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Abstract. The processing of uncertainty information has gradually
became one of the hot issues in artificial intelligence field, and the infor-
mation measures of uncertainty information processing are of importance.
Single value neutrosophic sets (SVNSs) provide us a flexible mathematical
framework to process uncertainty information. In this paper, we mainly
consider the measures of SVNSs. The existing information measures mostly
are constructed based on the two typical inclusion relations about single
value neutrosopgic sets. However, there exist some practical problems that
do not apply to the two typical inclusion relations. Therefore, there ex-
ists another inclusion relation which is called the type-3 inclusion relation
about SVNSs. This inclusion relation can help us to process some uncertain
information in a new way. It is noteworthy that the existing information
measures are not suitable for the type-3 inclusion about SVNSs. In this
case, we proposed the new distance measure based on the cross-entropy
about SVNSs, then the corresponding similarity measure is proposed ac-
cording to the matching function between distance and similarity. Finally,
the new distance measure is applied to decision-making problem with a
illustrative example. The verification result show that the new distance is
favorable for dealing with some practical problems.
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1. Introduction

In the real world, there exists many uncertainty, imprecise, incomplete informa-
tion, so, the uncertainty information processing has gradually became one of the hot
issues in many scientific field. Zadeh [45] firstly proposed the theory of fuzzy set in
which one element of the universe has a membership value to the set. Atanassov
[1] proposed intuitionistic fuzzy set (IFS) described by two functions, including a
membership function depicting the membership value, and a non-membership func-
tion depicting the non-membership value of one object to the intuitionistic fuzzy
set. Intuitionistic fuzzy sets are generalized on the basis of fuzzy sets by means of
adding a non-membership function. And it has provided a more flexible mathemat-
ical framework to process these uncertainty, imprecise and incomplete information.
Smarandache [26, 27] originally introduced neutrosophy and the notion of neutro-
sophic set in 1998. The neutrosophic set is defined by three memnership functions in-
cluding truth-membership function, indeterminacy-membership function and falsity-
membership which are used to expressed the degree to which an element belongs to
the neutrosophic set, the degree of uncertainty and the degree of non-belonging re-
spectively. It’s noteworthy that the three membership functions of neutrosophic set
are independent which is different from hesitant intuitionistic fuzzy set. Therefore,
Smarandache (1998) defined the single valued neutrosophic set in the book [26], and
Wang et al. [31] also given the definition of single value neutrosophic set and set-
theoretic operators for better applications in real scientific and engineering fields.
Single value neutrosophic sets (SVNSs) is generalized on the basis of intuitionistic
fuzzy sets and provided a more facilitate tool for us to process these uncertainty,
imprecise, incomplete and inconsistent information in the real world, and then it
would be more suitable to be applied in indeterminate information processing and
inconsistent information measures. Some researchers have shown great interests in
the theory of single-value neutrosophic set and applied it to many fields including
the multi-attribute decision-making, pattern recognition, image segmentation, fault
diagnosis and medical diagnosis [14, 21, 22, 24, 29, 32, 33, 34, 35, 36, 37, 38, 42, 43].
Harish [10, 11, 12, 13, 18, 19, 23] has made much results in the application of neutro-
sophic sets environment including linguistic single-valued neutrosophic prioritized
aggregation operators, prioritized muirhead mean aggregation operator and New
logarithmic operational laws. Broumi [7] proposed some computing procedures in
Matlab for neutrosophic operational matrices. Broumi [4, 5, 8]compared the shortest
path problem with various existing algorithms and concluded the best algorithm for
certain environment and proposed the shortest path problem (SPP) method in the
neutrosophic environment.

Information measures are essential to decision-making in uncertain information
processing, including similarity, distance or divergence measure, entropy and cross-
entropy. These information measures have much applications on image processing,
clustering, pattern recognition and so on. Similarity measure is mainly used to
measure the level of similarity between two objects. Entropy is usually to depict
uncertain degree of one object and is very important for uncertain information.
Cross-entropy is used to measure the degree of discrimination of two objects and
we can judge their relationship through that. Therefore, cross-entropy have been
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widely used in many fields as data analysis and classification, decision-making, pat-
tern recognition and so on. Zadeh [46] firstly proposed the entropy of fuzzy events
which is based on Shannon entropy. Kullback [15] was concerned with a information
measure which can be called ”distance” or ”divergence” depicting the relation be-
tween two probability distributions. Therefore, it is known as a information measure
for indicating the degree of discrimination. Furthermore, a new kind of information
measure called the ”cross entropy distance” of two probability distributions was in-
troduced by Kullback and Leibler. Cross-entropy can be used to measure the degree
of discrimination between two objects. Therefore, many researchers have modified
cross-entropy measures. For example, Lin [16] proposed divergence based on Shan-
non entropy and it is a kind of modified fuzzy cross-entropy. Bhandari [2] introduced
fuzzy divergence between two fuzzy sets. Shang wt al. [25] introduced the concept
of fuzzy cross-entropy and a symmetric discrimination measure of fuzzy sets which
was based on fuzzy divergence and is used to described the discrimination degree
of fuzzy sets. Vlachos [18] presented cross-entropy on intuitionistic fuzzy sets and
introduced a mathematical connection between the fuzzy entropy and intuitionistic
fuzzy entropy in terms of fuzziness and intuitionism. The research on the mea-
sures of SVNSs began in 2013. In 2013, Broumi and Smarandache [6] proposed
the distance measure of neutrosophic sets on the basis of Hausdorff distance, and
proposed some similarity functions based on distance measure and connection func-
tion. In 2014, Majumdar and Samanta [17] put forward the distance measure and
defined the entropy of the neutrosophic set. Ye [34] proposed the correlation and
correlation coefficient of the neutrosophic sets based on the correlation of the intu-
itionistic fuzzy sets, then proposed the weighted similarity constructed by the cosine
function and proposed the corresponding decision-making method. Ye [35, 37] pro-
posed a multi-criteria decision-making method through two aggregation operators
and cosine similarity, and then proposed an improved cosine similarity in 2015 for
medical diagnosis. Ye [36] proposed three vector similarities including Jaccard, Dice
and cosine similarities for multi-criteria decision-making (MCDM). In 2017, Ye [38]
constructed cotangent similarity using cotangent function and applied it to medical
diagnosis. Cross-entropy measures was generalized to the single valued neutrosophic
sets and applied it to multi-criteria decision-making by Ye [33]. And then Rıdvan
Şhahin [24] generalized the cross-entropy measure on interval neutrosophic sets and
the application in multicriteria decision making. Garg [9] proposed some new types
of distance measures of SVNSs and the applications to Pattern Recognition and
Medical Diagnosis. In 2018, Wu [32] gave some methods to construct information
metrics by using cosine function. Wang [30] has proved that the cross-entropy is
a new kind of distance measure in fuzzy sets and single value neutrosophic sets.
Nancy [20] proposed an axiomatic definition of divergence measure for SVNSs and
develop a novel technique for order preference by similarity to ideal solution (TOP-
SIS) method for solving single-valued neutrosophic multi-criteria decision-making
with incomplete weight information. Qin [22] introduced a new similarity and en-
tropy measures of SVNSs and the application in multi-attribute decision-making.
Most of the existing measures of SVNSs are based on the classical two inclusion
relations which are called as type-1 and type-2 inclusion relations. In the fact, these
two inclusion relations are satisfied if and only if the three membership degrees of
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neutrosophic sets satisfy some conditions at the same time. that is three membership
functions of the neutrosophic set are equally important. However, some practical
problems do not necessarily mean that the three membership degrees are equally
important (for example, voting problem, we may pay more attention to the affirma-
tive vote and dissenting vote relative to the abstentions). Therefore, Zhang [39, 40]
put forward a new inclusion relation of neutrosophic sets, some operations and its
algebraic structure under this inclusion relation.

The new inclusion relationship can be determined by the true membership de-
gree and the false membership degree firstly, only when the true membership degree
and the false membership degree can not be distinguished, the inclusion relation-
ship can be determined by the degree of uncertainty. However, we find that most
of the existing measures of neutrosophic sets are inappropriate the new inclusion
relation. So, we will consider the new measures of SVNSs on the basis of the new
inclusion relation in order to better deal with some practical problem, and the study
of information measures of SVNSs based on the new inclusion relation will help us
handle some practical problems in real world. In this paper, we firstly introduce
some relevant notions and properties of SVNSs. In the next, we verified that the
existing cross-entropy are not suitable for the new inclusion relation about SVNSs
by a example. Since the cross-entropy is a kind of distance measure, this paper
further considers the cross-entropy of SVNSs on the basis of new inclusion relation,
and proposes a new distance measure based on the cross-entropy, and gives the cor-
responding similarity according to the matching function between distance measure
and similarity. In the next, the new distance measure is applied to decision-making
problem with a illustrative example. The information measure based on the new
inclusion relation will help to solve some practical problems.

2. Preliminaries

Smarandache [26, 27] firstly proposed the definition of neutrosophic set, which is
an extension of an intuitionistic fuzzy set(IFS) and an interval-valued intuitionistic
fuzzy set, as follows:

Definition 2.1 ([26]). Let X be a universe course, where a neutrosophic set A in
X is comprised of the truth-membership function TA(x), indeterminacy-membership
function IA(x), and falsity-membership function FA(x), in which TA(x), IA(x), FA(x) :
X →]0−, 1+[.

There is no restriction on the sum of TA(x), IA(x), FA(x). Then

0− ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.

It’s remarkable that the three membership of neutrosophic set are independent.

Wang et al. [31] introduced the definition of single value neutrosophic set (SVNS)
for the better application in the engineering field. SVNS is an extension of the
IFS, and also provides another way in which to express and process uncertainty,
incomplete, and inconsistent information in the real world.
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Definition 2.2 ([31]). Let X be a space of points, where a single-value netrosophic
set A in X is comprised of the truth-membership function TA(x), indeterminacy-
membership function IA(x), and falsity-membership function FA(x). For each point
x in X, TA(x), IA(x), FA(x) ∈ [0, 1]. Then a SVNS A can be denoted by:

A = {(x, TA(x), IA(x), FA(x)) | x ∈ X}.
There is no restriction on the sum of TA(x), IA(x), FA(x). Thus

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Let SV NS(X) be the set of all the single value neutrosophic sets. There have
three kinds of definitions of the inclusion relations of SVNSs in literature.

Definition 2.3 ([26, 28]). Let X be a universe course and let A, B ∈ SV NS(X).
If A ⊆ B, then there have TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x), for every
x in X.

This inclusion relation can be called as type-1 inclusion relation and denoted by
⊆1 [39].

Definition 2.4 ([3, 31]). Let X be a universe course and let A, B ∈ SV NS(X). If
A ⊆ B, then there have TA(x) ≤ TB(x), IA(x) ≤ IB(x), FA(x) ≥ FB(x), for every x
in X.

This inclusion relation can be called as type-2 inclusion relation and denoted by
⊆2 [39].

An analysis about the above inclusion relations has been introduced by Zhang et
al. [39, 40]. Zhang pointed that the type-1 and type-2 inclusion relations are actually
divided three membership functions into two groups. That is the two inclusion
relations do not really take advantage of the three membership functions; they are
actually two extreme ways of handling and then determines the order relation using
the method similar to intuitionistic fuzzy sets. From this point, Zhang proposed the
third inclusion relation of SVNSs.

Definition 2.5 ([39]). Let X be a universe course and let A, B ∈ SV NS(X). Then
the type-3 inclusion relation is defined as follows:
A ⊆ B if and only if ∀x ∈ X, ((TA(x) < TB(x)) ∧ (FA(x) ≥ FB(x)))

or ((TA(x) = TB(x)) ∧ (FA(x) > FB(x)))
or ((TA(x) = TB(x)) ∧ (FA(x) = FB(x)) ∧ (IA(x) ≤ IB(x))).

The type-3 inclusion relation of SVNSs have the following properties: If A ⊆
B,B ⊆ C, then A ⊆ C.

Definition 2.6 ([39]). LetN(X) = {(x1, x2, x3)|x1, x2, x3 ∈ [0, 1]}, (x1, x2, x3), x1, x2, x3 ∈
[0, 1] can be called a single value neutrosophic number. The order relation between
single value neutrosophic number is introduced as follows:

∀x, y ∈ N(X), x ≤ y ⇐⇒ (x1 < y1) ∧ (x3 ≥ y3)
or (x1 = y1) ∧ (x3 > y3)

or (x1 = y1) ∧ (x3 = y3) ∧ (x2 ≤ y2).
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3. New distance and similarity measure of single value neutrosophic
sets

The cross-entropy is firstly introduced by Bhandari [2] which is also called as
discrimination measure. Then, it has been modified by Shang et al. [25] on the
basis of directed divergence [16]. The cross-entropy is used to measure the degree of
discrimination between two objects. Wang [30] has proved that the cross-entropy is
a kind of distance measure actually in fuzzy sets and single value neutrosophic sets.
So, we extend the cross-entropy to a new distance measure on the new inclusion
relation in SVNSs and proposed the corresponding similarity according matching
function between distance and similarity measure. Firstly, the definition of distance
measure is proposed.

Definition 3.1. A function D : SV NS(X)×SV NS(X)→ [0, 1] is called a distance
measure for SVNSs, if the following conditions are satisfied: for any A, B, C ∈
SV NS(X),

(i) 0 ≤ D(A,B) ≤ 1,
(ii) D(A,B) = 0 if and only if A = B,
(iii) D(A,B) = D(B,A),
(iv) if A ⊆ B ⊆ C, then D(A,C) ≥ D(A,B), D(A,C) ≥ D(B,C).

3.1. The cross-entropy about single value neutrosophic sets. Ye [33] first
generalized the fuzzy cross-entropy measure to the SVNSs. The information mea-
sure of neutrosophic sets are composed of the information measure of the truth-
membership, indeterminacy-membership, and falsity-membership in SVNSs.

Let X be a universe course, A,B ∈ SV NS(X), where Ye introduced the discrim-
ination information of TA(xi) from TB(xi) for (i = 1, 2, ..., n) on the basis of the
definition of fuzzy cross-entropy [25] as the following:

IT (A,B)

=
∑n

i=1[TA(xi) ln TA(xi)
1/2(TA(xi)+TB(xi))

+ (1− TA(xi)) ln 1−TA(xi)
1−1/2(TA(xi)+TB(xi))

].

Then, define the following information in terms of the indeterminacy-membership
function and the falsity-membership function in the same way:

II(A,B)

=
∑n

i=1[IA(xi) ln IA(xi)
1/2(IA(xi)+IB(xi))

+ (1− IA(xi)) ln 1−IA(xi)
1−1/2(IA(xi)+IB(xi))

],

IF (A,B)

=
∑n

i=1[FA(xi) ln FA(xi)
1/2(FA(xi)+FB(xi))

+ (1− FA(xi)) ln 1−FA(xi)
1−1/2(FA(xi)+FB(xi))

].

For the symmetry, Ye also defined ET (A,B) = IT (A,B) + IT (B,A), EI(A,B) =
II(A,B) + II(B,A) and EF (A,B) = IF (A,B) + IF (B,A).

Definition 3.2 ([33]). The single-value neutrosophic cross-entropy about A and B,
where A,B ∈ SV NS(X) can be defined as follows:

I(A,B) = IT (A,B) + II(A,B) + IF (A,B).

Similarly, the symmetry cross-entropy can be written as:

E(A,B) = I(A,B) + I(B,A).

Lemma 1 [30]. E(A,B)) is a kind of distance measure on the basis of type-1 in-
clusion relation.
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It’s easily find E(A,B) is also a distance measure according to the tape-2 in-
clusion relation. Then, we mainly consider if the cross-entropy satisfied the type-3
inclusion relation.

Example 1. Let X be a space of the universe course, x, y, z ∈ N(X), where
x = (0.3, 0.4, 0.5), y = (0.5, 0.2, 0.3), z = (0.5, 0.3, 0.1).

It is clear that x ≤ y ≤ z according to the type-3 inclusion relation and we can
obtain the cross-entropy between single value neutrosophic number:
ET (x, y) = IT (x, y) + IT (y, x) = 0.0420, EI(x, y) = II(x, y) + II(y, x) = 0.483,
EF (M,T ) = IF (x, y) + IF (y, x) = 0.0420;

that is, E(x, y) = ET (x, y) + EI(x, y) + EF (x, y) = 0.5670.
ET (y, z) = 0, EI(y, z) = 0.0134, EF (y, z) = 0.0648;

that is, E(Y, Z) = 0.0782.
ET (x, z) = 0.0420, EI(x, z) = 0.0111, EF (x, z) = 0.2035;

that is, E(x, z) = 0.2566.
It’s obviously that E(x, z) ≥ E(x, y), E(x, z) ≥ E(y, z) is no longer satisfied.

That is to say, the cross-entropy is not a distance measure under the type-3 inclusion
relation, the cross-entropy is not suitable for the type-3 inclusion relation or order
relation ≤ defined in Definition 2.6. Then, we will construct a new distance measure
based on cross-entropy so that it satisfied the type-3 inclusion relation or order
relation ≤ defined in Definition 2.6.

3.2. The new distance and similarity measures of SVNNs. The type-1 and
type-2 inclusion relation and the corresponding order relations ≤1,≤2 about single
value neutrosophic numbers (SVNNs) is based on that the three membership func-
tions about SVNS are equally important. The three membership need to satisfy
certain conditions at the same time, then, the inclusion relation of SVNSs can be
obtained. However, The order relation ≤ on single valued neotrosophic numbers
proposed by Zhang et al. [39] is essentially different from ≤1,≤2. This order rela-
tion can be obtained through the truth-membership and the falsity-membership at
first, only when the two membership are indistinguishable, the order relation or in-
clusion relation can determined by the indeterminacy-membership. Based the above
analysis, we can construct a distance measure as the following way:

When we can get the new inclusion relation or order relation by the truth-
membership degree and the falsity-membership degree, we can establish the cor-
responding cross-entropy just based on the two membership, only when the two
membership are indistinguishable, then, we can establish the corresponding cross-
entropy by the indeterminacy-membership.

Theorem 3.3. Let x, y, z ∈ N(X). Then ET (x, y) ≤ 2, EI(x, y) ≤ 2, EF (x, y) ≤ 2.

Proof. The literate [16] have proved that L(p1, p2) ≤ V (p1, p2), which X is a discrete
random variable and p1, p2 are two probability distribution of X, and ∀x, p1, p2 ∈
[0, 1],

L(p1, p2) =
∑
x∈X

p1(x) log
p1(x)

1/2(p1(x)) + p2(x))
+ p2(x) log

p2(x)

1/2(p1(x) + p2(x))
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V (p1, p2) =
∑
x∈X
|p1(x)− p2(x)|.

It’s obviously |p1(x)− p2(x)| ≤ 1, that is:

p1(x) ln p1(x)
1/2(p1(x))+p2(x))

+ p2(x) ln p2(x)
1/2(p1(x)+p2(x))

≤ |p1(x)− p2(x)| ≤ 1.

We can easily get:

(3.1) xi ln
xi

1/2(xi + yi)
+ yi ln

yi
1/2(xi + yi)

≤ |xi − yi| ≤ 1

similarly,
(3.2)

(1− xi) ln
1− xi

1− 1/2(xi + yi)
+ (1− yi) ln

1− yi
1− 1/2(xi + yi)

≤ |(1− xi)− (1− yi)| ≤ 1,

where i = 1, 2, 3.
From (3.1) and (3.2), we can obtained ET (x, y) ≤ 2 when i = 1, EI(x, y) ≤ 2 when
i = 2 and EF (x, y) ≤ 2 when i = 3. �

Definition 3.4. Let X be a universe course, x, y ∈ N(X), we can defined:

DE(x, y) =


E(x2, y2)

4
, (x1 = y1) ∧ (x3 = y3),

4 + E(x1, y1) + E(x3, y3)

8
, otherwise.

Theorem 3.5. DE(x, y) is a distance measure for SVNSs under the type-3 inclusion
relation.

Proof. Let x, y, z ∈ N(X). Then it’s easy find that ED(x, y) ∈ [0, 12 ] when x1 = y1
and x3 = y3, and ED(x, y) ∈ ( 1

2 , 1] in the case of the ”otherwise” from the Theorem
3.3.
It’s obviously that:

(i) ED(x, y) ≥ 0,
(ii) ED(x, y) = ED(y, x),
(iii) If ED(x, y) = 0, then this can be satisfied only in the case of x1 = y1 and

x3 = y3, that is: EI(x2,y2)
4 = 0, we have x2 = y2. Thus x = y.

The next is mainly to prove the condition (iv) of distance measure defined in
Definition 3.1 is satisfied.

(iv) Assume that x = (x1, x2, x3), y = (y1, y2, y3), z = (z1, z2, z3), and x ≤ y ≤ z.
Case 1. If (x1 < y1) ∧ (x3 ≥ y3) and (y1 < z1) ∧ (y3 ≥ z3), then (x1 < y1 <

z1) ∧ (x3 ≥ y3 ≥ z3), in this case,

DE(x, y) =
4 + E(x1, y1) + E(x3, y3)

8
,

DE(y, z) =
4 + E(y1, z1) + E(y3, z3)

8
,

DE(x, z) =
4 + E(x1, z1) + E(x3, z3)

8
.
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. Thus from the Theorem 4 in [30], because (x1 < y1 < z1) ∧ (x3 ≥ y3 ≥ z3),
E(x1, z1) > E(x1, y1), E(x1, z1) > E(y1, z1), E(x3, z3) ≥ E(x3, y3), E(x3, z3) ≥
E(y3, z3). So DE(x, z) > DE(x, y) and DE(x, z) > DE(y, z).

Case 2. If (x1 < y1) ∧ (x3 ≥ y3) and (y1 = z1) ∧ (y3 > z3), then (x1 < y1 =
z1) ∧ (x3 ≥ y3 > z3), in this case,

DE(x, y) =
4 + E(x1, y1) + E(x3, y3)

8
,

DE(y, z) =
4 + E(y1, z1) + E(y3, z3)

8
,

DE(x, z) =
4 + E(x1, z1) + E(x3, z3)

8
.

Similarly, since (x1 < y1 = z1) ∧ (x3 ≥ y3 > z3), E(x1, z1) ≥ E(x1, y1), E(x1, z1) >
E(y1, z1) = 0, E(x3, z3) > E(x3, y3), E(x3, z3) ≥ E(y3, z3). Thus DE(x, z) >
DE(x, y) and DE(x, z) > DE(y, z).

Case 3. If (x1 < y1) ∧ (x3 ≥ y3) and (y1 = z1) ∧ (y3 = z3) ∧ (y2 ≤ z2), then
(x1 < y1 = z1) ∧ (x3 ≥ y3 = z3) ∧ (y2 ≤ z2), in this case,

DE(x, y) =
4 + E(x1, y1) + E(x3, y3)

8
,

DE(y, z) =
E(y2, z2)

4
,

DE(x, z) =
4 + E(x1, z1) + E(x3, z3)

8
.

Similarly, since (x1 < y1 = z1) ∧ (x3 ≥ y3 > z3), E(x1, z1) ≥ E(x1, y1), E(x3, z3) >

E(x3, y3). ThusDE(x, z) > DE(x, y). Since DE(y, z) = E(y2,z2)
4 ∈ [0, 12 ], ED(x, z) =

4+E(x1,z1)+E(x1,z1)
8 ∈ ( 1

2 , 1], DE(x, z) > DE(y, z).
Case 4. If (x1 = y1) ∧ (x3 > y3) and (y1 < z1) ∧ (y3 ≥ z3), then (x1 = y1 <

z1) ∧ (x3 > y3 ≥ z3), in this case,

DE(x, y) =
4 + E(x1, y1) + E(x3, y3)

8
,

DE(y, z) =
4 + E(y1, z1) + E(y3, z3)

8
,

DE(x, z) =
4 + E(x1, z1) + E(x3, z3)

8
.

Since (x1 = y1 < z1) ∧ (x3 > y3 ≥ z3), E(x1, z1) > E(x1, y1) = 0, E(x1, z1) >
E(y1, z1), E(x3, z3) > E(x3, y3), E(x3, z3) ≥ E(y3, z3). Thus DE(x, z) > DE(x, y)
and DE(x, z) > DE(y, z).

Case 5. If (x1 = y1) ∧ (x3 > y3) and (y1 = z1) ∧ (y3 > z3), then (x1 = y1 =
z1) ∧ (x3 > y3 > z3), in this case,

DE(x, y) =
4 + E(x1, y1) + E(x3, y3)

8
,

DE(y, z) =
4 + E(y1, z1) + E(y3, z3)

8
,

DE(x, z) =
4 + E(x1, z1) + E(x3, z3)

8
.
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Since (x1 = y1 = z1) ∧ (x3 > y3 > z3), E(x1, z1) = E(x1, y1) = E(y1, z1) =
0, E(x3, z3) > E(x3, y3), E(x3, z3) > E(y3, z3). Thus DE(x, z) > DE(x, y) and
DE(x, z) > DE(y, z).

Case 6. If (x1 = y1) ∧ (x3 > y3) and (y1 = z1) ∧ (y3 = z3) ∧ (y2 ≤ z2), then
(x1 = y1 = z1) ∧ (x3 > y3 = z3), in this case,

DE(x, y) =
4 + E(x1, y1) + E(x3, y3)

8
,

DE(y, z) =
E(y2, z2)

4
,

DE(x, z) =
4 + E(x1, z1) + E(x3, z3)

8
.

Since (x1 = y1 = z1) ∧ (x3 > y3 = z3), E(x1, z1) = E(x1, y1) = E(y1, z1) = 0,

E(x3, z3) = E(x3, y3). Thus DE(x, z) > DE(x, y). Since DE(y, z) = E(y2,z2)
4 ∈

[0, 12 ], DE(x, z) = 4+E(x1,z1)+E(x3,z3)
8 ∈ ( 1

2 , 1], DE(x, z) > DE(y, z).
Case 7. If (x1 = y1) ∧ (x3 = y3) ∧ (x2 ≤ y2) and (y1 < z1) ∧ (y3 ≥ z3), then

(x1 = y1 < z1) ∧ (x3 = y3 ≥ z3), in this case,

DE(x, y) =
E(x2, y2)

4
,

DE(y, z) =
4 + E(y1, z1) + E(y3, z3)

8
,

DE(x, z) =
4 + E(x1, z1) + E(x3, z3)

8
.

Since DE(x, y) = E(x2,y2)
4 ∈ [0, 12 ], DE(x, z) = ET (x,z)+EF (x,z)

8 ∈ ( 1
2 , 1], DE(x, z) >

DE(x, y). Since (x1 = y1 < z1) ∧ (x3 = y3 ≥ z3), DE(x, z) = DE(y, z).
Case 8. If (x1 = y1) ∧ (x3 = y3) ∧ (x2 ≤ y2) and (y1 = z1) ∧ (y3 > z3), then

(x1 = y1 = z1) ∧ (x3 = y3 > z3), in this case,

DE(x, y) =
E(x2, y2)

4
,

DE(y, z) =
4 + E(y1, z1) + E(y3, z3)

8
,

DE(x, z) =
4 + E(x1, z1) + E(x3, z3)

8
.

Since DE(x, y) = E(x2,y2)
4 ∈ [0, 12 ], DE(x, z) = ET (x,z)+EF (x,z)

8 ∈ ( 1
2 , 1], DE(x, z) >

DE(x, y). Since (x1 = y1 < z1) ∧ (x3 = y3 ≥ z3), DE(x, z) = DE(y, z).
Case 9. If (x1 = y1)∧ (x3 = y3)∧ (x2 ≤ y2) and (y1 = z1)∧ (y3 = z3)∧ (y2 ≤ z2),

then (x1 = y1 = z1) ∧ (x3 = y3 = z3), in this case,

DE(x, y) =
E(x2, y2)

4
,

DE(y, z) =
E(y2, z2)

4
,

DE(x, z) =
E(x2, z2)

4
.
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Since x2 ≤ y2 ≤ z2, E(x2, z2) > E(x2, y2), E(x2, z2) > E(y2, z2). Thus DE(x, z) >
DE(x, y) and DE(x, z) > DE(y, z).

In short, if x ≤ y ≤ z, then DE(x, z) ≥ DE(x, y) and DE(x, z) ≥ DE(y, z). Thus
DE(x, y) is a distance measure. �

Consider Example 1 according the DE(x, y). From the Example 1,

x = (0.3, 0.4, 0.5), y = (0.5, 0.2, 0.3), z = (0.5, 0.3, 0.1).

Then E(x1, y1) = 0.0420, E(x2, y2) = 0.483, E(x3, y3) = 0.0420. Thus

DE(x, y) =
4 + E(x1, y1) + E(x3, y3)

8
= 0.5105.

Also E(y1, z1) = 0, E(y2, z2) = 0.0134, E(y3, z3) = 0.0648. Then

DE(y, z) =
4 + E(y1, z1) + E(y3, z3)

8
= 0.5081.

E(x1, z1) = 0.0420, E(x2, z2) = 0.0111, E(y3, z3) = 0.2035. Then

DE(x, z) =
4 + E(x1, z1) + E(y3, z3)

8
= 0.5307.

It’s clear that DE(x, z) > DE(x, y) and DE(x, z) > DE(y, z).

Definition 3.6. A function S : SV NS(X)×SV NS(X)→ [0, 1] is called a similarity
measure for single value neutrosophic sets, if the following conditions are satisfied:
for any A, B, C ∈ SV NS(X),

(i) 0 ≤ S(A,B) ≤ 1,
(ii) S(A,B) = 1 if and only if A = B,
(iii) S(A,B) = S(B,A),
(iv) if A ⊆ B ⊆ C, then S(A,C) ≤ S(A,B), S(A,C) ≤ S(B,C).

According to the matching function S(A,B) = 1 − D(A,B) between similarity
and distance measure, we can define the similarity measure as follows.

Definition 3.7. Let X be a universe course and let x, y ∈ N(X). Then the
similarity SE(x, y) can be defined as:

SE(x, y) =


1− E(x2, y2)

4
, (x1 = y1) ∧ (x3 = y3),

4− (E(x1, y1) + E(x3, y3))

8
, otherwise.

Theorem 3.8. SE(x, y) is a similarity measure for single value neutrosophic num-
ber.

The proof is evident from the proof of Theorem 3.5.
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3.3. New distance and similarity measures of SVNSs. In this section, we
mainly introduced the new distance and similarity measures about SVNSs. The dis-
tance and similarity measures about SVNSs can be defined as the following according
to the distance and similarity measure about single value neutrosophic number.

Definition 3.9. Let X be a universe course and let A, B ∈ SV NS(X). Then the
distance measure DE : SV NS(X)×SV NS(X)→ [0, 1] between A,B can be defined
as:

DE(A,B) =


1

n

n∑
i=1

EI(IA(xi), IB(xi))

4
, (TA(xi) = TB(xi)) ∧ (FA(xi) = FB(xi)),

1

n

n∑
i=1

4 + ET (TA(xi), TB(xi)) + EF (FA(xi), FB(xi))

8
, otherwise.

Definition 3.10. Let X be a universe course and let A, B ∈ SV NS(X). Then the
similarity measure SE : SV NS(X)× between A,B can be defined as:

SE(A,B) =


1

n

n∑
i=1

(1− EI(IA(xi), IB(xi))

4
), (TA(xi) = TB(xi)) ∧ (FA(xi) = FB(xi)),

1

n

n∑
i=1

4− (ET (TA(xi), TB(xi)) + EF (FA(xi), FB(xi)))

8
, otherwise.

Assume the weight vector W = (ω1, ω2, · · · , ωn) with ωi ∈ [0, 1] and
n∑

i=1

ωi = 1.

The weighed distance measure for SVNSs can be expressed as:

DE(A,B) =



n∑
i=1

ωi
EI(IA(xi), IB(xi))

4
, (TA(xi) = TB(xi)) ∧ (FA(xi) = FB(xi)),

n∑
i=1

ωi
4 + ET (TA(xi), TB(xi)) + EF (FA(xi), FB(xi))

8
, otherwise.

Similarly, the weighed similarity measure for SVNSs can be expressed as:

SE(A,B) =



n∑
i=1

ωi(1−
EI(IA(xi), IB(xi))

4
), (TA(xi) = TB(xi)) ∧ (FA(xi) = FB(xi)),

n∑
i=1

ωi
4− (ET (TA(xi), TB(xi)) + EF (FA(xi), FB(xi)))

8
, otherwise.

4. Practical example

The distance and similarity measures can be used in the application of multi-
criteria decision-making, which can provide theoretical support for decision-making
for us. There have many multi-criteria decision-making methods have been proposed
about SVNSs. In the next, the distance measures will be applied to the multi-criteria
decision-making problem with the method proposed by [35].
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Example 2. Let us consider the problem adapted from [35]. There is an investment
company, which wants to invest a sum of money in the best option. There is a panel
with four possible alternatives to choose:

(1) A1 is a car company,
(2) A2 is a food company,
(3) A3 is a computer company,
(4) A4 is an arms company.

The investment company must take a decision according to the following three cri-
teria:

(1) C1 is the risk,
(2) C2 is the growth,
(3) C3 is the environmental impact.

Then, the weight vector of the criteria is given by W = (0.35, 0.25, 0.4).
For the evaluation of an alternative Ai(i = 1, 2, 3, 4) with respect to a criterion

Cj(j = 1, 2, 3), it is obtained from the questionnaire of a domain expert. For exam-
ple, when we ask the opinion of an expert about an alternative A1 with respect to a
criterion C1 , he or she may say that the possibility in which the statement is good
is 0.4 and the statement is poor is 0.3 and the degree in which he or she is not sure is
0.2. In this case, it can be expressed as a neutrosophic set α11 = (0.4, 0.2, 0.3). Thus,
the opinion for every alternative with respect to every criteria all can be expressed
with the neutrosophic sets, and we can obtain the following simplified neutrosophic
decision matrix A:

A =


(0.4, 0.2, 0.3) (0.4, 0.2, 0.3) (0.2, 0.2, 0.5)
(0.6, 0.1, 0.2) (0.6, 0.1, 0.2) (0.5, 0.2, 0.2)
(0.3, 0.2, 0.3) (0.5, 0.2, 0.3) (0.5, 0.3, 0.2)
(0.7, 0.0, 0.1) (0.6, 0.1, 0.2) (0.4, 0.3, 0.2)


In multi-criteria decision-making environments, the ideal solution can be denoted

as α∗ = (1, 0, 0), it’s note that ideal solution generally does not exist in practice.
Our decision can be obtained by calculating the distance between each alternative
and the ideal solution. Then, by applying DE(A,B) the weighted distance measure
between an alternative Ai and the ideal solution α∗ can be expressed by the fol-
lows because all the alternatives and the ideal one are in the case of ”otherwise” in
DE(A,B):

DE(Ai, α
∗) =

3∑
j=1

ωj
4 + ET (TAi(xij), 1) + EF (FAi(xij), 0)

8
.

Then, we can obtained DE(A1, α
∗) = 063556, DE(A2, α

∗) = 0.56489, DE(A3, α
∗) =

0.59008, DE(A1, α
∗) = 0.56325.

The ranking order of four alternatives is A4 ≺ A2 ≺ A3 ≺ A1. Thus, we can see
that the alternative A4 is still the best choice among all the alternatives. So we get
exactly the same results as in [35].

From the above result, we can obtain the same ranking order of alternatives as
in [35]) by using the new distance measure proposed in the Definition 3.4. It shows
that the new distance measure proposed in this paper are effective. Furthermore,
the cross-entropy was proposed as a information measure for uncertain information
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which is different from distance measure. On the basis of the proof that cross-entropy
proposed by [30] is a distance measure, we proposed the new distance measure
according to the type-3 inclusion relation of SVNSs.

5. Conclusions

The information measure has become a hot issue in the progress of uncertain
information processing. The research on information measure of SVBSs has an in-
dispensable practical significance for us to apply SVNSs theory to decision-making,
medical diagnosis and pattern recognition and so on. In the process of consulting the
literature, it is found that most of the existing measures of SVNSs are based on the
classical two inclusion relations(type-1 and type-2). These inclusion relations can be
regarded as the consistency of the importance of the three membership functions of
SVNSs. However, considering some practical problems, the importance of the three
membership of SVNSs is not entirely the same. Based on such considerations, a new
inclusion relation of SVNSs named as type-3 inclusion relation was proposed. In the
paper, the existing cross-entropy was verified that it is not suitable for the type-3
inclusion relation about SVNSs by a example. Furthermore, we proposes a new
distance measure based on the cross-entropy of SVNSs, and gives the corresponding
similarity according to the matching function between distance measure and similar-
ity. Finally, we applied the new distance measure to multi-criteria decision-making
by a illustrative example and found the new distance measure is effective with the
analysis of result. In short, The information measure based on the new inclusion
relation will help to solve some practical problems. Therefore, we will consider other
information measures of neutrosophic sets based on the new inclusion relation on one
hand. On the other hand, we tend to study the application of information measures
in information processing from the view of practical problems.
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