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Abstract. In this paper, we introduce the notion of L-fuzzy sublattice
of a bounded lattice with truth values in a complete lattice satisfying the
infinite meet distributive law and prove certain general properties of these,
by observing that these form an algebraic fuzzy set system.
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1. Introduction

Ever since Zadeh [17] introduced the notion of a fuzzy subset of a non empty set
X as a function from X into the unit interval [0, 1], several algebraists studied fuzzy
subalgebras of various algebraic systems such as groups, rings, modules, lattices with
membership function assuming truth values in the unit intervel [0, 1] of real numbers.
Rosenfeld [8] defined the notion of a fuzzy subgroup of a group and since then several
researchers worked on fuzzy subrings and ideals of rings [6, 7], fuzzy ideals of lattices
[1, 5], fuzzy subspaces of a vecter space [4] and so on. In the above mentioned, the
fuzzy statements take truth values in the interval [0, 1] of real numbers, while crisp
statements take truth values in the two-element set {0, 1}. However, Gougen [3]
realised that the interval [0, 1] is insufficient to have the truth values of general
fuzzy statements and it is necessary to consider a more general class of lattices in
place of [0, 1]. Swamy and other researchers in [9, 10, 11, 12, 13, 14, 15, 16][9-16]
used a complete lattice satisfying the infinite meet distributivity, which are called
frames, to have the truth values of general fuzzy statements.

In this paper, we introduce the notion of an L-fuzzy sublattice of a bounded
lattice (A,∧,∨, 0, 1), having truth values (as suggested by Gougen [3]) in a complete
lattice L satisfying the infinite meet distributive law and we prove certain important
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structural properties of these. Mainly, we observe that the set FSL(A) of all L-fuzzy
sublattice of A is an algebric fuzzy set system.

Throughout this paper, L = (L,∧,∨, 0, 1) stands for a non-trivial complete lattice
in which the infinite meet distributive law is satsified. That is;

a ∧
( ∨
s∈S

s
)

=
∨
s∈S

(
a ∧ s

)
for any S ⊆ L and a ∈ L and A stands for a bounded lattice (A,∧,∨, 0, 1). We
consider L-fuzzy subsets (for simplicity, fuzzy subsets) of A in the sense of Gougen
[3]. Accordingly, an L-fuzzy subset of A is a mapping of A into L. If L is the unit
interval [0, 1] of real numbers, these are the usual fuzzy subsets of A.

2. L-fuzzy sublattices

A non-empty subset S of a bounded lattice (A,∧,∨, 0, 1) is called a sublattice
of A if it is closed under the binary operations ∧ and ∨ and containing smallest
element 0 and largest element 1 of A. Let S(A) be the set of all sublattices of A.
Then it is well known that S(A) is an algebraic closure set system on A (i.e, closed
under arbitrary intersections and unions of upward directed subclasses of S(A)). In
the following, we introduce the notion of an L-fuzzy sublattice of a given bounded
lattice (A,∧,∨, 0, 1) and prove certain properties of these.

Definition 2.1. An L-fuzzy subset λ of A is said to be an L-fuzzy sublattice of A
if and only if it satisfies the following conditions:

λ(0) = 1 = λ(1) and
λ(x) ∧ λ(y) ≤ λ(x ∧ y) ∧ λ(x ∨ y), for all x, y ∈ A.

We can identify any sublattice of A with an L-fuzzy sublattice of A by the fol-
lowing theorem. For any subset S of A the characterstic map χ

S
: A→ L is defined

by

χ
S
(x) =

{
1 if x ∈ S
0 if x /∈ S.

Theorem 2.2. For any subset S of A, S is a sublattice of A if and only if χ
S

is an
L-fuzzy sublattice of A.

Next we characterize L-fuzzy sublattices by their α-cuts. First let us recall that,
for any L-fuzzy subset λ of A and α ∈ L, the α-cut of λ is defined by

λ−1[α, 1] = {x ∈ A : α ≤ λ(x)}.
Note that the α-cut of χS is given by

χ−1
S [α, 1] =

{
A if α = 0

S if α 6= 0.

The above theorem can rephrased as χS is an L-fuzzy sublattice of A if and only
if χ−1

S [α, 1] is a sublattice of A, for each α ∈ L.

Theorem 2.3. An L-fuzzy subset λ of A is an L-fuzzy sublattice of A if and only
if λ−1[α, 1] is a sublattice of A, for each α ∈ L.
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Proof. Suppose that λ is an L-fuzzy sublattice of A and α ∈ L. Then λ(0) = 1 =
λ(1). Thus 0, 1 ∈ λ−1[α, 1]. So λ−1[α, 1] 6= ∅.

Let x and y ∈ λ−1[α, 1]. Then α ≤ λ(x) and α ≤ λ(y). Thus

α ≤ λ(x) ∧ λ(y) ≤ λ(x ∧ y) and α ≤ λ(x) ∨ λ(y) ≤ λ(x ∨ y).

So x ∧ y, x ∨ y ∈ λ−1[α, 1]. Hence λ−1[α, 1] is a sublattice of A.
Conversely, suppose that for each α ∈ L, λ−1[α, 1] is a sublattice of A. In par-

ticular, λ−1[1, 1] is a sublattice of A and then 0, 1 ∈ λ−1[1, 1], it follows that
λ(0) = 1 = λ(1). Let x and y ∈ A. Put α = λ(x)∧λ(y). Then α ≤ λ(x) and α ≤ λ(y).
Thus x, y ∈ λ−1[α, 1]. Since λ−1[α, 1] is a sublattice of A, x ∨ y, x ∧ y ∈ λ−1[α, 1].
Thus λ(x)∧λ(y) ≤ λ(x∧y) and λ(x)∨λ(y) ≤ λ(x∨y). So λ is an L-fuzzy sublattice
of A. �

Let FSL(A) denote the set of all L-fuzzy sublattices of A. We have the point-wise
ordering on FSL(A) which is defined by

λ ≤ µ if and only if λ(x) ≤ µ(x)

for all x ∈ A and for any λ, µ ∈ FSL(A). The following is straightforward verifica-
tion.

Theorem 2.4.
(
FSL(A),≤

)
is a complete lattice in which, for any

{λi}i∈M ⊆ FSL(A), the infimum and supremum are given by∧
i∈∆

λi = The point-wise infimum of {λi}i∈∆

and ∨
i∈∆

λi =
∧{

λ ∈ FSL(A) : λi ≤ λ for all i ∈ ∆
}
.

For any S ⊆ A, we denote the sublattice of A generated by S by 〈S〉 (i.e; the
smallest sublattice containing S). It is well known that S 7→ 〈S〉 is an algebraic
closure operator on A and hence

〈S〉 =
⋃{
〈T 〉 : T is a finite subset of S

}
.

Note that the set {0, 1} is the small sublattice of the bounded lattice (A,∧,∨, 0, 1).
Now, we prove an important characterization of an L-fuzzy sublattice of A and this
will be used repeatedly throughout this paper.

Theorem 2.5. The following are equivalent to each other, for any L-fuzzy subset λ
of A:

(1) λ is an L-fuzzy sublattice of A,
(2) for any S ⊆ A and a ∈ 〈S〉, λ(a) ≥

∧
x∈S

λ(x),

(3) for any S ⊆ A,
∧
x∈S

λ(x) =
∧

x∈〈S〉
λ(x).

Proof. (1)⇒(2): Suppose that λ is an L-fuzzy sublattice of A and S ⊆ A. Put
α =

∧
x∈S

λ(x). Then α ≤ λ(x), for all x ∈ S. Thus S ⊆ λ−1[α, 1]. By Theorem 2.3,

λ−1[α, 1] is a sublattice of A containing S. So 〈S〉 ⊆ λ−1[α, 1]. Hence α ≤ λ(a), for
all a ∈ 〈S〉. Therefore λ(a) ≥

∧
x∈S

λ(x), for all a ∈ 〈S〉.
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(2)⇒(1): Suppose that the condition (2) holds. In particular, if S = ∅, then∧
x∈S

λ(x) = 1. Thus λ(a) ≥ 1, for all a ∈ 〈∅〉. Since 〈∅〉 = {0, 1}, λ(0) ≥ 1 and

λ(1) ≥ 1. This implies λ(0) = 1 = λ(1). If S = {x, y}, then x ∧ y and x ∨ y ∈ 〈S〉.
Thus λ(x) ∧ λ(y) ≤ λ(x ∧ y) ∧ λ(x ∨ y). So λ is an L-fuzzy sublattice A.

(2)⇒(3): Suppose that the condition (2) holds. Then we have∧
x∈S

λ(x) ≤
∧
a∈〈S〉

λ(a) ≤
∧
x∈S

λ(x).

Thus
∧
x∈S

λ(x) =
∧

x∈〈S〉
λ(x).

(3)⇒(2): The proof is trivial. �

If {λi : i ∈M} is a family of L-fuzzy sublattices of A, then
∧
i∈M

λi (the point-wise

infimum of λ′is) is an L-fuzzy sublattice of A (by Theorem 2.4) and in particular, if
λ is any L-fuzzy subset of A then the point-wise infimum of all L-fuzzy sublattices
of A containing λ is an L-fuzzy sublattice of A and which becomes the L-fuzzy
sublattice λ generated by λ. In the following we give a precise discription of the
L-fuzzy sublattice λ generated by a given L-fuzzy subset λ of A. We write S b A
to mean that S is a finite subset of A.

Theorem 2.6. Let λ be an L-fuzzy subset of A. Then, the L-fuzzy sublattice λ
generated by λ is given by

λ(x) =
∨{ ∧

a∈S
λ(a) : S b A and x ∈ 〈S〉

}
,

for any x ∈ A.

Proof. Let ν(x) =
∨{ ∧

a∈S
λ(a) : S b A and x ∈ 〈S〉

}
. We shall prove that ν is the

smallest L-fuzzy sublattice of A containing λ. If S = {x}, then x ∈ 〈S〉, for any
x ∈ A. Thus λ(x) ≤ ν(x), for all x ∈ A. So λ ≤ ν. Since the set {0, 1} is the
smallest sublattice of A containing the empty set ∅, 0, 1 ∈ 〈∅〉 and

∧
a∈∅

λ(a) = 1.

This implies that 1 ≤ ν(0) and 1 ≤ ν(1). Hence ν(0) = 1 = ν(1).
Now, using the infinite meet distributivity in L, we have

ν(x) ∧ ν(y) =
∨{( ∧

a∈S
λ(a)

)
∧
( ∧
b∈T

λ(b)
)

: S, T b A and x ∈ 〈S〉, y ∈ 〈T 〉
}
.

Let S and T b A and x ∈ 〈S〉, y ∈ 〈T 〉 and F = S ∪ T . Then F b A and x, y ∈ 〈F 〉.
Thus x ∧ y, x ∨ y ∈ 〈F 〉. So( ∧

a∈S
λ(a)

)
∧
( ∧
b∈T

λ(b)
)

=
∧

a,b∈F

(
λ(a) ∧ λ(b)

)
≤ ν(x ∧ y) ∧ ν(x ∨ y).

It follows that, ν(x) ∧ ν(y) ≤ ν(x ∧ y) ∧ ν(x ∨ y). Hence ν is an L-fuzzy sublattice
of A.

If µ is any other L-fuzzy sublattice of A containing λ, then for any finite subset
S in A and x ∈ 〈S〉, we have,∧

a∈S
λ(a) ≤

∧
a∈S

µ(a) ≤ µ(x). (by Theorem 2.5)
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Thus ν(x) ≤ µ(x) .for all x ∈ A. So ν ≤ µ. Hence λ = ν. �

It can be easily proved that the supremum of a class {λi}i∈∆ of L-fuzzy sublattices
of A is given by ∨

i∈∆

λi = µ, where µ(x) =
∨
{λi(x) : i ∈ ∆}.

and then by Theorem 2.6,( ∨
i∈∆

λi
)
(x) =

∨{ ∧
a∈S

µ(a) : S b A and x ∈ 〈S〉
}
.

Since 〈S〉 =
⋃{
〈T 〉 : T b S

}
for any S ⊆ A, it can be easily verified that

λ(x) =
∨{ ∧

a∈S
λ(a) : S ⊆ A and x ∈ 〈S〉

}
.

Let us recall that the constant maps 0 and 1 of A are defined by 0(x) = 0, the
smallest element in L and 1(x) = 1, the largest element in L. It can be easily verified
that the L-fuzzy sublattice generated by 0 is the smallest L-fuzzy sublattice of A and
1 is the largest L-fuzzy sublattice of A. These ideas are generalized in the following.

Theorem 2.7. For any sublattice S of A, χ
S

= χ〈S〉 .

Proof. For any S ⊆ A, we have

χ
S
(x) =

∨{ ∧
a∈T

χ
S
(a) : T ⊆ A and x ∈ 〈T 〉

}
.

Since S ⊆ 〈S〉, χ
S
≤ χ〈S〉 . Then χ

S
≤ χ〈S〉 . On the other hand, if x /∈ 〈S〉, then

χ〈S〉(x) = 0 ≤ χ
S
(x). If x ∈ 〈S〉, then χ

S
(x) ≥

∧
a∈S

χ
S
(a) = 1 = χ〈S〉(x). Thus

χ
S

= χ〈S〉 . �

Next, we describe the α-cut of λ. First let us recall that, for any α ∈ L and C ⊆ L,
C is called a cover of α if α ≤ Sup C.

Theorem 2.8. Let λ be an L-fuzzy subset of A and λ is the L-fuzzy sublattice of A
generated by λ. Then for any α ∈ L,

λ
−1

[α, 1] =
⋃{ ⋂

β∈C

〈λ−1[β, 1]〉 : C is a cover of α in L
}
.

Proof. For any x ∈ A, we have

λ(x) =
∨{ ∧

a∈S
λ(x) : S ⊆ A and x ∈ 〈S〉

}
.

Let α ∈ L. Suppose there exists a cover C of α in L such that x ∈ 〈λ−1[β, 1]〉, for
all β ∈ C. Then for any a ∈ λ−1[β, 1], we have β ≤ λ(a). Thus

β ≤
∧

a∈λ−1[β,1]

λ(a) ≤ λ(x).

So α ≤ Sup C ≤ λ(x). Hence x ∈ λ−1
[α, 1].
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On the other hand, let x ∈ λ−1
[α, 1]. Then α ≤ λ(x). For any S ⊆ A with x ∈ 〈S〉,

let βS =
∧
a∈C

λ(a) and C =
{
βS : S ⊆ A and x ∈ 〈S〉

}
. Then, clearly C is a cover of

α in L. Let βS ∈ C. Then for any a ∈ S, we have βS ≤ λ(a). Thus S ⊆ λ−1[βS , 1].
So x ∈ 〈S〉 ⊆ 〈λ−1[βS , 1]〉, for every βS ∈ C. �

In the following we define α-level L-fuzzy sublattice of a bounded lattice (A,∧,∨, 0, 1),
which slightly generalize the notion of the characterstic map χ

S
corresponding to a

sublattice S of A.

Theorem 2.9. For any subset S of A and α ∈ L, we define αS : A→ L by

αS(x) =

{
1 if x ∈ S
α if x /∈ S.

Then αS = α〈S〉.

Corollary 2.10. For any S ⊆ A and α ∈ L, αS is an L-fuzzy sublattice of A if and
only if S is a sublattice of A.

It can be seen that the correspondence S 7→ αS establishes an isomorphism from
the lattice S(A) of all sublattices of A onto the lattice of α-level L-fuzzy sublattices
of A. Also, for any proper sublattice S of A, the mapping α 7→ αS is an isomorphism
of L onto a complete sublattice of the lattice of L-fuzzy sublattices of A.

Now the following theorem provides a method for constructing L-fuzzy sublattice
of A from their α-cuts satisfying certain conditions.

Theorem 2.11. Let {Sα : α ∈ L} be a family of sublattices of A such that
⋂

α∈M
Sα =

S∧
α

α∈F
for all M ⊆ L. Define λ : A→ L by

λ(x) =
∨{

α ∈ L : x ∈ Sα
}
.

Then λ is an L-fuzzy sublattice of A such that Sα is precisely λ−1[α, 1], for any
α ∈ L and conversely every L-fuzzy sublattice of A can be defined as above.

Proof. By the definition of λ, for any x ∈ A and α ∈ L, we have

x ∈ Sα ⇒ α ≤ λ(x)⇒ x ∈ λ−1[α, 1].

Then Sβ ⊆ λ−1[β, 1, ] for all β ∈ L. Clearly, α 7→ Sα is an antitone.
Now, x ∈ λ−1[β, 1]⇒ β ≤ λ(x) = ∨

{
α ∈ L : x ∈ Sα

}
⇒ β = β ∧

(
∨ {α ∈ L : x ∈ Sα}

)
⇒ β = ∨{β ∧ α : x ∈ Sα}
⇒ Sβ =

⋂
x∈Sα

Sβ∧α

⇒ x ∈
⋂

x∈Sα
Sβ∧α = Sβ (since Sα ⊆ Sβ∧α).

Thus λ−1[β, 1] = Sβ , for all β ∈ L. So by Theorem 2.3, λ is an L-fuzzy sublattice of
A.
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The converse is clear, since for an L-fuzzy subset λ of A,
⋂

α∈M
λ−1[α, 1] =

λ−1
[ ∨
α∈M

α, 1
]
, for any M ⊆ L and clearly, λ(x) =

∨{
α ∈ L : x ∈ λ−1[α, 1]

}
. �

Corollary 2.12. Let S1 ⊆ S2 ⊆ S3 ⊆ . . . be an increasing sequence of sublattices

of A such that
∞⋃
n=1

Sn = A and 1 = α1 ≥ α2 ≥ α3 ≥ · · · be a decreasing sequence

of elements in L. Then, the L-fuzzy subset λ defined by λ(x) = αn, where n is the
least integer such that x ∈ Sn, is an L-fuzzy sublattice of A and the α-cut of λ is
given by

λα =

{
A if α ≤ αn for all n

Sn if n is the largest such that αn ≥ α.

Corollary 2.13. Let S1 ⊆ S2 ⊆ S3 ⊆ · · · ⊆ Sn = A be finite increasing sequence of
sublattices of A and 1 = α1 ≥ α2 ≥ α3 ≥ · · · ≥ αn be a finite decreasing sequence
of elements in L. Then, the L-fuzzy subset λ defined by λ(x) = αi, if i is the least
integer such that x ∈ Si is an L-fuzzy sublattice of A.

A class C of L-fuzzy subsets of a non-empty set X is called directed above if,
for any λ, µ ∈ C , there exists γ ∈ C such that λ ≤ γ and µ ≤ γ. C is said to be
an algebraic fuzzy set system if, C is closed under point-wise infimums and closed
under the point-wise supremums of directed above subclsses of C .

Theorem 2.14. The class FSL(A) of all L-fuzzy sublattices of A is an
algebraic fuzzy set system.

Proof. By Theorem 2.4, we have FSL(A) is closed under point-wise infimums. Let
{λi : i ∈M} be a directed above subclass of FSL(A) and for any x ∈ A,

µ(x) =
∨
i∈M

λi(x) = Sup{λi(x) : i ∈M}.

Then clearly, µ(0) = 1 = µ(1), since each λi is an L-fuzzy sublattice of A. Now, let
x, y ∈ A. Then by the infinite meet distributivity in L,

(*) µ(x) ∧ µ(y) =
( ∨
i∈M

λi(x)
)
∧
( ∨
i∈M

λi(y)
)

=
∨
i,j∈M

(
λi(x) ∧ λj(y)

)
.

Since for any i, j ∈M, there exists k ∈M such that λi ≤ λk and λj ≤ λk and

λi(x) ∧ λj(y) ≤ λk(x) ∧ λk(y) ≤ λk(x ∧ y) ∧ λk(x ∨ y).

Thus by (?), it follows that µ(x) ∧ µ(y) ≤ µ(x ∧ y) ∧ µ(x ∨ y). So µ is an L-fuzzy
sublattice of A. �

3. Conclusions

In this paper, we have studied the structural theory of fuzzy sublattices of a
bounded lattice with truth values in a complete lattice satisfying the infinite meet
distributive law such a lattice is called a frame. Here, we have proved that the class
of fuzzy sublattices of a bounded lattice is a complete lattice and form an algebraic
fuzzy system. We want to know whether this class form an algebraic lattice or not
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and to investigate prime and maximal fuzzy sublattices and prime spectrum of fuzzy
sublattices. We leave these concepts for future study.

Acknowledgements. Authors are very thankful to the anonymous reviewers
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