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1. Introduction

In 1965, the theory of fuzzy set was introduced by Zadeh [34]. While in [12], the
fuzzy metric space was defined by Kramosil and Michalek. Later on, the stronger
form of the fuzzy metric space was given by George and Veeramani [5]. Some more
related results are studied for the theory of fixed point in fuzzy metric spaces (e.g,
[6, 7, 11, 21, 22, 24, 29, 30]).

Initially, Jungck and Rhoads [10] introduced weakly compatible maps and proved
some results in the context of metric space. While, in 2007, Som [33] generalized
the results of [19, 20, 32] and proved common fixed point theorems for continuous
self-mappings in fuzzy metric spaces. Some more compatible mapping results are
studied in (see [3, 4, 9, 13, 14, 20, 23, 25, 26] the references are therein).

Recently, Oner et. al. in [18], defined the new concept of fuzzy cone metric
space and proved some basic properties and a Banach contraction theorem with the
assumption of Cauchy sequences. In [27], Rehman and Li generalize the result of
Oner et. al. [18] and proved some fixed point theorems for single-valued maps in
fuzzy cone metric spaces without the assumption of Cauchy sequences. Some more
results are in (e.g, see [2, 15, 16, 17, 28]).
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The aim of this research work is to obtain some common fixed point results for
compatible and weakly compatible self-mappings satisfying the more generalize form
of the fuzzy cone Banach contraction theorem in fuzzy cone metric spaces. We prove
the generalize results for four self-mappings with a continuous self-map h, as well
as without continuity of h with the condition of Mf triangular. The illustrative
examples are also given in the paper.

2. Preliminaries

Definition 2.1 ([31]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a
continuous t-norm, if it satisfying the following conditions:

(i) ∗ is commutative, associative and continuous,
(ii) 1 ∗ a = a for all a ∈ [0, 1],
(iii) a ∗ b ≤ c ∗ d, whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

The basic t-norms; i.e, minimum, product and Lukasiewicz continuous t-norms
are defined as (see [31]):

a ∗ b = min{a, b}, a ∗ b = ab, and a ∗ b = max{a+ b− 1, 0}.

Definition 2.2 ([8]). A subset P of a real Banach space E is called a cone, provided
that

(i) P is closed, nonempty and P 6= {θ},
(ii) if a, b ∈ [0,∞) and x, y ∈ P , then ax+ by ∈ P ,
(iii) if both x ∈ P and −x ∈ P , then x = θ.

For a given cone P ⊂ E, a partial ordering � on E via P is defined by x � y
if only if y − x ∈ P . x ≺ y stands for x � y and x 6= y, while x � y stands for
y − x ∈ int(P ). All the cones have nonempty interior.

Definition 2.3 ([18]). A three-tuple (X,Mf , ∗) is said to be a fuzzy cone metric
space, if P is a cone of E, X is an arbitrary set, ∗ is a continuous t-norm and
Mf is a fuzzy set on X2 × int(P ) satisfying the conditions: for all x, y, z ∈ X and
s, t ∈ int(P ),

(i) Mf (x, y, s) > 0 and Mf (x, y, s) = 1⇔ x = y,
(ii) Mf (x, y, s) = Mf (y, x, s),
(iii) Mf (x, y, s) ∗Mf (y, z, s) ≤Mf (x, z, s+ t),
(iv) Mf (x, y, .) : int(P )→ [0, 1] is continuous.

Note that if E = R, P = [0,∞) and a ∗ b = ab, then every fuzzy metric space
becomes a fuzzy cone metric space. Throughout paper, N denotes a set of natural
numbers.

Definition 2.4 ([18]). Let (X,Mf , ∗) be a fuzzy cone metric space, x ∈ X and (xi)
be a sequence in X. Then

(i) (xi) is said to converge to x, if for s � θ and r ∈ (0, 1), there exists i1 ∈ N
such that Mf (xi, x, s) > 1 − r, for all i ≥ i1. We denote this by lim

i→∞
xi = x or

xi → x as i→∞.
(ii) (xi) is said to be a Cauchy sequence, if for r ∈ (0, 1) and s� θ, there exists

i1 ∈ N such that Mf (xi, xj , s) > 1− r, for all i, j ≥ i1.
2
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(iii) (X,Mf , ∗) is said to be complete, if every Cauchy sequence is convergent in
X.

(iv) (xi) is said to be fuzzy cone contractive, if there exists µ ∈ (0, 1) such that

1

Mf (xi, xi+1, s)
− 1 ≤ µ

(
1

Mf (xi−1, xi, s)
− 1

)
,

for all s� θ, i ≥ 1.

Definition 2.5 ([27]). Let (X,Mf , ∗) be a fuzzy cone metric space. The fuzzy cone
metric Mf is triangular, if

1

Mf (x, z, s)
− 1 ≤

(
1

Mf (x, y, s)
− 1

)
+

(
1

Mf (y, z, s)
− 1

)
,

for all x, y, z ∈ X and each s� θ.

Lemma 2.6 ([18]). Let x ∈ X in a fuzzy cone metric space (X,Mf , ∗) and (xi) be a
sequence in X. Then (xi) converges to x if and only if Mf (xi, x, s)→ 1 as i→∞,
for each s� θ.

Definition 2.7 ([18]). Let (X,Mf , ∗) be a fuzzy cone metric space and B : X → X.
Then B is said to be fuzzy cone contractive, if there exists µ ∈ (0, 1) such that

(2.1)
1

Mf (Bx,By, s)
− 1 ≤ µ

(
1

Mf (x, y, s)
− 1

)
,

for each x, y ∈ X and s� θ. µ is called the contraction constant of B.

For more detail, we shall refer the readers to study [18, 27].

Definition 2.8. A pair of self-mappings (B, h) of a fuzzy cone metric space (X,Mf , ∗)
is said to be compatible, if lim

i→∞
Mf (hBxi, Bhxi, s) = 1, for s� θ, whenever (xi) is

a sequence in X such that lim
i→∞

hxi = lim
i→∞

Bxi = u, for some u ∈ X.

Definition 2.9 ([1]). Let B and h be self-maps on a set X (i.e., B, h : X → X). If
u = Bv = hv, for some v ∈ X, then v is called a coincidence point of B and h, and
u is called a point of coincidence of B and h. The self mappings B and h are said
to be weakly compatible, if they commutes at their coincidence point, i.e. Bv = hv
for some v ∈ X, then Bhv = hBv.

Proposition 2.10 ([1]). Let B and h be weakly compatible self-maps of a set X.
If B and h have a unique point of coincidence u = Bv = hv, then u is the unique
common fixed point of B and h.

“A self-mapping B in a complete fuzzy cone metric space in which the contractive
sequence are Cauchy and hold (2.1), then B has a unique fixed point in X” is known
as a fuzzy cone Banach contraction theorem, which is obtained in ([18]).

3. Major section

In this section, we present some single-valued common fixed point theorems for
compatible and weakly compatible mappings in fuzzy cone metric space (X,Mf , ∗).
Now we state and prove our first main result.

3
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Theorem 3.1. Suppose that A,B, h, g : X → X be four self-mappings and M is
triangular in a complete fuzzy cone metric space (X,Mf , ∗) satisfies,

1

Mf (Ax,By, s)
− 1 ≤ a1

(
1

Mf (hx, gy, s)
− 1

)
+ a2

(
1

Mf (hx,Ax, s)
− 1

)
+ a3

(
1

Mf (gy,By, s)
− 1

)
+ a4

(
1

Mf (hx,By, s)
− 1

)
+ a5

(
1

Mf (gy,Ax, s)
− 1

)
(3.1)

for all x, y ∈ X, s� θ, where a1, a2, a3, a4, a5 ∈ [0,∞) with a1+a2+a3+a4+a5 < 1
and a2 = a3 or a4 = a5. If A(X) ⊆ g(X), B(X) ⊆ h(X) and h is continuous, (h,A)
is compatible and (g,B) is weakly compatible. Then A,B, h, and g have a unique
common fixed point in X.

Proof. Fix x0 ∈ X and by using the condition A(X) ⊆ g(X), B(X) ⊆ h(X), choose
a sequence (xi) in X such that

y2i+1 = gx2i+1 = Ax2i and y2i+2 = hx2i+2 = Bx2i+1, for all i ≥ 0.

Now, by (3.1), for s� θ,

1

Mf (gx2i+1, hx2i+2, s)
− 1 =

1

Mf (Ax2i, Bx2i+1, s)
− 1

≤ a1
(

1

Mf (hx2i, gx2i+1, s)
− 1

)
+ a2

(
1

Mf (hx2i, Ax2i, s)
− 1

)
+ a3

(
1

Mf (gx2i+1, Bx2i+1, s)
− 1

)
+ a4

(
1

Mf (hx2i, Bx2i+1, s)
− 1

)
+ a5

(
1

Mf (gx2i+1, Ax2i, s)
− 1

)
≤ a1

(
1

Mf (hx2i, gx2i+1, s)
− 1

)
+ a2

(
1

Mf (hx2i, gx2i+1, s)
− 1

)
+ a3

(
1

Mf (gx2i+1, hx2i+2, s)
− 1

)
+ a4

(
1

Mf (hx2i, hx2i+2, s)
− 1

)
+ a5

(
1

Mf (gx2i+1, gx2i+1, s)
− 1

)
≤ a1

(
1

Mf (hx2i, gx2i+1, s)
− 1

)
+ a2

(
1

Mf (hx2i, gx2i+1, s)
− 1

)
+ a3

(
1

Mf (gx2i+1, hx2i+2, s)
− 1

)
+ a4

(
1

Mf (hx2i, gx2i+1, s)
− 1 +

1

Mf (gx2i+1, hx2i+2, s)
− 1

)
.

4
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After simplification, for s� θ, we can get

1

Mf (gx2i+1, hx2i+2, s)
− 1 ≤ λ

(
1

Mf (hx2i, gx2i+1, s)
− 1

)
, where λ =

a1 + a2 + a4
1− (a3 + a4)

.

(3.2)

Similarly, again by (3.1), for s� θ,

1

Mf (hx2i+2, gx2i+3, s)
− 1 =

1

Mf (Ax2i+2, Bx2i+1, s)
− 1

≤ a1
(

1

Mf (hx2i+1, gx2i+2, s)
− 1

)
+ a2

(
1

Mf (hx2i+2, Ax2i+2, s)
− 1

)
+ a3

(
1

Mf (gx2i+1, Bx2i+1, s)
− 1

)
+ a4

(
1

Mf (hx2i+2, Bx2i+1, s)
− 1

)
+ a5

(
1

Mf (gx2i+1, Ax2i+2, s)
− 1

)
≤ a1

(
1

Mf (hx2i+1, gx2i+2, s)
− 1

)
+ a2

(
1

Mf (hx2i+2, gx2i+3, s)
− 1

)
+ a3

(
1

Mf (gx2i+1, hx2i+2, s)
− 1

)
+ a4

(
1

Mf (hx2i+2, hx2i+2, s)
− 1

)
+ a5

(
1

Mf (gx2i+1, gx2i+3, s)
− 1

)
≤ a1

(
1

Mf (hx2i+1, gx2i+2, s)
− 1

)
+ a2

(
1

Mf (hx2i+2, gx2i+3, s)
− 1

)
+ a3

(
1

Mf (gx2i+1, hx2i+2, s)
− 1

)
+ a5

(
1

Mf (gx2i+1, hx2i+2, s)
− 1 +

1

Mf (hx2i+2, gx2i+3, s)
− 1

)
.

After simplification, for s� θ, we can get

1

Mf (hx2i+2, gx2i+3, s)
− 1 ≤ µ

(
1

Mf (gx2i+1, hx2i+2, s)
− 1

)
, where µ =

a1 + a3 + a5
1− (a2 + a5)

.

(3.3)

Now, by induction, from (3.2) and (3.3), we obtain that

1

Mf (gx2i+1, hx2i+2, s)
− 1 ≤ λ

(
1

Mf (hx2i, gx2i+1, s)
− 1

)
≤ λµ

(
1

Mf (gx2i−1, hx2i, s)
− 1

)
≤ λµλ

(
1

Mf (hx2i−2, gx2i−1, s)
− 1

)
≤ · · · ≤ λ(µλ)i

(
1

Mf (hx0, gx1, s)
− 1

)
, for s� θ.(3.4)

5
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And,

1

Mf (hx2i+2, gx2i+3, s)
− 1 ≤ µ

(
1

Mf (gx2i+1, hx2i+2, s)
− 1

)
≤ µλ

(
1

Mf (hx2i, gx2i+1, s)
− 1

)
≤ · · · ≤ (µλ)i+1

(
1

Mf (hx0, gx1, s)
− 1

)
, for s� θ.(3.5)

(Case i): If a2 = a3, then

(3.6) λµ =
a1 + a2 + a4
1− (a3 + a4)

· a1 + a3 + a5
1− (a2 + a5)

=
a1 + a2 + a4
1− (a2 + a5)

· a1 + a3 + a5
1− (a3 + a4)

< 1 ·1 = 1.

(Case ii): If a4 = a5, then

(3.7) λµ =
a1 + a2 + a4
1− (a3 + a4)

· a1 + a3 + a5
1− (a2 + a5)

< 1 · 1 = 1.

Since Mf is triangular, for j > i ≥ i0, we have

1

Mf (y2i+1, y2j+1, s)
− 1 ≤

(
1

Mf (y2i+1, y2i+2, s)
− 1

)
+ · · ·+

(
1

Mf (y2m, y2m+1, s)
− 1

)
≤

(
λ

j−1∑
k=i

(λµ)k +

j∑
k=i+1

(λµ)k

)(
1

Mf (y0, y1, s)
− 1

)

≤
(
λ(λµ)i

1− λµ
+

(λµ)i+1

1− λµ

)(
1

Mf (y0, y1, s)
− 1

)
= (1 + µ)

λ(λµ)i

1− λµ

(
1

Mf (y0, y1, s)
− 1

)
, for s� θ.

Similarly,

1

Mf (y2i, y2j+1, s)
− 1 ≤ (1 + λ)

(λµ)i

1− λµ

(
1

Mf (y0, y1, s)
− 1

)
, for s� θ,

1

Mf (y2i, y2j , s)
− 1 ≤ (1 + λ)

(λµ)i

1− λµ

(
1

Mf (y0, y1, s)
− 1

)
, for s� θ,

1

Mf (y2i+1, y2j , s)
− 1 ≤ (1 + µ)

λ(λµ)i

1− λµ

(
1

Mf (y0, y1, s)
− 1

)
, for s� θ.

Then for j > i,

1

Mf (y2i+1, y2j+1, s)
− 1 ≤ max

{
(1 + λ)

(λµ)i

1− λµ
, (1 + µ)

λ(λµ)i

1− λµ

}(
1

Mf (y0, y1, s)
− 1

)
→ 0, as i→∞.

Which shows that a sequence (yi)i≥0 is a Cauchy sequence. Since, by the com-
pleteness of X, ∃ v ∈ X such that yi → v as i → ∞, for its the subsequence we
obtain,

gx2i+1 → v, hx2i+2 → v, Ax2i → v and Bx2i+1 → v.(3.8)

6
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Since h is a continuous self-mapping on X, such that

h(gx2i+1)→ hv, h(hx2i+2)→ hv, h(Ax2i)→ hv and h(Bx2i+1)→ hv.

h(Ax2i)→ h(v) and (A, h) is compatible. Then, we have that
(3.9)
lim
i→∞

Mf (A(hx2i), h(Ax2i), s) = lim
i→∞

Mf (A(hx2i), hv, s) = 1, lim
i→∞

Mf (h(Ax2i), hv, s) = 1,

for s� θ.
Now, we have to show that hv = v, by Definition 2.3 (iii),

Mf (hv, v, 2s) ≥Mf (hv,A(hx2i), s) ∗Mf (A(hx2i), v, s), for s� θ.(3.10)

As a pair (A, h) is compatible, by definition of ∗, and from (3.8), (3.9) and (3.10),
we have

Mf (hv, v, 2s) ≥ lim
i→∞

(Mf (hv,A(hx2i), s) ∗Mf (A(hx2i), v, s)) = 1 ∗ 1 = 1,

for s � θ. Hence, Mf (hv, v, 2s) = 1, for s � θ, and hv = v. Next, we shall show
that Av = v, again by Definition 2.3 (iii),

Mf (Av, v, 2s) ≥Mf (Av, h(Ax2i), s) ∗Mf (h(Ax2i), v, s), for s� θ.(3.11)

Now again by definition of ∗, and from (3.8), (3.9) and (3.11), we have

Mf (Av, v, 2s) ≥ lim
i→∞

(Mf (Av, h(Ax2i), s) ∗Mf (h(Ax2i), v, s)) = 1 ∗ 1 = 1,

for s� θ. Then Mf (Av, v, 2s) = 1, for s� θ and Av = v. Thus v = hv = Av.
Now we shall show that Bv = gv. As A(X) ⊆ g(X) and ∃ u ∈ X such that

v = Av = gu, by view of (3.1), for s� θ,

1

Mf (Bu, gu, s)
− 1 =

1

Mf (Av,Bu, s)
− 1

≤ a1
(

1

Mf (hv, gu, s)
− 1

)
+ a2

(
1

Mf (hv,Av, s)
− 1

)
+ a3

(
1

Mf (gu,Bu, s)
− 1

)
+ a4

(
1

Mf (hv,Bu, s)
− 1

)
+ a5

(
1

Mf (gu,Av, s)
− 1

)
= a1

(
1

Mf (hv, v, s)
− 1

)
+ a2

(
1

Mf (v, hv, s)
− 1

)
+ a3

(
1

Mf (gu,Bu, s)
− 1

)
+ a4

(
1

Mf (gu,Bu, s)
− 1

)
+ a5

(
1

Mf (gu, gu, s)
− 1

)
= (a3 + a4)

(
1

Mf (gu,Bu, s)
− 1

)
.

Notice that (a3 +a4) < 1 since (a1 +a2 +a3 +a4 +a5) < 1, then Mf (gu,Bu, s) = 1,
that is, Bu = gu = v and by the weak compatibility of B and g, implies that

gv = g(Bu) = B(gu) = Bv.
7
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Now we shall show that Bv = v, then by view of (3.1), for s� θ,

1

Mf (Bv, v, s)
− 1 =

1

Mf (Bv,Av, s)
− 1

≤ a1
(

1

Mf (hv, gv, s)
− 1

)
+ a2

(
1

Mf (hv,Av, s)
− 1

)
+ a3

(
1

Mf (gv,Bv, s)
− 1

)
+ a4

(
1

Mf (hv,Bv, s)
− 1

)
+ a5

(
1

Mf (gv,Av, s)
− 1

)
= a1

(
1

Mf (v,Bv, s)
− 1

)
+ a2

(
1

Mf (hv, hv, s)
− 1

)
+ a3

(
1

Mf (gv, gv, s)
− 1

)
+ a4

(
1

Mf (v,Bv, s)
− 1

)
+ a5

(
1

Mf (Bv, v, s)
− 1

)
= (a1 + a4 + a5)

(
1

Mf (v,Bv, s)
− 1

)
.

Notice that (a1 + a4 + a5) < 1 since (a1 + a2 + a3 + a4 + a5) < 1, Mf (v,Bv, s) = 1,
that is, v = Bv, which further implies that gv = v. Hence, hv = gv = Av = Bv = v,
proved that v is the common fixed point of the four self-mappings A,B, g and h in
X.

Uniqueness: Let there is another point z ∈ X such that hz = gz = Az = Bz = z.
Then by (3.1), for s� θ,

1

Mf (z, v, s)
− 1 =

1

Mf (Az,Bv, s)
− 1

≤ a1
(

1

Mf (hz, gv, s)
− 1

)
+ a2

(
1

Mf (hz,Az, s)
− 1

)
+ a3

(
1

Mf (gv,Bv, s)
− 1

)
+ a4

(
1

Mf (hz,Bv, s)
− 1

)
+ a5

(
1

Mf (gv,Az, s)
− 1

)
= (a1 + a4 + a5)

(
1

Mf (z, v, s)
− 1

)
, for s� θ.

Since (a1 + a4 + a5) < 1, it follows that Mf (z, v, s) = 1, that is, z = v. Thus we
proved that the common fixed point of A,B, h, and g is unique. �

Example 3.2. Let X = [0, 1], ∗ is a continuous t-norm and Mf : X2×(0,∞)→ [0, 1]
be defined as

Mf (x, y, s) = s/(s+ |x− y|),
∀ x, y ∈ X and s > 0. Then easily one can verify thatMf is triangular and (X,Mf , ∗)
is a complete fuzzy cone metric space. The mappings A,B, h, g : X → X can be

8
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defined as: for each x ∈ X,

Ax = Bx =


1

2

(
2x

3
+

1

4

)
, if x 6= 0,

0, if x = 0.

And

gx = hx =


2x

3
+

1

4
, if x 6= 0,

0, if x = 0.

Since A(X) = B(X) and g(X) = h(X), we have A(X) ⊆ g(X) or B(X) ⊆ h(X).
Then from (3.1), we have that

1

Mf (Ax,By, s)
− 1 =

|Ax−By|
s

=
|x− y|

3s

≤ a1 ·
(

1

Mf (hx, gy, s)
− 1

)
+ a2 ·

(
1

Mf (hx,Ax, s)
− 1

)
+ a3 ·

(
1

Mf (gy,By, s)
− 1

)
+ a4 ·

(
1

Mf (hx,By, s)
− 1

)
+ a5 ·

(
1

Mf (gy,Ax, s)
− 1

)
,

for all x, y ∈ X and s � θ. Thus all the condition of Theorem 3.1 is satisfied with
a1 = 1

2 , a2 = a3 = 1
6 and a4 = a5 = 0, and the unique common fixed point of the

mappings A,B, h and g in X is 0.

Corollary 3.3. Suppose that A,B, h, g : X → X be four self-mappings and Mf is
triangular in a complete fuzzy cone metric space (X,Mf , ∗) satisfies,

1

Mf (Ax,By, s)
− 1 ≤ a1

(
1

Mf (hx, gy, s)
− 1

)
+ a2

(
1

Mf (hx,Ax, s)
− 1

)
+ a3

(
1

Mf (gy,By, s)
− 1

)
,(3.12)

for all x, y ∈ X, s � θ, where a1, a2, a3 ∈ [0,∞) with a1 + a2 + a3 < 1. If
A(X) ⊆ g(X), B(X) ⊆ h(X) and h is continuous, (h,A) is compatible and (g,B)
is weakly compatible. Then A,B, h, and g have a unique common fixed point in X.

Corollary 3.4. Suppose that A,B, h, g : X → X be four self-mappings and M is
triangular in a complete fuzzy cone metric space (X,Mf , ∗) satisfies,

1

Mf (Ax,By, s)
− 1 ≤ a1

(
1

Mf (hx, gy, s)
− 1

)
+ a2

(
1

Mf (hx,By, s)
− 1

)
+ a3

(
1

Mf (gy,Ax, s)
− 1

)
,(3.13)

for all x, y ∈ X, s � θ, where a1, a2, a3 ∈ [0,∞) with a1 + 2(a2 + a3) < 1. If
A(X) ⊆ g(X), B(X) ⊆ h(X) and h is continuous, (h,A) is compatible and (g,B)
is weakly compatible. Then A,B, h, and g have a unique common fixed point in X.

9
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Corollary 3.5. Suppose that A,B, h, g : X → X be four self-mappings and M is
triangular in a complete fuzzy cone metric space (X,Mf , ∗) satisfies,

1

Mf (Ax,By, s)
− 1 ≤ a

(
1

Mf (hx, gy, s)
− 1

)
,(3.14)

for all x, y ∈ X, s � θ and a ∈ [0, 1). If A(X) ⊆ g(X), B(X) ⊆ h(X) and h is
continuous, (h,A) is compatible and (g,B) is weakly compatible. Then A,B, h, and
g have a unique common fixed point in X.

Example 3.6. As from Example 3.2, the mappings A,B, h, g : X → X can be
defined as

Ax = x/(x+ 6), By = y/(y + 10), hx = x/3 and gy = y/5,

for every x, y ∈ X. Then from (3.14), we have that

1

Mf (Ax,By, s)
− 1 =

∣∣∣∣Ax−Bys

∣∣∣∣ =
1

s

∣∣∣∣ x

x+ 6
− y

y + 10

∣∣∣∣
=

1

s

∣∣∣∣ 10x− 6y

(x+ 6)(y + 10)

∣∣∣∣
≤ 1

s

∣∣∣∣10x− 6y

60

∣∣∣∣
=

1

2s

∣∣∣x
3
− y

5

∣∣∣ =
1

2

(
1

Mf (hx, gy, s)
− 1

)
.

Thus all the condition of Corollary 3.5 is satisfied with a = 1/2 and A,B, h, g have
a unique common fixed point 0 in X.

If we choose A = B and h = g, then directly we can get the Corollary 3.7.

Corollary 3.7. Suppose that B, h : X → X be two self-maps and Mf is triangular
in a complete fuzzy cone metric space (X,Mf , ∗) satisfies,

1

Mf (Bx,By, s)
− 1 ≤ a1

(
1

Mf (hx, hy, s)
− 1

)
+ a2

(
1

Mf (hx,Bx, s)
− 1

)
+ a3

(
1

Mf (hy,By, s)
− 1

)
+ a4

(
1

Mf (hx,By, s)
− 1

)
+ a5

(
1

Mf (hy,Bx, s)
− 1

)
,(3.15)

for all x, y ∈ X, s� θ, where a1, a2, a3, a4, a5 ∈ [0,∞) with a1+a2+a3+a4+a5 < 1,
and a2 = a3 or a4 = a5. If B(X) ⊆ h(X), h is continuous and (B, h) is weakly
compatible. Then B and h have a unique common fixed point in X.

In the following Theorem 3.8, we need not the continuity of h whereas the com-
pleteness of X is replaced with the completeness of B(X) or h(X).

10
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Theorem 3.8. Suppose that B, h : X → X be two self-maps and Mf is triangular
in a fuzzy cone metric space (X,Mf , ∗) satisfies,

1

Mf (Bx,By, s)
− 1 ≤ a1

(
1

Mf (hx, hy, s)
− 1

)
+ a2

(
1

Mf (hx,Bx, s)
− 1

)
+ a3

(
1

Mf (hy,By, s)
− 1

)
+ a4

(
1

Mf (hx,By, s)
− 1

)
+ a5

(
1

Mf (hy,Bx, s)
− 1

)
,(3.16)

for all x, y ∈ X, s� θ, where a1, a2, a3, a4, a5 ∈ [0,∞) with a1+a2+a3+a4+a5 < 1,
and a2 = a3 or a4 = a5. If B(X) ⊆ h(X), B(X) or h(X) is complete and (B, h) is
weakly compatible. Then B and h have a unique common fixed point in X.

Proof. As same as, in the proof of Theorem 3.1, we construct a Cauchy sequence
(yi) in h(X) such that

y2i+1 = hx2i+1 = Bx2i and y2i+2 = hx2i+2 = Bx2i+1, for i ≥ 0.

Since h(X) is complete, and ∃ u, v ∈ X such that y2i+1 → u = hv as i→∞,

(3.17) lim
i→∞

Mf (y2i+1, u, s) = lim
i→∞

Mf (hx2i+1, u, s) = 1, for s� θ.

Since Mf is triangular,

1

Mf (hv,Bv, s)
− 1 ≤

(
1

Mf (hv, y2i+2, s)
− 1

)
+

(
1

Mf (y2i+2, Bv, s)
− 1

)
, for s� θ.

(3.18)

Then by view of (3.16) and (3.17), for s� θ,

1

Mf (y2i+2, Bv, s)
− 1 =

1

Mf (Bx2i+1, Bv, s)
− 1

≤ a1
(

1

Mf (hx2i+1, hv, s)
− 1

)
+ a2

(
1

Mf (hx2i+1, Bx2i+1, s)
− 1

)
+ a3

(
1

Mf (hv,Bv, s)
− 1

)
+ a4

(
1

Mf (hx2i+1, Bv, s)
− 1

)
+ a5

(
1

Mf (hv,Bx2i+1, s)
− 1

)
= a1

(
1

Mf (hx2i+1, hv, s)
− 1

)
+ a2

(
1

Mf (hx2i+1, hx2i+2, s)
− 1

)
+ a3

(
1

Mf (hv,Bv, s)
− 1

)
+ a4

(
1

Mf (hx2i+1, Bv, s)
− 1

)
+ a5

(
1

Mf (hv, hx2i+2, s)
− 1

)
→ (a3 + a4)

(
1

Mf (hv,Bv, s)
− 1

)
, as i→∞.

11
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Thus

lim sup
i→∞

(
1

Mf (y2i+2, Bv, s)
− 1

)
≤ (a3 + a4)

(
1

Mf (hv,Bv, s)
− 1

)
, as i→∞.

Now, from (3.17) and (3.18), we can get

1

Mf (hv,Bv, s)
− 1 ≤ (a3 + a4)

(
1

Mf (hv,Bv, s)
− 1

)
, for s� θ.(3.19)

Since a3 +a4 < 1, Mf (hv,Bv, s) = 1. So u = hv = Bv. By the weakly compatibility
of (B, h), we have

Bu = B(hv) = h(Bv) = hu.

Hence by view of (3.16), for s� θ,

1

Mf (Bu, u, s)
− 1 =

1

Mf (Bu,Bv, s)
− 1

≤ a1
(

1

Mf (hu, hv, s)
− 1

)
+ a2

(
1

Mf (hu,Bu, s)
− 1

)
+ a3

(
1

Mf (hv,Bv, s)
− 1

)
+ a4

(
1

Mf (hu,Bv, s)
− 1

)
+ a5

(
1

Mf (hv,Bu, s)
− 1

)
= a1

(
1

Mf (Bu, u, s)
− 1

)
+ a2

(
1

Mf (hu, hu, s)
− 1

)
+ a3

(
1

Mf (hv, hv, s)
− 1

)
+ a4

(
1

Mf (Bu, u, s)
− 1

)
+ a5

(
1

Mf (u,Bu, s)
− 1

)
= (a1 + a4 + a5)

(
1

Mf (Bu, u, s)

)
.

Since a1 + a4 + a5 < 1, Mf (Bu, u, s) = 1, for s � θ. Thus u = Bu = hu. So u is
the common fixed point of B and h.

12
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Uniqueness: Let there is another point z ∈ X such that z = Bz = hz. Then by
(3.16), for s� θ,

1

Mf (z, v, s)
− 1 =

1

Mf (Bz,Bv, s)
− 1

≤ a1
(

1

Mf (hz, hv, s)
− 1

)
+ a2

(
1

Mf (hz,Bz, s)
− 1

)
+ a3

(
1

Mf (hv,Bv, s)
− 1

)
+ a4

(
1

Mf (hz,Bv, s)
− 1

)
+ a5

(
1

Mf (hv,Bz, s)
− 1

)
= (a1 + a4 + a5)

(
1

Mf (z, v, s)
− 1

)
, for s� θ.

Since (a1 + a4 + a5) < 1, it follows that Mf (z, v, s) = 1, that is, z = v. Thus we
proved that the common fixed point of B and h is unique. �

Corollary 3.9. Suppose that B, h : X → X be two self-mappings and Mf is trian-
gular in a fuzzy cone metric space (X,Mf , ∗), B(X) ⊆ h(X) and satisfies that

1

Mf (Bix,Biy, s)
− 1 ≤ a1

(
1

Mf (hx, hy, s)
− 1

)
+ a2

(
1

Mf (hx,Bix, s)
− 1

)
+ a3

(
1

Mf (hy,Biy, s)
− 1

)
+ a4

(
1

Mf (hx,Biy, s)
− 1

)
+ a5

(
1

Mf (hy,Bix, s)
− 1

)
,(3.20)

for all x, y ∈ X, s� θ, where a1, a2, a3, a4, a5 ∈ [0,∞) with a1+a2+a3+a4+a5 < 1,
and a2 = a3 or a4 = a5. Then B and h have a unique common fixed point in X, if
B(h) = h(B) and holds one of the following:

(C:1) X is complete and h is continuous,
(C:2) h(X) is complete,
(C:3) B(X) is complete.

Proof. By Corollary 3.7 and Theorem 3.8, we obtain u ∈ X such that

(3.21) hu = Biu = u.
13
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Then, from (3.20), for s� θ,

1

Mf (Bu, u, s)
− 1 =

1

Mf (B(Biu), Biu, s)
− 1 =

1

Mf (Bi(Bu), Biu, s)
− 1

≤ a1
(

1

Mf (h(Bu), hu, s)
− 1

)
+ a2

(
1

Mf (h(Bu), Bi(Bu), s)
− 1

)
+ a3

(
1

Mf (hu,Biu, s)
− 1

)
+ a4

(
1

Mf (h(Bu), Biu, s)
− 1

)
+ a5

(
1

Mf (hu,Bi(Bu), s)
− 1

)
= a1

(
1

Mf (B(hu), hu, s)
− 1

)
+ a2

(
1

Mf (B(hu), B(Biu), s)
− 1

)
+ a3

(
1

Mf (hu, u, s)
− 1

)
+ a4

(
1

Mf (B(hu), u, s)
− 1

)
+ a5

(
1

Mf (hu,B(Biu), s)
− 1

)
= a1

(
1

Mf (Bu, u, s)
− 1

)
+ a2

(
1

Mf (Bu,Bu, s)
− 1

)
+ a3

(
1

Mf (hu, u, s)
− 1

)
+ a4

(
1

Mf (Bu, u, s)
− 1

)
+ a5

(
1

Mf (u,Bu, s)
− 1

)
= (a1 + a4 + a5)

(
1

Mf (Bu, u, s)
− 1

)
.

Since a1 + a4 + a5 < 1, Mf (Bu, u, s) = 1, for s � θ. Thus u = Bu = hu. So u is
the common fixed point of B and h.

Uniqueness: Let there is another point z ∈ X such that z = Bz = hz and
z = Biz = hz as in (3.21). Then by (3.20), for s� θ,

1

Mf (z, v, s)
− 1 =

1

Mf (Biz,Biv, s)
− 1

≤ a1
(

1

Mf (hz, hv, s)
− 1

)
+ a2

(
1

Mf (hz,Biz, s)
− 1

)
+ a3

(
1

Mf (hv,Biv, s)
− 1

)
+ a4

(
1

Mf (hz,Biv, s)
− 1

)
+ a5

(
1

Mf (hv,Biz, s)
− 1

)
= (a1 + a4 + a5)

(
1

Mf (z, v, s)
− 1

)
, for s� θ.

Since (a1 + a4 + a5) < 1, it follows that Mf (z, v, s) = 1, that is, z = v. Thus we
proved that the common fixed point of B and h is unique. �

14



Rehman et al./Ann. Fuzzy Math. Inform. 19 (2020), No. 1, 1–19

Next, we prove a new-type of fuzzy cone contraction theorem in fuzzy cone metric
spaces.

Theorem 3.10. Suppose that B, h : X → X be two self-maps and Mf is triangular
in a complete fuzzy cone metric space (X,Mf , ∗) satisfies,

1

Mf (Bx,By, s)
− 1 ≤ a1

(
1

Mf (hx, hy, s)
− 1

)
+ a2

(
1

Mf (hx,Bx, s)
− 1

)
+ a3

(
1

Mf (hy,By, s) ∗Mf (hy,Bx, s)
− 1

)
,(3.22)

for all x, y ∈ X, s � θ, and a1, a2, a3 ∈ [0,∞) with a1 + a2 + a3 < 1. If B(X) ⊆
h(X), and a pair (B, h) is weakly compatible. Then B and h have a unique common
fixed point in X.

Proof. Fix x0 ∈ X and by condition B(X) ⊆ h(X), choose a sequence (xi) in X
such that

yi+1 = hxi+1 = Bxi, for all i ≥ 0.

Now, by (3.22), for s� θ,

1

Mf (hxi, hxi+1, s)
− 1 =

1

Mf (Bxi−1, Bxi, s)
− 1

≤ a1
(

1

Mf (hxi−1, hxi, s)
− 1

)
+ a2

(
1

Mf (hxi−1, Bxi−1, s)
− 1

)
+ a3

(
1

Mf (hxi, Bxi, s) ∗Mf (hxi, Bxi−1, s)
− 1

)
≤ a1

(
1

Mf (hxi−1, hxi, s)
− 1

)
+ a2

(
1

Mf (hxi−1, hxi, s)
− 1

)
+ a3

(
1

Mf (hxi, hxi+1, s) ∗ 1
− 1

)
,

After simplification, we can get

1

Mf (hxi, hxi+1, s)
− 1 ≤ µ

(
1

Mf (hxi−1, hxi, s)
− 1

)
, where µ =

a1 + a2
1− a3

< 1.

Continuing the same process, for s� θ, we can get the following

1

Mf (hxi, hxi+1, s)
−1 ≤ µ

(
1

Mf (hxi−1, hxi, s)
− 1

)
≤ · · · ≤ µi

(
1

Mf (hx0, hx1, s)
− 1

)
,

which shows that (hxi) is a fuzzy cone contractive sequence. Thus

(3.23) lim
i→∞

Mf (hxi, hxi+1, s) = 1, for s� θ.
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Since Mf is triangular, for j > i ≥ i0,

1

M(hxi, hxj , s)
− 1 ≤

(
1

M(hxi, hxi−1, s)
− 1

)
+ · · ·+

(
1

M(hxj−1, hxj , s)
− 1

)
≤
(
µi + µi+1 + · · ·+ µj−1)( 1

M(hx0, hx1, s)
− 1

)
≤ µi

1− µ

(
1

M(hx0, hx1, s)
− 1

)
→ 0, as i→∞,

which shows that (hxi) is a Cauchy sequence. Since by the completeness of X,
∃ u, v ∈ X such that yi = hxi → u = hv as i→∞,

(3.24) lim
i→∞

Mf (hxi, u, s) = 1, for s� θ.

Since Mf is triangular,

1

Mf (hv,Bv, s)
− 1 ≤

(
1

Mf (hv, hxi+1, s)
− 1

)
+

(
1

Mf (hxi+1, Bv, s)
− 1

)
, for s� θ.

(3.25)

Then, by view of (3.22), (3.23) and (3.24),

1

Mf (hxi+1, Bv, s)
− 1 =

1

Mf (Bxi, Bv, s)
− 1

≤ a1
(

1

Mf (hxi, hv, s)
− 1

)
+ a2

(
1

Mf (hxi, Bxi, s)
− 1

)
+ a3

(
1

Mf (hv, hxi, s) ∗M(hv,Bv, s)
− 1

)
= a1

(
1

Mf (hxi, hv, s)
− 1

)
+ a2

(
1

Mf (hxi, hxi+1, s)
− 1

)
+ a3

(
1

Mf (hv, hxi, s) ∗M(hv,Bv, s)
− 1

)
→ a3

(
1

M(hv,Bv, s)
− 1

)
, as i→∞.

Thus

lim sup
i→∞

(
1

Mf (hxi+1, Bv, s)
− 1

)
≤ a3

(
1

M(hv,Bv, s)
− 1

)
, for s� θ.

Now, this together with (3.24) and (3.25),

1

M(hv,Bv, s)
− 1 ≤ a3

(
1

M(hv,Bv, s)
− 1

)
, for s� θ.

Noticing that a3 < 1, since a1 + a2 + a3 < 1, M(hv,Bv, s) = 1, for s � θ. So
u = hv = Bv. Now, by the weak compatibility of (B, h), we have

Bu = B(hv) = h(Bv) = hu.
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Then, by view of (3.22), for s� θ,

1

Mf (Bu, u, s)
− 1 =

1

Mf (Bu,Bv, s)
− 1

≤ a1
(

1

Mf (hu, hv, s)
− 1

)
+ a2

(
1

Mf (hu,Bu, s)
− 1

)
+ a3

(
1

Mf (hv,Bv, s) ∗Mf (hv,Bu, s)
− 1

)
= (a1 + a3)

(
1

Mf (Bu, u, s)
− 1

)
.

Since a1 + a3 < 1, Mf (Bu, u, s) = 1, for s � θ. Thus u = Bu = hu. So u is the
common fixed point of B and h.

Uniqueness: Let there is another point z ∈ X such that z = Bz = hz. Then by
(3.22) for s� θ,

1

Mf (z, v, s)
− 1 =

1

Mf (Bz,Bv, s)
− 1

≤ a1
(

1

Mf (hz, hv, s)
− 1

)
+ a2

(
1

Mf (hz,Bz, s)
− 1

)
+ a3

(
1

M(hv,Bv, s) ∗M(hv,Bz, s)

)
= (a1 + a3)

(
1

Mf (z, z, s)
− 1

)
, for s� θ,

Since (a1 + a3) < 1, it follows that Mf (z, v, s) = 1, that is, z = v. Thus we proved
that the common fixed point of B and h is unique. �

Corollary 3.11. Suppose that B, h : X → X be two self-maps and Mf is triangular
in a complete fuzzy cone metric space (X,Mf , ∗) satisfies,

1

Mf (Bx,By, s)
− 1 ≤ a1

(
1

Mf (hx, hy, s)
− 1

)
+ a2

(
1

Mf (hy,By, s) ∗Mf (hy,Bx, s)
− 1

)
,

(3.26)

for all x, y ∈ X, s� θ, and a1, a2 ∈ [0,∞) with a1 + a2 < 1. If B(X) ⊆ h(X), and
a pair (B, h) is weakly compatible. Then B and h have a unique common fixed point
in X.

4. Conclusions

We used the concept of compatible and weakly compatible self-mappings in fuzzy
cone metric spaces and proved some generalized common fixed point theorems for
four self-mappings in fuzzy cone metric spaces. We proved different contractive type
results for self-mappings with the continuity of a self-map h, that is, Theorem 3.1
and without continuity for a pair of weakly compatible self-mappings are Theorem
3.8 and Theorem 3.10 which generalized and extended the results of [18, 27, 28]. So,
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one can study this concept for a family of mappings in fuzzy cone metric spaces for
different contractive type mappings to improve and extend many results.
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