. Let X =
{x1, x2, · · · , xn}, A,B ∈ SV NS(X) and A = {(xı, TA(xı), IA(xı), FA(xı))|xı ∈ X} ,
B = {(xı, TB(xı), IB(xı), FB(xı))|xı ∈ X}.
The extended Hausdorff distance [2]:

DH(A,B) =
1

n

n∑
i=1

max[|TA(xi)− TB(xi)|, |IA(xi)− IB(xi)|, |FA(xi)− FB(xi)|].

The normalized Hamming distance [9]:

DNH(A,B) =
1

3n

n∑
i=1

[|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|].

The normalized Euclidean distance [9]:

DNE(A,B)

= { 1

3n

n∑
i=1

[(TA(xi)− TB(xi))
2 + (IA(xi)− IB(xi))

2 + (FA(xi)− FB(xi))
2]}1/2.

Majumdar and Samanta have introduced the following similarity measure based on
the min and max operators [9]:

S1(A,B)

=

∑n
i=1[min(TA(xi), TB(xi)) + min(IA(xi), IB(xi)) + min(FA(xi), FB(xi))]∑n
i=1[max(TA(xi), TB(xi)) + max(IA(xi), IB(xi)) + max(FA(xi), FB(xi))]

.

Ye proposed other new similarity measures based on the min and max operators
[22]:

S2(A,B)

=
1

n

n∑
i=1

min(TA(xi), TB(xi)) + min(IA(xi), IB(xi)) + min(FA(xi), FB(xi))

max(TA(xi), TB(xi)) + max(IA(xi), IB(xi)) + max(FA(xi), FB(xi))
,

S3(A,B)

=

∑n
i=1 ωi[min(TA(xi), TB(xi)) + min(IA(xi), IB(xi)) + min(FA(xi), FB(xi))]∑n
i=1 ωi[max(TA(xi), TB(xi)) + max(IA(xi), IB(xi)) + max(FA(xi), FB(xi))]

,

S4(A,B)

=

n∑
i=1

ωi
min(TA(xi), TB(xi)) + min(IA(xi), IB(xi)) + min(FA(xi), FB(xi))

max(TA(xi), TB(xi)) + max(IA(xi), IB(xi)) + max(FA(xi), FB(xi))
.

The weight of an element xi is ωi(i = 1, 2, . . . n) with ωi ∈ [0, 1] ,and
∑n

i=1 ωi = 1.

Ye proposed three vector similarity measures based on the extension of the Jaccard,
Dice, and cosine similarity measures in vector space [21]:
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SJ(A,B) =
1

n

n∑
i=1

TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)

[M −N ]
.

There, we let M = (T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi)), N =
(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)).

SD(A,B) =
1

n

n∑
i=1

2(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi))

(T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi))
,

SC(A,B) =
1

n

n∑
i=1

TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)√
T 2
A(xi) + I2A(xi) + F 2

A(xi)
√
T 2
B(xi) + I2B(xi) + F 2

B(xi)
,

WSJ(A,B) =

n∑
i=1

ωi
TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)

[M −N ]
.

There, we let M = (T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi)), N =
(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)).

WSD(A,B) =

n∑
i=1

ωi
2(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi))

(T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi))
,

WSC(A,B) =

n∑
i=1

ωi
TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)√

T 2
A(xi) + I2A(xi) + F 2

A(xi)
√
T 2
B(xi) + I2B(xi) + F 2

B(xi)
.

The weight of an element xi is ωi(i = 1, 2, . . . n) with ωi ∈ [0, 1] ,and
∑n

i=1 ωi = 1.

3. The relationships between similarity measures of SVNSs

In this section, we make a comparative study of some existing similarity mea-
sures for SVNSs to reveal the relationships among them. The results obtained are
beneficial for users to select an appropriate similarity measure for meeting their re-
quirements. In addition, it will provide the thread for constructing general similarity
measures for SVNSs.

3.1. The inequality for similarity measures of SVNSs.

Proposition 3.1. The distance DH(A,B), DNH(A,B), and DNE(A,B) satisfy the
inequality for any two SVNSs A and B: D2

NE(A,B) ≤ DNH(A,B) ≤ DH(A,B).
The similarity measures based on distance satisfy 1−DH(A,B) ≤ 1−DNH(A,B) ≤
1−D2

NE(A,B).

Proof. For two SVNSs A and B, we have TA(x), IA(x), FA(x) ∈ [0, 1], TB(x), IB(x),
FB(x) ∈ [0, 1], for each x ∈ X. Then |TA(xi) − TB(xi)| ≤ 1, |IA(xi) − IB(xi)| ≤ 1,
|FA(xi)− FB(xi)| ≤ 1. Thus

|TA(xi)− TB(xi)|
∨
|IA(xi)− IB(xi)|

∨
|FA(xi)− FB(xi)|
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≥ 1
3 (|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|).

So we have

DNH(A,B) =
1

3n

n∑
i=1

[|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|]

=
1

n

n∑
i=1

[
1

3
(|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|)]

≤ 1

n

n∑
i=1

max[|TA(xi)− TB(xi)|, |IA(xi)− IB(xi)|, |FA(xi)− FB(xi)|]

= DH(A,B).

Hence DNH(A,B) ≤ DH(A,B). On the other hand,

D2
NE(A,B) =

1

3n

n∑
i=1

[(TA(xi)− TB(xi))
2 + (IA(xi)− IB(xi))

2 + (FA(xi)− FB(xi))
2]

≤ 1

3n

n∑
i=1

[|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|]

= DNH(A,B).

Then D2
NE(A,B) ≤ DNH(A,B). Thus we obtained that

D2
NE(A,B) ≤ DNH(A,B) ≤ DH(A,B).

So similarity measures based on distance satisfy the following inequalities:

1−DH(A,B) ≤ 1−DNH(A,B) ≤ 1−D2
NE(A,B).

�

Proposition 3.2. For any two SVNSs A and B, similarity measures SJ(A,B),
SD(A,B), SC(A,B), WSJ(A,B), WSD(A,B), and WSC(A,B) satisfy the inequal-
ity:

(1) SD(A,B) ≤ SC(A,B), SD(A,B) ≤ 2SJ(A,B);
(2) WSD(A,B) ≤WSC(A,B),WSD(A,B) ≤ 2WSJ(A,B).

Proof. For two SVNSs A and B, we have TA(x), IA(x), FA(x) ∈ [0, 1], TB(x), IB(x),
FB(x) ∈ [0, 1], for each x ∈ X.

(1) Based on the fundamental inequality, we have
[(T 2

A(xi) + I2A(xi) + F 2
A(xi)) + (T 2

B(xi) + I2B(xi) + F 2
B(xi))]

≥ 2
√
T 2
A(xi) + I2A(xi) + F 2

A(xi)
√

T 2
B(xi) + I2B(xi) + F 2

B(xi),

SD(A,B) =
1

n

n∑
i=1

2(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi))

(T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi))

≤ 1

n

n∑
i=1

TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)√
T 2
A(xi) + I2A(xi) + F 2

A(xi)
√

T 2
B(xi) + I2B(xi) + F 2

B(xi)

= SC(A,B).
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Then SD(A,B) ≤ SC(A,B). On the other hand,

2SJ(A,B) =
1

n

n∑
i=1

2(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi))

[M −N ]

≥ 1

n

n∑
i=1

2(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi))

(T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi))

= SD(A,B).

There, we let M = (T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi)), N =
(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)). Then SD(A,B) ≤ 2SJ(A,B).

(2) Usually, one takes the weight of each element xi for xi ∈ X into account.
Assume that the weight of an element xi is ωi (i = 1, 2, . . . , n) with ωi ∈ [0, 1] and∑n

i=1 ωi = 1. Then

WSD(A,B) =

n∑
i=1

ωi
2(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi))

(T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi))

≤
n∑

i=1

ωi
TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)√

T 2
A(xi) + I2A(xi) + F 2

A(xi)
√

T 2
B(xi) + I2B(xi) + F 2

B(xi)

= WSC(A,B).

Thus WSD(A,B) ≤WSC(A,B). On the other hand,

2WSJ(A,B) =

n∑
i=1

ωi
2(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi))

[M −N ]

≥
n∑

i=1

ωi
2(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi))

(T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi))

= WSD(A,B).

There, we let M = (T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi)), N =
(TA(xi)TB(xi)+IA(xi)IB(xi)+FA(xi)FB(xi)). So WSD(A,B) ≤ 2WSJ(A,B). �

3.2. The equivalence for similarity measures of SVNSs. The equivalence for
similarity measures of SV NSs can be used to judgement decision results accurately.
In this section, we proposed the notion of equivalence for similarity measures of
SV NSs , which is proposed based on the ordering of objects of the SV NSs has not
changed.

Definition 3.3. Supposed that S1(A,B), S2(A,B) are similarity measures of SVNSs,
S1(A,B) is equivalent to S2(A,B), defined S1(A,B) ∼ S2(A,B), if for any four
SVNSs A, B, A′, B′ in X = {x1, x2, . . . , xn}, the similarity measure S1(A,B) and
S2(A,B) satisfy:

S1(A,B) ≤ S1(A′, B′)⇔ S2(A,B) ≤ S2(A′, B′)

that is, the ordering of objects of the SVNSs has not changed.
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Proposition 3.4. The distance DNH(A,B), and DNE(A,B) satisfy the property
for any two SVNSs A, B that DNH(A,B), and DNE(A,B) are equivalent. The
similarity measures based on distance 1−DNH(A,B) and 1−DNE(A,B) are equiv-
alent.

Proof. For any four SVNSs A, B, A′, B′ in X = {x1, x2, . . . , xn}, we have TA(x), IA
(x), FA(x) ∈ [0, 1], TB(x), IB(x), FB(x) ∈ [0, 1], for each x ∈ X. Then

|TA(xi)− TB(xi)| ≤ 1, |IA(xi)− IB(xi)| ≤ 1, |FA(xi)− FB(xi)| ≤ 1.

Necessity: If we have DNH(A,B) ≤ DNH(A′, B′), that is to say,

DNH(A,B) =
1

3n

n∑
i=1

[|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|]

≤ 1

3n

n∑
i=1

[|TA′(xi)− TB′(xi)|+ |IA′(xi)− IB′(xi)|+ |FA′(xi)− FB′(xi)|]

= DNH(A′, B′).

Then |TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|
≤ |TA′(xi)− TB′(xi)|+ |IA′(xi)− IB′(xi)|+ |FA′(xi)− FB′(xi)|.

Thus

DNE(A,B) = { 1

3n

n∑
i=1

[(TA(xi)− TB(xi))
2 + (IA(xi)− IB(xi))

2 + (FA(xi)− FB(xi))
2]}1/2

≤ { 1

3n

n∑
i=1

[(TA′(xi)− TB′(xi))
2 + (IA′(xi)− IB′(xi))

2 + (FA′(xi)− FB′(xi))
2]}1/2

= DNE(A′, B′).

Sufficiency: If we have DNE(A,B) ≤ DNE(A′, B′), that is to say,

DNE(A,B) = { 1

3n

n∑
i=1

[(TA(xi)− TB(xi))
2 + (IA(xi)− IB(xi))

2 + (FA(xi)− FB(xi))
2]}1/2

≤ { 1

3n

n∑
i=1

[(TA′(xi)− TB′(xi))
2 + (IA′(xi)− IB′(xi))

2 + (FA′(xi)− FB′(xi))
2]}1/2

= DNE(A′, B′).

Then (TA(xi)− TB(xi))
2 + (IA(xi)− IB(xi))

2 + (FA(xi)− FB(xi))
2

≤ (TA′(xi)− TB′(xi))
2 + (IA(xi′)− IB′(xi))

2 + (FA′(xi)− FB′(xi)),
|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|
≤ |TA′(xi)− TB′(xi)|+ |IA′(xi)− IB′(xi)|+ |FA′(xi)− FB′(xi)|.

Thus

DNH(A,B) =
1

3n

n∑
i=1

[|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|]

≤ 1

3n

n∑
i=1

[|TA′(xi)− TB′(xi)|+ |IA′(xi)− IB′(xi)|+ |FA′(xi)− FB′(xi)|]

= DNH(A′, B′).
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So DNH(A,B) ∼ DNE(A,B) and 1−DNH(A,B) ∼ 1−DNE(A,B) . �

Proposition 3.5. For two SVNSs A and B, similarity measures S1(A,B), S2(A,B),
S3(A,B), and S4(A,B), satisfy the property: S1(A,B), S2(A,B), S3(A,B), and
S4(A,B) are equivalent.

Proof. For any four SVNSs A, B, A′, B′ in X = {x1, x2, . . . , xn}, we have TA(x), IA
(x), FA(x) ∈ [0, 1], TB(x), IB(x), FB(x) ∈ [0, 1], for each x ∈ X.

Necessity: If we have S1(A,B) ≤ S1(A′, B′), that is to say,

S1(A,B) =

∑n
i=1[min(TA(xi), TB(xi)) + min(IA(xi), IB(xi)) + min(FA(xi), FB(xi))]∑n
i=1[max(TA(xi), TB(xi)) + max(IA(xi), IB(xi)) + max(FA(xi), FB(xi))]

≤
∑n

i=1[min(TA′(xi), TB′(xi)) + min(IA′(xi), IB′(xi)) + min(FA′(xi), FB′(xi))]∑n
i=1[max(TA′(xi), TB′(xi)) + max(IA′(xi), IB′(xi)) + max(FA′(xi), FB′(xi))]

= S1(A′, B′).

Then min(TA(xi), TB(xi)) + min(IA(xi), IB(xi)) + min(FA(xi), FB(xi))
≤ min(TA′(xi), TB′(xi)) + min(IA′(xi), IB′(xi)) + min(FA′(xi), FB′(xi)),

max(TA(xi), TB(xi)) + max(IA(xi), IB(xi)) + max(FA(xi), FB(xi))
≥ max(TA′(xi), TB′(xi)) + max(IA′(xi), IB′(xi)) + max(FA′(xi), FB′(xi)).

Thus

S2(A,B) =
1

n

n∑
i=1

min(TA(xi), TB(xi)) + min(IA(xi), IB(xi)) + min(FA(xi), FB(xi))

max(TA(xi), TB(xi)) + max(IA(xi), IB(xi)) + max(FA(xi), FB(xi))

≤ 1

n

n∑
i=1

min(TA′(xi), TB′(xi)) + min(IA′(xi), IB′(xi)) + min(FA′(xi), FB′(xi))

max(TA′(xi), TB′(xi)) + max(IA′(xi), IB′(xi)) + max(FA′(xi), FB′(xi))

= S2(A′, B′).

Sufficiency: If we have S2(A,B) ≤ S2(A′, B′), that is to say,

S2(A,B) =
1

n

n∑
i=1

min(TA(xi), TB(xi)) + min(IA(xi), IB(xi)) + min(FA(xi), FB(xi))

max(TA(xi), TB(xi)) + max(IA(xi), IB(xi)) + max(FA(xi), FB(xi))

≤ 1

n

n∑
i=1

min(TA′(xi), TB′(xi)) + min(IA′(xi), IB′(xi)) + min(FA′(xi), FB′(xi))

max(TA′(xi), TB′(xi)) + max(IA′(xi), IB′(xi)) + max(FA′(xi), FB′(xi))

= S2(A′, B′).

Then min(TA(xi), TB(xi)) + min(IA(xi), IB(xi)) + min(FA(xi), FB(xi))
≤ min(TA′(xi), TB′(xi)) + min(IA′(xi), IB′(xi)) + min(FA′(xi), FB′(xi)),

max(TA(xi), TB(xi)) + max(IA(xi), IB(xi)) + max(FA(xi), FB(xi))
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≥ max(TA′(xi), TB′(xi)) + max(IA′(xi), IB′(xi)) + max(FA′(xi), FB′(xi)).
Thus

S1(A,B) =

∑n
i=1[min(TA(xi), TB(xi)) + min(IA(xi), IB(xi)) + min(FA(xi), FB(xi))]∑n
i=1[max(TA(xi), TB(xi)) + max(IA(xi), IB(xi)) + max(FA(xi), FB(xi))]

≤
∑n

i=1[min(TA′(xi), TB′(xi)) + min(IA′(xi), IB′(xi)) + min(FA′(xi), FB′(xi))]∑n
i=1[max(TA′(xi), TB′(xi)) + max(IA′(xi), IB′(xi)) + max(FA′(xi), FB′(xi))]

= S1(A′, B′).

So S1(A,B) ∼ S2(A,B).
Similarly, we also can proof that S1(A,B) ∼ S3(A,B), S2(A,B) ∼ S4(A,B).

Hence we can get S1(A,B), S2(A,B), S3(A,B), and S4(A,B) are equivalent. �

Proposition 3.6. Similarity measures SJ(A,B), SD(A,B), WSJ(A,B), and WSD

(A,B) satisfy the property for any two SVNSs A, B, SJ(A,B), SD(A,B), WSJ(A,B),
and WSD(A,B) are equivalent.

Proof. For any four SVNSs A, B, A′, B′ in X = {x1, x2, . . . , xn}, we have TA(x), IA
(x), FA(x) ∈ [0, 1], TB(x), IB(x), FB(x) ∈ [0, 1] for each x ∈ X.

Necessity: If we have SJ(A,B) ≤ SJ(A′, B′), that is to say,

SJ(A,B) =
1

n

n∑
i=1

TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)

[M −N ]

≤ 1

n

n∑
i=1

TA′(xi)TB′(xi) + IA′(xi)IB′(xi) + FA′(xi)FB′(xi)

[M ′ −N ′]

= SJ(A′, B′).

There, M = (T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi)),
N = (TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)),
M ′ = (T 2

A′(xi) + I2A′(xi) + F 2
A′(xi)) + (T 2

B′(xi) + I2B′(xi) + F 2
B′(xi)),

N ′ = (TA′(xi)TB′(xi) + IA′(xi)IB′(xi) + FA′(xi)FB′(xi)).
Then TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)

≤ TA′(xi)TB′(xi) + IA′(xi)IB′(xi) + FA′(xi)FB′(xi),
(T 2

A(xi) + I2A(xi) + F 2
A(xi)) + (T 2

B(xi) + I2B(xi) + F 2
B(xi))

≥ (T 2
A′(xi) + I2A′(xi) + F 2

A′(xi)) + (T 2
B′(xi) + I2B′(xi) + F 2

B′(xi)).
Thus

SD(A,B) =
1

n

n∑
i=1

2(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi))

(T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi))

≤ 1

n

n∑
i=1

2(TA′(xi)TB′(xi) + IA′(xi)IB′(xi) + FA′(xi)FB′(xi))

(T 2
A′(xi) + I2A′(xi) + F 2

A′(xi)) + (T 2
B′(xi) + I2B′(xi) + F 2

B′(xi))

= SD(A′, B′).
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Sufficiency: If we have SD(A,B) ≤ SD(A′, B′), that is to say,

SD(A,B) =
1

n

n∑
i=1

2(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi))

(T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi))

≤ 1

n

n∑
i=1

2(TA′(xi)TB′(xi) + IA′(xi)IB′(xi) + FA′(xi)FB′(xi))

(T 2
A′(xi) + I2A′(xi) + F 2

A′(xi)) + (T 2
B′(xi) + I2B′(xi) + F 2

B′(xi))

= SD(A′, B′).

Then TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)
≤ TA′(xi)TB′(xi) + IA′(xi)IB′(xi) + FA′(xi)FB′(xi),

(T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi))
≥ (T 2

A′(xi) + I2A′(xi) + F 2
A′(xi)) + (T 2

B′(xi) + I2B′(xi) + F 2
B′(xi)),

[(T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi))
−(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi))]

≥ [(T 2
A′(xi)I

2
A′(xi) + F 2

A′(xi)) + (T 2
B′(xi) + I2B′(xi) + F 2

B′(xi))
−(TA′(xi)TB′(xi) + IA′(xi)IB′(xi) + FA′(xi)FB′(xi))].

Thus

SJ(A,B) =
1

n

n∑
i=1

TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)

[M −N ]

≤ 1

n

n∑
i=1

TA′(xi)TB′(xi) + IA′(xi)IB′(xi) + FA′(xi)FB′(xi)

[M ′ −N ′]

= SJ(A′, B′).

There, M = (T 2
A(xi) + I2A(xi) + F 2

A(xi)) + (T 2
B(xi) + I2B(xi) + F 2

B(xi)),
N = (TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)),
M ′ = (T 2

A′(xi) + I2A′(xi) + F 2
A′(xi)) + (T 2

B′(xi) + I2B′(xi) + F 2
B′(xi)),

N ′ = (TA′(xi)TB′(xi) + IA′(xi)IB′(xi) + FA′(xi)FB′(xi)).
So SJ(A,B) ∼ SD(A,B). Similarly, we also can proof that SJ(A,B) ∼WSJ(A,B),
SD(A,B) ∼ WSD(A,B). Hence we can get SJ(A,B), SD(A,B), WSJ(A,B), and
WSD(A,B) are equivalent. �

Example 3.7. We consider four SVNSs A, B, A′ and B′ in X and compare their
similarity measures that if 1−DH(A,B) is equivalent to 1−DNH(A,B). Assume that
there are four SVNSs in X, A = {〈x, 0.0, 0.1, 0.9〉|x ∈ X}, B = {〈x, 0.4, 0.5, 0.6〉|x ∈
X}, A′ = {〈x, 0.7, 0.3, 0.0〉|x ∈ X} and B′ = {〈x, 0.3, 0.2, 0.5〉|x ∈ X}.

For any four SV NSs A, B, A′, B′ in X = {x}, we have

|TA(xi)− TB(xi)| = 0.4, |IA(xi)− IB(xi)| = 0.4, |FA(xi)− FB(xi)| = 0.3,
|TA′(xi)− TB′(xi)| = 0.4, |IA′(xi)− IB′(xi)| = 0.1, |FA′(xi)− FB′(xi)| = 0.5.

Then, we know that

DH(A,B) =
1

n

n∑
i=1

max[|TA(xi)− TB(xi)|, |IA(xi)− IB(xi)|, |FA(xi)− FB(xi)|]

= max[0.4, 0.4, 0.3]

= 0.4,
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DH(A′, B′) =
1

n

n∑
i=1

max[|TA′(xi)− TB′(xi)|, |IA′(xi)− IB′(xi)|, |FA′(xi)− FB′(xi)|]

= max[0.4, 0.1, 0.5]

= 0.5.

Thus DH(A,B) ≤ DH(A′, B′).

DNH(A,B) =
1

3n

n∑
i=1

[|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|]

=
1

3
[0.4 + 0.4 + 0.3]

=
11

30
,

DNH(A′, B′) =
1

3n

n∑
i=1

[|TA′(xi)− TB′(xi)|+ |IA′(xi)− IB′(xi)|+ |FA′(xi)− FB′(xi)|]

=
1

3
[0.4 + 0.1 + 0.5]

=
1

3
.

So DNH(A,B) ≥ DNH(A′, B′).
When DH(A,B) ≤ DH(A′, B′), we find that DNH(A,B) ≥ DNH(A′, B′). Hence
DH(A,B) and DNH(A,B) are not equivalent, similarity measures 1−DH(A,B) and
1−DNH(A,B) are not equivalent.

4. Conclusions

SVNSs are applied to problems with imprecise, uncertain, incomplete and in-
consistent information existing in the real world. Although the similarity measures
of SVNSs are proposed and applied to decision making, pattern recognition, and
medical diagnosis, the relationships among these similarity measures have not been
systematically investigated. In this paper, we propose the definition of equivalence
of similarity measures on the basis of the ordering of objects of the SVNSs has
not changed. Then, we investigate the relationships among some similarity mea-
sures of SVNSs, such as distance based similarity measures, the min and max op-
erators based similarity measures, and vector similarity measures in terms of in-
equality and equivalence in detail. We prove that the distance DNH(A,B), and
DNE(A,B) are equivalent; the min and max operators based similarity measures
S1(A,B), S2(A,B), S3(A,B), and S4(A,B) are equivalent; vector similarity mea-
sures SJ(A,B), SD(A,B), WSJ(A,B), and WSD(A,B) are equivalent. Finally we
demonstrate the effectiveness of the equivalence by a example.

In future work, we will discuss the applications of equivalence of similarity mea-
sures in other areas such as multi-attribute decision making, medical diagnosis, fault
diagnosis and so on. At the same time, it is necessary and meaningful to study the
relationships among similarity measures of different types because of our method to
compare these similarity measures is limited in the same types. At the end of this
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paper, we hope that these conclusions can bring some new enlightenments to the
related research.

Acknowledgements. This work has been partially supported by the National
Natural Science Foundation of China (Grant No. 61473239).

References

[1] K. Atanassov, Intuitionistic Fuzzy sets, Fuzzy sets and Systems 20 (1986) 87–96.
[2] S. Broumi and F.Smarandache, Several similarity measures of neutrosophic sets, Neutrosophic

Sets Syst. 1 (1) (2013) 54–62.

[3] S. Broumi and F.Smarandache, Correlation coefficient of interval neutrosophic set, Appl. Mech.
Mater. 436 (2013) 511–517.

[4] H. Garg and Nancy, Some New Biparametric Distance Measures on Single-Valued Neutrosophic

Sets with Applications to Pattern Recognition and Medical Diagnosis, Informations 8 (4)
(2017) 162.

[5] H. Garg and Nancy, New logarithmic operational laws and their applications to multiattribute
decision making for single-valued neutrosophic numbers, Cognitive Systems Research 52 (2018)

931–946.

[6] H. Garg and Nancy, Linguistic single-valued neutrosophic prioritized aggregation operators and
their applications to multiple-attribute group decision-making, Journal of Ambient Intelligence

and Humanized Computing 9 (6) (2018) 1975–1997.

[7] H. Garg and Nancy, Multi-Criteria Decision-Making Method Based on Prioritized Muirhead
Mean Aggregation Operator under Neutrosophic Set Environment, Symmetry 10 (7) (2018)

280.

[8] H. Garg and Nancy, Non-linear programming method for multi-criteria decision making prob-
lems under interval neutrosophic set environment, Applied Intelligence 48 (8) (2018) 2199–

2213.

[9] P. Majumdar and S. K. Samanta, On similarity and entropy of neutrosophic sets, Journal of
Intelligent and Fuzzy Systems 26 (3) (2014) 1245–1252.

[10] Nancy and H. Garg, Improved Score Function for Ranking Neutrosophic Set and Its Applica-
tion to Decision-Making Process, International Journal for Uncertainty Quantification, 6 (5)

(2016) 377–385.

[11] Nancy and H. Garg, A novel divergence measuure and its based TOPSIS method for multi-
criteria decision-making under single-valued neutrosophic environment, Journal of Intelligent

and Fuzzy Systems 36 (1 (2019)) 101–115.

[12] D. Rani and H. Garg, Some modified results of the subtraction and division operations on
interval neutrosophic set, Journal of Experimental and Theoretical Artificial Intelligence 2019.

[13] F. Smarandache, Neutrosophy. Neutrosophic Probability, Set, and Logic, ProQuest Informa-

tion and Learning, Ann Arbor, Michigan, USA 105 p. 1998.
[14] F. Smarandache, Neutrosophy, a new Branch of Philosophy, Multiple Valued Logic 8 (3) (2002)

297–384.
[15] F. Smarandache, Neutrosophic set-a generialization of the intuitionistics fuzzy sets, Int J Pure

Appl Math. 24 (3) (2005) 287–297.
[16] F. Smarandache, Neutrosophic set-a generialization of the intuitionistics fuzzy sets, Int. J.

Pure. Appl. Math. 24 (3) (2005) 287–297.

[17] H. Wang, F. Smarandache, Y. Q. Zhang and R. Sunderraman, Single valued neutrosophic sets,

Multisp Multistruct 4 (2010) 410–413.
[18] J. Ye, Cosine similarity measures for intuitionistic fuzzy sets and their applications, Mathe-

matical and Computer Modelling 53 (1-2) (2011) 91–97.
[19] J. Ye, Multicriteria decision-making method using the Dice similarity measure based on the

reduct intuitionistic fuzzy sets of interval-valued intuitionistic fuzzy sets, Applied Mathemat-

ical Modelling 36 (2012) 4466–4472.

58



Wang and Qin /Ann. Fuzzy Math. Inform. 19 (2020), No. 1, 45–59

[20] J. Ye, Multicriteria group decision-making method using vector similarity measures for trape-
zoidal intuitionistic fuzzy numbers, Group Decision and Negotiation 21 (2013) 519–530.

[21] J. Ye, Vector Similarity Measures of Simplified Neutrosophic Sets and Their Application in
Multicriteria Decision Making, International Journal of Fuzzy Systems 16 (2) (2014) 204–211.

[22] J. Ye, Single-Valued Neutrosophic Clustering Algorithms Based on Similarity Measures, Jour-

nal of Classification 34 (2017) 148–162.
[23] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.

[24] X. H. Zhang, C. X. Bo, F. Smarandache and J. H. Dai, New inclusion relation of neutrosophic

sets with applications and related lattice structure, International Journal of Machine Learning
and Cybernetics 9 (11) (2018) 1–11.

[25] X. H. Zhang, C. X. Bo, F. Smarandache and C. Park, New operations of totally dependent-

neutrosophic sets and totally dependent-neutrosophic soft sets, Symmetry 10 (2018) 187.

Xiaoman Wang (1763730416@qq.com) College of Mathematics, Southwest Jiao-
tong University, postal code 610031, Sichuan, China

Keyun Qin (keyunqin@263.net) College of Mathematics, Southwest Jiaotong Uni-
versity, postal code 610031, Sichuan, China

59


	Relationships among several similarity measures of single-valued neutrosophic sets. By 
	Relationships among several similarity measures of single-valued neutrosophic sets. By 

