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Abstract. Information entropies have been widely applied in con-
structing heuristic attribute reduction. However, little attention has been
paid to the information entropies for dynamic information systems with
varying object set. In this paper, we present an incremental approach to
update conditional complementary entropy for dynamic information sys-
tems with varying objects. Based on the new incremental formulas, we de-
velop an incremental attribute reduction algorithm for decision table with
varying object set. By a numerical experiment, we express the efficiency
of the new method.

2010 AMS Classification: 03E75, 68T20, 68W25

Keywords: Information entropy, Conditional complementary entropy, Incremen-
tal approach, Dynamic information system; Attribute reduction.

Corresponding Author: Chunyong Wang (wangchunyong2006@sina.com)

1. Introduction

Rough set theory [16, 18, 19, 20] pioneered by Pawlak in 1982 is aimed at data
analysis problems involving uncertain, imprecise or incomplete information. As an
objective soft computing tool, rough set theory has been widely applied to vari-
ous fields such as medical diagnosis[15], investment decisions [2], feature selection
[24, 25], knowledge discovery[11] and data mining [8]. Many techniques have been
developed for attribute reductions in the past decades. In order to describe the
uncertainty of information systems, some uncertainty measures have been studied
[7, 12]. Several authors have acquired entropy reducts which can remain the entropy
of target decision unchanged. The concept of entropy was introduced by Shannon in
1948, and its initial goal was to evaluate uncertainty of a system. In order to mea-
sure uncertainty in rough set theory, Beaubouef and Duentsch et al. [4, 3] utilized
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Shannon’s entropy and its variants. Slezak [22, 23] proposed Shannon’s information
entropy for searching reducts. In [10], Liang et al. acquired reducts by using a new
information entropy and defined some new information entropies like rough entropy,
combination entropy. The reference [21] brought forward combination entropy for
measuring the uncertainty of information systems. Dai et al. [6, 5] investigated
information entropies, including Shannon’s entropy, conditional entropy and joint
entropy for incomplete decision systems, and presented a new form of conditional
entropy and constructed three attribute selection approaches, etc. In practice, infor-
mation systems usually vary with time. Specially, the objects in business database
are changing all the time. Some researchers have studied attribute reductions of
dynamic information systems[1, 9, 13, 14, 26]. For example, Bang et al. [1] pre-
sented an incremental inductive learning algorithm to find a minimal set of rules
for an information system when adding a new object. Hu et al. [9] gave an in-
cremental attribute reduction algorithm when adding some new objects. Wang et
al. [26] discussed how to update entropy for dynamic information system when
changing data values. However, in their work, the object set and attribute set must
remain unchanged, which limit its application. Moreover, the updating mechanisms
in their article are only applicable when data are varied one by one. Their ideas are
reasonable but their work needs further improvements.

Following the above work, we provide an incremental approach to updating con-
ditional complementary entropy for dynamic information systems when the object
set evolves with time. In order to study the dynamic changes of information system,
we study from simple case to complex. Firstly, when only one object is removed, we
update the conditional complementary entropy by definition and present an incre-
mental approach to acquire new information entropy from the former information
entropy. When only one object is added, we also establish recursive formula to con-
struct new conditional complementary entropy by definition. Secondly, when only
one object is changed, we update the information entropy by removing the old object
and adding the new object. When several objects are removed, we use the recursive
formula in the first case several times, then we construct an incremental algorithm.
When several objects are added, we apply the recursive formula in the first case
several times, then we acquire an incremental algorithm. Thirdly, for varying object
set, by combining the first case and the second case, we can renew the information
entropy.

The rest of this paper is organized as follows. Some preliminaries related to
rough set theory are briefly reviewed in Section 2. Section 3 presents an incremental
approach to updating conditional complementary entropy for dynamic information
systems. Based on the above analysis, we construct a new algorithm for decision
table with varying object set in Section 4. In order to demonstrate the practicality
and effectiveness of our proposed method, we give a numerical experiment in Section
5. Section 6 provides the conclusion of this paper and some future works.

2. Preliminaries

In this section, we recall some basic concepts of rough sets and information en-
tropy.
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Definition 2.1 ([17]). An information system (or decision table) is defined as a pair
〈U,A〉 where U is a non-empty finite set of objects, A = C ∪D is a non-empty finite
set of attributes, C denotes the set of condition attributes and D denotes the set of
decision attributes, C ∩D = ∅. Each attribute a ∈ A is associated with a set Va of
its value, called the domain of a.

The concept of information system provides a convenient framework to represent
the objects in the universe. Actually, every B ⊆ A can determine an equivalence
relation RB as

∀x, y,RB(x, y)⇐⇒ ∀a ∈ B : a(x) = a(y),

where a(x) denotes the attribute value of x respect to a. Every RB can partition U
into some equivalence classes given by U/RB = {[x]B |x ∈ U}, or just U/B for short,
where [x]B = {y ∈ U |(x, y) ∈ RB} denotes the equivalence class including x with
respect to B. Using these elementary sets in U/R, we can approximate arbitrary set
X ⊆ U :

apr(X) =
⋃
{[x]R|[x]R ⊆ X} = {x ∈ U |[x]R ⊆ X},

apr(X) =
⋃
{[x]R|[x]R ∩X 6= φ} = {x ∈ U |[x]R ∩X 6= φ}.

The lower approximation apr(X) contains all the elementary sets which are the
subsets of X, and upper approximation apr(X) contains all the elementary sets
which have a non-empty intersection with X.

The complementary entropy is used to measure the uncertainty of an information
system, and the conditional complementary entropy defined as below can measure
the uncertainty of a decision table.

Definition 2.2 ([26]). Let S = (U,C ∪ D) be an information system, B ⊆ C,
U/B = {X1, X2, · · ·Xm} and U/D = {Y1, Y2, · · ·Yn}. A conditional complementary
entropy of B relative to D is defined as

EU (D|B) =

m∑
i=1

n∑
j=1

|Xi ∩ Yj |
|U |

·
|Y C

j −XC
i |

|U |
=

m∑
i=1

n∑
j=1

|Xi ∩ Yj |
|U |

· |Xi − Yj |
|U |

.

The entropy reduction was proposed by Skowron in 1993. Then, Slezak introduced
Shannon’s entropy to get reducts in classical rough set model [22, 23].

Definition 2.3 ([26]). Let S = (U,C∪D) be information system and B ⊆ C. Then,
B is a relative reduct, if it satisfies:

(i) E(D|B) = E(D|C),
(ii) ∀a ∈ B,E(D|B − {a}) 6= E(D|B).

The first condition indicates that B keeps the same entropy as C, and the second
condition indicates that each attribute in B is individually necessary.

3. An incremental approach to computing conditional complementary
entropy for dynamic information systems

In this section, we establish a mathematical fundamental to compute the entropy
for dynamic data sets.
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Let S = (U,A = C ∪D,V, f) with C ∩D = ∅, B ⊆ C. Then, one can obtain the
partitions U/B = {X1, X2, · · ·Xm} and U/D = {Y1, Y2, · · ·Yn}. The complementary
conditional entropy of D with respect to B is EU (D|B). By revising the object set,
we can easily update conditional complementary entropy. When one object enter
or get out of the system, we can ignore new condition equivalence classes and new
decision equivalence classes by assuming that some Xi ∈ U/B, Yj ∈ U/D can be
empty sets [26].

Lemma 3.1. Suppose only one object x get out of the system S, and x ∈ Xp1
, x ∈

Yq1 . Then we get a new information system S
′
and U

′
= U − {x}, U ′

/B =

{X1, X2, · · ·X
′

p1
, · · ·Xm}, U

′
/D = {Y1, Y2, · · ·Y

′

q1 , · · ·Yn}, where X
′

p1
= Xp1

− {x},
Y

′

q1 = Yq1 − {x}. New entropy EU ′ (D|B) can be got as the following.

(|U | − 1)2

|U |2
· EU ′ (D|B) = EU (D|B)− 2|Xp1

− Yq1 |
|U |2

.

Proof. By Definition 2.2, the new conditional complementary entropy is

EU ′ (D|B) =

m∑
i=1,i6=p1

n∑
j=1,j 6=q1

|Xi ∩ Yj |
|U | − 1

· |Xi − Yj |
|U | − 1

+

m∑
i=1,i6=p1

|Xi

⋂
Y

′

q1 |
|U | − 1

·
|Xi − Y ′q1 |
|U | − 1

+

n∑
j=1,j 6=q1

|X ′p1

⋂
Yj |

|U | − 1
·
|X ′p1

− Yj |
|U | − 1

+
|X ′p1

⋂
Y

′

q1 |
|U | − 1

·
|X ′p1

− Y ′q1 |
|U | − 1

.

Then, using X
′

p1
= Xp1 − {x} and Y

′

q1 = Yq1 − {x}, we have

(|U | − 1)2

|U |2
· EU−{x}(D|B)

=

m∑
i=1,i6=p1

n∑
j=1,j 6=q1

|Xi ∩ Yj |
|U |

· |Xi − Yj |
|U |

+

m∑
i=1,i6=p1

|Xi ∩ Yq1 |
|U |

· |Xi − Yq1 |
|U |

+

n∑
j=1,j 6=q1

|Xp1 ∩ Yj |
|U |

· |Xp1 − Yj | − 1

|U |
+
|Xp1 ∩ Yq1 | − 1

|U |
· |Xp1 − Yq1 |

|U |

= EU (D|B)− (

n∑
j=1,j 6=q1

|Xp1

⋂
Yj |

|U |2
+
|Xp1

− Yq1 |
|U |2

)

= EU (D|B)− (

n∑
j=1

|Xp1 ∩ Yj |
|U |2

− |Xp1 ∩ Yq1 |
|U |2

+
|Xp1 − Yq1 |
|U |2

)

= EU (D|B)− (
|Xp1
|

|U |2
− |Xp1

∩ Yq1 |
|U |2

+
|Xp1

− Yq1 |
|U |2

)

= EU (D|B)− 2|Xp1 − Yq1 |
|U |2

.

�

Lemma 3.2. Suppose only one object x enter the system S, and x ∈ Xp2 , x ∈
Yq2 . Then we get a new information system S

′
and U

′
= U ∪ {x}, U ′

/B =
276
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{X1, X2, · · ·X
′

p2
, · · ·Xm}, U

′
/D = {Y1, Y2, · · ·Y

′

q2 , · · ·Yn}, where X
′

p2
= Xp2

⋃
{x}

and Y
′

q2 = Yq2
⋃
{x}. New entropy EU ′ (D|B) can be got as follows:

(|U |+ 1)2

|U |2
· EU ′ (D|B) = EU (D|B) +

2|Xp2
− Yq2 |
|U |2

.

Proof. By Definition 2.2, the new entropy is

EU ′ (D|B) =

m∑
i=1,i6=p2

n∑
j=1,j 6=q2

|Xi ∩ Yj |
|U |+ 1

· |Xi − Yj |
|U |+ 1

+

m∑
i=1,i6=p2

|Xi

⋂
Y

′

q2 |
|U |+ 1

·
|Xi − Y ′q2 |
|U |+ 1

+

n∑
j=1,j 6=q2

|X ′p2

⋂
Yj |

|U |+ 1
·
|X ′p2

− Yj |
|U |+ 1

+
|X ′p2

⋂
Y

′

q2|

|U |+ 1
·
|X ′p2

− Y ′q2 |
|U |+ 1

.

Then, using X
′

p2
= Xp2 ∪ {x} and Y

′

q2 = Yq2 ∪ {x}, we obtain

(|U |+ 1)2

|U |2
· EU∪{x}(D|B)

=[EU (D|B)−
m∑

i=1,j 6=p2

|Xi ∩ Yq2 ||Xi − Yq2 |
|U |2

−
n∑

j=1,j 6=q2

|Xp2
∩ Yj ||Xp2

− Yj |
|U |2

− |Xp2
∩ Yq2 ||Xp2

− Yq2 |
|U |2

]

+

m∑
i=1,j 6=p2

|Xi ∩ Yq2 ||Xi − Yq2 |
|U |2

+

n∑
j=1,j 6=q2

|Xp2
∩ Yj |(|Xp2

− Yj |+ 1)

|U |2
+

(|Xp2
∩ Yq2 |+ 1)|Xp2

− Yq2 |
|U |2

=EU (D|B) +

n∑
j=1,j 6=q2

|Xp2 ∩ Yj |
|U |2

+
|Xp2 − Yq2 |
|U |2

=EU (D|B) +

n∑
j=1

|Xp2
∩ Yj |
|U |2

− |Xp2
∩ Yq2 |
|U |2

+
|Xp2

− Yq2 |
|U |2

=EU (D|B) +
|Xp2
|

|U |2
− |Xp2

∩ Yq2 |
|U |2

+
|Xp2

− Yq2 |
|U |2

=EU (D|B) +
2|Xp2

− Yq2 |
|U |2

.

�

Wang et al. [26] have shown the process of computing new entropy when attribute
values of x are varied and x is changed to x′. We can replace this process by removing
x from system first, and then add x′ into the system. In other words, we can get
Wang’s Theorem as our inference.
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Theorem 3.3 ([26]). If one and only one object x ∈ U is changed to x′, x ∈ Xp1 ,
x ∈ Yq1 , x′ ∈ X ′p2

, x ∈ Y ′q2 . The new complementary conditional entropy becomes

EU ′ (D|B) = EU (D|B) +
2|Xp2

− Yq2 | − 2|Xp1
− Yq1 |

|U |2
.

Proof. For the change of x to x′, we pull out in two stages as follows. First, we
remove x from S, then the combination conditional entropy of EU−{x}(D|B) can be
got By Lemma 3.1, that is

(|U | − 1)2

|U |2
· EU−{x}(D|B) = EU (D|B)− 2|Xp1 − Yq1 |

|U |2
.

Second, by adding x′, we get the new combination conditional entropy EU ′ (D|B) =
EU−{x}∪{x′}(D|B) by lemma 3.2 as

|U |2

(|U | − 1)2
· EU−{x}∪{x′}(D|B) = EU−{x}(D|B) +

2|Xp2 − Yq2 |
(|U | − 1)2

,

thus

EU−{x}∪{x′}(D|B) =
(|U | − 1)2

|U |2
· EU−{x}(D|B) +

(|U | − 1)2

|U |2
· 2|Xp2 − Yq2 |

(|U | − 1)2
,

by using

EU−{x}(D|B) =
(|U |2

|U | − 1)2
· (EU (D|B)− 2|Xp1

− Yq1 |
|U |2

),

we get

EU−{x}∪{x′}(D|B)

=
(|U | − 1)2

|U |2
· (|U |2

|U | − 1)2
· (EU (D|B)− 2|Xp1

− Yq1 |
|U |2

) +
(|U | − 1)2

|U |2
· 2|Xp2

− Yq2 |
(|U | − 1)2

= EU (D|B) +
2|Xp2 − Yq2 | − 2|Xp1 − Yq1 |

|U |2
.

�

When M objects get out of the system, we can iterate Theorem 3.1 for M times.
Then we get the following theorem.

Lemma 3.4. If M objects get out of the system, Mij represents that thereMi objects
that get out of the conditional class Xi and Mij objects of them come from decision
class Yj , then the new combination conditional entropy denoted by EU−M (D|B) be-
comes

(|U | −M)2

|U |2
· EU−M (D|B) = EU (D|B)− 2

m∑
i=1

n∑
j=1

Mij |Xi − Yj |
|U |2

.
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Proof. We remove M objects from S one by one. When M11 objects get out, we can
apply Theorem 3.1 for M11 times. So we get

(|U | −M11)2

|U |2
· EU−M11(D|B) = EU (D|B)− 2M11|X1 − Y1|

|U |2
.

Next, let M12 objects leave this new system. By using Lemma 3.1 for M12 times,
we obtain

(|U | −M11 −M12)2

(|U | −M11)2
· EU−M11−M12

(D|B) = EU−M11
(D|B)− 2M12|X1 − Y2|

(|U | −M11)2
.

Since

EU−M11(D|B) =
|U |2

(|U | −M11)2
· (EU (D|B)− 2M11|X1 − Y1|

|U |2
),

we get

(|U | −M11 −M12)2

(|U | −M11)2
· EU−M11−M12

(D|B) =
|U |2

(|U | −M11)2
· (EU (D|B)

− 2M11|X1 − Y1|
|U |2

)− 2M12|X1 − Y2|
(|U | −M11)2

.

In other words,

(|U | −M11 −M12)2

|U |2
·EU−M11−M12

(D|B) =(EU (D|B)−2M11|X1 − Y1|
|U |2

)−2M12|X1 − Y2|
|U |2

.

Repeating this operation, we can complete the proof by induction axiom. �

When N objects enter the system, by using Lemma 3.2, we get the following
lemma.

Lemma 3.5. If N objects enter the system, Nij represents that there Ni objects
enter the conditional class Xi and Nij objects of them enter decision class Yj. The
new combination conditional entropy EU+N (D|B) becomes

(|U |+N)2

|U |2
· EU+N (D|B) = EU (D|B) + 2

m∑
i=1

n∑
j=1

Nij |Xi − Yj |
|U |2

.

Proof. We add these N objects into S one by one. When N11 objects get in, by
using Lemma 3.2 for N11 times, we get

(|U |+N11)2

|U |2
· EU+N11

(D|B) = EU (D|B) +
2N11|X1 − Y1|

|U |2
.

Next, when adding N12 objects, we use Lemma 3.2 for N12 times, that is

(|U |+N11 +N12)2

(|U |+N11)2
· EU+N11+N12(D|B) = EU+N11(D|B) +

2N12|X1 − Y2|
(|U |+N11)2

.

Using

EU+N11
(D|B) =

|U |2

(|U |+N11)2
· (EU (D|B) +

2N11|X1 − Y1|
|U |2

),
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we acquire

(|U |+N11 +N12)2

(|U |+N11)2
· EU+N11+N12

(D|B) =
|U |2

(|U |+N11)2
· (EU (D|B)

+
2N11|X1 − Y1|

|U |2
) +

2N12|X1 − Y2|
(|U |+N11)2

.

In other words,

(|U |+N11 +N12)2

|U |2
·EU+N11+N12

(D|B) = EU (D|B)+
2N11|X1 − Y1|

|U |2
+

2N12|X1 − Y2|
|U |2

.

Repeating this operation, we can complete the proof by induction axiom. �

Suppose there are N objects enter the system and M objects get out of the system
at the same time. Nij represents that there Ni objects that enter the conditional
classXi andNij objects of them enter decision class Yj . Mij represents that there Mi

objects that get out of the conditional class Xi and Mij objects of them come from
decision class Yj . Combining Lemma 3.4 and Lemma 3.5, we acquire the conclusion
below.

Theorem 3.6. If N objects enter the system, and M objects get out of the system
at the same time. The new combination conditional entropy which we denote by
EU+N−M (D|B) becomes

(|U |+N −M)2

|U |2
· EU+N−M (D|B) = EU (D|B) + 2

m∑
i=1

n∑
j=1

(Nij −Mij)|Xi − Yj |
|u|2

.

Proof. After adding these N objects into S one by one, by Lemma 3.5 we get

(|U |+N)2

|U |2
· EU+N (D|B) = EU (D|B) + 2

m∑
i=1

n∑
j=1

Nij |Xi − Yj |
|U |2

.

Then we remove M objects from the system above, by Lemma 3.4,

(|U |+N −M)2

(|U |+N)2
· EU+N−M (D|B) = EU+N (D|B)− 2

m∑
i=1

n∑
j=1

Mij |Xi − Yj |
(|U |+N)2

.

Combine these two equations and eliminate EU+N (D|B), then we complete our
proof. �

4. An incremental attribute reduction algorithm for decision table
with dynamically varying object set

Based on the incremental formula in Theorem 3.6, in this section, we will intro-
duce an incremental attribute reduction algorithm for dynamically varying object
set.

We first need to run the classic algorithm denoted by CAR [26] and store the
result U/B, U/D, E(D|B). Then we add or delete some objects and perform our
incremental algorithm as follows.

Algorithm: An incremental attribute reduction algorithm for decision table with
dynamically varying object set (IAR)
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Input: A decision table S = (U,C ∪ D), N new objects enter S and M objects
escape from S.

Output: Attribute reduction REDU+N−M of new decision table S′ = (U +N −
M,C ∪D).

Step 1: Run classical attribute reduction algorithm and store U/B, U/D, E(D|B)
for B ⊆ C.

Step 2: For each x ∈ N or x ∈M , check x ∈ Xi and x ∈ Yi, where Xi ∈ U/B,Yj ∈
U/D. Then we get Nij and Mij , i = 1, 2, · · · , |U/B|, j = 1, 2, · · · , |U/D|.

Step 3: reduct← φ, i← 1.
Step 4: According to Theorem 3.6, we compute EU+N−M (D|reduct).
Step 5: If EU+N−M (D|reduct) = EU+N−M (D|C), then turn to Step 7; else turn

to next Step 6.
Step 6: While (EU+N−M (D|reduct) 6= EU+N−M (D|C)) do

{
i← i+ 1;
reduct← reduct ∪ ci, where ci is the i-th important attribute in C.
}

Step 7: REDU+N−M ← reduct, return REDU+N−M and end.
By [26], in classic algorithm (CAR), we first need to acquire partition U/C with

time complexity being O(|U ||C|); then we compute conditional entropy E(D|B) by
its definition, the corresponding time complexity is Θ = O(|U ||C|+ |U |+ |U ||U |) =
O(|U |2); finally, we add each a ∈ C and check Definition 2.3, the time complexity is
O(|C|Θ). Thus, the time complexity of CAR is O(|U ||C|+Θ+ |C|Θ) = O(|C|2|U |+
|C||U |2).

While, by IAR, in Step 1, we need to run CAR so as to get U/B,U/D,E(D|B), the
time complexity is O(|C|2|U |; in Step 2, the time complexity of checking N M new ob-
jects x ∈ Xi, x ∈ Yi is O(NM |U/B||U/D|); in Step 4, the time complexity of updat-
ing EU+N−M (D|B) is Θ′ = O(|U/B||U/D||Xi||Yj |); in Step 5–7, the time complexity
of adding attributes is O(|C|Θ′). Hence, the total time complexity of algorithm IAR
is O(|C|2|U | + NM |U/B||U/D| + |U/B||U/D||Xi||Yj | + |C||U/B||U/D||Xi||Yj |) =
O(|C|2|U |+NM |U/B||U/D|+ |C||U/B||U/D||Xi||Yj |).

Generally speaking N,M, |U/B|, |U/D|, |Xi|, |Yj | are usually much smaller than
|U |, then NM |U/B||U/D| + |C||U/B||U/D||Xi||Yj | � |C||U |2. As a result, IAR
usually performs better than CAR.
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5. Experimental analysis

Table 1. Time consumed by CAR and IAR

The size of the data set |U | t (seconds) ∆t (seconds)

2000 74.943 0
2100 83.415 0.016
2200 92.166 0.031
2300 101.744 0.031
2400 110.698 0.016
2500 121.51 0.031
2600 136.189 0.031
2700 140.729 0.031
2800 156.36 0.031
2900 161.742 0.031
3000 173.114 0.031
3100 184.518 0.031
3196 201.975 0.031

Here, we give an example to express the effectiveness and efficiency of the pro-
posed incremental reduction algorithm. The data set ”Chess (King-Rook vs. King-
Pawn).txt” is downloaded from UCI repository of machine learning databases. The
experiments have been carried out on a personal computer with window 7 and Intel
(R) Pentium (R) CPU G2030, 3.00GHz and 4 GB memory. The software used is
Mathematica 4.0.

Firstly, we take out the first |U | (for example |U | = 2000) objects from the data
set named ”Chess (King-Rook vs. King-Pawn).txt”. Then, we run the classical
reduction algorithm and list the consumed time denoted by ”t” in table 1. During
above calculation, we have stored each U/B, U/D, E(D|B), B ⊆ C, so as to continue
our incremental algorithm IAR. In what follows, we add 100 new objects step by
step and perform our new algorithm. At the same time, we also record the consumed
time denoted by ”∆t” in Table 1.

According to the above analysis, we can clearly see that IAR works better than
CAR for this experiment. The main reason is that we make full use of existing
information including U/B, U/D, E(D|B)(B ⊆ C) obtained by CAR. We only need
to check each new object x ∈ N , confirm whether x ∈ Xi or x ∈ Yj . Then we update
the new entropy EU+N (D|B) by Theorem 3.6. As |U/B| � |U |, |U/D| � |U |,
the time consumed by IAR is obviously less than CAR. As it is extremely time-
consuming to compute E(D|B), the efficiency of IAR is improved.

6. Conclusions

Updating information entropies for dynamic data sets is a challenging issue. In
this paper, we construct an incremental algorithm to renew conditional complemen-
tary entropy for dynamic information systems. We carefully divided new objects
into the corresponding condition classes and decision classes and calculate new en-
tropy incrementally. We consider the variation of data values as our special case
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by deleting some old objects from data sets and adding some new objects into data
sets. By our incremental algorithm, we can get new entropies without computing
repeatedly by their definition. It should be pointed out that updating mechanisms of
the conditional complementary entropy introduced in our work are only applicable
when attribute sets do not change. And it is worthy to point out that the variation
of data values can be replaced by the variation of data sets. We think that the
results which we give here can be widely used.

It is expected to construct incremental algorithms to update information entropies
for dynamic data sets whose attribute sets can be changed. When attribute sets
change, all equivalence classes can change, so it is more complex.

Acknowledgements. We would like to thank the editor and the anonymous
referees for their valuable comments, which have been very helpful in improving
the paper.This work was supported by the doctor’s scientific research foundation of
Hezhou University (No.HZUBS201505), 2016 master of applied statistics professional
degree construction discipline independent subject of school of science Hezhou uni-
versity (2016HZXYSX02), the Project of improving the basic ability of Young and
Middle-aged Teachers in Guangxi Universities(No.2018KY0563).

References

[1] W. Bang and Z. Bien, New incremental learning algorithm in the framework of rough set
theory, International Journal of Fuzzy Systems 1 (1999) 25–36.

[2] C. G. Bai, D. Dhavale and J. Sarkis, Complex investment decisions using rough set and fuzzy

c-means: an example of investment in green supply chains, Eur. J. Oper. Res. 248 (2016)
507–521.

[3] T. Beaubouef, F. Petry and G. Arora, Information-theoretic measures of uncertainty for rough

sets and rough relational databases, Inform. Sci. 109 (1998) 535–563.
[4] I. Duentsch and G. Gediga, Uncertainty measures of rough set prediction, Artificial Intelligence

106 (1998) 109–137.
[5] J. H. Dai, W. T. Wang, H. W. Tian and L. Liu, Attribute selction based on a new conditonal

entropy for incomplete decision systems, Knowledge-Based Systems 39 (2013) 207–213.

[6] J. H. Dai, Q. Xu, W. T. Wang and H. W. Tian, Conditional entropy for incomplete decision
systems and its application in data mining, International Journal of General Systems 41 (7)

(2012) 713–728.

[7] J. H. Dai, B. Wei, X. Zhang and Q. Zhang. Uncertainty measurement for incomplete interval-
valued information systems based on α-weak similarity, Knowledge-Based Systems 136 (2017)

159–171.

[8] J. H. Dai, H. F. Han, X. H. Zhang, M. F. Liu, S. P. Wan, J. Liu and Z. L. Lu, Catoptrical rough
set model on two universes using granule-based definition and its variable precision extensions,

Inform. Sci. 390 (2017) 70–81.
[9] F. Hu, G. Y. Wang, H. Huang and Y. Wu, Incremental arrtibute reduction based on elementary

sets, RSFDGrC2005 Part 1, LNAI3641 (2005) 185–193.
[10] J. Y. Liang, K. S. Chin, C. Y. Dang and C. M. Yan Richid, A new method for measuring

uncertainty and fuzziness in rough set theory, International Journal of General Systems 31 (4)

(2002) 331–342.

[11] J. H. Dai, Q.H. Hu, J.H. Zhang, H. Hu and N. G. Zheng, Attribute Selection for Partially
Labeled Categorical Data By Rough Set Approach, IEEE Transactions on Cybernetics (2016)

1–12.
[12] J. H. Dai, H. Hu, W. Z. Wu, Y. H. Qian and D. B. Huang, Maximal Discernibility Pairs based

Approach to Attribute Reduction in Fuzzy Rough Sets, IEEE Transactions on Fuzzy Systems

26 (4) (2018) 2174–2187.

283



Wang and Yang /Ann. Fuzzy Math. Inform. 18 (2019), No. 3, 273–284

[13] G. M. Lang, Q. G. Li and T. Yang, An incremental approach to attribute reduction of dynamic
set-valued information systems, International Journal of Machine Learning and Cybernetics 5

(2014) 775–788.
[14] G. M. Lang, Q. G. Li, M. J. Cai and T. Yang, Characteristic matrixes-based knowledge

reduction in dynamic covering decision information systems, Knowledge-Based Systems 85

(2015) 1–26.
[15] Z. W. Li, X. F. Liu, G. Q. Zhang, N. X. Xie and S. C. Wang, A multi-granulation decision-

theoretic rough set method for distributed fc-decision information systems: an application in

medical diagnosis, Appl. Soft Comput. 56 (2017) 233–244.
[16] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences 11(5)

(1982) 341–356.

[17] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About Data, Kluwer Academic
Publishers Boston 1991.

[18] Z. Pawlak and A. Skowron, Rudiments of rough sets, Information Sciences 177 (2007) 3–27.

[19] Z. Pawlak and A. Skowron, Rough sets: Some extensions, Information Sciences 177 (2007)
28–40.

[20] Z. Pawlak and A. Skowron, Rough sets and boolean reasoning, Information Sciences 177 (2007)
41–73.

[21] Y. H. Qian and J. Y. Liang, Combination entropy and combination granulation in rough set

theory, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 16 (2)
(2008) 179–193.

[22] D. Slezak, Approximate reducts in decision tables, Research report, Institute of Computer

Science, Warsaw University of Technology (1995).
[23] D. Slezak, Approximate entropy reducts, Fundamenta Informaticae 53 (2002) 365–390.

[24] S. H. Teng, M. Lu, A. F. Yang, J. Zhang, Y. J. Nian and M. He, Efficient attribute reduction

from the viewpoint of discernibility, Information Sciences 326 (2016) 297–314.
[25] C. Z. Wang, Y. L. Qi, M. W. Shao, Q. H. Hu, D. G. Cheng, Y. H. Qian and Y. J. Lin, A

fitting model for feature selection with fuzzy rough sets, EEE Transactions on Fuzzy Systems

25 (4) 741–753.
[26] F. Wang, J. Y. Liang and C. Y. Dang, Attribute reduction for dynamic data sets, Applied

Soft Computing 13 (2013) 676–689.

Chunyong Wang (wangchunyong2006@sina.com)
School of Mathematics And Computer Science, Hezhou University, Hezhou, Guangxi
542800, P.R. China

Bing Yang (653954168@qq.com)
Credit and investment management department of icbc hunan branch, Changsha,
Hunan 410082, P.R. China

284


	An incremental approach to computing conditional complementary entropy for dynamic information systems with varying object set. By 
	An incremental approach to computing conditional complementary entropy for dynamic information systems with varying object set. By 

