Annals of Fuzzy Mathematics and Informatics
Volume 19, No. 1, (February 2020) pp. 21-43 @FMH

ISSN: 2093-9310 (print version)

ISSN: 2287-6235 (electronic version) © Research Institute for Basic
http://www.afmi.or.kr Science, Wonkwang University
https://doi.org/10.30948/afmi.2020.19.1.21 http://ribs.wonkwang.ac.kr

Cubic relations

J. Kim, P. K. Lim, J. G. LEE, K. Hur

=
=L

=
® ©II
‘ﬁ a:;ﬁm
Z =
=

M I

@FMI
@ MI
@QFMI

@F MI

Q[ M
@F I
@F MI
@ MT
@F MT

©
= ®
®
= aliisis @lle
®

QFMI, @FMTI
Q@ ¥ M I

Reprinted from the

Annals of Fuzzy Mathematics and Informatics
Vol. 19, No. 1, February 2020



Annals of Fuzzy Mathematics and Informatics
Volume 19, No. 1, (February 2020) pp. 21-43 @FMH

ISSN: 2093-9310 (print version)

ISSN: 2287-6235 (electronic version) © Research Institute for Basic
http://www.afmi.or.kr Science, Wonkwang University
https://doi.org/10.30948/afmi.2020.19.1.21 http://ribs.wonkwang.ac.kr

Cubic relations

J. Kimv, P. K. Livm, J. G. LEg, K. Hur

Received 31 March 2019; Revised 27 April 2019; Accepted 4 June 2019

ABSTRACT. Various relations of fuzzy types has been applied to deci-
sion makings, graph theories, congruence problems in algebras and quotient
spaces in topological spaces, etc. Then in this paper, we deal with cubic
relations as one of various fuzzy type’s relations. First, we define a cubic
point and obtained some of its properties. Second, we introduce the no-
tions of cubic reflexive [resp. symmetric and transitive] relations, and we
define the composition of two cubic relations and the inverse of a cubic
relation. And investigate some of each properties and give some examples.
Third, we define the concepts of cubic equivalence relations, cubic equiv-
alence classes and cubic partitions, and obtain some of each properties,
respectively. Finally, we define a < a, @ >-level relation of a cubic relation
and study some of its properties.
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1. INTRODUCTION

In 1971, Zadeh [29] studied a fuzzy relation by using the concept of fuzzy sets
introduced by himself [28] as the generalization of an ordinary set. After that time,
many researchers [3, 4, 5, 6, 8, 10, 20] investigated variously fuzzy relations.

In 2012, Jun et al. [14] introduced the concept of a cubic set. After then, Kang and
Kim [19] defined a mapping of cubic set and studied some of its properties. Jun et
al. [13] studied cubic subgroups. Zhan et al. [21] investigated H,-LA-semigroups by
using cubic sets. Jun and Khan [12] studied cubic ideals in semigroups. Senapati et
al. [26] investigated cubic subalgebras and ideals of B-algebras (Refer to [1, 2]). Jun
and Lee [15] studied cubic ideals in BCK/BCI-algebras (See additionally [16, 18]).
Yaqoob et al. [27] investigated cubic KU-ideals of KU-algebras. Chinnadurai et
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al. [7] dealt with some characterizations of cubic sets. Zeb et al. [31] defined a
cubic topology and investigated some of its properties. Rashid et al. [22] dealt with
decision-making problems by using cubic sets. Smarandache et al. [18] extended the

concept of cubic sets to neutrosophic sets and studied some of its properties.

Various relations of fuzzy types has been applied to decision makings, graph the-
ories, congruence problems in algebras and quotient spaces in topological spaces,
etc. Then in this paper, we deal with cubic relations as one of various fuzzy type’s
relations. First, we define a cubic point and obtained some of its properties. Sec-
ond, we introduce the concepts of cubic reflexive [resp. symmetric and transitive]
relations, and we define the composition of two cubic relations and the inverse of
a cubic relation. And we study some of each properties and give some examples.
Third, we define the notions of cubic equivalence relations, cubic equivalence classes
and cubic partitions, and obtain some of each properties, respectively (In particular,
see Corollary 5.13 and Proposition 5.14). Finally, we define a < @, a >-level relation
of a cubic relation and investigate some of its properties.

2. PRELIMINARIES

In this section, we list some basic definitions needed in the next sections (See
[9, 11, 14, 23, 24, 25, 28, 29, 30]). Throughout this paper, I denotes the closed unit
interval [0, 1].

Definition 2.1 ([28]). Let X be a nonempty set. Then a a mapping A : X — T
is called a fuzzy set in X. The collection of all fuzzy sets in X is denoted by IX.
In particular, 0 and 1 denote the fuzzy empty set and the fuzzy whole set in X,
respectively.

Definition 2.2 ([28]). Let A\, u € IX and let ()\;);es be any family of fuzzy sets in
X. Then the inclusion of A and u, denoted by A < p, the union and the intersection
of X and pu, denoted by A A p and AV 1, the union and the intersection of (\;);e,
denoted by A;c;A; and V;c;A;, and the complement of A, denoted by A¢ are
defined as follows, respectively: for each z € X,
(i) A < p <= Aaz) < p(x),
(i) (AA p)(x) = M) A plx), (AV p)(z) = A(x)
(i) (Njer M) = Ajes (@), (Ve A (@) =
(iv) X%(x) =1 — A(z).

Definition 2.3 ([23]). A € I’ is called a fuzzy point with the support x € X and
the value o € I with o > 0, denoted by A = z,, if for each y € X,

J a ify==xa
Ta=1 0 otherwise.

V()
Vies Ai(2),

The set of all fuzzy points in X is denoted by Fp(X).

For each z,, € Fp(X) and A € IX, z,, is said to belong to A, denoted by =, € A,
if o < A(2).

It is clear that A = T, for each \ € I'X.

T EX

Definition 2.4 ([29]). Let X, Y be any sets. Then A € IX*Y is called a fuzzy
relation from X to Y. In particular, A € I**X is called a fuzzy relation on X.
22
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Definition 2.5 ([29]). Let A, u € I**X. Then the composition of X and x, denoted
by s o A and the inverse f A, denoted by A~!, are defined as follows, respectively: for
each (z,y) € X x X,

(1) (moX)(z,y) = Ve x[Me, 2) Ap(z,y)];

(i) A~ (@, y) = Ay, 2).

Definition 2.6 ([20]). A € I"*X is called a fuzzy equivalence relation on X, if

(i) it is reflexive, i.e., A(z,z) = 1 for each z € X,

(ii) it is symmetric, i.e., A= = \,

(iil) it is transitive, i.e., Ao XA < A.

We denote the set of all fuzzy equivalence relations on X as FRg(X).

For any A € FRE(X) and for any a € X, the fuzzy equivalence class of a by A,
denoted by A, is a fuzzy set in X defined as follows: for each z € X,

Ao() = Aa, ).

The set of all closed subintervals of I is denoted by [/] (See [11]), and members of
[I] are called interval numbers and are denoted by @, b ¢, etc., where @ = [a™,a™]
and 0 < a~ < a™ < 1. In particular, if a= = a™, then we write as @ = a.

We define relations =, < and = on [I] as follows:
(Va, belI)(a=b<a" >b" and at >b"),
(Va, be[I)(@a=b<a <b” andat <b"),
(Va, be[l)(a=b<=a=banda=b),ie
(Va, belI)(@=b<>a" =b" and a™ = b™).
Tosaya>b(resp @< b), we mean a = b and a # b (resp. a~<banda7éb)

For any @, b € [I], their minimum and maximum, denoted by aXb and aVb are
defined as follows:

aAb=[a~ Ab~,at AT,
aVbh=la~ Vb ,at Vbt
Let (@;)jes C [I]. Then its inf and sup, denoted by /v\jEJd} and \/ jesdj, are

defined as follows:
A ai=INa Nat

jeJ JjeJ
V,a=1Va.\Va
jeJ jeJ

For each @ € [I], its complement, denoted by a°, is defined as follows:
a“=[1—-a",1-a"].

Definition 2.7 ([9, 24, 30]). Let X be a nonempty set. Then a mapping A : X — [I]
is called an interval-valued fuzzy set (briefly, an IVF set) in X. Let [[]*X denote the
set of all IVF sets in X. For each A € [[|¥ and z € X, A(z) = [A™ (x), AT (z)] is
called the degree of membership of an element z to A, where A=, AT € IX are called
a lower fuzzy set and an upper fuzzy set in X, respectively. For each A € [I]X, we
write A = [A~, AT]. In particular, 0 and 1 denote the interval-valued fuzzy empty

23
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set and the interval-valued fuzzy whole set in X, respectively. We define relations
C and = on [I]¥ as follows:

(VA, Be[II*)(AC B+ (e X)(A(z) < B(z)),
(V A, Be[II*)(A=B <+ (zc X)(A(z) = B(z)).

Definition 2.8 ([9, 24, 30]). Let X be a nonempty set, let A € [I]* and let (A;);es
be any subfamily of [I]X. Then the complement of A, denoted by A€, and the
intersection and the union of (4;);e s, denoted by (1, ;A; and [, ;A; are defined

as follows, respectively: for each x € X,

A(x) = [1 - AT (2),1-A" ()],

jeJ

v

N, A0@ = A\ _,Ai@),

U, 40w =V _ 4.

Definition 2.9 ([21]). A € [I]¥ is called an interval-valued fuzzy point (briefly, an
IVF point) with the support € X and the value @ € [I] with a™ > 0, denoted by
A = xg, if for each y € X,

N { a ify=z

0 otherwise.
The set of all IVF points in X is denoted by IV Fp(X).

For each x5 € IVFp(X) and A € [I]*X, z5 is said to belong to A, denoted by
xz € A, if a < A(x).
It is clear that A = J,_c 4 =a, for each A € [I]X.

Definition 2.10 ([25]). For two sets X, Y, R € [I]**Y is called an interval-valued
fuzzy relation (briefly, IVF relation) from X to Y. In particular, R € [I]X*¥ is
called an IVF relation on X.

Definition 2.11 ([25]). For each R € [I]**X| the inverse of R, denoted by R~
defined as follows: (z,y) € X x X,

R™'(z,y) = R(y, x).

Definition 2.12 ([11]). For any R, S € [I]X*¥X, the composition of R and S,
denoted by S o R, is defined as follows: for each (x,y) € X x X,

v

(SoR)(z,y) =\/

Definition 2.13 ([11]). R € [I]¥*X is called an interval-valued fuzzy equivalence
relation on X, if
(1) it is reflexive, i.e., R(z,z) =1 for each x € X,
(ii) it is symmetric, i.e., R™! = R,
(i) it is transitive, i.e., Ro R C R.
We denote the set of all fuzzy equivalence relations on X as IVRg(X).
24

ex [R(z,2)AS(2,9)].
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For any R € IVRE(X) and for any a € X, the fuzzy equivalence class of a by
R, denoted by R,, is an interval-valued fuzzy set in X defined as follows: for each
T € X,

R.(z) = R(a, ).

Definition 2.14 ([14]). Let X be a nonempty set. Then a complex mapping A =<
AN >: X — [I] x I is called a cubic set in X.

A cubic set A =< A, X > in which A(z) = 0 and A(z) = 1 (resp. A(z) =1 and
A(z) = 0) for each = € X is denoted by 0 (resp. 1).

A cubic set B =< B, > in which B(z) = 0 and p(z) =0 (resp. B(xz) =1 and
p(z) = 1) for each 2 € X is denoted by 0 (resp. 1). In this case, 0 (resp. 1) will be
called a cubic empty (resp. whole) set in X.

We denote the set of all cubic sets in X as ([I] x )X

Definition 2.15 ([14]). Let X be a nonempty set and let A =< A, \ >€ ([I] x I)¥
Then A is called :

(i) an internal cubic set (briefly, ICS) in X, if A= (z) < A(z) < AT (x) for each
zeX,

(ii) an external cubic set (briefly, ECS) in X, if A(x) € (A~ (x), AT (x)) for each
e X.

3. CUBIC POINTS

In this section, we obtain further properties of operations on cubic sets. Next, we
define a cubic point and study some of its properties.

Definition 3.1 ([14]). Let A=< A, A\ >, B=< B,u >€ ([I]xI)*. Then we define
the following relations:

(i) (Equality) A=B < A= B and A =g,

(ii) (P-order) AC B A C B and A <,

(iii) (R-order) AEB< ACBand A > p

Definition 3.2 ([11]). Let A =< A, X\ >, B =< B,u >€ ([I] x I)* and let
(Aj)jes = (< Aj,Nj >)jes C (] x I)*. Then the complement A¢ of A, P-
union LI, P-intersection M, R-union U and R-intersection M are defined as follows,
respectively: for each x € X
(i) (Complement) A°(x) =< Ac(a:“),)\“( x)
(i) (P-union) (AU B)(z) =< (AUB)(z), (A V p)(z) >
(UjesAj)(x) = (UQEJA )(@), (Vjes A )(w) >,
(iii) (P-intersection) (AN B)(z) =< (ANB)(x), (A A p)(z) >,
(MiesA) (@) =< (e A (@), (Njes M)(@) >,
(iv) (R-union) (AU B)(z) =< (AUB)(x), (A A p)(z) >,
(UjesA;)(z) = (UJEJA (@), (Njes A )(a?)>,
(v) (R-intersection) (A M B)(z) =< (ANB)(z), (A V u)(z) >
(MjesAs) (@) =< (e A7) (@), (Vjes A )(w) >.

It is well-known [14] that the followings hold:
(1) 0°c=1, i°=0, 0° =1 and i° = 0,
25
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(2) for each A € ([I] x 1), (.AC)C:A,
(3) for any (A;)jes C ([I] x I)¥,

(UjesAj)° = Mjes Af, (MjesAj)® = Ujes A7,
(UjesAj) = MjcsAj, (MjesAj)e = UjesAS.

Remark 3.3. For any A =< A, )\ >€ ([I] x )X, AUA® # 1 and AN A £ 0,
in general. Let A =< 0.5,0.5 >. Then clearly, AL A° =< 0.5,0.5 ># 1 and
AMA¢ =< 0.5,0.5 ># 0.

The followings are the immediate results of Definition 3.2.

Proposition 3.4. Let A=< A,\ >, B=< B,u >, C =< C,v >€ ([I] x )X, let
(Aj)jes = (< A5, 0 >)jes € (] x DX
() AUA—A, ANA=A AUA=A AnA= A
(2) AUB=BUA ANB=BNA AUB=BUA, AnB=8nA.
()Au (BuC)=(AuB)UC, AN1(BNC)=(ANB)NC,
W(BUC) = (AUB)UC, Am(BAC) = (AmB)AC.
(4)Au(BmC):(AuB)n(AuC),Am(BuC):(AmB)u(AHC),
W(BMC) = (AUB) M (AUC), Am(BUC) = (AmB) U (AnC).
(4)" AU (MjesA)) = Mies(AUA)), AN (Ujes ;) = Ujes (ATTA)),
AU (MjesAj) = Mjes (AU A;), AR (UjesAj) = Ujes(AMA;).

From the above Proposition 3.4, we can see that (([I] x I)%X,1,mM,0,1) forms a
Boolean algebra except the property of Remark 3.3.

Definition 3.5. Let A =< A, )\ >€ ([I| x )X, let a € [I] witha™ >0andlet o € T
with @ > 0. Then A =< A, A > is called a cubic point in X with the support z € X
and the value < a,« >, denoted by <z o>, if for each y € X,

v 1< a,a > ify==x
<ee> T < 0,0 > otherwise.

The set of all cubic points in X is denoted by Cp(X).

Definition 3.6. Let .5 o> € Cp(X) and let A =< A, X >€ ([I] x )X
(1) <z o> is said to belong to A by P-order type, denoted by <z > €p A, if
a = A(z) and a < A(x), i.e., x5 € A and z, € A
(i) £<g,a> is said to belong to A by R-order type, denoted by <5 o> €r A, if
a = A(z) and a > A(z), i.e., vz € A and x1_4 € A°.

Theorem 3.7. Let ©.g4> € Cp(X) and let A =< A, A >, B =< B,u >€ ([I] x
nx.

(1) AC Bif and only if <5 o> €p B, for each v<5 o> €p A.

(2) A€ B if and only if x<5 0> €r B, for each x5 0~ €r A.

Proof. (1) Suppose A C B and let 2<z0> €p A. Then @ < A(z) and o < A(z).
Since AT B, AC B and A < p. Thus A(z) 2 B(z) and A(z) < p(z). Soa = B(x)
and a < p(z). Hence 250> €p B.
The converse is straightforward.
(2) The proof is similar to (1). O
26
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Proposition 3.8. Let A =< A\ >, B=< B, >€ (I] x )¥, let (A;j)jes = (<
Aj N >)jes C (I x I)X and let £ 0~ € Cp(X).

(1) If t<ga> €Ep A 0r Tz o> €Ep B, then x<z o> €p AUB.

(1)" If there is j € J such that Tg.0> €p Aj, then Tz o> €p UjesAj.

(2) If v<g,a> €ER A 07 TG o> €R B, then 54> €r AUB.

(2)" If there is j € J such that Teda> ER Aj, then Tz o> €r Uje s Aj.

Proof. (1) Suppose <z o> €p A Or Tz o> €p B. Then 2z € A and z, € A or
zz € B and x4 € p. Thus a < (AUB)(z) and a < (AV p)(z). So <z.a> €Ep AU B.

(1)/ Suppose T<z.o> €p Aj, for some j € J. Then zz € A; and , € A, for some
jeJ. Thusvﬁ = Aj(z) and o < Aj(z). Soa XV, ,4;(z) and a <V, A(z).
Hence 23 € (U;c;4))(2) and 24 € (V;¢; Aj)(2). Therefore 250> €p Ujes A;.

(2) Suppose T<g o> €r AOr Tz o> €Er B. Thenaz € Aandai— € Norag € B
and z1_, € p¢. Thus @ € (AUB)(z) and 1 — a < (A A p)¢(x). So T<g.a> €Er AU B.

(2)" Suppose T<ga> €Er Aj, for some j € J. Then 2z € A;j and z1_ € A§, for
some j € J. Thus a < Aj(r) and 1 — o < Af(z). So a = \v/jeJAj(as) and 1 —a <
(Ajej Ai)(x). Hence 25 € (U;es45)(2) and z1-0 € (A;¢;Aj)°(z). Therefore
T<d,a> €R LUJjeJAj. O

The converse of Proposition 3.8 need not to be true in general as shown in the
following example.

Example 3.9. Let X = {a,b,c} and let A, B be two IVF sets in X defined by:
A(a) =10.3,0.9], A(b) =10.2,0.6], A(c)=1[0.4,0.8]

and
B(a) = [0.5,0.7], B(b) = [0.4,0.8], B(c) = [0.3,0.6].

Let A, p be two fuzzy sets in X given by:

Aa) =0.4, X(b) = 0.5, A(c) =0.7; p(a) =0.6, p(b) =0.8, u(c) =0.6.
Then we can easily check that A =< A, \ >, B=< B, u >¢€ ([I] x I)*. Consider the
cubic point a<g o>, where @ = [0.4,0.8] and o = 0.5. Then clearly, a<z o> €p AUB

but a<z o> €p A and acgz o> €p B. Also we can easily check that ac<g o> €r AUB
but a<g o> €r A and a<g o> €r B.

Theorem 3.10. Let A =< A\ >, B =< B,u >€ ([I] x )¥, let (Aj)jes = (<
Aj N >)jes C () x DX and let g o> € Cp(X).

(1) 2<g,a> €p ANB if and only if 50> €p A and <5 o> €p B.

(1)l T<aa> €p NjcgAj if and only if Tz o> €p A;, for each j € J.

(2) z<ga> ER AMB if and only if t<g.o> €r A and 70> €r B.

(2)l Teqa> €R MjesA; if and only if <z o> €r Aj, for each j € J.

Proof. We will prove only (1). Suppose .z > €p AMB. Then 2z €p ANB and

To € AA p. Thus a < (ANB)(z) = A(z)AB(z) and a < A(z) A pu(z). So a =<

A(z), a < XMz) and @ = B(z), o < p(x). Hence 254> €p A and x50~ €p B.

The proof of the converse is easy. O
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4. CUBIC RELATIONS

In this section, we define a cubic relation and introduce P-order, R-order, P-
intersection, R-intersection, P-union and R-union of any two cubic relations. Also
we define the inverse of a cubic relation and the composition of two cubic relations,
and we obtain some of each properties and give some examples.

Definition 4.1. Let X, Y be two sets. Then R =< R, A > is called a cubic relation
from X to Y, if R € [I[]**Y ie., Ris an interval-valued fuzzy relation (briefly, IVF
relation) from X to Y and A € IX*Y ie., \is a fuzzy relation from X to Y.

A cubic relation R =< R, A > in which R(z,y) = 0 and A(z,y) = 1 (resp.
R(x,y) = 1 and A(z,%) = 0) for each (z,y) € X x Y is denoted by 0 (resp. 1).

A cubic relation § =< S, > in which S(z,y) = 0 and p(z,y) = 0 (resp.
S(x,y) =1 and p(z,y) = 1) for each (x,y) € X x Y is denoted by 0 (resp. 1). In
this case, 0 (resp. 1) will be called a cubic empty (resp. whole) relation from X to
Y.

We will denote the set of all cubic relation from X to Y as ([I] x I)X*Y. If
R =< R,\ >¢€ ([I] x I)**X R is called a cubic relation in (or on) X.

Example 4.2. Let X = {a,b,c} be a set, let R be the IVF relation and A\ be the
fuzzy relation on X given, respectively by the following tables:

R a b c

a | [0.3,0.7] [0.4,0.8] [0.1,0.6]
b | [0.1,0.6] [0,1] [0.2,0.5]
¢ 110.4,0.9] [0.3,0.8] [0,1]

Table 4.1
Al a b c
al06 04 0.7
b|108 0.5 0.9
c|04 0.7 06
Table 4.2

Then clearly, R =< R, A > is a cubic relation on X.
Since cubic relations are cubic sets, we have the following definitions.

Definition 4.3. Let X, Y be two sets and let R =< R, A >, § =< S,u >€
([I] x I)X*Y. Then we define the following relations:

(i) (Equality) R=8 < R =S and A =y,

(i) (P-order) RC S< R C S and A <y,

(iii) (R-order) RES < RC Sand A > p

Definition 4.4. Let X, Y be two sets and let R =< R, A >, S =< S, u >€ ([I] x
DX and let (Rj)jes = (< Rj,Aj >)jes C ([I] x I)X*Y. Then the complement
R¢ of R, P-union LI, P-intersection M, R-union U and R-intersection M are defined
as follows, respectively: for each (z,y) € X x Y,

28



Kim et al./Ann. Fuzzy Math. Inform. 19 (2020), No. 1, 21-43

(i) (Complement) R¢(z,y) =< R°(z,y), A°(z,y) >
(ii) (P-union) (R US)(z,y) = (RUS)( y), AV ) (z,y)
(UiesRy) (@, y) =< (Uses B)(@,9), (Ve s Ny
(iii) (P-intersection) (R M8)(z,y) =< (RNS)(z,y), A A u
(MjesRi)(,y) =< (Njes Ri)(x,y), (A,
(iv) (Reunion) (R U 8)(z,y) =< (RIS)(z,9), A A 1) (2.) >,
UjesR) (@, y) =< (Uje 25)(@,9): (Njes M) (@, y) >,
(v) (R-intersection) (R m S)(x) = (RﬁS)( y), AV p)(x,y) >,
(MR (@) =< (N;esB) (@), (Vs \) (@) >,
We can easily see that the followings hold:
(1) 0c =1, i°=0, (°=1i and i° =0,
(2) for each R € ([I] x I)X*Y | (R€)¢ =R,
(3) for any (Ry);es < (1] x XY,
(UjesR;) = MjeaRj, (MjesRy) = UjesR],
(UjesR;) = Mjes R, (MjcsR;) = UjesRj,
(4) we have the similar properties to Proposition 3.4 in ([I] x I)
Definition 4.5. Let R =< R, \ >¢€ ([I]xI)**Y. Then the inverse of R =< R, \ >,

denoted by R™! =< R™!, A~! > is a cubic relation from Y to X defined as follows:
for each (z,y) € X x Y,

R™Y(a,y) = R(y,x), ie., R (z,y) = R(y,x) and A~ (2,y) = Ay, z).

The followings are the immediate results of Definitions 4.4 and 4.5.
Proposition 4.6. Let R =< R,A >, S =< S,u >¢€ ([I] x I)**Y.

(1) IfRC S, then RS 1.

(2)IfRES, then R"' e S~1.

(3) (R7H) ' =R.

4) (RUS)t=RInNs, (RNS) =R 1us L

B) (RUS) =R ITAS, RaS) =R 1us '
Definition 4.7. Let R =< R, A >€ ([I]xI)**Y andlet S =< S, u >€ ([I|xI)¥*Z.

Then the P-composition of R and S, denoted by S op R, is a cubic relation from X
to Z defined by: for each (z,2) € X x Z,

(Sop R)(x,2) = Uyey [R(z,y) N S(y,2)]
=< Ver[R(xv y)/\S(yv Z)]? \/yEY[)\(x7 y)/\u(y7 Z)] >
Example 4.8. Let X = {a,b,c} be a set, let R =< R, A > and § =< S, u > be the
cubic relations on X given, respectively by the following tables:

XxXY

R a b c

a | <[0.3,0.7],0.6 > <[0.4,0.8],0.4> < [0.1,0.6],0.7 >
b | <0.1,0.6],0.8 > < [0,1],0.5 > < [0.2,0.5],0.9 >
¢ | <[04,0.9],04 > <]0.3,0.8],0.7 > < [0,1],0.6 >

Table 4.3

Then we can easily check that S op R has the following table:
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a b c
<[04,0.8],0.9 > <[0.2,0.6],0.7 > < [0.2,0.6],0.8 >
< [0.3,0.6],0.7 > < [0.2,0.7],0.5 > < [0.4,0.8],0.9 >
< [0.3,0.8],0.4 > < [04,0.7],0.6 > < [0.1,0.6],0.6 >

Table 4.4

o o0

SopR a b c
a < [0.3,0.7],0.6 > < [0.2,0.7],0.6 > < [0.4,0.8],0.6 >
b < [0.2,0.6],0.8 > < [0.2,0.7],0.7 > < [0.1,0.8],0.8 >
c < [0.4,0.8],0.7 > < [0.2,0.7],0.6 > < [0.3,0.8],0.7 >
Table 4.5

The followings are the immediate results of Definitions 4.3, 4.4, 4.5, 4.5 and 4.7.

Proposition 4.9. Let R =< R,A >, § =< S,u > and T =< T,v > be cubic
relations and suppose each composition holds. Then
(1) Top (S op R) = (TOP S) opR,
(2) TOP (RUS) = (TOP R) LJ (TOP S), TOP (RHS) = (TOP R) M (TOP S),
(B)IfRCS, then TopRCTopS,
(4) (S op R)71 =R! op S

Definition 4.10. Let R =< R, A >€ ([I] x I)X*X . Then R is said to be:

(i) reflexive, if R(x,2) =< 1,1 >, for each z € X,

(ii) irreflexive, if R(z,x) =< 0,0 >, for each x € X,

(iii) symmetric, if R™!(z,y) = R(z,y), for each (z,y) € X x X,

(iv) antisymmetric, if for each (x,y) € X x X, R(z,y) #< 0,0 > and R(y, z) #<
0,0 >, then =z =y,

(v) transitive, if Rop R C R.

Example 4.11. Let X = {a,b,c}.
(1) Let Ry =< Ry, A1 > be a cubic relation on X given by the following table:

R a b c
a <1,1> <1[04,0.8],04 > < [0.1,0.6],0.7 >
< [0.1,0.6],0.8 > <1,1> < [0.2,0.5],0.9 >
<[0.4,0.9],0.4 > < [0.3,0.8],0.7 > <1,1>
Table 4.6

Then clearly, R is reflexive.
(2) Let Ro =< Rg, A2 > be a cubic relation on X given by the following table:

Ra a b c
a <0,0> <10.4,0.8,04> <[0.1,0.6],0.7 >
b | <[0.1,0.6],0.8 > <0,0> < [0.2,0.5],0.9 >
< [0.4,0.9],0.4 > < [0.3,0.8],0.7 > <0,0 >
Table 4.7

Then clearly, Ry is irreflexive.
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(3) Let R3 =< Rs, A3 > be a cubic relation on X given by the following table:

Rs a b c
a <1,1> <10.1,0.6],0.8 > < [0.1,0.6],0.7 >
b | <[0.1,0.6],0.8 > <1,1> < 10.3,0.8],0.7 >
< [0.1,0.6],0.7 > < [0.3,0.8],0.7 > <1,1>
Table 4.8

Then clearly, Rg3 is reflexive and symmetric.
(4) Let Ry =< Ry, Ay > be a cubic relation on X given by the following table:

R4 a b c
a <1,1> < [0.3,0.8],0.7 > < [0.1,0.7],0.7 >
b | <[0.1,0.6],0.8 > <1,1> <[0.1,0.7],0.9 >
<1[0.4,09,1> <0.3,0.8],0.7 > <1,1>
Table 4.9

Then we can easily check that R4 is reflexive and transitive.

Definition 4.12. The cubic identity relation on a set X, denoted by Zx (in short,
T), is a cubic relation on X defined by: for each (z,y) € X x X,

<L 1> ifz=y
I@W%‘{<0ﬁ> if 2 £ .

It is clear that Z = Z~! and R is symmetric if and only if R = R~!, for each
R =< R\ >¢€ [[]X*X.

From the above Definition and Definition 4.10 (i), it is obvious that if R is reflex-
ive, then 7 C R.

The following is the immediate result of Definitions 4.4 and 4.10.

Proposition 4.13. Let R =< R, A >, S =< S, pu >¢€ ([I] x I)*X*X.

(1) R is reflexive [resp. irreflexive] if and only if R™1 is reflexive [resp. irreflex-
ive/.

(2) If R is reflexive, then R U S is reflexive.

(3) If R is irreflexive, then R US is irreflexive if and only if S is irreflexive.

(4) If R is reflexive, then RN S is reflexive if and only if S is reflexive.
(5) If R is irreflexive, then RN S is irreflexive.

Proposition 4.14. Let R =< R,A >, S =< S,u >€ ([[] x DX*X. If R and S
are reflexive, then so S op R.

Proof. Let x € X. Then by the hypothesis,

(SopR)(z,7) =< \/yeX[R(x’ y)/v\S(y,.%')], \/ Az, y) A uly, 2)] >
yeX
On vthe other hand,
\/yeX [R({E, y)/u\S(y’ x) i f(xv x)/u\S(x’ 1’)
and -
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\/yeX[)‘(ﬁvy) A :u(yvz) 2 )‘(xvx) A u(m,x)
=1
Thus (Sop R)(z,z) =< 1,1 >. So Sop R is reflexive. O

The following is the immediate result of Definition 4.10 and Proposition 4.6 (4)
and (5).

Proposition 4.15. Let R =< R,A >, S =< S,u > ([[] x DX*X. If R and S
are symmetric, then RUR, RMR, RUR and RMR are symmetric.

Remark 4.16. R and S are symmetric but S op R is not symmetric, in general

Example 4.17. Let X = {a,b,c}. Consider two cubic relations R =< R, A > and
S =< S, > on X given by:

R a b c

a | <[0.3,0.6],0.6 > <[0.2,0.7],0.8 > < [0.1,0.5],0.7 >

b | <[0.2,0.7],0.8 > < [0.5,1],04> <[0.3,0.7],0.8 >

¢ | <0.1,0.5],0.7 > < [0.3,0.7],0.8 > < [0.2,0.6],0.6 >
Table 4.10

S a b c

a | <[0.2,0.5,0.6 > <][0.3,0.7],0.6 > < [0.4,0.8],0.9 >

b | <[0.3,0.7],0.6 > <1,1> < [0.2,0.8],0.7 >

¢ | <[0.4,0.8],0.9 > <[0.2,0.8],0.7 > < [0.3,0.5],0.6 >
Table 4.11

Then clearly, R and S are symmetric. But
(SopR)(b,c) =<[0.3,0.8],0.8 >#£< [0.3,0.7],0.8 >= (S op R)(c, b).
Thus S op R is not symmetric.
The following gives the condition for its being symmetric.

Theorem 4.18. Let R =< R, A >, S =< S, >€ (I} x I)*X*X and let R and S
be symmetric. Then S op R is symmetric if and only if Sop R =R op S.

Proof. Suppose S op R is symmetric. Then
SopR=8"1oR! [Since R and S are symmetric]
= (Rop S)~! [By Proposition 4.9 (4)]
=R op S. [By the hypothesis]
Conversely, suppose Sop R = Rop S. Then
(SopR)™1 =R"1op S~ [By Proposition 4.9 (4)]
=TRop S [Since R and S are symmetric]
= S op R. [By the hypothesis]
Thus S op R is symmetric. 0

The following is the immediate result of the above Theorem.
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Corollary 4.19. If R =< R, >€ ([I] x I)**X is symmetric, then R™ is symmet-
ric, for all positive integer n, where R™ = Rop Rop -+ n times.

Proposition 4.20. If R =< R, A >¢€ ([I] x I)**X is transitive, then so are R™!
and R?.

Proof. Let (z,y) € X x X. Then
(R™1op R7H)(z,y) = (Rop R) ™ (z,y)
= (RopR)(y,x)
C R(y,z) [Since R is transitive]
=R Y(z,y).
Thus R~ Yop R =R~ So R~ is transitive.
The proof of the second part is similar. O

Proposition 4.21. Let R =< R,A >, S =< S,u >€ (] x D**X. If R and S
are transitive, then so is RMS.

Proof. Let (z,y) € X x X. Then
[(RT1S)op (RNIS)](z,y)
=Llex[RMNS)(z,2) T (RMOS)(z,y)]
= U.ex[(R(2,2) N S(,2)) M (R(2,y) MS(z,9))]
= Ueex([R(z,2) TR(2,y)| N [S(z, 2) N S(2,9)])
= (Uzex[R(z,2) NR(z,y)]) M (Uex[S(z,2) M S(z,y)])
= (Rop R)(z,y) N (SopS)(z,y)
C R(x,y) MS(z,y) [Since R and S are transitive]
= (RNS)(z,y).
Thus (RMNS)op (ROS)CRMS. So RMS is transitive. O

Remark 4.22. For two cubic transitive relations R =< R,A > and § =< S, >
on X, RUS is not transitive, in general.

Example 4.23. Let X = {a,b,c}, let R and S be two hesitant fuzzy transitive
relations on X given in Table 4.12 and Table 4.13, respectively:

R a b c
a | <[0.2,0.6],0.7> < [0.1,0.5],0.5 > < [0.1,0.6],0.5 >
b | <0.3,0.6],0.8 > <[0.2,0.7],0.6 > < [0.3,0.6],0.7 >
¢ | <[04,0.9],0.6 > <[0.2,0.5],0.5> <1,1>
Table 4.12
a b c

<1,1> < [0.1,0.5],0.6 > < [0.1,0.5],0.7 >

< [0.1,0.5],0.6 > < [0.4,0.9],0.8 > < [0.4,0.9],0.6 >

<0.1,0.5],0.7> < [0.4,0.9,0.6 > < [0.4,0.9],0.7 >
Table 4.13

o 9|0

Then R U S is the cubic relation on X given Table 4.14:
Thus [(RUS)op (RUS)](b,a) =< [0.4,0.9],0.8 >. So [0.4,0.9] A< [0.3,0.6]. Hence
(RUS)op (RUS)Z RUS. Therefore R US is not transitive.
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RUS a b c
a <1,1> < [0.1,0.5],0.6 > < [0.1,0.6],0.7 >
< [0.3,0.6],0.8 > < [0.4,0.9],0.8 > < [0.4,0.9],0.7 >
< [0.4,0.9],0.7 > < [0.4,0.9],0.6 > <1,1>
Table 4.14

5. CUBIC EQUIVALENCE RELATIONS

In this section, we define a cubic equivalence relation, a cubic quotient set and
a cubic partition, and prove that a cubic quotient set forms a cubic partition and
a cubic partition forms a cubic cubic equivalence relation. Also we define a level
relation of a cubic relation and obtain some of its properties.

Definition 5.1. R =< R, \ >€ ([I] x I)X*¥ is called a cubic:

(i) tolerance relation on X, if it is reflexive and symmetric,

(ii) similarity (or equivalence) relation on X, if it is reflexive, symmetric and
transitive,

(iii) order relation on X, if it is reflexive, antisymmetric and transitive.

We will denote the set of all cubic tolerance [resp. equivalence and order] relations

on X as CRr(X) [resp. CRg(X) and CRo(X)].

Example 5.2. (1) Let X = {a,b,c}. Consider the cubic relation R =< R, A > on
X given by:

R=<R,\> a b c
a <1,1> < [0.3,0.8],0.6 > < [0.2,0.7],0.9 >
b < 10.3,0.8],0.6 > <1,1> <10.4,0.9],1 >
< [0.2,0.7],0.9 > < [04,0.9],1> <1,1>
Table 5.1

Then we can easily check that R is a cubic tolerance relation on X.
(2) Let X ={a,b,c}, let R be the cubic relation on X given in Table 5.2 :

R a b c

a <1,1> <[0.2,0.7],08 > < [0.2,0.7],0.7 >

b | <[0.2,0.7],0.8 > <1,1> < [0.4,0.9],0.7 >

¢ | <[0.2,0.7],0.7 > < [0.4,0.9],0.7 > <1,1>
Table 5.2

Then we can easily check that R is a cubic equivalence relation on X.
The following is the immediate result of Definition 5.1.

Remark 5.3. From Definition 5.1, we can easily see that R =< R,\ >€ CRg(X)
if and only if R € IVRg(X) and A € FRp(X).

The following is the immediate result of Propositions 4.13, 4.15 and 4.21.

Proposition 5.4. Let (R;);cs be any subfamily of CRr(X) [resp. CRg(X) and
CRo(X)]. ThenNjeyR; € CRy(X) [resp. CRg(X) and CRo(X)).
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Proposition 5.5. Let R =< R,A >€ CRg(X). Then R =RopR.

Proof. Since R is transitive, R op R C R. Then it is sufficient to show that R C
RopR. Let (z,y) € X x X. Then

(RopR)(w,y) =< \/__ [R(e,y)AR(, 2)], \/ [\, 2) A A w)] >

z€eY
On thevother hand,

V.evlR(@, 2)AR(z,y)] = R(z,y)AR(y.y)
= R(z,y)A1 [Since R is transitive]
= R(z,y)
and
V.ey M@, 2) Az 9)] 2 Mz, y) A My, y)
= A(z,y) A1 [Since R is transitive]
= Az, y).
Thus RCRopR.SoR=RopR. O

Theorem 5.6. Let R =< R,A >, § =< S, >€ CRg(X). Then Sop R €
CRE(X) if and only if Sop R=Rop S.

Proof. Suppose Sop R € CRg(X). Then by Theorem 4.18, Sop R =R op S.
Conversely, suppose SopR = RopS. Then by Theorem 4.18, SopR is symmetric.
Also by Proposition 4.14, SopR is reflexive. Thus it is sufficient to prove that SopR
is transitive.
(SopR)op(SopR)=8Sop(RopS)op R [By Proposition 4.9 (1)]
=S op (SopR)op R [By the hypothesis|
=(SopS)op (RopR)
C SopR. [Since R and R are transitive]
So Sop R € CRr(X). O

Proposition 5.7. Let R =< R,A >, S=<S,u>€ CRp(X). f RUS=SopR,
then RUS € CRg(X).

Proof. Suppose RUUS = Sop R. Since R and S are reflexive, by Proposition 4.13
(2), RUS is reflexive. Since R and S are symmetric, by Proposition 4.15, R U S
is symmetric. Thus by Theorem 4.18, Sop R = R op S. So by Theorem 5.6,
SopR e CRg(X). Hence RUS € CRp(X). O

Proposition 5.8. Let f : X — Y be a mapping and let R =< R, A >€ CRg(Y).
We define the mapping f~1(R) : X x X — [I]xI as follows: for each (z,y) € X x X,

FHR) (@, y) = R(f(@), f(y)) =< R(f(2), f (1)), \(f(x), f(y) > -
Then f~(R) € CRg(X).
In this case, f~1(R) is called the preimage of R under f.

Proof. From the definition of f~1(R), it is obvious that f~!(R) is a cubic relation
on X. Since R is reflexive and symmetric, by the definition of f~(R), f~(R) is
reflexive and symmetric. Let (z,2z) € X x X. Then

[fTH(R) op fHR))(2, 2)
=< Vyexf T R)@ n)Af T R) W, 2)), Vyey F 1N (@) A FH Ny, 2)] >
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=< Vyex [R(F @), AR W), F()] Vyex NF@), £ () ANFW), F(2))] >
[By the definition of f~1(R)]

= [Rop R|(f(2), f(2))

C R(f(x), f(2)) [Since R is transitive]

= [ (R)(z, 2).
Thus f~1(R) is transitive. So f~}(R) € CRg(X). O
Definition 5.9. Let R =< R,A >€ CRg(X) and let a € X. Then the cubic
equivalence class of a by R, denoted by R, is a mapping R, : X — [I] x I defined
as follows: for each x € X,

Ra(z) = R(a,z) =< Ry(x), Aa(z) >,

where R, : X — [I] and A, : X — I are the mappings defined as follows, respec-
tively: for each x € X,

R.(x) = R(a,x) and Ay (x) = A(a,x).
In fact, for R, € ([I] x I)*X, R, [resp. \,] is the interval-valued fuzzy equivalence
class of a by R [resp. is the fuzzy equivalence class of a by AJ.

We will denote the set of all cubic equivalence classes by R as X/R and it will
be called the cubic quotient set of X by R.

The following is the immediate result of Definitions 3.1 and 4.3.

Theorem 5.10. Let R =< R,A >, § =< S,u >€ CRg(X). Then R C S if and
only if R, C Sy, for each x € X.

Theorem 5.11. Let R =< R,A >€ CRg(X) and let z, y € X. Then
(2) Re MR, = 0 if and only if R(z,y) =< 0,0 >,
(3) Ry =Ry if and only if R(z,y) =< 1,1 >,
(4) UpexRe = 1.

Proof. (1) Since R is reflexive, R, () = R(z,2) =< 1,1 >#< 0,0 > . Then R, # 0.
(2) Suppose R, MR, =0 and let z € X. Then

(Re MRy (2) = Ru(2) MRy (2) =< R(z,2)AR(y, 2), M, 2) A Ay, z) >=< 0,0 > .

Thus
R(z,y) = (Rop R)(z,y) [By Theorem 5.5]
=< \/zeX [R(CE, Z)/V\R(Zv y)]v \/zeX[)‘(x’ Z) A )\(Z, y)]
—< Voex [R5, )RR, )], V. e [N, 2) Ay, 2)]
[Since R is symmetric]

= Uzex[R(z,2) N R(y, 2)]
= Lex[(Ra MRy)(2)]
=< 0,0 >.

The proof of the converse is clear.

(3) The proof is similar to (2).

(4) Let y € X. Then

(Ueex R)(9) = Usex Ruly) =< \/___R(zp), \/ Awy) >
reX
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On the other hand, \u/l,eXR(x,y) = R(y,y) = Land V x Mz,y) > My,y) = 1.
Thus (UzexRa)(y) =< 1,1 > .50 UgexRs: = 1. O

Definition 5.12. Let ¥ = (A4;)jes =< (4;)jes, (Aj)jes > be any subfamily of
([I] x I)*. Then ¥ is called a cubic partition of X, if it satisfies the following
conditions:

(i) A; #0, for each j € J,

(i) either A; = Ay or A; M A, = 0, for any j, ke J,

(iii) UjesA; = 1.

The following is the immediate result of Theorem 5.11 and Definition 5.12.
Corollary 5.13. Let R € CRg(X). Then X/R is a cubic partition of X.

Proposition 5.14. Let ¥ be a cubic partition of X and let R(X) : X x X — [[] x I
be the mapping defined by: for each (v,y) € X x X,

R(E)(z,y) = Uaes[A(z) T A(y)].
Then R(X) € CRg(X).
Proof. Let x € X. Then by Definition 5.12 (iii),
R(E)(z,z) = Uaes[A(z) TA(z)] = UaesA(z) = [UaesAl(z) =< 1,1>.
Thus R(X) is reflexive.
From the definition of R(X), it is obvious that R(X) is symmetric. Let (x,y) €
X x X. Then
[R(X) op R(D)](z,y)

= Uzex[R(E)(z, 2) TR(X)(2,)]

= Uzex (Waes[A(z) N A(2)] N Uses[B(2) N B(y)])

= Uzex (Ua, Ben[A(x) M (A(2) T B(2)) M B(y)])

sqsubset Usex (Uzex A(2)) Uaes [A(z) M A(y)]
[By Definition 5.12 (ii), A(y) = B(y)]
= 1Uxex [A(z) M B(y)] [By Definition 5.12 (iii)]
= Uses[A(z) N B(y)]
= Uses[A(z) M A(y)]
— R(2)(x.y).
Thus R(X) is transitive. So R(X) € CRg(X). O

Proposition 5.15. Let R =< R,A >, § =< S, u >€ CRg(X) such that R C S.
We define the mapping S/R : X/R — [I] x I as follows: for each (z,y) € X x X,

[S/RI(Res Ry) = S(,y)-

Then S/R € CRg(X/R).
In this case, S/R will be called the quotient of S by R.

Proof. From the definition of S/R, it is clear that S/R is a cubic relation on X/R.
Since S is reflexive and symmetric, by the definition of §/R, S/R is reflexive and
symmetric. Let (z,2z) € X x X. Then
[S/Rop S/R|(Re, Rz) = Uyex[S/R(Ra; Ry) M S/R(Ry, R-)]
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= Uyex[S(z,y) MS(y, z)] [By the definition of S/R]
C S(z,2) [Since S is transitive]
=[S/R|(Rz,R).

Thus S/R is transitive. So S/R € CRg(X/R). O

The following is the immediate result of Proposition 4.14.
Corollary 5.16. Let R, S, T € CRg(X). f RCSC T, then S/RCT T/R.

Proposition 5.17. Let R, S, T € CRg(X). Suppose RC ST T. Then
(1) RCSopT,
(2) if Sop T € CRg(X), then (S/R)op (T/R)=(SopT)/R,
(3) (§/R)op (T/R) € CRe(X/R).

Proof. Let (z,y) € X x X. Then
(Sop T)(#:9) = Laex [T () 11 S(2,)
O Uex[R(x,2) MTR(z,y)] [Since RC S C T]
— (RopR)(r,y)
= R(x,y). [By Proposition 5.5]
Thus RC Sop T.
(2) Suppose Sop T € CRg(X) and let (z,y) € X x X. Then
(S/R) op (T/R))(RasRy) = Uex|[T/R(Re, Re) 11 S/R(Re, Ry)
= UZEX[T(‘T’Z) S(Z7y)}
= (SopT)(z,y)
= [(Sop T)/RI(Re, Ry)-
Thus (S/R) op (T/R) = (S op T)/R
(3) The proof is clear. O

Proposition 5.18. Let f : X — Y be a mapping. We define the mapping R :
X x X = [I] x I as follows: for each (z,y) € X x X,

R(x,y)—{<1’1> sz(m):f(y)

<0,0 > otherwise.

Then R € CRg(X).
In this case, R is called the cubic equivalence relation determined by f and we
will denote R by R;.

Proof. From the definition of R, it is clear that R is a cubic relation on X. For each
x € X, it is clear that f(x) = f(x). Then by the definition of R, R(z,z) =< 1,1 >.
Thus R is reflexive. It is obvious that R is symmetric. Let (z,z) € X x X. Then
(R op R)(,2) = Uyex[R(z, ) MRy, 2)]
O R(z,z) M R(z, 2)
=<1,1>MR(z,z) = R(x, 2).
Suppose f(z) = f(z), then R(x,z) =< 1,1 >. Thus (Rop R)(z,2) =< 1,1 >.
Suppose f(x) # f(z), then (Rop R)(z,2) = R(z,z) =< 0,0 >. Thus in either
cases, Rop R=R. So R € CRg(X). O

Definition 5.19. Let R =< R, A >€ ([I] x I)**¥X and let < @, >€ [I] x I such
that @ # 0 and « # 0. Then the < @, a >-level relation of R, denoted by [R]<z.a>,
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is a subset of X x X defined as follows:
Rl<a,a> ={(z,y) € X x X : R(z,y) = a, Mz,y) > a}.

It is obvious that if @ < b and a < /3, then [Rl<a,a> 3 [R] 5.5

Proposition 5.20. Let R =< R, A >¢€ ([I] x [)**X and let < a,a >€ [I] x I such
that @ # 0 and o # 0. Then
(1) (Rl<ga>) ' =R <a s
(2) [Rop Rl<d,a> = [Rl<a,a> © [Rl<g,a>-
Proof. (1) Let x, y € X. Then
(z,9) € ([Rl<ga>)"" & (y,2) € [Rl<ga>
& R™1(z,y) = R(
& (z,y) € [R7M<
(2) Let z, y € X. Then
(z,y) € [Rl<d,a> © [Rl<a,a>
& there is z € X such that (z,2) € [Rl<z,a>, (2,¥) € [Rl<a,a>
< there is z € X such that R(z,z) > a, A(z, ) >a; R(z,y) = a, Mz,y) >
< (Rop R)(x,y) = Uex[R(z,2) MTR(2z,y)] I< a,a >
~ (l‘vy) S [R op R]<E,a>- O

Proposition 5.21. Let R =< R, \ >€ ([I] x )*X*X and let ([Rl<g,a>)<a,a>e[nxr
be the family of all < a,a >-level relations of R. Then ([R]<a,a>)<a,a>e[rxI 5
descending and for each < a,a >€ [I] x I with a # 0 and o # 0,

y,x) = aand A" (x,y) = A(y,7) > «
a, o>

[Rl<d,a> = I_IE<6, ﬂ<a[R]<E,ﬁ>'

Proof. For any < a,a >, < g,ﬁ >e [I] x I, suppose < Z,ﬁ >C< a,a >. Then
clearly, [R]<ga> T [R] 3 5o Thus ([Rl<da>)<aa>e(nx1 is a descending family of
ordinary relations on X. So

[Rl<do> E M<a, ﬂ<a[R]<5,6>’
for each < @, >€ [I] x I such that @ # 0 and « # 0.
Assume that (z,y) € [Rl<aza>. Then by the definition of [R]<g q>, either
R(z,y) < @ or A(z,y) < a. Thus there is < 0,0 >#< b8 >€ [I] x I such
that R(x,y) < b < a or A(z,y) < B < a. So (z,y) & Uy R|_7 5. Hence

b<a, B<a[ <b,B>
[R] [R}<a7a>. Therefore [R]<a7a> =k [R] 7 . D

<b,B>

Proposition 5.22. Let R =< R\ >€ ([I] x I)**X and let [Rl<z.a> # ¢, for
each < a,a >€ [I| x I. If R € CRg(X), then [R]<z o> is an equivalence relation
on X. In this case, [R]<g,o> Will be called the < a,a >-level equivalence rela-
tion on X by R.

Proof. Suppose R € CRg(X). Then clearly, R(x,2) =< 1,1 >, for each z € X.
Thus R(x,z) = a and A(z,z) > a. So (z,z) € [R]<z,a>- Hence [R]<z o> is reflexive.
Now let (z,y), (y,2) € [Rl<g,a>- Then clearly, R(z,y) = a, A(z,y) > a and
R(y,z) = a, My, z) > «. Thus
R(z,z) = (Ro R)(x,z) [Since R is interval-valued fuzzy transitive]
= Ve x[R(z,a)AR(a, 2)]
39
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= R(x,y)AR(y, 2)
- a.
Similarly, we have A(z,z) > a. So (x,2) € [R]<z.a>. Hence [R]<z o> is transitive.
Finally let (x,y) € [R]<g,a>- Then clearly, R(x,y) = @ and A(z,y) > a. Since
R is cubic symmetric, R(y,z) = R~ (x,y) = R(z,y) = a and \(y,z) = A" (x,y) =
Az,y) > a. Thus (y,z) € [Rl<ga>- S0 [Rl<z,a> is symmetric. Hence [R]<g o> 18
an equivalence relation on X.

O

Definition 5.23. Let R, S C X x X and let < @, >€ [I] x I such that @ # 0 and
a # 0. We define two mappings R: X x X — [I] and Ag : X x X — I, respectively
as follows: for each (z,y) € X x X,

B 1 if (r,y) e Randz =y
R(z,y)=<¢ a if (r,y) e Randz #y
0 otherwise
and
1 if (z,y) € Sandz =y
As(w,y) = if (v,y) € Sand z #y

«@
0 otherwise.

Proposition 5.24. Let < a,a >€ [I] x I such that @ # 0 and o # 0. If R and S
are equivalence relations on a set X, then R =< R,\g >€ CRg.

Proof. Since R and S are reflexive, (z,2) € R and (z,z) € S. Then R(z,z) = 1 and
As(z,2) = 1. Thus R is cubic reflexive.

Now let (z,y) € X x X such that x # y.

Case 1: If (z,y) € R and (z,y) € S, then R(z,y) = a and Ag(z,y) = a. Since R
and S are symmetric, (y,2) € R and (y,z) € S. Thus R(y,z) = @ and Ag(y, ) = a.
So R(z,y) = R(y,z) =< a,a >.

Case 2: If (z,y) € R and (z,y) € S, then R(z,y) = 0 and Ag(z,y) = a. Since R
and S are symmetric, (y,z) ¢ R and (y,z) € S. Thus R(y,z) = 0 and Ag(y, =) = a.
So R(z,y) = R(y,z) =< 0, >.

Case 3: If (z,y) € R and (x,y) € S, then the proof is similar to Case 2.

Case 4: If (z,y) € R and (x,y) € S, then E(m,y) =0 and Ag(z,y) = 0. Since R
and S are symmetric, (y,z) € R and (y,z) ¢ S. Thus }Nz(y,x) =0 and Ag(y,z) = 0.
So R(x,y) = R(y,z) =< 0,0 >. Hence in either cases, R is cubic symmetric.

Finally let =, z € X and suppose z = z. Then clearly,

R(z,z) =<1,1>T0 (Rop R)(x, 2).

Thus

Case 1: If (z,2) € R and (z,z) € S, then clearly, R(x,z) = a and Ag(zx, z) = a.
Since R and S are transitive, (z,z) € Ro R and (x,z) € SoS. Thus there is y € X
such that (xz,y) € R, (y,z) € R and (z,y) € S, (y,2) € S. So

9

(Eo E>($7Z) = \/yeX[§<$,y)7\R(y,Z) =a= R(.’E,Z)
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and

(AsoAg)(z,2) = \/ As(z,y) A (y,2) = a = As(x, 2).

yeX

Case 2: If (z,2) € R and (x, z) € S, then clearly, R(z,z) = 0 and Ag(z, z) = a.
Since R is transitive, either (z,y) € R or (y,z) € R, for each y € X. Thus either
R(z,y) = 0 or R(y,z) =0, for each y € X. So R(z,2) =0 = (Ro R)(z,z). By the
proof of the above Case 1, (Ag 0 Ag)(z,2) = a = Ag(w, 2).

Case 3: If (z,2) € R and (z,2) ¢ S, then the proof is similar to the above Case
2.

Case 4: If (z,2) € R and (x, z) ¢ S, then we can show that the followings hold:

(Ro R)(z,2z) =0 = R(z,2) and (As 0 Ag)(z, 2) = 0 = Ag(z, 2).
Hence in either cases, R € CRg(X). This completes the proof. O

6. CONCLUSIONS

We introduced the concepts of cubic reflexive [resp. symmetric and transitive]
relation, and we define the composition of two cubic relations and the inverse of a
cubic relation. And we investigated some of each properties and gave some exam-
ples. Also we defined a cubic equivalence relation, a cubic equivalence class and a
cubic partition, and obtained some of its properties, respectively (In particular, see
Corollary 5.13 and Proposition 4.14). Furthermore, we defined a < @, a >-level rela-
tion of a cubic relation and studied some of its properties. In the future, we expect
that one can apply the concept of cubic sets to decision makings, graph theories,
congruences in algebras, quotient spaces in topological spaces, etc.
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