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1. Introduction

After introducing the concept of fuzzy set by Zadeh [10] in 1965, the research
in fuzzy mathematics has been demonstrated in different directions such as fuzzy
functional analysis, fuzzy topology, fuzzy control theory, fuzzy dynamical system
etc. We know that metric space, normed linear space and inner product space are
the main tools in functional analysis, so to develop fuzzy functional analysis, fuzzy
metric space plays an important role. Several authors introduced the idea of fuzzy
metric space in different approaches (for references please see ([3, 5, 6]).

Recently, Huang and Zhang [4] introduced a generalized idea of metric space
which is called cone metric space and by using it many papers have been published
(please see ([1, 2, 7, 8, 9]) in such space. In our earlier paper [7], following the
definition of cone metric space introduced by Huang and Zhang [4], definition of
fuzzy cone metric space is given and established some basic results.

In this paper, various properties specially completeness and compactness of fuzzy
cone metric space have been defined by Majumder and Bag [7]. Cantor’s Intersection
Theorem is established in fuzzy setting. We have also introduced the concept of
totally bounded set in fuzzy cone metric space.
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The organization of the paper is as follows:
In Section 2, some preliminary results are given to be used in this paper. Some basic
properties of fuzzy Cone metric spaces have been studied in Section 3. In Section
4, Cantor’s Intersection Theorem is established in fuzzy cone metric spaces., Some
results of α-fuzzy completeness, α-fuzzy compactness, α-fuzzy totally boundedness
have been studied in Section 5.

2. Preliminaries

Throughout the paper, we denote a real Banach space by E and the
zero element of E by θ.

Definition 2.1 ([4]). Let E be a real Banach space and P be a subset of E. Then
P is called a cone, if it satisfies the following conditions:

(i) P is closed, nonempty and P 6= {θ},
(ii) a, b ∈ R; a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ,
(iii) x ∈ P and −x ∈ P ⇒ x = θ.
Given a cone P ⊂ E, we define a partial ordering � with respect to P by x � y

iff y − x ∈ P . We shall write x ≺ y to indicate that x � y by x 6= y, while x � y
will stand for y − x ∈ int(P ).

The cone P is called normal, if there is a number K > 0 such that ∀x, y ∈ E,
with θ � x � y implies ‖x‖ ≤ K‖y‖. The least positive number satisfying above is
called the normal constant of P.

Definition 2.2 ([7]). Let X be a non-empty set and E be a real Banach space with
cone P, ∗ be a t- norm. A fuzzy subset Mc : X×X×E → [0, 1] is said to be a fuzzy
cone metric, if the following conditions hold:

(CM1) Mc(x, y, t) = 0 ∀t � θ,
(CM2) ∀t � θ,Mc(x, y, t) = 1 iff x=y,
(CM3) Mc(x, y, t) = Mc(y, x, t) ∀t � θ,
(CM4) for t, s ∈ E, ∀x, y, z ∈ X, Mc(x, z, s+ t) ≥Mc(x, y, s) ∗Mc(y, z, t),
(CM5) lim

‖t‖→∞
Mc(x, y, t) = 1.

Theorem 2.3 ([7]). Let (X,Mc, ∗) be a fuzzy cone metric space. Then {xn} in X
converges iff lim

n→∞
Mc(xn, x, t) = 1, ∀t � θ.

Theorem 2.4 ([7]). Let (X,Mc, ∗) be a fuzzy cone metric space. Then {xn} in X
is a Cauchy sequence iff lim

m,n→∞
Mc(xn, xm, t) = 1, ∀t � θ.

Proposition 2.5. If (X,Mc, ∗) is a fuzzy cone metric space and P is a normal cone
with normal constant K(≥ 1), then for any ε � θ, we have ‖ε‖ > 0.

Proof. Since P is a normal cone with normal constant K, θ ≺ ε. Then ‖θ‖ ≤ K‖ε‖.
Thus ‖ε‖ ≥ 0. So ‖ε‖ > 0. �

Definition 2.6. Let (X,Mc, ∗) be a fuzzy cone metric space. For x, y ∈ X,Mc(x, y, .)
is said to be continuous at t ∈ E, if lim

‖ε‖→0
Mc(x, y, t± ε) = Mc(x, y, t).

If it is true for any t ∈ E, then we say Mc(x, y, .) is continuous on E.
298
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3. Some basic properties

In this section some basic properties of fuzzy cone metric spaces have been studied.

Lemma 3.1. Let (X,Mc, ∗) be a fuzzy cone metric space with normal constant K, let
∗ be a continuous t-norm and let Mc(x, y, .) be continuous on E, for each x, y ∈ X.
Suppose {xn} and {yn} are two sequences in X such that xn → x0, yn → y0, for
some x0, y0 ∈ X. Then lim

n→∞
Mc(xn, yn, t) = Mc(x0, y0, t), ∀t � θ.

Proof. Choose ε � θ arbitrary. Since (X,Mc, ∗) is a fuzzy cone metric space with
normal constant K, it follows that ‖ε‖ > 0 is arbitrary.

Now for t � θ, we have
Mc(x0, y0, t+ ε) ≥Mc(xn, x0,

ε
2 ) ∗Mc(xn, y0, t+ ε

2 )
≥Mc(xn, x0,

ε
2 ) ∗Mc(xn, yn, t) ∗Mc(yn, y0,

ε
2 ).

Now let n→∞. Then we have
Mc(x0, y0, t+ε) ≥ lim

n→∞
Mc(xn, x0,

ε

2
)∗ lim
n→∞

Mc(xn, yn, t)∗ lim
n→∞

Mc(yn, y0,
ε

2
)

= 1 ∗ lim
n→∞

Mc(xn, yn, t) ∗ 1

= lim
n→∞

Mc(xn, yn, t).

Thus lim
‖ε‖→0

Mc(x0, y0, t+ ε) ≥ lim
n→∞

Mc(xn, yn, t), i.e.,

(3.1) Mc(x0, y0, t) ≥ lim
n→∞

Mc(xn, yn, t), ∀t � θ.

Next for t � θ, choose ε such that θ ≺ ε
2 ≺ t. Then we have

Mc(xn, yn, t) ≥Mc(xn, x0,
ε
4 ) ∗Mc(x0, yn, t− ε

4 )
≥Mc(xn, x0,

ε
4 ) ∗Mc(x0, y0, t− ε

2 ) ∗Mc(yn, y0,
ε
4 ).

Now let n→∞. Then we have
lim
n→∞

Mc(xn, yn, t) ≥ lim
n→∞

Mc(xn, x0,
ε

4
)∗Mc(x0, y0, t−

ε

2
)∗ lim
n→∞

Mc(yn, y0,
ε

4
)

= 1 ∗Mc(x0, y0, t− ε
2 ) ∗ 1

= Mc(x0, y0, t− ε
2 ).

Since t � θ is arbitrary and θ ≺ ε
2 ≺ t, we have ‖ε‖ > 0 is arbitrary. Thus we get

lim
n→∞

Mc(xn, yn, t) ≥ lim
‖ε‖
2 →0

Mc(x0, y0, t−
ε

2
) = Mc(x0, y0, t), i.e.,

(3.2) lim
n→∞

Mc(xn, yn, t) ≥Mc(x0, y0, t).

From (3.1) and (3.2), we have

lim
n→∞

Mc(xn, yn, t) = Mc(x0, y0, t), ∀t � θ.

�

Definition 3.2. Let (X,Mc, ∗) be a fuzzy cone metric space. We define the open
ball Bc(x, r, t) with centre x ∈ X and radius r; 0 < r < 1, t � θ as follows:

Bc(x, r, t) = {y ∈ X : Mc(x, y, t) > 1− r}.

Proposition 3.3. Let (X,Mc, ∗) be a fuzzy cone metric space and F ⊂ X. If x ∈ F̄ ,
then for a given α, 0 < α < 1 and t � θ, ∃y ∈ F such that Mc(x, y, t) > 1− α,
where F̄ denotes the closure of F.

299
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Proof. Note that F̄ = F
⋃
F ′, whereF ′-derived set of F. Choose x ∈ F̄ .

(Case-I): Ifx ∈ F , then take y=x. Thus we have for any α ∈ (0, 1) and any ∀t � θ,
Mc(x, y, t) = Mc(x, x, t) = 1 > 1− α.

(Case-II): If x ∈ F ′ but x 6= y, then for each α, 0 < α < 1 and t � θ, ∃y ∈ F such
that y ∈ Bc(x, α, t). Thus Mc(x, y, t) > 1− α. �

Proposition 3.4. Let (X,Mc, ∗) be a fuzzy cone metric space and F ⊂ X.
Then for any x ∈ F̄ and for each t � θ, there exists a sequence {xn} in F such that

lim
n→∞

Mc(xn, x, t) = 1.

Proof. From the above proposition, it follows that for x ∈ F̄ and for a given t � θ
and 0 < α < 1, ∃y ∈ F such that Mc(y, x, t) > 1 − α. Choose t0 ∈ E with t0 � θ
be fixed and consider a sequence {αn} in (0,1) such that αn → 0 as n → ∞. Then
for each αn, ∃xn ∈ F such that Mc(xn, x, t0) > 1 − αn. Thus lim

n→∞
Mc(xn, x, t0) ≥

1− lim
n→∞

αn = 1. So lim
n→∞

Mc(xn, x, t0) = 1. Hence ∃ a sequence {xn} in F such that

lim
n→∞

Mc(xn, x, t) = 1, for each t � θ. �

4. Cantor’s Intersection Theorem

In this section, Cantor’s Intersection Theorem is established in fuzzy cone metric
spaces.

Definition 4.1. Let (X,Mc, ∗) be a fuzzy cone metric space. Let A ⊂ X and
α ∈ (0, 1). We define α-fuzzy diameter of A by:

α− δ(A) =
∨

x,y∈A

∧
{‖t‖ > 0 : Mc(x, y, t) ≥ 1− α}.

Lemma 4.2. Let (X,Mc, ∗) be a fuzzy cone metric space, where ∗ = min with
normal cone P and normal constant K(≥ 1). Then for any nonempty subset A of
X,

α− δ(A) = α− δ(Ā), ∀α ∈ (0, 1).

Proof. Choose α0 ∈ (0, 1) be arbitrary. Then clearly,

α0 − δ(A) =
∨

x,y∈A

∧
{‖t‖ > 0 : Mc(x, y, t) ≥ 1− α0}.

Since A ⊂ Ā, we have∨
x,y∈Ā

∧
{‖t‖ > 0 : Mc(x, y, t) ≥ 1− α0} ≥

∨
x,y∈A

∧
{‖t‖ > 0 : Mc(x, y, t) ≥ 1− α0}.

So

(4.1) α0 − δ(Ā) ≥ α0 − δ(A).

Next, suppose that α0 − δ(A) < ‖t0‖, for some t0(6= θ) ∈ E. Then∨
x,y∈A

∧
{‖t‖ > 0 : Mc(x, y, t) ≥ 1− α0} ≤ ‖t0‖

⇒
∧
{‖t‖ > 0 : Mc(x, y, t) ≥ 1− α0} ≤ ‖t0‖, ∀x, y ∈ A
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⇒
∧
{‖t‖ > 0 : Mc(x, y, t) > 1− α0} ≤ ‖t0‖, ∀x, y ∈ A.

Thus

(4.2) Mc(x, y, t0) > 1− α0, ∀x, y ∈ A.

Choose ε � θ be arbitrary. Since P is a normal cone with normal constant K(≥ 1),
it follows that ‖ε‖ > 0 is arbitrary. (i.e. ‖ε‖ → 0).

Choose x0, y0 ∈ Ā be arbitrary. Then ∃x1, y1 ∈ A such that

Mc(x0, x1,
ε

2
) > 1− α0 and Mc(y0, y1,

ε

2
) > 1− α0.

By (4.2), Mc(x0, y0, t0 + ε) ≥ Mc(x0, x1,
ε
2 ) ∗ Mc(x1, y1, t0) ∗ Mc(y0, y1,

ε
2 ). Thus

Mc(x0, y0, t0) = lim
‖ε‖→0

Mc(x0, y0, t0 + ε) ≥ 1− α0. So Mc(x0, y0, t0) ≥ 1− α0. Since

xo, y0 ∈ Ā arbitrary,
Mc(x, y, t0) ≥ 1− α0, ∀x, y ∈ Ā

⇒
∧
{‖t‖ > 0 : Mc(x, y, t) ≥ 1− α0} ≤ ‖t0‖, ∀x, y ∈ Ā

⇒
∨

x,y∈Ā

∧
{‖t‖ > 0 : Mc(x, y, t) ≥ 1− α0} ≤ ‖t0‖

⇒ α0 − δ(Ā) ≤ ‖t0‖.
Hence

(4.3) α0 − δ(A) ≥ α0 − δ(Ā).

Therefore from (4.1) and (4.3), we get α0 − δ(A) = α0 − δ(Ā). �

Theorem 4.3. (Cantor’s Intersection Theorem) Let (X,Mc, ∗) be a fuzzy cone
metric space and P be a normal cone with normal constant K(=1). A necessary
and sufficient condition that (X,Mc, ∗) be complete is that every nested sequence of
nonempty closed subset Fi with α-fuzzy diameter tending to 0 for each α ∈ (0, 1) as

i→∞ be such that

∞⋂
i=1

Fi contains exactly one point.

Proof. First we suppose that (X,Mc, ∗) is a complete fuzzy cone metric space. Con-
sider a sequence of closed subsets Fi such that

F1 ⊃ F2 ⊃ F3 ... with α− δc(Fn)→ 0 as n→∞, ∀α ∈ (0, 1).

Choose xn ∈ Fn, for each n = 1, 2, 3, .... Then we obtain a sequence {xn} in X.
Now we shall verify that {xn} is a Cauchy sequence.
We have xn ∈ Fn and xn+p ∈ Fn+p ⊂ Fn, ∀n and p = 1, 2, 3, .... Then for each n
and p = 1, 2, 3, ... and for each α ∈ (0, 1),∧

{‖t‖ > 0 : Mc(xn, xn+p, t) ≥ α} ≤ α− δc(Fn).

Thus lim
n→∞

∧
{‖t‖ > 0 : Mc(xn, xn+p, t) ≥ α} = 0, for p = 1, 2, 3, ... and ∀α ∈

(0, 1).
Since P is a normal cone with normal constant K=1, for each ε � θ,
∃N(α, ε) such that∧

{‖t‖ > 0 : Mc(xn, xn+p, t) ≥ α} < ‖ε‖, ∀α ∈ (0, 1), ∀n ≥ N(α, ε), p = 1, 2, 3, ...

⇒Mc(xn, xn+p, ε) ≥ α ∀α ∈ (0, 1), ∀n ≥ N(α, ε), p = 1, 2, 3, ...
301



Majumder and Bag /Ann. Fuzzy Math. Inform. 18 (2019), No. 3, 297–308

⇒ lim
n→∞

Mc(xn, xn+p, t) = 1, for each p = 1, 2, 3, ....

Since ε � θ is arbitrary, it follows that

lim
n→∞

Mc(xn, xn+p, ε) = 1, ∀t � θ and for each p = 1, 2, 3, ....

So {xn} is a Cauchy sequence in X. Since X is complete, xn → x, for some x ∈ X.
Let k be an arbitrary positive integer. Then each member of the sequence

{xk, xk+1, xk+2, ...} lies in Fk. Since Fk is closed, it follows that x ∈ Fk and as

k is arbitrary, we have x ∈
∞⋂
i=1

Fi.

Uniqueness: If possible, suppose that ∃y ∈ X and y 6= x such that y ∈
∞⋂
i=1

Fi.

Then for x, y ∈ Fk for k = 1, 2, 3, ... , we have∧
{‖t‖ > 0 : Mc(x, y, t) ≥ α} ≤ α− δc(Fk), ∀α ∈ (0, 1) and k = 1, 2, 3, ...

⇒
∧
{‖t‖ > 0 : Mc(x, y, t) ≥ α} = 0, since α− δc(Fk)→ 0 as k →∞.

⇒Mc(x, y, t) ≥ α, ∀α ∈ (0, 1), ∀t � θ
⇒Mc(x, y, t) = 1, ∀t � θ
⇒ x = y.

Conversely, suppose that the condition of the theorem is satisfied. we shall show
that X is complete. Let {xn} be a Cauchy sequence in X. LetHn = {xn, xn+1, xn+2, .....}.
Then we have lim

n→∞
Mc(xn, xn+p, t) = 1, ∀t > 0 and for p = 1, 2, 3, ... .

Thus lim
n→∞

Mc(xn, xn+p, t) > α, ∀t > 0, for p = 1, 2, 3, ... , ∀α ∈ (0, 1).

Choose t0 > 0 be arbitrarily. Then for each α ∈ (0, 1), there exists a positive integer
N(α) such that

Mc(xn, xn+p, t0) > α, ∀n ≥ N(α), ∀α ∈ (0, 1), p = 1, 2, 3, ...

⇒
∧
{‖t‖ > 0 : Mc(xn, xn+p, t) > α} ≤ ‖to‖, ∀n ≥ N(α), ∀α ∈ (0, 1)

and p = 1, 2, 3, ...

⇒
∨

xn∈Hn

∧
{‖t‖ > 0 : Mc(xn, xn+p, t) ≥ α} ≤ ‖to‖, ∀n ≥ N(α), ∀α ∈ (0, 1)

⇒ α− δc(Hn) ≤ ‖to‖, ∀n ≥ N(α), ∀α ∈ (0, 1)
⇒ α− δc(H̄n) ≤ ‖to‖, ∀n ≥ N(α), ∀α ∈ (0, 1) [by Lemma 4.2].

Since t0 � θ is arbitrary, we have α− δc(H̄n) = 0 as n→∞ ∀α ∈ (0, 1).
On the other hand, by the definition of Hn, it is clear that Hn+1 ⊂ Hn, for each

n. Then ¯Hn+1 ⊂ H̄n, ∀n. Thus {H̄n} constitutes a closed, nested sequence of non-
empty sets in X, where α − δc(H̄n) → 0 as n → ∞. By hypothesis, there exists a

unique x ∈
∞⋂
n=1

H̄n. Since xn ∈ Hn ⊂ H̄n, x ∈ H̄n. So∧
{‖t‖ > 0 : Mc(xn, x, t) ≥ α} ≤ α− δc(H̄n), ∀α ∈ (0, 1)

⇒ lim
n→∞

∧
{{‖t‖ > 0 : Mc(xn, x, t) ≥ α} = 0.

Choose ε � θ. Then there exists N(α, ε) such that∧
{‖t‖ > 0 : Mc(xn, x, t) ≥ α} < ‖ε‖, ∀α ∈ (0, 1), ∀n ≥ N(α, ε)

⇒Mc(xn, x, ε) ≥ α, ∀α ∈ (0, 1), ∀n ≥ N(α, ε)
302
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⇒ lim
n→∞

Mc(xn, x, ε) = 1.

Since ε � θ is arbitrary, lim
n→∞

Mc(xn, x, t) = 1, ∀t � θ. Thus xn → x. So X is

complete. �

5. Compact fuzzy cone metric space

In this section, some results of α-fuzzy completeness, α-fuzzy compactness, α-
fuzzy totally boundedness have been studied.

Definition 5.1. Let (X,Mc, ∗) be a fuzzy cone metric space and α ∈ (0, 1) be given.
A sequence {xn} in X is said to be α-Cauchy sequence, if

lim
m,n→∞

Mc(xn, xm, t) > 1− α, ∀t � θ.

Definition 5.2. Let (X,Mc, ∗) be a fuzzy cone metric space and α ∈ (0, 1) be given.
Then {xn} is said to be α-convergent and converges to x, if

lim
n→∞

Mc(xn, x, t) > 1− α, ∀t � θ.

Definition 5.3. Let (X,Mc, ∗) be a fuzzy cone metric space and α ∈ (0, 1) be
given. A subset A(⊂ X) is said to be α-fuzzy compact, if every sequence in A has
an α-convergent subsequence which converges to some element in A.

Proposition 5.4. For every α-fuzzy compact cone metric space (X,Mc, ∗), where ∗
is a continuous t-norm, there exists β > α, such that (X,Mc, ∗) is β-fuzzy complete.

Proof. Let {xn} be an α-Cauchy sequence in X. Then

lim
m,n→∞

Mc(xn, xm, t) > 1− α, ∀t � θ.

Thus for a given t � θ, there exists a natural number say N0 such that

Mc(xn, xm,
t

3
) > 1− α, ∀m, n ≥ N0.

In particular,

(5.1) Mc(xn, xN0
,
t

3
) > 1− α, ∀n ≥ N0.

Since X is α-fuzzy compact, there exists a subsequence {xnk} of {xn} which is α-
convergent to some x ∈ X. So there exists m0 ≥ N0 such that

Mc(xnm , x,
t

3
) > 1− α, ∀m ≥ m0, i.e.,

(5.2) Mc(xnm0
, x,

t

3
) > 1− α.

Since nm0 ≥ m0 ≥ N0, we have

(5.3) Mc(xN0 , xnm0
,
t

3
) > 1− α.

Let n ≥ N0. Then from (5.1),(5.2) and (5.3), we get
Mc(xn, x, t) ≥Mc(xn, xN0 ,

t
3 ) ∗Mc(xN0 , xnm0

, t3 ) ∗Mc(xnm0
, x, t3 )
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≥ (1− α) ∗ (1− α) ∗ (1− α).
Thus

(5.4) lim
n→∞

Mc(xn, x, t) ≥ (1− α) ∗ (1− α) ∗ (1− α), ∀ε � θ.

Since ∗ is continuous, there exists β ∈ (0, 1) such that

(1− α) ∗ (1− α) ∗ (1− α) > 1− β.
From (5.4), lim

n→∞
Mc(xn, x, t) > 1 − β, ∀ε � θ. So {xn} is β-fuzzy convergent

and converges to x. Since {xn} is an arbitrary Cauchy sequence, X is β-fuzzy
complete. �

Definition 5.5. Let (X,Mc, ∗) be a fuzzy cone metric space. A subset A of X is
said to be fuzzy bounded, if there exists t � θ(∈ E) and 0 < r < 1 such that

Mc(x, y, t) > 1− r, ∀x, y ∈ A.

Definition 5.6. Let (X,Mc, ∗) be a fuzzy cone metric space and A ⊂ X and
α ∈ (0, 1) be given. Let ε � θ be an element of E. A set B ⊂ X is said to be an
α-fuzzy ε-net for the set A, if for any x ∈ A, there exists y ∈ B such that

Mc(x, y, ε) > 1− α.
B may be finite or infinite.

Definition 5.7. A set A of (X,Mc, ∗) is said to be α-fuzzy totally bounded, if for
a given α ∈ (0, 1), for any ε � θ, there exists a finite α-fuzzy ε-net for the set A.

Theorem 5.8. Let (X,Mc, ∗) be a fuzzy cone metric space and ∗ is a continuous
t-norm and A(⊆ X) be a nonempty subset of X. If A is α-fuzzy totally bounded in
X, then A is fuzzy bounded in X.

Proof. Let (X,Mc, ∗) be a fuzzy cone metric space, where ∗ is a continuous t-norm
and A is an α-fuzzy totally bounded set in X. Then for ε(� θ) ∈ E, ∃ is a finite
α-fuzzy ε-net B (say)for the set A.

Let x, y be any two elements in A. Then ∃x1, y1 ∈ B such that

Mc(x, x1, ε) > 1− α and Mc(y, y1, ε) > 1− α.

We can write min{Mc(x
′
, y

′
, ε) : x

′
, y

′
, εB} > 1− β for some β ∈ (0, 1). Now,

Mc(x, y, 3ε) ≥Mc(x, x1, ε) ∗Mc(x1, y, 2ε)
≥Mc(x, x1, ε) ∗Mc(x1, y1, ε) ∗Mc(y1, y, ε)
> (1− α) ∗ (1− β) ∗ (1− α) > 1− r0, say, for some 0 < r0 < 1.

Take t0 = 3ε. Then Mc(x, y, t0) > 1 − r0, ∀x, y ∈ A, t0 � θ. Thus A is fuzzy
bounded in X. �

The converse result of the above theorem may not be true. We justify it by the
following example.

Example 5.9. Take E = R2,and consider the metric space (X, ρ), where X = l2

and ρ(x, y) = (

∞∑
i=1

|ξi − ηi|2)
1
2 , x = (ξ1, ξ2, ...), y = (η1, η2, ...),

P = {(k1, k2) : k1, k2 ≥ 0} ⊂ E.
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Let ′ �′ be the usual ordering ≤ in E w.r.t P . Take a∗b = ab. Define Mc : X×X×E
by

Mc(x, y, t) =

{
‖t‖

‖t‖+ρ(x−y) if t � θ
0 otherwise.

Then P is a normal cone with normal constant K = 1, Mc is a fuzzy cone metric
and (X,Mc, ∗) is a fuzzy cone metric space.
Solution. First we show that P is a normal cone with normal constant K = 1. It
is easy to verify that P is a cone. Now,

(x1, x2) ≤ (y1, y2)
⇒ x1 ≤ y1, x2 ≤ y2

⇒ x2
1 ≤ y2

1 and x2
2 ≤ y2

2

⇒
2∑
i=1

|xi|2 ≤
2∑
i=1

|yi|2

⇒ (

2∑
i=1

|xi|2)
1
2 ≤ (

2∑
i=1

|yi|2)
1
2

⇒ ‖x‖ ≤ 1.‖y‖.
Then P is a normal cone with normal constant K = 1.

1. From definition, Mc(x, y, t) = 0, ∀t � θ. Thus (CM1) holds.
2. For any t � θ,

Mc(x, y, t) = 1

⇒ ‖t‖
‖t‖+ρ(x,y) = 1

⇒ ρ(x, y) = 0
⇒ x = y.

Again,
x = y

⇒ ρ(x, y) = 0

⇒ ‖t‖
‖t‖+ρ(x,y) = 1, ∀t � θ.

Then Mc(x, y, t) = 1, ∀t � θ. Thus Mc(x, y, t) = 1 iff x = y. So (CM2) holds.

3. Mc(x, y, t) = ‖t‖
‖t‖+ρ(x,y) = ‖t‖

‖t‖+ρ(y,x) = Mc(y, x, t), ∀t(� θ) ∈ E. Then (CM3)

holds.
4. E = R2. Since P is a normal cone with normal constant K = 1, we have

s � t+ s and t � t+ s which imply

‖s‖ ≤ ‖t+ s‖, ‖t‖ ≤ ‖t+ s‖.

Since ‖t+s‖‖s‖ ≥ 1 and ‖t+s‖‖t‖ ≥ 1, we can write

ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

≤ ‖t+s‖‖t‖ ρ(x, y) + ‖t+s‖
‖s‖ ρ(y, z).

Then ρ(x,z)
‖t+s‖ ≤

ρ(x,y)
‖t‖ + ρ(y,z)

‖s‖ . Now,

Mc(x, z, t+ s) = ‖t+s‖
‖t+s‖+ρ(x,z)

= 1

1+
ρ(x,z)
‖t+s‖

≥ 1

1+
ρ(x,y)
‖t‖ +

ρ(y,z)
‖s‖
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≥ 1

1+
ρ(x,y)
‖t‖ +

ρ(y,z)
‖s‖ +

ρ(x,y)ρ(y,z)
‖t‖‖s‖

= 1

(1+
ρ(x,y)
‖t‖ )

· 1

(1+
ρ(y,z)
‖s‖ )

= ( ‖t‖
‖t‖+ρ(x,y) )( ‖s‖

‖s‖+ρ(y,z) )

= Mc(x, y, t) ∗Mc(y, z, s).
Thus (CM4) holds.

On the other hand,

lim
‖t‖→∞

Mc(x, y, t) = lim
‖t‖→∞

‖t‖
‖t‖+ ρ(x, y)

.

= lim
‖t‖→∞

1

1 + ρ(x,y)
‖t‖

= 1
1 = 1.

So (CM5) holds.
Now consider the subset A of X(= l2) consisting of the elements:

x1 = (1, 0, 0, ...), x2 = (0, 1, 0, ...), x3 = (0, 0, 1, ...), ... .

Then ρ(xi, xj) =
√

2, for i 6= j. Moreover, for any x, y ∈ A, for some t0 � θ,

Mc(x, y, t0) =
‖t0‖

‖t0‖+ ρ(x, y)
=

‖t0‖
‖t0‖+

√
2
.

Take ‖t0‖ =
√

2. Then Mc(x, y, t0) =
√

2√
2+
√

2
=
√

2
2
√

2
= 1

2 >
1
3 = 1− 2

3 = 1− r0(r0 =
2
3 ). Thus ∀x, y ∈ A, t0 � θ, Mc(x, y, t0) > 1− r0(0 < r0 < 1).
So A is fuzzy bounded in X.

We now verify that A is not α-fuzzy totally bounded. Choose ε ∈ E(ε � θ) such

that 0 < ‖ε‖ < 1
2 and 0 < α < 1 ((1 − α)2 = 0.6 = 3

5 , α = 1 −
√

3
5 ). If possible,

suppose that N is a finite ε-net for the set A. Then for xi and xj(i 6= j), there must
exist yi and yj from N such that

Mc(xi, yi, ε) > 1− α and Mc(xj , yj , ε) > 1− α.

Now xi is distinct from xj and their number is infinite and the set N consists
only a finite number of elements. Thus some yi and yj(i 6= j) must be equal. If
yi = yj(i 6= j), then

Mc(xi, xj , 2ε) ≥Mc(xi, yi, ε) ∗Mc(yi, xj , ε)
= Mc(xi, yi, ε) ·Mc(yj , xj , ε)
> (1− α) · (1− α)
= (1− α)2

> 1
2 .

So
Mc(xi, xj , 2ε) >

1
2

⇒ 2‖ε‖
2‖ε‖+ρ(xi,xj) >

1
2

⇒ 4‖ε‖ > 2‖ε‖+ ρ(xi, xj)
⇒ ρ(xi, xj) < 2‖ε‖ < 2 · 1

2 = 1 [∵ 0 < ‖ε‖ < 1
2 ]

⇒ ρ(xi, xj) < 1.

Contradicting the fact that ρ(xi, xj) =
√

2. Hence there exists no finite α-fuzzy
306



Majumder and Bag /Ann. Fuzzy Math. Inform. 18 (2019), No. 3, 297–308

ε-net for the set A, when 0 < ‖ε‖ < 1
2 and 0 < α < 1(α = 1−

√
3
5 ).

This shows that A cannot be α-fuzzy totally bounded.

Theorem 5.10. Let (X,Mc, ∗) be a fuzzy cone metric space and A ⊂ X, α ∈ (0, 1).
If A is α-fuzzy compact in X, then A is α-fuzzy totally bounded.

Proof. We assume that A is α-fuzzy compact in X. Let ε(� θ) be an arbitrary
element of E and x1 be an arbitrary element of X. If Mc(x, x1, ε) > 1− α, ∀x ∈ A,
then there exists a finite ε-net B for A, i.e, B = {x1}. If not, there exists a point
x2 ∈ A such that Mc(x1, x2, ε) ≤ 1− α.

If for every x ∈ A, either Mc(x, x1, ε) > 1− α or Mc(x, x2, ε) > 1− α, then there
exists a finite ε-net B for A, i.e B = {x1, x2}.
Continuing in this way, we get elements x1, x2, ....xn; x1 ∈ X, xi ∈ A, 2 ≤ i ≤ n for
which Mc(xi, xj , ε) ≤ 1− α, for i 6= j.

Now, two cases can occur.
Case I: The procedure stops after the kth step. Then we obtain points x1, x2, ....xk

such that for every x ∈ A, at least one of the inequalities
Mc(xi, x, ε) > 1− α, i = 1, 2, ..., k holds and B = {x1, x2, ...., xn} is a finite ε-net
for A, proving that A is α-fuzzy totally bounded.

Case II: The process continues infinitely. Then we obtain an infinite sequence
{xn}, x1 ∈ X and xi ∈ A, i > 1 such that Mc(xi, xj , ε) ≤ 1− α, for i 6= j.
Above relation shows that neither {xn} nor any of its subsequence is α-convergent,
contradicting that A is α-fuzzy compact in X. Thus A(⊂ X) is α-fuzzy totally
bounded. �

6. Conclusion.

Some basic results on completeness and compactness in fuzzy cone metric spaces
have been studied. Cantor’s intersection theorem has been established in fuzzy
setting. Notion of totally fuzzy bounded set is introduced and we have studied some
relation with compact fuzzy cone metric space. We think that researchers in the
field of fuzzy cone metric space will be benefited by using the results of this paper.
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