
Annals of Fuzzy Mathematics and Informatics

Volume 18, No. 3, (December 2019) pp. 233–243

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

https://doi.org/10.30948/afmi.2019.18.3.233

@FMI
c© Research Institute for Basic

Science, Wonkwang University

http://ribs.wonkwang.ac.kr

d-fuzzy ideals and injective fuzzy ideals in
distributive lattices

Berhanu Assaye Alaba, Mihret Alamneh Taye, Wondwosen Zemene
Norahun

@FMI

@ F M I

@ F M I

@ F M I

@ F M I

@ F M I
@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I
@ F M I @ F M I

@ F M I @ F M I
@ F M I @ F M I
@ F M I @ F M I
@ F M I

Reprinted from the
Annals of Fuzzy Mathematics and Informatics

Vol. 18, No. 3, December 2019



Annals of Fuzzy Mathematics and Informatics

Volume 18, No. 3, (December 2019) pp. 233–243

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

https://doi.org/10.30948/afmi.2019.18.3.233

@FMI
c© Research Institute for Basic

Science, Wonkwang University

http://ribs.wonkwang.ac.kr

d-fuzzy ideals and injective fuzzy ideals in
distributive lattices

Berhanu Assaye Alaba, Mihret Alamneh Taye, Wondwosen Zemene
Norahun

Received 28 April 2019; Revised 21 May 2019; Accepted 29 May 2019

Abstract. In this paper, we introduce the concept of d-fuzzy ideals and
injective fuzzy ideals in a distributive lattice with respect to derivation. It
is proved that the set of all d-fuzzy ideals forms a distributive lattice. A
set of equivalent conditions are derived for a derivation d of L to became
injective. Moreover, we proved that the set of all injective fuzzy ideals
forms a complete distributive lattice.

2010 AMS Classification: 06D72, 06B10

Keywords: Derivation, d-ideal, Injective ideal, Fuzzy ideal, d- fuzzy ideal, Injec-
tive fuzzy ideal.

Corresponding Author: Wondwosen Zemene Norahun (wondie1976@gmail.com)

1. Introduction

Bell and Kappe [3], and Kaya [6] have studied derivations in rings and prime
rings after Posner [10] had given the definition of the derivation in ring theory. Szasz
[14, 15]introduced and developed the theory of derivations in lattice structures. In
particular, Szasz [15] observed that a derivation d of a lattice L is a lattice homo-
morphism and also preserves the minimum 0. Ferrari [5] extended these concepts
to lattices and he embedded any lattice having some additional properties into the
lattice of its derivations. Rao [11] introduced the concept of d-ideals and injective
ideals in a distributive lattice with respect to derivations.

On the other hand, the notion of a fuzzy set initiated by Zadeh in [17]. Rosenfeld
has developed the concept of fuzzy subgroups [12]. Since then, several authors have
developed interesting results on fuzzy theory, like ([1],[2],[7],[9],[13],[16]).

In this paper, we introduce the concepts of d-fuzzy ideals and injective fuzzy
ideals in a distributive lattice with respect to derivation. We prove that the set of
all d-fuzzy ideals forms a distributive lattice. Set of equivalent conditions are given
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for a derivation d of L to became injective. We also characterized injective fuzzy
ideals in terms of extension of fuzzy ideals. Finally, we prove that the set of all
injective fuzzy ideals forms a complete distributive lattice.

2. Preliminaries

We refer to Birkhoff [4] for the elementary properties of lattices.

Now we recall the concept of derivation of a lattice L.

Definition 2.1 ([15]). A self-map d : L −→ L is a derivation of L, if it satisfies the
following conditions:

(i) d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)),
(ii) d(x ∨ y) = d(x) ∨ d(y).

In [15], Szasz observed that a derivation d of a lattice L is a lattice homomorphism
and also preserves the minimum 0.

Remark 2.2. In [5], Ferrari observed the condition (i) is redundant and is equivalent
to

d(x ∧ y) = d(x) ∧ y = x ∧ d(y).

Lemma 2.3 ([5]). Let d be a derivation of L. Then for any x, y ∈ L, we have

(1) d(0) = 0,
(2) d(x) ≤ x,
(3) x ≤ y ⇒ d(x) ≤ d(y).

Remember that, for any set A, a function µ : A → [0, 1] is called a fuzzy subset
of A, where [0, 1] is a unit interval, α ∧ β = min{α, β} and α ∨ β = max{α, β} for
all α, β ∈ [0, 1] [17].

Definition 2.4 ([12]). Let µ and θ be fuzzy subsets of a set A. Define the fuzzy
subsets µ ∪ θ and µ ∩ θ of A as follows: for each x ∈ A,

(µ ∪ θ)(x) = µ(x) ∨ θ(x) and (µ ∩ θ)(x) = µ(x) ∧ θ(x).

Then µ ∪ θ and µ ∩ θ are called the union and intersection of µ and θ, respectively.

For any collection, {µi : i ∈ I} of fuzzy subsets of X, where I is a nonempty index
set, the least upper bound

⋃
i∈I µi and the greatest lower bound

⋂
i∈I µi of the µi’s

are given by for each x ∈ X,

(
⋃
i∈I µi)(x) =

∨
i∈I µi(x) and (

⋂
i∈I µi)(x) =

∧
i∈I µi(x),

respectively.
We define the binary operations ”+” and ”·” on the set of all fuzzy subsets of L

as:

(µ+ θ)(x) = Sup{µ(y) ∧ θ(z) : y, z ∈ L, y ∨ z = x} and
(µ · θ)(x) = Sup{µ(y) ∧ θ(z) : y, z ∈ L, y ∧ z = x}.

If µ and θ are fuzzy ideals of L, then µ · θ = µ ∩ θ and µ+ θ = µ ∨ θ.
For each t ∈ [0, 1] , the set

µt = {x ∈ A : µ(x) ≥ t}
234
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is called the level subset of µ at t [17].
Note that a fuzzy subset µ of L is nonempty, if there exists x ∈ L such that

µ(x) 6= 0.

Definition 2.5. [12] Let f be a function from X into Y , µ be a fuzzy subset of X
and let θ be a fuzzy subset of Y .

(i) The image of µ under f , denoted by f(µ), is a fuzzy subset of Y defined by:
for each y ∈ Y ,

f(µ)(y) =

{
Sup{µ(x) : x ∈ f−1(y)} , if f−1(y) 6= φ

0, otherwise.

(ii) The preimage of θ under f , denoted by f−1(θ), is a fuzzy subset of X defined
by: for each x ∈ X,

f−1(θ)(x) = θ(f(x)).

Definition 2.6 ([12]). Let f be any function from a set X to a set Y and let µ be
any fuzzy subset of X. Then µ is called f -invariant, if for any x, y ∈ X,

f(x) = f(y) implies µ(x) = µ(y).

Definition 2.7 ([13]). A fuzzy subset µ of a bounded lattice L is said to be a fuzzy
ideal of L, if for all x, y ∈ L,

(i) µ(0) = 1,
(ii) µ(x ∨ y) ≥ µ(x) ∧ µ(y),
(iii) µ(x ∧ y) ≥ µ(x) ∨ µ(y).

In [13], Swamy and Raju observed that a fuzzy subset µ of a lattice L is a fuzzy
ideal of L if and only if

µ(0) = 1 and µ(x ∨ y) = µ(x) ∧ µ(y), for all x, y ∈ L.

Corollary 2.8 ([13]). Let α ∈ [0, 1]. If µ be a fuzzy ideal and θ be a fuzzy filter of a
lattice such that µ ∩ θ = α (the constant fuzzy subset attaining α), then there exists
a prime fuzzy ideal η of a lattice L such that

µ ⊆ η and η ∩ θ = α.

Let µ be a fuzzy subset of a lattice L. The smallest fuzzy ideal of L containing µ
is called a fuzzy ideal of L induced by µ and denoted by (µ] and

(µ] =
⋂
{θ ∈ FI(L) : µ ⊆ θ}

Theorem 2.9 ([8]). Let µ be a fuzzy subset of L. The fuzzy subset µ of L define by
µ(x) = Sup{t ∈ [0, 1] : x ∈ (µt]} for all x ∈ L is the fuzzy ideal induced by µ.

The set of all fuzzy ideals of L is denoted by FI(L).

3. d-fuzzy ideals

In this section, we introduce the concept of d-fuzzy ideals in a distributive lat-
tice. We prove that the set of all d-fuzzy ideals forms a distributive lattice. Some
properties of d-fuzzy ideals also studied.

Throughout the rest of this paper, L stands for a distributive lattice with 0 and
d is a derivation of L.
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Lemma 3.1. Let µ be a fuzzy ideal of L. If a, b ∈ L and b ≤ a, then d(µ)(b) ≥
d(µ)(a).

Proof. Let a, b ∈ L such that b ≤ a. If d(µ)(a) = 0, then it holds trivially. Again,
let d(µ)(a) = Sup{µ(r) : r ∈ d−1(a)} = k > 0. For each ε > 0, there is x ∈ d−1(a)
such that µ(x) > k − ε. Take y = x ∧ b. We get that y ∈ d−1(b) and µ(y) > k − ε.
This implies that for each ε > 0, we can find y ∈ d−1(b) such that µ(y) > k − ε.
Thus d(µ)(b) ≥ d(µ)(a). �

Theorem 3.2. Let µ be a fuzzy ideal of L. Then

(1) d(µ) is a fuzzy ideal of L such that d(µ) ⊆ µ,
(2) d−1(µ) is a fuzzy ideal of L.

Proof. Suppose µ is a fuzzy ideal of L and x, y ∈ L. Clearly d(µ)(0) = 1 and
d(µ)(x ∨ y) ≥ d(µ)(x) ∧ d(µ)(y). Again, by the above lemma,

d(µ)(x ∧ y) ≥ d(µ)(x) ∨ d(µ)(y).

Thus d(µ) is a fuzzy ideal of L.
Now we prove d(µ) ⊆ µ. Let x ∈ L. Then d(µ)(x) = Sup {t = µ(a) : a ∈ d−1(x)}

and µ(x) = Sup {k : x ∈ µk}. Put A = {t = µ(a) : a ∈ d−1(x)} and B = {k : x ∈
µk}. To verify that A ⊆ B, let t ∈ A. Then t = µ(a), for some a ∈ d−1(x). This
implies a ∈ µt and d(a) = x. Since µt is an ideal of L, d(a) ∈ µt. Thus A ⊆ B. So
d(µ) ⊆ µ. �

Definition 3.3. A fuzzy ideal µ of L is called a d- fuzzy ideal, if µ = d(µ).

Example 3.4. Consider the distributive lattice L = {0, a, b, c, 1}

Define a self map d : L −→ L as follows: for each x ∈ L,

d(x) =


0, if x = 0

a, if x = a, c

b, if x = b, 1.

Then it can be easily verified that d is a derivation of L.
Now define a fuzzy subset µ of L as follows:

µ(0) = 1, µ(a) = µ(b) = 0.5 and µ(c) = 0 = µ(1).

Then µ is a fuzzy ideal of L and d(µ) = µ. Thus µ is a d-fuzzy ideal of L.

Note that for any fuzzy ideal µ of a lattice L, the ideals µt are called level ideals
of µ. The level ideals of µ is denoted by Fµ and Fµ = {µt : t ∈ Im µ}.
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Theorem 3.5. Let µ be a fuzzy ideal of L. If µ is d-invariant and d is onto, then
the following are true

(1) Fd(µ) = {d(µt), t ∈ Im µ},
(2) Fd−1(µ) = {d−1(µt), t ∈ Im µ}.

Fd(µ) and Fd−1(µ) denote the family of level ideals of d(µ) and d−1(µ), respectively.

Proof. (1) Take any d-invariant fuzzy ideal µ of L. First, we observe that Im µ=Im
d(µ).

t ∈ Im µ⇔ µ(x) = t for some x ∈ L
⇔ (d−1(d(µ)))(x) = t since µ is d-invariant
⇔ (d(µ))(d(x)) = t
⇔ t ∈ Im d(µ).

Next, we proceed to show that d(µt) = (d(µ))t. Let y ∈ d(µt). Then there exists
x ∈ µt such that d(x) = y. Which implies Sup{µ(a) : a ∈ d−1(y)} ≥ t. This shows
that y ∈ (d(µ))t. Conversely, let y ∈ (d(µ))t. Then d(µ)(y) ≥ t. Since d is onto,
(d(µ))(d(x)) ≥ t, for some x ∈ L such that y = d(x). This implies (d−1(d(µ)))(x) ≥
t. Since µ is d-invariant, we get that µ(x) = (d−1(d(µ)))(x) ≥ t. This shows that
y = d(x) ∈ d(µt). Thus Fd(µ) = {d(µt), t ∈ Im µ} = {(d(µ))t, t ∈ Im µ}.

(2) Take any fuzzy ideal µ of L. Then clearly, Im µ = Im d−1(µ). Now we
proceed to show (d−1(µ))t = d−1(µt).

x ∈ (d−1(µ))t ⇔ d−1(µ)(x) ≥ t
⇔ µ(d(x)) ≥ t
⇔ d(x) ∈ µt
⇔ x ∈ d−1(µt).

Thus Fd−1(µ) = {d−1(µt), t ∈ Im µ} = {(d−1(µ))t, t ∈ Im µ}. �

Lemma 3.6. Let µ and θ be any two fuzzy ideals of L. Then we have

(1) µ ⊆ θ ⇒ d(µ) ⊆ d(θ),
(2) d(µ ∩ θ) = d(µ) ∩ d(θ),
(3) d(µ ∨ θ) = d(µ) ∨ d(θ).

Proof. (1) the proof is straightforward.
(2) Since µ ∩ θ ⊆ µ and µ ∩ θ ⊆ θ, by (1), we get d(µ ∩ θ) ⊆ d(µ) ∩ d(θ). For any

x ∈ L,

d(µ)(x) ∧ d(θ)(x) = Sup{µ(a) : a ∈ d−1(x)} ∧ Sup{θ(b) : b ∈ d−1(x)}.

Since d(a) = x and d(b) = x, d(a ∧ b) = x. Using this fact, we have

d(µ)(x) ∧ d(θ)(x) ≤ Sup{µ(a ∧ b) : a ∧ b ∈ d−1(x)} ∧ Sup{θ(a ∧ b) : a ∧ b ∈ d−1(x)}
= Sup{µ(a ∧ b) ∧ θ(a ∧ b) : a ∧ b ∈ d−1(x)}
= Sup{(µ ∩ θ)(a ∧ b) : a ∧ b ∈ d−1(x)}
≤ Sup{(µ ∩ θ)(c) : c ∈ d−1(x)}
= d(µ ∩ θ)(x).

Then d(µ ∩ θ) = d(µ) ∩ d(θ).
(3) By (1), we have d(µ) ∨ d(θ) ⊆ d(µ ∨ θ). For any x ∈ L,

d(µ ∨ θ)(x) = Sup{(µ ∨ θ)(a) : a ∈ d−1(x)}
237
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= Sup{Sup{µ(r1) ∨ θ(r2) : a = r1 ∨ r2}; a ∈ d−1(x)}
and

(d(µ) ∨ d(θ))(x)
= Sup{d(µ)(b1) ∧ d(θ)(b2) : x = b1 ∨ b2}
= Sup{Sup{µ(c1) : c1 ∈ d−1(b1)} ∧ Sup{θ(c2) : c2 ∈ d−1(b2)};x = b1 ∨ b2}
= Sup{Sup{µ(c1) ∧ θ(c2) : c1 ∈ d−1(b1), c2 ∈ d−1(b2)}}; x = b1 ∨ b2}.

Put A = {(r1, r2) ∈ L× L : a = r1 ∨ r2, a ∈ d−1(x)} and
B = {(x1, x2) ∈ L×L : x1 ∈ d−1(b1), x2 ∈ d−1(b2), x = d(b1∨b2), b1∨b2 ∈ d−1(x)}.
If (x1, x2) ∈ B, then x1 ∈ d−1(b1), x2 ∈ d−1(b2) and x1 ∨ x2 ∈ d−1(x). Thus
(x1, x2) ∈ A and B ⊆ A. So d(µ∨θ) ⊆ (d(µ)∨d(θ)). Hence d(µ∨θ) = d(µ)∨d(θ). �

For any derivation of a distributive lattice L, let us denote the class of all d-fuzzy
ideals of L by FId(L).

Theorem 3.7. The set FId(L) is a distributive lattice with respect to set inclusion.
Moreover, if d is onto, then FId(L) is a complete distributive lattice.

Proof. Clearly, (FId(L),⊆) a partially ordered set. By the above lemma, (FId(L),∩,∨)
is a lattice and sublattice of FI(L). Since FI(L) is a distributive lattice, FId(L) is
a distributive lattice.

Suppose d is onto. Then χL is greatest element of FId(L). Let {µα : α ∈ ∆} be a
subset of a d-fuzzy ideal of L. Then

⋂
α∈∆ µα is a fuzzy ideal of L and d(

⋂
α∈∆ µα) ⊆⋂

α∈∆ µα. Since d is onto, for any x ∈ L, d(x) = x. Now,

d(
⋂
α∈∆

µα)(x) = Sup{
⋂
α∈∆

µα(a) : a ∈ d−1(x)}

≥
⋂
α∈∆

µα(x).

Thus d(
⋂
α∈∆ µα) =

⋂
α∈∆ µα. So (FId(L),∩,∨) is a complete distributive lattice.

�

Theorem 3.8. A fuzzy subset µ of L is a d-fuzzy ideal if and only if µt is a d-ideal
of L, for each t ∈ (0, 1].

Proof. Let µ be a d-fuzzy ideal. Then µt = (d(µ))t. Since µ is a fuzzy ideal, µt is
an ideal of L, for each t ∈ [0, 1] and d(µt) ⊆ µt. Let x ∈ µt and t ∈ (0, 1]. Then
d(µ)(x) = Sup{µ(a) : a ∈ d−1(x)} ≥ t > 0 and x = d(x). Which implies x ∈ d(µt).
Thus µt is a d-ideal of L, for each t ∈ (0, 1].

Conversely, suppose that every proper level subset of µ is a d-ideal of L. Then µ
is a fuzzy ideal of L and d(µ) ⊆ µ. Let x ∈ L. If µ(x) = 0, then d(µ)(x) ≥ µ(x).
Suppose µ(x) 6= 0. Then

µ(x) = Sup{t ∈ (0, 1] : x ∈ d(µt)} ≤ Sup{t ∈ (0, 1] : x ∈ d(µ)t} = d(µ)(x).

Thus µ = d(µ). So µ is a d- fuzzy ideal of L. �

Lemma 3.9. If I is an ideal of L, then d(χI) = χd(I).

Proof. Let I be an ideal of L and x ∈ L. If x ∈ d(I), then x ∈ I and there is a ∈ I
such that d(a) = x. Thus χd(I)(x) = 1 = d(χI)(x). Again, if x /∈ d(I), then there
is no a ∈ I such that d(a) = x and χd(I)(x) = 0. Assume that d(χI)(x) 6= 0. Then
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d(χI)(x) = 1. This implies there is a ∈ I such that d(a) = x and x ∈ d(I). Which
is a contradiction. Thus d(χI)(x) = 0 = χd(I)(x). So d(χI) = χd(I). �

Theorem 3.10. A nonempty subset I of L is a d-ideal of L if and only if χI is a
d-fuzzy ideal.

Proof. Suppose I is a d-ideal of L, by the above lemma, χI is a d- fuzzy ideal of L.
Conversely, suppose that χI is a d- fuzzy ideal of L. Then I is an ideal of L and

d(I) ⊆ I. Let x ∈ I. Then d(χI)(x) = 1. This implies that there is a ∈ I such that
a ∈ d−1(x). Thus I ⊆ d(I). So I is a d-ideal. �

Lemma 3.11. If d is onto, then every fuzzy ideal of L is a d-fuzzy ideal.

Proof. Let µ be a fuzzy ideal of L and d is onto. Then for any x ∈ L, d(x) = x. To
show that µ ⊆ d(µ), let x ∈ L. Then d(µ)(x) = Sup{µ(a) : a ∈ d−1(x)} ≥ µ(x).
Thus µ ⊆ d(µ). So µ is d-fuzzy ideal. �

Theorem 3.12. Let µ be any fuzzy ideal of L. If µ is a d-fuzzy ideal, then

µ = ∪θ⊆µ(d(θ)], where θ is a fuzzy subset of L.

Lemma 3.13. Let µ be any fuzzy ideal of L. If for each fuzzy ideal θ ⊆ µ of L,
there exists a fuzzy ideal η ⊆ µ of L such that θ = d(η), then µ is a d-fuzzy ideal.

Proof. Assume that for each fuzzy ideal θ ⊆ µ of L, there exists a fuzzy ideal δ ⊆ µ
of L such that θ = d(δ). Since µ ⊆ µ, by the assumption, there is a fuzzy ideal
β ⊆ µ of L such that µ = d(β). Since d(β) ⊆ β, we get that µ ⊆ β. Thus µ = β and
µ = d(µ). So µ is a d-fuzzy ideal. �

4. Injective fuzzy ideals

In this section, we introduce the concept of injective fuzzy ideals in a distributive
lattice with respect to derivation. A set of equivalent conditions are derived for a
derivation d of L to became injective. Finally, we proved that the set of all injective
fuzzy ideals forms a complete distributive lattice.

Definition 4.1. A fuzzy ideal µ of L is called an injective fuzzy ideal with respect
to d, if for x, y ∈ L, d(x) = d(y), then µ(x) = µ(y).

Theorem 4.2. For any nonempty fuzzy subset µ of L, µ is an injective fuzzy ideal
if and only if each level subset of µ is an injective ideal of L with respect to d. (In
particular, a nonempty subset I of L is an injective ideal of L if and only if χI is
an injective fuzzy ideal of L).

The following examples demonstrates the independence between the class of all
d-fuzzy ideals and injective fuzzy ideals.

Example 4.3. Consider the distributive lattice L = {0, a, b, c, 1} whose Hasse dia-
gram is given below:
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Define a self map d : L −→ L as follows: for each x ∈ L,

d(x) =

{
a, x = a, c, 1

0, otherwise.

Then it can be easily verified that d is a derivation of L.
Now define a fuzzy subset µ of L as follows:

µ(0) = 1 = µ(b) and µ(a) = µ(c) = µ(1) = 0.4.

Then µ is an injective fuzzy ideal but not a d-fuzzy ideal of L.

Example 4.4. Considering the distributive lattice L = {0, a, b, c, 1} given in the
Example 3.4 mentioned earlier, we have seen that µ is a d-fuzzy ideal and d(a) = d(c),
but µ(a) 6= µ(c). From this, we can simply observe that µ is a d-fuzzy ideal but not
injective with respect to d.

Lemma 4.5. The characteristic function of Ker d is the smallest injective fuzzy
ideal of L.

Proof. Since Ker d is an injective ideal of L, by Theorem 4.2, χKer d is an injective
fuzzy ideal. To show χKer d is the smallest injective fuzzy ideal, let us take any
injective fuzzy ideal µ of L with respect to d. Suppose x ∈ Ker d. Then d(x) =
0 = d(0). Since µ is injective with respect to d and µ(0) = 1, we get that µ(x) = 1.
Thus Ker d ⊆ µ. So Ker d is the smallest injective fuzzy ideal of L. �

In the following theorem we established a set of equivalent conditions for χ{0} to
become an injective fuzzy ideal.

Theorem 4.6. The followings are equivalent in L:

(1) χ{0} is an injective fuzzy ideal of L with respect to d,
(2) χKer d = χ{0},
(3) d(x) = 0 implies that x = 0, for all x ∈ L.

Proof. (1) ⇒ (2): Suppose χ{0} is an injective fuzzy ideal of L with respect to d.
Then clearly, χ{0} ⊆ χKer d. By Lemma 4.5, χKer d is the smallest injective fuzzy
ideal of L. Thus we get that χKer d ⊆ χ{0}. So χKer d = χ{0}.

(2) ⇒ (3): Suppose χKer d = χ{0}. Then Ker d = {0}. Thus fixed any x ∈ L
satisfying d(x) = 0, x ∈ Ker d. By our hypothesis, we get that x ∈ {0}. This shows
that x = 0, for all x ∈ L such that d(x) = 0.

(3) ⇒ (1): Suppose the condition (3) holds. To prove χ{0} is an injective fuzzy
ideal, it suffices to show that {0} is an injective ideal. Let x, y ∈ L such that
d(x) = d(y) and x ∈ {0}. Then d(y) = 0. Thus by the condition (3), y = 0 and
y ∈ {0}. So χ{0} is an injective fuzzy ideal of L with respect to d. �
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In the following theorem a set of equivalent conditions is given for a derivation d
of L to become injective.

Theorem 4.7. The following conditions are equivalent in L:

(1) d is injective,
(2) Every fuzzy ideal is injective with respect to d,
(3) Every prime fuzzy ideal is an injective fuzzy ideal with respect to d.

Proof. (1)⇒ (2)⇒ (3): The proof is straightforward.
(3) ⇒ (1): suppose every prime fuzzy ideal of L is an injective fuzzy ideal. Let

x, y ∈ L such that d(x) = d(y). Assume that x 6= y. Without loss of generality, we
can assume that (x] ∩ [y) = φ. χ(x] and χ[y) are fuzzy ideal and fuzzy filter of L,
respectively such that χ(x] ∩ χ[y) = χφ (the constant fuzzy subset attaining, value
0), by Corollary 2.8, there exists a prime fuzzy ideal θ of L such that

χ(x] ⊆ θ and θ ∩ χ[y) = χφ

Since χ(x] ⊆ θ, θ(x) = 1. Again, θ(y) ∩ χ[y)(y) = 0. Since 0 is meet irreducible in
[0, 1], θ(y) = 0. Which is a contradiction. Thus d is injective. �

Theorem 4.8. A fuzzy ideal µ of L is injective with respect to d if and only if for
any x ∈ L, µ(x) = µ(d(x)).

Now we are going to discuss about the extension of fuzzy ideals. We also char-
acterize injective fuzzy ideals in terms of extension of fuzzy ideals. That is, for any
given fuzzy ideal µ of L always there exists a smallest injective fuzzy ideal containing
µ.

Definition 4.9. For any fuzzy ideal µ of L, an extension of µ is defined as:

µ
′
(x) = Sup{µ(a) : d(x) ∈ (d(a)]}.

Lemma 4.10. For any fuzzy ideal µ of L, µ
′

is a fuzzy ideal of L.

Proof. Let µ be a fuzzy ideal of L. Then µ
′
(0) = 1. For any x, y ∈ L,

µ
′
(x) ∧ µ

′
(y) = Sup{µ(a) : d(x) ∈ (d(a)]} ∧ Sup{µ(b) : d(y) ∈ (d(b)]}

= Sup{µ(a) ∧ µ(b) : d(x) ∈ (d(a)], d(y) ∈ (d(b)]}
= Sup{µ(a ∨ b) : d(x) ∈ (d(a)], d(y) ∈ (d(b)]}
= Sup{µ(a ∨ b) : d(x) ∨ d(y) ∈ (d(a)] ∨ (d(b)]}
= Sup{µ(a ∨ b) : d(x ∨ y) ∈ (d(a) ∨ d(b)]}
= Sup{µ(a ∨ b) : d(x ∨ y) ∈ (d(a ∨ b)]}
≤ Sup{µ(c) : d(x ∨ y) ∈ (d(c)]}
= µ

′
(x ∨ y).

And, µ
′
(x) = Sup{µ(a) : d(x) ∈ (d(a)]} ≤ Sup{µ(a) : d(x∧ y) ∈ (d(a)]} = µ

′
(x∧ y).

Similarly, µ
′
(x) ≤ µ

′
(x ∧ y). This shows that µ

′
(x ∧ y) ≥ µ

′
(x) ∨ µ′(y). Thus µ

′
is

a fuzzy ideal of L. �

Example 4.11. Considering the distributive lattice L = {0, a, b, c, 1} given in the
Example 4.3. Define a fuzzy subset µ of L as follows:
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µ(0) = 1, µ(b) = 0.5 and µ(a) = µ(c) = µ(1) = 0.4.

Then µ is a fuzzy ideal of L. Now we can easily show that µ
′
(0) = µ

′
(b) = 1 and

µ
′
(a) = µ

′
(c) = µ

′
(1) = 0.4.

Lemma 4.12. For any two fuzzy ideals µ and θ of L, we have the following:

(1) µ ⊆ µ′ ,
(2) µ ⊆ θ ⇒ µ

′ ⊆ θ′ ,
(3) µ

′ ∩ θ′ = (µ ∩ θ)′ .

Proof. The proofs of (1) and (2) are straightforward. Now we proceed to prove the

following. Let µ and θ be fuzzy ideals of L. Then by (2), we get (µ ∩ θ)′ ⊆ θ
′ ∩ µ′ .

For any x ∈ L, µ
′
(x)∧θ′(x) = Sup{µ(a) : d(x) ∈ (d(a)]}∧Sup{θ(b) : d(x) ∈ (d(b)]}.

If d(x) ∈ (d(a)] and d(x) ∈ (d(b)], then we get d(x ∧ a) = d(x), d(x ∧ b) = d(x)
and d(x ∧ (a ∧ b)) = d(x). Thus based on this fact we have,

µ
′
(x) ∧ θ

′
(x) ≤ Sup{µ(x ∧ (a ∧ b)) : d(x) ∈ (d(x ∧ (a ∧ b)]}

∧ Sup{θ(x ∧ (a ∧ b)) : d(x) ∈ (d(x ∧ (a ∧ b)]}
= Sup{µ(x ∧ (a ∧ b)) ∧ θ(x ∧ (a ∧ b)) : d(x) ∈ (d(x ∧ (a ∧ b)]}
= Sup{(µ ∩ θ)(x ∧ (a ∧ b)) : d(x) ∈ (d(x ∧ (a ∧ b)]}
≤ Sup{(µ ∩ θ)(c) : d(x) ∈ (d(c)]}
= (µ ∩ θ)

′
(x).

So (µ ∩ θ)′ = µ
′ ∩ θ′ . �

Proposition 4.13. For any fuzzy ideal µ of L, µ
′

is the smallest injective fuzzy
ideal of L with respect to d such that µ ⊆ µ′ .

Proof. Let µ be any fuzzy ideal of L. Then µ
′

is injective. To show µ
′

is the
smallest ideal containing µ, suppose θ is any injective fuzzy ideal of L containing µ.
Let x ∈ L. Then µ

′
(x) = Sup{µ(a) : d(x) ∈ (d(a)]}. This implies d(x ∧ a) = d(x),

for all a ∈ L such that d(x) ∈ (d(a)]. Since θ is injective and µ ⊆ θ, we have
µ(a) ≤ θ(x), for all a such that d(x) ∈ (d(a)]. This implies θ(x) is an upper bound

of {µ(a) : d(x) ∈ (d(a)]}. Thus µ
′
(x) ≤ θ(x). So µ

′
is the smallest injective fuzzy

ideal containing µ. �

Corollary 4.14. If µ is an injective fuzzy ideal of L, then µ = µ
′
.

Theorem 4.15. The set IFI(L) of all injective fuzzy ideals of L with respective to
a given derivation d of L forms a complete distributive lattice.

Proof. Since L is injective ideal, χL is a largest injective fuzzy ideal of L. For µ, θ ∈
IFI(L), define the operations ∧ and t such that µ∧ θ = µ∩ θ and µt θ = (µ∨ θ)′ .
Then clearly, µ ∧ θ, µ t θ ∈ IFI(L) and (IFI(L),∧,t) is a lattice. Now for any
µ, θ, η ∈ IFI(L), we have µ t (θ ∧ η) = (µ t θ) ∧ (θ t η). Thus (IFI(L),∧,t) is a
distributive lattice. To show IFI(L) is complete, let {µα : α ∈ I} be a subfamily
of IFI(L). Then

⋂
α∈I µα is fuzzy ideal of L. Let x, y ∈ L such that d(x) = d(y).

Then
⋂
α∈I µα(x) = inf{µα(x) : α ∈ I} = inf{µα(y) : α ∈ I} =

⋂
α∈I µα(y). Thus

(IFI(L),∧,t) is a complete distributive lattice. �
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5. Conclusions

In this work, we introduce the concept of d-fuzzy ideals and injective fuzzy ideals
in a distributive lattice with respect to derivation and investigate some their prop-
erties. We have shown that the class of d-fuzzy ideals forms a distributive lattice.
Moreover, the class of d-fuzzy ideals can be made a complete distributive lattice
whenever d is onto. Furthermore, a set of equivalent conditions also derived for a
derivation d to become injective. Our future work will focus on studding a d-fuzzy
ideals of an almost distributive lattice.

Acknowledgements. The authors would like to thank the referees for their
valuable comments and constructive suggestions.

References

[1] B. A. Alaba and W. Z. Norahun, Fuzzy annihilator ideals in distributive lattices, Ann. Fuzzy
Math. Inform. 16 (2) (2018) 191–200.

[2] B. A. Alaba and W. Z. Norahun, α-fuzzy ideals and space of prime α-fuzzy ideals in distributive
lattices, Ann. Fuzzy Math. Inform. 17 (2) (2019) 147–163.

[3] H. E. Bell and L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions,

Acta Math. Hungar. 53 (3-4) (1989) 339–346.
[4] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. XXV, Providence, U.S.A. (1967).

[5] L. Ferrari, On derivations of lattices, Pure Mathematics and Applications, 12 (45) (2001),

365–382.
[6] K. Kaya, Prime rings with a derivations, Bull. Mater. Sci. Eng., 16 (1987) 63–71.

[7] M. Kondo and W. A. Dudek, On the transfer principle in fuzzy theory, Mathware and Soft

Computing 12 (2005) 41–55.
[8] B. B. N. Koguep, C. Nkuimi and C. Lele, On fuzzy prime ideals of lattices, SJPAM 3 (2008)

1–11.

[9] W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy sets and systems 8 (1982) 133–
139.

[10] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957) 1093–1100.
[11] M. S. Rao, d-ideals and injective ideals in a distributive lattice, International Journal of Math-

ematics and Soft Computing 2 (1) (2012) 65–73.

[12] A. Rosenfeld, Fuzzy Subgroups, J. Math. Anal. Appl. 35 (1971) 512–517.
[13] U. M. Swamy and D. V. Raju, Fuzzy ideals and congruences of lattices, Fuzzy Sets and Systems

95 (1998) 249–253.

[14] G. Szasz, Translation der verbande, Acta Fac. Rer. Nat. Univ. Comenianae 5 (1961) 53–57.
[15] G. Szasz, derivations of lattices, Acta Sci. Math.(Szeged) 37 (1975) 149–154.

[16] B. Yuan and W. Wu, Fuzzy ideals on a distributive lattice, Fuzzy Sets and Systems 35 (1990)

231–240.
[17] L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338–353.

Berhanu Assaye Alaba (berhanu−assaye@yahoo.com)
Department of Mathematics, Bahir Dar University, Bahir Dar, Ethiopia

Mihret Alamneh Taye (mihretmahlet@yahoo.com)
Department of Mathematics, Bahir Dar University, Bahir Dar, Ethiopia

Wondwosen Zemene Norahun (wondie1976@gmail.com)
Department of Mathematics, University of Gondar, Gondar, Ethiopia

243


	 d -fuzzy ideals and injective fuzzy ideals in distributive lattices. By 
	 d -fuzzy ideals and injective fuzzy ideals in distributive lattices. By 

