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Abstract. Various relations of fuzzy types has been applied to deci-
sion makings, graph theories, congruence problems in algebras and quotient
spaces in topological spaces, etc. Then in this paper, we deal with cubic
relations as one of various fuzzy type’s relations. First, we define a cubic
point and obtained some of its properties. Second, we introduce the no-
tions of cubic reflexive [resp. symmetric and transitive] relations, and we
define the composition of two cubic relations and the inverse of a cubic
relation. And investigate some of each properties and give some examples.
Third, we define the concepts of cubic equivalence relations, cubic equiv-
alence classes and cubic partitions, and obtain some of each properties,
respectively. Finally, we define a < ã, α >-level relation of a cubic relation
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1. Introduction

In 1971, Zadeh [29] studied a fuzzy relation by using the concept of fuzzy sets
introduced by himself [28] as the generalization of an ordinary set. After that time,
many researchers [3, 4, 5, 6, 8, 10, 20] investigated variously fuzzy relations.

In 2012, Jun et al. [14] introduced the concept of a cubic set. After then, Kang and
Kim [19] defined a mapping of cubic set and studied some of its properties. Jun et
al. [13] studied cubic subgroups. Zhan et al. [21] investigated Hv-LA-semigroups by
using cubic sets. Jun and Khan [12] studied cubic ideals in semigroups. Senapati et
al. [26] investigated cubic subalgebras and ideals of B-algebras (Refer to [1, 2]). Jun
and Lee [15] studied cubic ideals in BCK/BCI-algebras (See additionally [16, 18]).
Yaqoob et al. [27] investigated cubic KU -ideals of KU -algebras. Chinnadurai et
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al. [7] dealt with some characterizations of cubic sets. Zeb et al. [31] defined a
cubic topology and investigated some of its properties. Rashid et al. [22] dealt with
decision-making problems by using cubic sets. Smarandache et al. [18] extended the
concept of cubic sets to neutrosophic sets and studied some of its properties.

Various relations of fuzzy types has been applied to decision makings, graph the-
ories, congruence problems in algebras and quotient spaces in topological spaces,
etc. Then in this paper, we deal with cubic relations as one of various fuzzy type’s
relations. First, we define a cubic point and obtained some of its properties. Sec-
ond, we introduce the concepts of cubic reflexive [resp. symmetric and transitive]
relations, and we define the composition of two cubic relations and the inverse of
a cubic relation. And we study some of each properties and give some examples.
Third, we define the notions of cubic equivalence relations, cubic equivalence classes
and cubic partitions, and obtain some of each properties, respectively (In particular,
see Corollary 5.13 and Proposition 5.14). Finally, we define a < ã, α >-level relation
of a cubic relation and investigate some of its properties.

2. Preliminaries

In this section, we list some basic definitions needed in the next sections (See
[9, 11, 14, 23, 24, 25, 28, 29, 30]). Throughout this paper, I denotes the closed unit
interval [0, 1].

Definition 2.1 ([28]). Let X be a nonempty set. Then a a mapping λ : X → I
is called a fuzzy set in X. The collection of all fuzzy sets in X is denoted by IX .
In particular, 0 and 1 denote the fuzzy empty set and the fuzzy whole set in X,
respectively.

Definition 2.2 ([28]). Let λ, µ ∈ IX and let (λj)j∈J be any family of fuzzy sets in
X. Then the inclusion of λ and µ, denoted by λ ≤ µ, the union and the intersection
of λ and µ, denoted by λ ∧ µ and λ ∨ µ, the union and the intersection of (λj)j∈J ,
denoted by

∧
j∈J λj and

∨
j∈J λj , and the complement of λ, denoted by λc are

defined as follows, respectively: for each x ∈ X,
(i) λ ≤ µ⇐⇒ λ(x) ≤ µ(x),
(ii) (λ ∧ µ)(x) = λ(x) ∧ µ(x), (λ ∨ µ)(x) = λ(x) ∨ µ(x),
(iii) (

∧
j∈J λj)(x) =

∧
j∈J λj(x), (

∨
j∈J λj)(x) =

∨
j∈J λj(x),

(iv) λc(x) = 1− λ(x).

Definition 2.3 ([23]). λ ∈ IX is called a fuzzy point with the support x ∈ X and
the value α ∈ I with α > 0, denoted by λ = xα, if for each y ∈ X,

xα =

{
α if y = x
0 otherwise.

The set of all fuzzy points in X is denoted by FP (X).

For each xα ∈ FP (X) and λ ∈ IX , xα is said to belong to λ, denoted by xα ∈ λ,
if α ≤ λ(x).

It is clear that λ =
⋃
xα∈λ xα, for each λ ∈ IX .

Definition 2.4 ([29]). Let X, Y be any sets. Then λ ∈ IX×Y is called a fuzzy
relation from X to Y . In particular, λ ∈ IX×X is called a fuzzy relation on X.
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Definition 2.5 ([29]). Let λ, µ ∈ IX×X . Then the composition of λ and µ, denoted
by µ ◦λ and the inverse f λ, denoted by λ−1, are defined as follows, respectively: for
each (x, y) ∈ X ×X,

(i) (µ ◦ λ)(x, y) =
∨
z∈X [λ(x, z) ∧ µ(z, y)],

(ii) λ−1(x, y) = λ(y, x).

Definition 2.6 ([29]). λ ∈ IX×X is called a fuzzy equivalence relation on X, if
(i) it is reflexive, i.e., λ(x, x) = 1 for each x ∈ X,
(ii) it is symmetric, i.e., λ−1 = λ,
(iii) it is transitive, i.e., λ ◦ λ ≤ λ.
We denote the set of all fuzzy equivalence relations on X as FRE(X).
For any λ ∈ FRE(X) and for any a ∈ X, the fuzzy equivalence class of a by λ,

denoted by λa, is a fuzzy set in X defined as follows: for each x ∈ X,

λa(x) = λ(a, x).

The set of all closed subintervals of I is denoted by [I] (See [14]), and members of

[I] are called interval numbers and are denoted by ã, b̃, c̃, etc., where ã = [a−, a+]
and 0 ≤ a− ≤ a+ ≤ 1. In particular, if a− = a+, then we write as ã = a.

We define relations �, � and = on [I] as follows:

(∀ ã, b̃ ∈ [I])(ã � b̃⇐⇒ a− ≥ b− and a+ ≥ b+),

(∀ ã, b̃ ∈ [I])(ã � b̃⇐⇒ a− ≤ b− and a+ ≤ b+),

(∀ ã, b̃ ∈ [I])(ã = b̃⇐⇒ ã � b̃ and ã � b̃), i.e.,
(∀ ã, b̃ ∈ [I])(ã = b̃⇐⇒ a− = b− and a+ = b+).

To say ã � b̃ (resp. ã ≺ b̃), we mean ã � b̃ and ã 6= b̃ (resp. ã � b̃ and ã 6= b̃).

For any ã, b̃ ∈ [I], their minimum and maximum, denoted by ã∧̆b̃ and ã∨̆b̃ are
defined as follows:

ã∧̆b̃ = [a− ∧ b−, a+ ∧ b+],

ã∨̆b̃ = [a− ∨ b−, a+ ∨ b+].

Let (ãj)j∈J ⊂ [I]. Then its inf and sup, denoted by
∧̆
j∈J ãj and

∨̆
j∈J ãj , are

defined as follows: ∧̆
j∈J

ãj = [
∧
j∈J

a−j ,
∧
j∈J

a+
j ],

∨̆
j∈J

ãj = [
∨
j∈J

a−j ,
∨
j∈J

a+
j ].

For each ã ∈ [I], its complement, denoted by ãc, is defined as follows:

ãc = [1− a+, 1− a−].

Definition 2.7 ([9, 24, 30]). Let X be a nonempty set. Then a mapping A : X → [I]
is called an interval-valued fuzzy set (briefly, an IVF set) in X. Let [I]X denote the
set of all IVF sets in X. For each A ∈ [I]X and x ∈ X, A(x) = [A−(x), A+(x)] is
called the degree of membership of an element x to A, where A−, A+ ∈ IX are called
a lower fuzzy set and an upper fuzzy set in X, respectively. For each A ∈ [I]X , we

write A = [A−, A+]. In particular, 0̃ and 1̃ denote the interval-valued fuzzy empty
23
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set and the interval-valued fuzzy whole set in X, respectively. We define relations
⊂ and = on [I]X as follows:

(∀ A, B ∈ [I]X)(A ⊂ B ⇐⇒ (x ∈ X)(A(x) . B(x)),

(∀ A, B ∈ [I]X)(A = B ⇐⇒ (x ∈ X)(A(x) = B(x)).

Definition 2.8 ([9, 24, 30]). Let X be a nonempty set, let A ∈ [I]X and let (Aj)j∈J
be any subfamily of [I]X . Then the complement of A, denoted by Ac, and the

intersection and the union of (Aj)j∈J , denoted by
⋂̆
j∈JAj and

⋃̆
j∈JAj are defined

as follows, respectively: for each x ∈ X,

Ac(x) = [1−A+(x), 1−A−(x)],

(
⋂̆

j∈J
Aj)(x) =

∧̆
j∈J

Aj(x),

(
⋃̆

j∈J
Aj)(x) =

∨̆
j∈J

Aj(x).

Definition 2.9 ([24]). A ∈ [I]X is called an interval-valued fuzzy point (briefly, an
IVF point) with the support x ∈ X and the value ã ∈ [I] with a+ > 0, denoted by
A = xã, if for each y ∈ X,

xã =

{
ã if y = x
0 otherwise.

The set of all IVF points in X is denoted by IV FP (X).

For each xã ∈ IV FP (X) and A ∈ [I]X , xã is said to belong to A, denoted by
xã ∈ A, if ã . A(x).

It is clear that A =
⋃
xã∈A xã, for each A ∈ [I]X .

Definition 2.10 ([25]). For two sets X, Y , R ∈ [I]X×Y is called an interval-valued
fuzzy relation (briefly, IVF relation) from X to Y . In particular, R ∈ [I]X×X is
called an IVF relation on X.

Definition 2.11 ([25]). For each R ∈ [I]X×X , the inverse of R, denoted by R−1,
defined as follows: (x, y) ∈ X ×X,

R−1(x, y) = R(y, x).

Definition 2.12 ([11]). For any R, S ∈ [I]X×X , the composition of R and S,
denoted by S ◦R, is defined as follows: for each (x, y) ∈ X ×X,

(S ◦R)(x, y) =
∨̆

z∈X
[R(x, z)∧̆S(z, y)].

Definition 2.13 ([11]). R ∈ [I]X×X is called an interval-valued fuzzy equivalence
relation on X, if

(i) it is reflexive, i.e., R(x, x) = 1 for each x ∈ X,
(ii) it is symmetric, i.e., R−1 = R,
(iii) it is transitive, i.e., R ◦R ⊂ R.
We denote the set of all fuzzy equivalence relations on X as IV RE(X).
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For any R ∈ IV RE(X) and for any a ∈ X, the fuzzy equivalence class of a by
R, denoted by Ra, is an interval-valued fuzzy set in X defined as follows: for each
x ∈ X,

Ra(x) = R(a, x).

Definition 2.14 ([14]). Let X be a nonempty set. Then a complex mapping A =<
A, λ >: X → [I]× I is called a cubic set in X.

A cubic set A =< A, λ > in which A(x) = 0 and λ(x) = 1 (resp. A(x) = 1 and
λ(x) = 0) for each x ∈ X is denoted by 0̈ (resp. 1̈).

A cubic set B =< B,µ > in which B(x) = 0 and µ(x) = 0 (resp. B(x) = 1 and

µ(x) = 1) for each x ∈ X is denoted by 0̂ (resp. 1̂). In this case, 0̂ (resp. 1̂) will be
called a cubic empty (resp. whole) set in X.

We denote the set of all cubic sets in X as ([I]× I)X .

Definition 2.15 ([14]). Let X be a nonempty set and let A =< A, λ >∈ ([I]×I)X .
Then A is called :

(i) an internal cubic set (briefly, ICS) in X, if A−(x) ≤ λ(x) ≤ A+(x) for each
x ∈ X,

(ii) an external cubic set (briefly, ECS) in X, if λ(x) 6∈ (A−(x), A+(x)) for each
x ∈ X.

3. Cubic points

In this section, we obtain further properties of operations on cubic sets. Next, we
define a cubic point and study some of its properties.

Definition 3.1 ([14]). Let A =< A, λ >, B =< B,µ >∈ ([I]×I)X . Then we define
the following relations:

(i) (Equality) A = B ⇔ A = B and λ = µ,
(ii) (P-order) A < B ⇔ A ⊂ B and λ ≤ µ,
(iii) (R-order) A b B ⇔ A ⊂ B and λ ≥ µ

Definition 3.2 ([14]). Let A =< A, λ >, B =< B,µ >∈ ([I] × I)X and let
(Aj)j∈J = (< Aj , λj >)j∈J ⊂ ([I] × I)X . Then the complement Ac of A, P-
union t, P-intersection u, R-union d and R-intersection e are defined as follows,
respectively: for each x ∈ X,

(i) (Complement) Ac(x) =< Ac(x), λc(x) >,
(ii) (P-union) (A t B)(x) =< (A∪̆B)(x), (λ ∨ µ)(x) >,

(tj∈JAj)(x) =< (
⋃̆
j∈JAj)(x), (

∨
j∈J λj)(x) >,

(iii) (P-intersection) (A u B)(x) =< (A∩̆B)(x), (λ ∧ µ)(x) >,

(uj∈JAj)(x) =< (
⋂̆
j∈JAj)(x), (

∧
j∈J λj)(x) >,

(iv) (R-union) (A d B)(x) =< (A∪̆B)(x), (λ ∧ µ)(x) >,

(dj∈JAj)(x) =< (
⋃̆
j∈JAj)(x), (

∧
j∈J λj)(x) >,

(v) (R-intersection) (A e B)(x) =< (A∩̆B)(x), (λ ∨ µ)(x) >,

(ej∈JAj)(x) =< (
⋂̆
j∈JAj)(x), (

∨
j∈J λj)(x) >.

It is well-known [14] that the followings hold:
(1) 0̌c = 1̌, 1̌c = 0̌, 0̈c = 1̈ and 1̈c = 0̈,
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(2) for each A ∈ ([I]× I)X , (Ac)c = A,
(3) for any (Aj)j∈J ⊂ ([I]× I)X ,

(tj∈JAj)c = uj∈JAcj , (uj∈JAj)c = tj∈JAcj ,

(dj∈JAj)c = ej∈JAcj , (ej∈JAj)c = dj∈JAcj .

Remark 3.3. For any A =< A, λ >∈ ([I] × I)X , A t Ac 6= 1̌ and A u Ac 6= 0̌,
in general. Let A =< 0.5, 0.5 >. Then clearly, A t Ac =< 0.5, 0.5 > 6= 1̌ and
A uAc =< 0.5, 0.5 > 6= 0̌.

The followings are the immediate results of Definition 3.2.

Proposition 3.4. Let A =< A, λ >, B =< B,µ >, C =< C, ν >∈ ([I] × I)X , let
(Aj)j∈J = (< Aj , λj >)j∈J ⊂ ([I]× I)X .

(1) A tA = A, A uA = A, A dA = A, A eA = A.
(2) A t B = B t A, A u B = B u A, A d B = B dA, A e B = B eA.
(3) A t (B t C) = (A t B) t C, A u (B u C) = (A u B) u C,
A d (B d C) = (A d B) d C, A e (B e C) = (A e B) e C.

(4) A t (B u C) = (A t B) u (A t C), A u (B t C) = (A u B) t (A u C),
A d (B e C) = (A d B) e (A d C), A e (B d C) = (A e B) d (A e C).

(4)
′ A t (uj∈JAj) = uj∈J(A tAj), A u (tj∈JAj) = tj∈J(A uAj),
A d (ej∈JAj) = ej∈J(A dAj), A e (dj∈JAj) = dj∈J(A eAj).

From the above Proposition 3.4, we can see that (([I] × I)X ,t,u, 0̆, 1̆) forms a
Boolean algebra except the property of Remark 3.3.

Definition 3.5. Let A =< A, λ >∈ ([I]×I)X , let ã ∈ [I] with a+ > 0 and let α ∈ I
with α > 0. Then A =< A, λ > is called a cubic point in X with the support x ∈ X
and the value < ã, α >, denoted by x<ã,α>, if for each y ∈ X,

x<ã,α> =

{
< ã, α > if y = x
< 0, 0 > otherwise.

The set of all cubic points in X is denoted by CP (X).

Definition 3.6. Let x<ã,α> ∈ CP (X) and let A =< A, λ >∈ ([I]× I)X .
(i) x<ã,α> is said to belong to A by P-order type, denoted by x<ã,α> ∈P A, if

ã � A(x) and α ≤ λ(x), i.e., xã ∈ A and xα ∈ λ.
(ii) x<ã,α> is said to belong to A by R-order type, denoted by x<ã,α> ∈R A, if

ã � A(x) and α ≥ λ(x), i.e., xã ∈ A and x1−α ∈ λc.

Theorem 3.7. Let x<ã,α> ∈ CP (X) and let A =< A, λ >, B =< B,µ >∈ ([I] ×
I)X .

(1) A < B if and only if x<ã,α> ∈P B, for each x<ã,α> ∈P A.
(2) A b B if and only if x<ã,α> ∈R B, for each x<ã,α> ∈R A.

Proof. (1) Suppose A < B and let x<ã,α> ∈P A. Then ã � A(x) and α ≤ λ(x).
Since A < B, A ⊂ B and λ ≤ µ. Thus A(x) - B(x) and λ(x) ≤ µ(x). So ã � B(x)
and α ≤ µ(x). Hence x<ã,α> ∈P B.

The converse is straightforward.
(2) The proof is similar to (1). �
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Proposition 3.8. Let A =< A, λ >, B =< B,µ >∈ ([I] × I)X , let (Aj)j∈J = (<
Aj , λj >)j∈J ⊂ ([I]× I)X and let x<ã,α> ∈ CP (X).

(1) If x<ã,α> ∈P A or x<ã,α> ∈P B, then x<ã,α> ∈P A t B.

(1)
′

If there is j ∈ J such that x<ã,α> ∈P Aj, then x<ã,α> ∈P tj∈JAj.
(2) If x<ã,α> ∈R A or x<ã,α> ∈R B, then x<ã,α> ∈R A d B.

(2)
′

If there is j ∈ J such that x<ã,α> ∈R Aj, then x<ã,α> ∈R dj∈JAj.

Proof. (1) Suppose x<ã,α> ∈P A or x<ã,α> ∈P B. Then xã ∈ A and xα ∈ λ or
xã ∈ B and xα ∈ µ. Thus ã � (A∪̆B)(x) and α ≤ (λ ∨ µ)(x). So x<ã,α> ∈P A t B.

(1)
′

Suppose x<ã,α> ∈P Aj , for some j ∈ J . Then xã ∈ Aj and xα ∈ λj , for some

j ∈ J . Thus ã � Aj(x) and α ≤ λj(x). So ã �
∨̆
j∈JAj(x) and α ≤

∨
j∈j λj(x).

Hence xã ∈ (
⋃̆
j∈JAj)(x) and xα ∈ (

∨
j∈j λj)(x). Therefore x<ã,α> ∈P tj∈JAj .

(2) Suppose x<ã,α> ∈R A or x<ã,α> ∈R B. Then xã ∈ A and x1−α ∈ λc or xã ∈ B
and x1−α ∈ µc. Thus ã ∈ (A∪̆B)(x) and 1− α ≤ (λ ∧ µ)c(x). So x<ã,α> ∈R A d B.

(2)
′

Suppose x<ã,α> ∈R Aj , for some j ∈ J . Then xã ∈ Aj and x1−α ∈ λcj , for

some j ∈ J . Thus ã � Aj(x) and 1 − α ≤ λcj(x). So ã �
∨̆
j∈JAj(x) and 1 − α ≤

(
∧
j∈j λj)

c(x). Hence xã ∈ (
⋃̆
j∈JAj)(x) and x1−α ∈ (

∧
j∈j λj)

c(x). Therefore
x<ã,α> ∈R dj∈JAj . �

The converse of Proposition 3.8 need not to be true in general as shown in the
following example.

Example 3.9. Let X = {a, b, c} and let A, B be two IVF sets in X defined by:

A(a) = [0.3, 0.9], A(b) = [0.2, 0.6], A(c) = [0.4, 0.8]

and

B(a) = [0.5, 0.7], B(b) = [0.4, 0.8], B(c) = [0.3, 0.6].

Let λ, µ be two fuzzy sets in X given by:

λ(a) = 0.4, λ(b) = 0.5, λ(c) = 0.7; µ(a) = 0.6, µ(b) = 0.8, µ(c) = 0.6.

Then we can easily check that A =< A, λ >, B =< B,µ >∈ ([I]×I)X . Consider the
cubic point a<ã,α>, where ã = [0.4, 0.8] and α = 0.5. Then clearly, a<ã,α> ∈P AtB
but a<ã,α> 6∈P A and a<ã,α> 6∈P B. Also we can easily check that a<ã,α> ∈R AtB
but a<ã,α> 6∈R A and a<ã,α> 6∈R B.

Theorem 3.10. Let A =< A, λ >, B =< B,µ >∈ ([I] × I)X , let (Aj)j∈J = (<
Aj , λj >)j∈J ⊂ ([I]× I)X and let x<ã,α> ∈ CP (X).

(1) x<ã,α> ∈P A u B if and only if x<ã,α> ∈P A and x<ã,α> ∈P B.

(1)
′
x<ã,α> ∈P uj∈JAj if and only if x<ã,α> ∈P Aj, for each j ∈ J .

(2) x<ã,α> ∈R A e B if and only if x<ã,α> ∈R A and x<ã,α> ∈R B.

(2)
′
x<ã,α> ∈R ej∈JAj if and only if x<ã,α> ∈R Aj, for each j ∈ J .

Proof. We will prove only (1). Suppose x<ã,α> ∈P A u B. Then xã ∈P A∩̆B and
xα ∈ λ ∧ µ. Thus ã � (A∩̆B)(x) = A(x)∧̆B(x) and α ≤ λ(x) ∧ µ(x). So ã �
A(x), α ≤ λ(x) and ã � B(x), α ≤ µ(x). Hence x<ã,α> ∈P A and x<ã,α> ∈P B.
The proof of the converse is easy. �

27



Kim et al./Ann. Fuzzy Math. Inform. 19 (2020), No. 1, 21–43

4. Cubic relations

In this section, we define a cubic relation and introduce P-order, R-order, P-
intersection, R-intersection, P-union and R-union of any two cubic relations. Also
we define the inverse of a cubic relation and the composition of two cubic relations,
and we obtain some of each properties and give some examples.

Definition 4.1. Let X, Y be two sets. Then R =< R, λ > is called a cubic relation
from X to Y , if R ∈ [I]X×Y , i.e., R is an interval-valued fuzzy relation (briefly, IVF
relation) from X to Y and λ ∈ IX×Y , i.e., λ is a fuzzy relation from X to Y .

A cubic relation R =< R, λ > in which R(x, y) = 0 and λ(x, y) = 1 (resp.
R(x, y) = 1 and λ(x, y) = 0) for each (x, y) ∈ X × Y is denoted by 0̈ (resp. 1̈).

A cubic relation S =< S, µ > in which S(x, y) = 0 and µ(x, y) = 0 (resp.

S(x, y) = 1 and µ(x, y) = 1) for each (x, y) ∈ X × Y is denoted by 0̂ (resp. 1̂). In

this case, 0̂ (resp. 1̂) will be called a cubic empty (resp. whole) relation from X to
Y .

We will denote the set of all cubic relation from X to Y as ([I] × I)X×Y . If
R =< R, λ >∈ ([I]× I)X×X , R is called a cubic relation in (or on) X.

Example 4.2. Let X = {a, b, c} be a set, let R be the IVF relation and λ be the
fuzzy relation on X given, respectively by the following tables:

R a b c
a [0.3, 0.7] [0.4, 0.8] [0.1, 0.6]
b [0.1, 0.6] [0, 1] [0.2, 0.5]
c [0.4, 0.9] [0.3, 0.8] [0, 1]

Table 4.1

λ a b c
a 0.6 0.4 0.7
b 0.8 0.5 0.9
c 0.4 0.7 0.6

Table 4.2

Then clearly, R =< R, λ > is a cubic relation on X.

Since cubic relations are cubic sets, we have the following definitions.

Definition 4.3. Let X, Y be two sets and let R =< R, λ >, S =< S, µ >∈
([I]× I)X×Y . Then we define the following relations:

(i) (Equality) R = S ⇔ R = S and λ = µ,
(ii) (P-order) R < S ⇔ R ⊂ S and λ ≤ µ,
(iii) (R-order) R b S ⇔ R ⊂ S and λ ≥ µ

Definition 4.4. Let X, Y be two sets and let R =< R, λ >, S =< S, µ >∈ ([I]×
I)X×Y and let (Rj)j∈J = (< Rj , λj >)j∈J ⊂ ([I] × I)X×Y . Then the complement
Rc of R, P-union t, P-intersection u, R-union d and R-intersection e are defined
as follows, respectively: for each (x, y) ∈ X × Y ,
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(i) (Complement) Rc(x, y) =< Rc(x, y), λc(x, y) >,
(ii) (P-union) (Rt S)(x, y) =< (R∪̆S)(x, y), (λ ∨ µ)(x, y) >,

(tj∈JRj)(x, y) =< (
⋃̆
j∈JRj)(x, y), (

∨
j∈J λj)(x, y) >,

(iii) (P-intersection) (Ru S)(x, y) =< (R∩̆S)(x, y), (λ ∧ µ)(x, y) >,

(uj∈JRj)(x, y) =< (
⋂̆
j∈JRj)(x, y), (

∧
j∈J λj)(x, y) >,

(iv) (R-union) (R d S)(x, y) =< (R∪̆S)(x, y), (λ ∧ µ)(x, y) >,

(dj∈JRj)(x, y) =< (
⋃̆
j∈JRj)(x, y), (

∧
j∈J λj)(x, y) >,

(v) (R-intersection) (R e S)(x) =< (R∩̆S)(x, y), (λ ∨ µ)(x, y) >,

(ej∈JRj)(x, y) =< (
⋂̆
j∈JRj)(x, y), (

∨
j∈J λj)(x, y) >.

We can easily see that the followings hold:
(1) 0̌c = 1̌, 1̌c = 0̌, 0̈c = 1̈ and 1̈c = 0̈,
(2) for each R ∈ ([I]× I)X×Y , (Rc)c = R,
(3) for any (Rj)j∈J ⊂ ([I]× I)X×Y ,

(tj∈JRj)c = uj∈JRcj , (uj∈JRj)c = tj∈JRcj ,
(dj∈JRj)c = ej∈JRcj , (ej∈JRj)c = dj∈JRcj ,

(4) we have the similar properties to Proposition 3.4 in ([I]× I)X×Y .

Definition 4.5. LetR =< R, λ >∈ ([I]×I)X×Y . Then the inverse ofR =< R, λ >,
denoted by R−1 =< R−1, λ−1 >, is a cubic relation from Y to X defined as follows:
for each (x, y) ∈ X × Y ,

R−1(x, y) = R(y, x), i.e., R−1(x, y) = R(y, x) and λ−1(x, y) = λ(y, x).

The followings are the immediate results of Definitions 4.4 and 4.5.

Proposition 4.6. Let R =< R, λ >, S =< S, µ >∈ ([I]× I)X×Y .
(1) If R < S, then R−1<S−1.
(2) If R b S, then R−1 b S−1.
(3) (R−1)−1 = R.
(4) (Rt S)−1 = R−1 u S−1, (Ru S)−1 = R−1 t S−1.
(5) (R d S)−1 = R−1 e S−1, (R e S)−1 = R−1 d S−1.

Definition 4.7. LetR =< R, λ >∈ ([I]×I)X×Y and let S =< S, µ >∈ ([I]×I)Y×Z .
Then the P-composition of R and S, denoted by S ◦P R, is a cubic relation from X
to Z defined by: for each (x, z) ∈ X × Z,

(S ◦P R)(x, z) = ty∈Y [R(x, y) u S(y, z)]

=<
∨̆
y∈Y [R(x, y)∧̆S(y, z)],

∨̆
y∈Y [λ(x, y)∧̆µ(y, z)] > .

Example 4.8. Let X = {a, b, c} be a set, let R =< R, λ > and S =< S, µ > be the
cubic relations on X given, respectively by the following tables:

R a b c
a < [0.3, 0.7], 0.6 > < [0.4, 0.8], 0.4 > < [0.1, 0.6], 0.7 >
b < [0.1, 0.6], 0.8 > < [0, 1], 0.5 > < [0.2, 0.5], 0.9 >
c < [0.4, 0.9], 0.4 > < [0.3, 0.8], 0.7 > < [0, 1], 0.6 >

Table 4.3

Then we can easily check that S ◦P R has the following table:
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S a b c
a < [0.4, 0.8], 0.9 > < [0.2, 0.6], 0.7 > < [0.2, 0.6], 0.8 >
b < [0.3, 0.6], 0.7 > < [0.2, 0.7], 0.5 > < [0.4, 0.8], 0.9 >
c < [0.3, 0.8], 0.4 > < [0.4, 0.7], 0.6 > < [0.1, 0.6], 0.6 >

Table 4.4

S ◦P R a b c
a < [0.3, 0.7], 0.6 > < [0.2, 0.7], 0.6 > < [0.4, 0.8], 0.6 >
b < [0.2, 0.6], 0.8 > < [0.2, 0.7], 0.7 > < [0.1, 0.8], 0.8 >
c < [0.4, 0.8], 0.7 > < [0.2, 0.7], 0.6 > < [0.3, 0.8], 0.7 >

Table 4.5

The followings are the immediate results of Definitions 4.3, 4.4, 4.5, 4.5 and 4.7.

Proposition 4.9. Let R =< R, λ >, S =< S, µ > and T =< T, ν > be cubic
relations and suppose each composition holds. Then

(1) T ◦P (S ◦P R) = (T ◦P S) ◦P R,
(2) T ◦P (Rt S) = (T ◦P R) t (T ◦P S), T ◦P (Ru S) = (T ◦P R) u (T ◦P S),
(3) If R < S, then T ◦P R ⊂ T ◦P S,
(4) (S ◦P R)−1 = R−1 ◦P S−1.

Definition 4.10. Let R =< R, λ >∈ ([I]× I)X×X . Then R is said to be:
(i) reflexive, if R(x, x) =< 1, 1 >, for each x ∈ X,
(ii) irreflexive, if R(x, x) =< 0, 0 >, for each x ∈ X,
(iii) symmetric, if R−1(x, y) = R(x, y), for each (x, y) ∈ X ×X,
(iv) antisymmetric, if for each (x, y) ∈ X×X, R(x, y) 6=< 0, 0 > and R(y, x) 6=<

0, 0 >, then x = y,
(v) transitive, if R ◦P R < R.

Example 4.11. Let X = {a, b, c}.
(1) Let R1 =< R1, λ1 > be a cubic relation on X given by the following table:

R1 a b c
a < 1, 1 > < [0.4, 0.8], 0.4 > < [0.1, 0.6], 0.7 >
b < [0.1, 0.6], 0.8 > < 1, 1 > < [0.2, 0.5], 0.9 >
c < [0.4, 0.9], 0.4 > < [0.3, 0.8], 0.7 > < 1, 1 >

Table 4.6

Then clearly, R1 is reflexive.
(2) Let R2 =< R2, λ2 > be a cubic relation on X given by the following table:

R2 a b c
a < 0, 0 > < [0.4, 0.8], 0.4 > < [0.1, 0.6], 0.7 >
b < [0.1, 0.6], 0.8 > < 0, 0 > < [0.2, 0.5], 0.9 >
c < [0.4, 0.9], 0.4 > < [0.3, 0.8], 0.7 > < 0, 0 >

Table 4.7

Then clearly, R2 is irreflexive.
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(3) Let R3 =< R3, λ3 > be a cubic relation on X given by the following table:

R3 a b c
a < 1, 1 > < [0.1, 0.6], 0.8 > < [0.1, 0.6], 0.7 >
b < [0.1, 0.6], 0.8 > < 1, 1 > < [0.3, 0.8], 0.7 >
c < [0.1, 0.6], 0.7 > < [0.3, 0.8], 0.7 > < 1, 1 >

Table 4.8

Then clearly, R3 is reflexive and symmetric.
(4) Let R4 =< R4, λ4 > be a cubic relation on X given by the following table:

R4 a b c
a < 1, 1 > < [0.3, 0.8], 0.7 > < [0.1, 0.7], 0.7 >
b < [0.1, 0.6], 0.8 > < 1, 1 > < [0.1, 0.7], 0.9 >
c < [0.4, 0.9], 1 > < [0.3, 0.8], 0.7 > < 1, 1 >

Table 4.9

Then we can easily check that R4 is reflexive and transitive.

Definition 4.12. The cubic identity relation on a set X, denoted by IX (in short,
I), is a cubic relation on X defined by: for each (x, y) ∈ X ×X,

I(x, y) =

{
< 1, 1 > if x = y
< 0, 0 > if x 6= y.

It is clear that I = I−1 and R is symmetric if and only if R = R−1, for each
R =< R, λ >∈ [I]X×X .

From the above Definition and Definition 4.10 (i), it is obvious that if R is reflex-
ive, then I < R.

The following is the immediate result of Definitions 4.4 and 4.10.

Proposition 4.13. Let R =< R, λ >, S =< S, µ >∈ ([I]× I)X×X .
(1) R is reflexive [resp. irreflexive] if and only if R−1 is reflexive [resp. irreflex-

ive].
(2) If R is reflexive, then Rt S is reflexive.
(3) If R is irreflexive, then Rt S is irreflexive if and only if S is irreflexive.
(4) If R is reflexive, then Ru S is reflexive if and only if S is reflexive.
(5) If R is irreflexive, then Ru S is irreflexive.

Proposition 4.14. Let R =< R, λ >, S =< S, µ >∈ ([I] × I)X×X . If R and S
are reflexive, then so S ◦P R.

Proof. Let x ∈ X. Then by the hypothesis,

(S ◦P R)(x, x) =<
∨̆

y∈X
[R(x, y)∧̆S(y, x)],

∨
y∈X

[λ(x, y) ∧ µ(y, z)] > .

On the other hand,∨̆
y∈X [R(x, y)∧̆S(y, x) � R(x, x)∧̆S(x, x)

= 1
and
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∨
y∈X [λ(x, y) ∧ µ(y, z) ≥ λ(x, x) ∧ µ(x, x)

= 1.
Thus (S ◦P R)(x, x) =< 1, 1 > . So S ◦P R is reflexive. �

The following is the immediate result of Definition 4.10 and Proposition 4.6 (4)
and (5).

Proposition 4.15. Let R =< R, λ >, S =< S, µ >∈ ([I] × I)X×X . If R and S
are symmetric, then RtR, RuR, R dR and R eR are symmetric.

Remark 4.16. R and S are symmetric but S ◦P R is not symmetric, in general

Example 4.17. Let X = {a, b, c}. Consider two cubic relations R =< R, λ > and
S =< S, µ > on X given by:

R a b c
a < [0.3, 0.6], 0.6 > < [0.2, 0.7], 0.8 > < [0.1, 0.5], 0.7 >
b < [0.2, 0.7], 0.8 > < [0.5, 1], 0.4 > < [0.3, 0.7], 0.8 >
c < [0.1, 0.5], 0.7 > < [0.3, 0.7], 0.8 > < [0.2, 0.6], 0.6 >

Table 4.10

S a b c
a < [0.2, 0.5], 0.6 > < [0.3, 0.7], 0.6 > < [0.4, 0.8], 0.9 >
b < [0.3, 0.7], 0.6 > < 1, 1 > < [0.2, 0.8], 0.7 >
c < [0.4, 0.8], 0.9 > < [0.2, 0.8], 0.7 > < [0.3, 0.5], 0.6 >

Table 4.11

Then clearly, R and S are symmetric. But

(S ◦P R)(b, c) =< [0.3, 0.8], 0.8 > 6=< [0.3, 0.7], 0.8 >= (S ◦P R)(c, b).

Thus S ◦P R is not symmetric.

The following gives the condition for its being symmetric.

Theorem 4.18. Let R =< R, λ >, S =< S, µ >∈ ([I] × I)X×X and let R and S
be symmetric. Then S ◦P R is symmetric if and only if S ◦P R = R ◦P S.

Proof. Suppose S ◦P R is symmetric. Then
S ◦P R = S−1 ◦ R−1 [Since R and S are symmetric]

= (R ◦P S)−1 [By Proposition 4.9 (4)]
= R ◦P S. [By the hypothesis]

Conversely, suppose S ◦P R = R ◦P S. Then
(S ◦P R)−1 = R−1 ◦P S−1 [By Proposition 4.9 (4)]

= R ◦P S [Since R and S are symmetric]
= S ◦P R. [By the hypothesis]

Thus S ◦P R is symmetric. �

The following is the immediate result of the above Theorem.
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Corollary 4.19. If R =< R, λ >∈ ([I]× I)X×X is symmetric, then Rn is symmet-
ric, for all positive integer n, where Rn = R ◦P R ◦P · · · n times.

Proposition 4.20. If R =< R, λ >∈ ([I] × I)X×X is transitive, then so are R−1

and R2.

Proof. Let (x, y) ∈ X ×X. Then
(R−1 ◦P R−1)(x, y) = (R ◦P R)−1(x, y)

= (R ◦P R)(y, x)
< R(y, x) [Since R is transitive]
= R−1(x, y).

Thus R−1 ◦P R−1 < R−1. So R−1 is transitive.
The proof of the second part is similar. �

Proposition 4.21. Let R =< R, λ >, S =< S, µ >∈ ([I] × I)X×X . If R and S
are transitive, then so is Ru S.

Proof. Let (x, y) ∈ X ×X. Then
[(Ru S) ◦P (Ru S)](x, y)

= tz∈X [(Ru S)(x, z) u (Ru S)(z, y)]
= tz∈X [(R(x, z) u S(x, z)) u (R(z, y) u S(z, y))]
= tz∈X([R(x, z) uR(z, y)] u [S(x, z) u S(z, y)])
= (tz∈X [R(x, z) uR(z, y)]) u (tz∈X [S(x, z) u S(z, y)])
= (R ◦P R)(x, y) u (S ◦P S)(x, y)
< R(x, y) u S(x, y) [Since R and S are transitive]
= (Ru S)(x, y).

Thus (Ru S) ◦P (Ru S) < Ru S. So Ru S is transitive. �

Remark 4.22. For two cubic transitive relations R =< R, λ > and S =< S, µ >
on X, Rt S is not transitive, in general.

Example 4.23. Let X = {a, b, c}, let R and S be two hesitant fuzzy transitive
relations on X given in Table 4.12 and Table 4.13, respectively:

R a b c
a < [0.2, 0.6], 0.7 > < [0.1, 0.5], 0.5 > < [0.1, 0.6], 0.5 >
b < [0.3, 0.6], 0.8 > < [0.2, 0.7], 0.6 > < [0.3, 0.6], 0.7 >
c < [0.4, 0.9], 0.6 > < [0.2, 0.5], 0.5 > < 1, 1 >

Table 4.12

S a b c
a < 1, 1 > < [0.1, 0.5], 0.6 > < [0.1, 0.5], 0.7 >
b < [0.1, 0.5], 0.6 > < [0.4, 0.9], 0.8 > < [0.4, 0.9], 0.6 >
c < 0.1, 0.5], 0.7 > < [0.4, 0.9], 0.6 > < [0.4, 0.9], 0.7 >

Table 4.13

Then Rt S is the cubic relation on X given Table 4.14:
Thus [(RtS) ◦P (RtS)](b, a) =< [0.4, 0.9], 0.8 >. So [0.4, 0.9] 6�< [0.3, 0.6]. Hence
(Rt S) ◦P (Rt S) 6< Rt S. Therefore Rt S is not transitive.
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Rt S a b c
a < 1, 1 > < [0.1, 0.5], 0.6 > < [0.1, 0.6], 0.7 >
b < [0.3, 0.6], 0.8 > < [0.4, 0.9], 0.8 > < [0.4, 0.9], 0.7 >
c < [0.4, 0.9], 0.7 > < [0.4, 0.9], 0.6 > < 1, 1 >

Table 4.14

5. Cubic equivalence relations

In this section, we define a cubic equivalence relation, a cubic quotient set and
a cubic partition, and prove that a cubic quotient set forms a cubic partition and
a cubic partition forms a cubic cubic equivalence relation. Also we define a level
relation of a cubic relation and obtain some of its properties.

Definition 5.1. R =< R, λ >∈ ([I]× I)X×X is called a cubic:
(i) tolerance relation on X, if it is reflexive and symmetric,
(ii) similarity (or equivalence) relation on X, if it is reflexive, symmetric and

transitive,
(iii) order relation on X, if it is reflexive, antisymmetric and transitive.
We will denote the set of all cubic tolerance [resp. equivalence and order] relations

on X as CRT (X) [resp. CRE(X) and CRO(X)].

Example 5.2. (1) Let X = {a, b, c}. Consider the cubic relation R =< R, λ > on
X given by:

R =< R, λ > a b c
a < 1, 1 > < [0.3, 0.8], 0.6 > < [0.2, 0.7], 0.9 >
b < [0.3, 0.8], 0.6 > < 1, 1 > < [0.4, 0.9], 1 >
c < [0.2, 0.7], 0.9 > < [0.4, 0.9], 1 > < 1, 1 >

Table 5.1

Then we can easily check that R is a cubic tolerance relation on X.
(2) Let X = {a, b, c}, let R be the cubic relation on X given in Table 5.2 :

R a b c
a < 1, 1 > < [0.2, 0.7], 0.8 > < [0.2, 0.7], 0.7 >
b < [0.2, 0.7], 0.8 > < 1, 1 > < [0.4, 0.9], 0.7 >
c < [0.2, 0.7], 0.7 > < [0.4, 0.9], 0.7 > < 1, 1 >

Table 5.2

Then we can easily check that R is a cubic equivalence relation on X.

The following is the immediate result of Definition 5.1.

Remark 5.3. From Definition 5.1, we can easily see that R =< R, λ >∈ CRE(X)
if and only if R ∈ IV RE(X) and λ ∈ FRE(X).

The following is the immediate result of Propositions 4.13, 4.15 and 4.21.

Proposition 5.4. Let (Rj)j∈J be any subfamily of CRT (X) [resp. CRE(X) and
CRO(X)]. Then uj∈JRj ∈ CRT (X) [resp. CRE(X) and CRO(X)].
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Proposition 5.5. Let R =< R, λ >∈ CRE(X). Then R = R ◦P R.

Proof. Since R is transitive, R ◦P R < R. Then it is sufficient to show that R <

R ◦P R. Let (x, y) ∈ X ×X. Then

(R ◦P R)(x, y) =<
∨̆

z∈Y
[R(x, y)∧̆R(y, z)],

∨
z∈Y

[λ(x, z) ∧ λ(z, y)] > .

On the other hand,∨̆
z∈Y [R(x, z)∧̆R(z, y)] � R(x, y)∧̆R(y, y)

= R(x, y)∧̆1 [Since R is transitive]
= R(x, y)

and ∨
z∈Y [λ(x, z) ∧ λ(z, y)] ≥ λ(x, y) ∧ λ(y, y)

= λ(x, y) ∧ 1 [Since R is transitive]
= λ(x, y).

Thus R < R ◦P R. So R = R ◦P R. �

Theorem 5.6. Let R =< R, λ >, S =< S, µ >∈ CRE(X). Then S ◦P R ∈
CRE(X) if and only if S ◦P R = R ◦P S.

Proof. Suppose S ◦P R ∈ CRE(X). Then by Theorem 4.18, S ◦P R = R ◦P S.
Conversely, suppose S◦PR = R◦PS. Then by Theorem 4.18, S◦PR is symmetric.

Also by Proposition 4.14, S◦PR is reflexive. Thus it is sufficient to prove that S◦PR
is transitive.

(S ◦P R) ◦P (S ◦P R) = S ◦P (R ◦P S) ◦P R [By Proposition 4.9 (1)]
= S ◦P (S ◦P R) ◦P R [By the hypothesis]
= (S ◦P S) ◦P (R ◦P R)
< S ◦P R. [Since R and R are transitive]

So S ◦P R ∈ CRE(X). �

Proposition 5.7. Let R =< R, λ >, S =< S, µ >∈ CRE(X). If Rt S = S ◦P R,
then Rt S ∈ CRE(X).

Proof. Suppose R t S = S ◦P R. Since R and S are reflexive, by Proposition 4.13
(2), R t S is reflexive. Since R and S are symmetric, by Proposition 4.15, R t S
is symmetric. Thus by Theorem 4.18, S ◦P R = R ◦P S. So by Theorem 5.6,
S ◦P R ∈ CRE(X). Hence Rt S ∈ CRE(X). �

Proposition 5.8. Let f : X → Y be a mapping and let R =< R, λ >∈ CRE(Y ).
We define the mapping f−1(R) : X×X → [I]×I as follows: for each (x, y) ∈ X×X,

f−1(R)(x, y) = R(f(x), f(y)) =< R(f(x), f(y)), λ(f(x), f(y)) > .

Then f−1(R) ∈ CRE(X).
In this case, f−1(R) is called the preimage of R under f .

Proof. From the definition of f−1(R), it is obvious that f−1(R) is a cubic relation
on X. Since R is reflexive and symmetric, by the definition of f−(R), f−(R) is
reflexive and symmetric. Let (x, z) ∈ X ×X. Then

[f−1(R) ◦P f−1(R)](x, z)

=<
∨̆
y∈X [f−1(R)(x, y)∧̆f−1(R)(y, z)],

∨
y∈Y [f−1(λ)(x, y) ∧ f−1(λ)(y, z)] >
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=<
∨̆
y∈X [R(f(x), f(y))∧̆R(f(y), f(z))],

∨
y∈X [λ(f(x), f(y)) ∧ λ(f(y), f(z))] >

[By the definition of f−1(R)]
= [R ◦P R](f(x), f(z))
< R(f(x), f(z)) [Since R is transitive]
= f−1(R)(x, z).

Thus f−1(R) is transitive. So f−1(R) ∈ CRE(X). �

Definition 5.9. Let R =< R, λ >∈ CRE(X) and let a ∈ X. Then the cubic
equivalence class of a by R, denoted by Ra, is a mapping Ra : X → [I]× I defined
as follows: for each x ∈ X,

Ra(x) = R(a, x) =< Ra(x), λa(x) >,

where Ra : X → [I] and λa : X → I are the mappings defined as follows, respec-
tively: for each x ∈ X,

Ra(x) = R(a, x) and λa(x) = λ(a, x).

In fact, for Ra ∈ ([I] × I)X , Ra [resp. λa] is the interval-valued fuzzy equivalence
class of a by R [resp. is the fuzzy equivalence class of a by λ].

We will denote the set of all cubic equivalence classes by R as X/R and it will
be called the cubic quotient set of X by R.

The following is the immediate result of Definitions 3.1 and 4.3.

Theorem 5.10. Let R =< R, λ >, S =< S, µ >∈ CRE(X). Then R < S if and
only if Rx < Sx, for each x ∈ X.

Theorem 5.11. Let R =< R, λ >∈ CRE(X) and let x, y ∈ X. Then

(1) Rx 6= 0̂,

(2) Rx uRy = 0̂ if and only if R(x, y) =< 0, 0 >,
(3) Rx = Ry if and only if R(x, y) =< 1, 1 >,

(4) tx∈XRx = 1̂.

Proof. (1) SinceR is reflexive, Rx(x) = R(x, x) =< 1, 1 > 6=< 0, 0 > . ThenRx 6= 0̂.

(2) Suppose Rx uRy = 0̂ and let z ∈ X. Then

(Rx uRy)(z) = Rx(z) uRy(z) =< R(x, z)∧̆R(y, z), λ(x, z) ∧ λ(y, z) >=< 0, 0 > .

Thus
R(x, y) = (R ◦P R)(x, y) [By Theorem 5.5]

=<
∨̆
z∈X [R(x, z)∧̆R(z, y)],

∨
z∈X [λ(x, z) ∧ λ(z, y)]

=<
∨̆
z∈X [R(x, z)∧̆R(y, z)],

∨
z∈X [λ(x, z) ∧ λ(y, z)]

[Since R is symmetric]
= tz∈X [R(x, z) uR(y, z)]
= tz∈X [(Rx uRy)(z)]
=< 0, 0 >.

The proof of the converse is clear.
(3) The proof is similar to (2).
(4) Let y ∈ X. Then

(tx∈XRx)(y) = tx∈XRx(y) =<
∨̆

x∈X
R(x, y),

∨
x∈X

λ(x, y) > .
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On the other hand,
∨̆
x∈XR(x, y) � R(y, y) = 1 and

∨
x∈X λ(x, y) ≥ λ(y, y) = 1.

Thus (tx∈XRx)(y) =< 1, 1 > . So tx∈XRx = 1̂. �

Definition 5.12. Let Σ = (Aj)j∈J =< (Aj)j∈J , (λj)j∈J > be any subfamily of
([I] × I)X . Then Σ is called a cubic partition of X, if it satisfies the following
conditions:

(i) Aj 6= 0̂, for each j ∈ J ,

(ii) either Aj = Ak or Aj u Ak = 0̂, for any j, k ∈ J ,

(iii) tj∈JAj = 1̂.

The following is the immediate result of Theorem 5.11 and Definition 5.12.

Corollary 5.13. Let R ∈ CRE(X). Then X/R is a cubic partition of X.

Proposition 5.14. Let Σ be a cubic partition of X and let R(Σ) : X ×X → [I]× I
be the mapping defined by: for each (x, y) ∈ X ×X,

R(Σ)(x, y) = tA∈Σ[A(x) u A(y)].

Then R(Σ) ∈ CRE(X).

Proof. Let x ∈ X. Then by Definition 5.12 (iii),

R(Σ)(x, x) = tA∈Σ[A(x) u A(x)] = tA∈ΣA(x) = [tA∈ΣA](x) =< 1, 1 > .

Thus R(Σ) is reflexive.
From the definition of R(Σ), it is obvious that R(Σ) is symmetric. Let (x, y) ∈

X ×X. Then
[R(Σ) ◦P R(Σ)](x, y)

= tz∈X [R(Σ)(x, z) uR(Σ)(z, y)]
= tz∈X(tA∈Σ[A(x) u A(z)] u tB∈Σ[B(z) u B(y)])
= tz∈X(tA, B∈Σ[A(x) u (A(z) u B(z)) u B(y)])

sqsubset tA∈Σ (tz∈XA(z)) tA∈Σ [A(x) u A(y)]
[By Definition 5.12 (ii), A(y) = B(y)]

= 1̂ tA∈Σ [A(x) u B(y)] [By Definition 5.12 (iii)]
= tA∈Σ[A(x) u B(y)]
= tA∈Σ[A(x) u A(y)]
= R(Σ)(x, y).

Thus R(Σ) is transitive. So R(Σ) ∈ CRE(X). �

Proposition 5.15. Let R =< R, λ >, S =< S, µ >∈ CRE(X) such that R < S.
We define the mapping S/R : X/R → [I]× I as follows: for each (x, y) ∈ X ×X,

[S/R](Rx,Ry) = S(x, y).

Then S/R ∈ CRE(X/R).
In this case, S/R will be called the quotient of S by R.

Proof. From the definition of S/R, it is clear that S/R is a cubic relation on X/R.
Since S is reflexive and symmetric, by the definition of S/R, S/R is reflexive and
symmetric. Let (x, z) ∈ X ×X. Then

[S/R ◦P S/R](Rx, Rz) = ty∈X [S/R(Rx,Ry) u S/R(Ry,Rz)]
37



Kim et al./Ann. Fuzzy Math. Inform. 19 (2020), No. 1, 21–43

= ty∈X [S(x, y) u S(y, z)] [By the definition of S/R]
< S(x, z) [Since S is transitive]
= [S/R](Rx,Rz).

Thus S/R is transitive. So S/R ∈ CRE(X/R). �

The following is the immediate result of Proposition 4.14.

Corollary 5.16. Let R, S, T ∈ CRE(X). If R < S < T , then S/R < T /R.

Proposition 5.17. Let R, S, T ∈ CRE(X). Suppose R < S < T . Then
(1) R < S ◦P T ,
(2) if S ◦P T ∈ CRE(X), then (S/R) ◦P (T /R) = (S ◦P T )/R,
(3) (S/R) ◦P (T /R) ∈ CRE(X/R).

Proof. Let (x, y) ∈ X ×X. Then
(S ◦P T )(x, y) = tz∈X [T (x, z) u S(z, y)]

= tz∈X [R(x, z) uR(z, y)] [Since R < S < T ]
= (R ◦P R)(x, y)
= R(x, y). [By Proposition 5.5]

Thus R < S ◦P T .
(2) Suppose S ◦P T ∈ CRE(X) and let (x, y) ∈ X ×X. Then

[(S/R) ◦P (T /R)](Rx,Ry) = tz∈X [T /R(Rx,Rz) u S/R(Rz,Ry)]
= tz∈X [T (x, z) u S(z, y)]
= (S ◦P T )(x, y)
= [(S ◦P T )/R](Rx,Ry).

Thus (S/R) ◦P (T /R) = (S ◦P T )/R.
(3) The proof is clear. �

Proposition 5.18. Let f : X → Y be a mapping. We define the mapping R :
X ×X → [I]× I as follows: for each (x, y) ∈ X ×X,

R(x, y) =

{
< 1, 1 > if f(x) = f(y)
< 0, 0 > otherwise.

Then R ∈ CRE(X).
In this case, R is called the cubic equivalence relation determined by f and we

will denote R by Rf .

Proof. From the definition of R, it is clear that R is a cubic relation on X. For each
x ∈ X, it is clear that f(x) = f(x). Then by the definition of R, R(x, x) =< 1, 1 >.
Thus R is reflexive. It is obvious that R is symmetric. Let (x, z) ∈ X ×X. Then

(R ◦P R)(x, z) = ty∈X [R(x, y) uR(y, z)]
= R(x, x) uR(x, z)
=< 1, 1 > uR(x, z) = R(x, z).

Suppose f(x) = f(z), then R(x, z) =< 1, 1 >. Thus (R ◦P R)(x, z) =< 1, 1 >.
Suppose f(x) 6= f(z), then (R ◦P R)(x, z) = R(x, z) =< 0, 0 >. Thus in either

cases, R ◦P R = R. So R ∈ CRE(X). �

Definition 5.19. Let R =< R, λ >∈ ([I] × I)X×X and let < ã, α >∈ [I] × I such
that ã 6= 0 and α 6= 0. Then the < ã, α >-level relation of R, denoted by [R]<ã,α>,
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is a subset of X ×X defined as follows:

[R]<ã,α> = {(x, y) ∈ X ×X : R(x, y) � ã, λ(x, y) ≥ α}.

It is obvious that if ã � b̃ and α ≤ β, then [R]<ã,α> = [R]<b̃,β>.

Proposition 5.20. Let R =< R, λ >∈ ([I]× I)X×X and let < ã, α >∈ [I]× I such
that ã 6= 0 and α 6= 0. Then

(1) ([R]<ã,α>)−1 = [R−1]<ã,α>,
(2) [R ◦P R]<ã,α> = [R]<ã,α> ◦ [R]<ã,α>.

Proof. (1) Let x, y ∈ X. Then
(x, y) ∈ ([R]<ã,α>)−1 ⇔ (y, x) ∈ [R]<ã,α>

⇔ R−1(x, y) = R(y, x) � ã and λ−1(x, y) = λ(y, x) ≥ α
⇔ (x, y) ∈ [R−1]<ã,α>.

(2) Let x, y ∈ X. Then
(x, y) ∈ [R]<ã,α> ◦ [R]<ã,α>

⇔ there is z ∈ X such that (x, z) ∈ [R]<ã,α>, (z, y) ∈ [R]<ã,α>
⇔ there is z ∈ X such that R(x, z) � ã, λ(x, z) ≥ α; R(z, y) � ã, λ(z, y) ≥ α
⇔ (R ◦P R)(x, y) = tz∈X [R(x, z) uR(z, y)] =< ã, α >
⇔ (x, y) ∈ [R ◦P R]<ã,α>. �

Proposition 5.21. Let R =< R, λ >∈ ([I]× I)X×X and let ([R]<ã,α>)<ã,α>∈[I]×I
be the family of all < ã, α >-level relations of R. Then ([R]<ã,α>)<ã,α>∈[I]×I is
descending and for each < ã, α >∈ [I]× I with ã 6= 0 and α 6= 0,

[R]<ã,α> = ub̃≺ã, β<α[R]<b̃,β>.

Proof. For any < ã, α >, < b̃, β >∈ [I] × I, suppose < b̃, β ><< ã, α >. Then
clearly, [R]<ã,α> < [R]<b̃,β>. Thus ([R]<ã,α>)<ã,α>∈[I]×I is a descending family of

ordinary relations on X. So

[R]<ã,α> < ub̃≺ã, β<α[R]<b̃,β>,

for each < ã, α >∈ [I]× I such that ã 6= 0 and α 6= 0.
Assume that (x, y) 6∈ [R]<ã,α>. Then by the definition of [R]<ã,α>, either

R(x, y) ≺ ã or λ(x, y) < α. Thus there is < 0, 0 >6=< b̃, β >∈ [I] × I such

that R(x, y) ≺ b̃ ≺ ã or λ(x, y) < β < α. So (x, y) 6∈ tb̃≺ã, β<α[R]<b̃,β>. Hence

tb̃≺ã, β<α[R]<b̃,β> < [R]<ã,α>. Therefore [R]<ã,α> = ub̃≺ã, β<α[R]<b̃,β>. �

Proposition 5.22. Let R =< R, λ >∈ ([I] × I)X×X and let [R]<ã,α> 6= φ, for
each < ã, α >∈ [I] × I. If R ∈ CRE(X), then [R]<ã,α> is an equivalence relation
on X. In this case, [R]<ã,α> will be called the < ã, α >-level equivalence rela-
tion on X by R.

Proof. Suppose R ∈ CRE(X). Then clearly, R(x, x) =< 1, 1 >, for each x ∈ X.
Thus R(x, x) � ã and λ(x, x) ≥ α. So (x, x) ∈ [R]<ã,α>. Hence [R]<ã,α> is reflexive.

Now let (x, y), (y, z) ∈ [R]<ã,α>. Then clearly, R(x, y) � ã, λ(x, y) ≥ α and
R(y, z) � ã, λ(y, z) ≥ α. Thus

R(x, z) = (R ◦R)(x, z) [Since R is interval-valued fuzzy transitive]

=
∨̆
a∈X [R(x, a)∧̆R(a, z)]
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� R(x, y)∧̆R(y, z)
� ã.

Similarly, we have λ(x, z) ≥ α. So (x, z) ∈ [R]<ã,α>. Hence [R]<ã,α> is transitive.
Finally let (x, y) ∈ [R]<ã,α>. Then clearly, R(x, y) � ã and λ(x, y) ≥ α. Since

R is cubic symmetric, R(y, x) = R−1(x, y) = R(x, y) � ã and λ(y, x) = λ−1(x, y) =
λ(x, y) ≥ α. Thus (y, x) ∈ [R]<ã,α>. So [R]<ã,α> is symmetric. Hence [R]<ã,α> is
an equivalence relation on X.

�

Definition 5.23. Let R, S ⊂ X ×X and let < ã, α >∈ [I]× I such that ã 6= 0 and

α 6= 0. We define two mappings R̃ : X ×X → [I] and λS : X ×X → I, respectively
as follows: for each (x, y) ∈ X ×X,

R̃(x, y) =

 1 if (x, y) ∈ R and x = y
ã if (x, y) ∈ R and x 6= y
0 otherwise

and

λS(x, y) =

 1 if (x, y) ∈ S and x = y
α if (x, y) ∈ S and x 6= y
0 otherwise.

Proposition 5.24. Let < ã, α >∈ [I] × I such that ã 6= 0 and α 6= 0. If R and S

are equivalence relations on a set X, then R =< R̃, λS >∈ CRE.

Proof. Since R and S are reflexive, (x, x) ∈ R and (x, x) ∈ S. Then R̃(x, x) = 1 and
λS(x, x) = 1. Thus R is cubic reflexive.

Now let (x, y) ∈ X ×X such that x 6= y.

Case 1: If (x, y) ∈ R and (x, y) ∈ S, then R̃(x, y) = ã and λS(x, y) = α. Since R
and S are symmetric, (y, x) ∈ R and (y, x) ∈ S. Thus R(y, x) = ã and λS(y, x) = α.
So R(x, y) = R(y, x) =< ã, α >.

Case 2: If (x, y) 6∈ R and (x, y) ∈ S, then R̃(x, y) = 0 and λS(x, y) = α. Since R

and S are symmetric, (y, x) 6∈ R and (y, x) ∈ S. Thus R̃(y, x) = 0 and λS(y, x) = α.
So R(x, y) = R(y, x) =< 0, α >.

Case 3: If (x, y) ∈ R and (x, y) 6∈ S, then the proof is similar to Case 2.

Case 4: If (x, y) 6∈ R and (x, y) 6∈ S, then R̃(x, y) = 0 and λS(x, y) = 0. Since R

and S are symmetric, (y, x) 6∈ R and (y, x) 6∈ S. Thus R̃(y, x) = 0 and λS(y, x) = 0.
So R(x, y) = R(y, x) =< 0, 0 >. Hence in either cases, R is cubic symmetric.

Finally let x, z ∈ X and suppose x = z. Then clearly,

R(x, z) =< 1, 1 >= (R ◦P R)(x, z).

Thus
Case 1: If (x, z) ∈ R and (x, z) ∈ S, then clearly, R̃(x, z) = ã and λS(x, z) = α.

Since R and S are transitive, (x, z) ∈ R ◦R and (x, z) ∈ S ◦ S. Thus there is y ∈ X
such that (x, y) ∈ R, (y, z) ∈ R and (x, y) ∈ S, (y, z) ∈ S. So

(R̃ ◦ R̃)(x, z) =
∨̆

y∈X
[R̃(x, y)∧̆R̃(y, z) = ã = R̃(x, z)
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and

(λS ◦ λS)(x, z) =
∨
y∈X

[λS(x, y) ∧ (y, z) = α = λS(x, z).

Case 2: If (x, z) 6∈ R and (x, z) ∈ S, then clearly, R̃(x, z) = 0 and λS(x, z) = α.
Since R is transitive, either (x, y) 6∈ R or (y, z) 6∈ R, for each y ∈ X. Thus either

R̃(x, y) = 0 or R̃(y, z) = 0, for each y ∈ X. So R̃(x, z) = 0 = (R̃ ◦ R̃)(x, z). By the
proof of the above Case 1, (λS ◦ λS)(x, z) = α = λS(x, z).

Case 3: If (x, z) ∈ R and (x, z) 6∈ S, then the proof is similar to the above Case
2.

Case 4: If (x, z) 6∈ R and (x, z) 6∈ S, then we can show that the followings hold:

(R̃ ◦ R̃)(x, z) = 0 = R̃(x, z) and (λS ◦ λS)(x, z) = 0 = λS(x, z).

Hence in either cases, R ∈ CRE(X). This completes the proof. �

6. Conclusions

We introduced the concepts of cubic reflexive [resp. symmetric and transitive]
relation, and we define the composition of two cubic relations and the inverse of a
cubic relation. And we investigated some of each properties and gave some exam-
ples. Also we defined a cubic equivalence relation, a cubic equivalence class and a
cubic partition, and obtained some of its properties, respectively (In particular, see
Corollary 5.13 and Proposition 4.14). Furthermore, we defined a < ã, α >-level rela-
tion of a cubic relation and studied some of its properties. In the future, we expect
that one can apply the concept of cubic sets to decision makings, graph theories,
congruences in algebras, quotient spaces in topological spaces, etc.
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