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1. Introduction

Zadeh [16] introduced the concepts of a fuzzy set. Fuzzy sets have been found
to be very useful in diversely applied areas of science and technology. Extensive
applications of the fuzzy set theory have been found in various fields such as logic
programming, medical diagnosis, decision making problems and microelectronic fault
analysis. Also fuzzy set theory is conveniently and successfully applied in Abstract
Algebra. Rosenfeld [11] defined the notion of a fuzzy subgroup of a groups. Then
many algebraists took interest to introduce fuzzy theory in various algabraic struc-
tures by fuzzyfying the formal theory. [1, 13, 15] introduced fuzzy ideals of distribu-
tive lattice. Recently, Alaba and Alemayehu [2] introduced the notion of clouser
fuzzy ideals of MS-algebras. Also Alaba, Taye and Alemayehu [3] introduced the
concept of δ-fuzzy ideals in MS-algebras.

On the other hand, Blyth and Varlet [6] introduced the notion of MS-algebras as a
common abstraction of de Morgan algebras and Stone algebras. Sankappanavar [12]
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introduced the notion of demi-pseudocomplemented algebrs, and Blyth, Fang and
Wang [4] studied on ideals and congruences of distributive demi-pseudocomplemented
algebras. More recently, Fang and Tan [7] characterized kernel ideals and (◦, ∗)-ideals
in demi-pseudocomplemented MS-algebras.

These studies motivated us to study fuzzy congruences, kernel fuzzy ideals and
(◦, ∗)-fuzzy ideals in demi-pseudocomplemented MS-algebras L. In particular, we
study the fuzzy congruence relation generated by fuzzy relation and its properties.
Also we prove that (◦, ∗)-fuzzy ideals form a sublattice of fuzzy ideals of L, and the
set of these fuzzy ideals is isomorphic to the interval [GF , χι] of the fuzzy congruence
lattice of L where GF is Glievenko fuzzy congruence, and χι is the universal fuzzy
congruence.

2. Preliminaries

In this section, we recall basic concepts frequently used in this article.

Definition 2.1 ([12]). A demi-pseudocomplemented algebra is an algebra (L,∧,∨,∗ , 0, 1)
in which (L,∧,∨, 0, 1) is a bounded lattice and a unary operation x −→ x∗ satisfying
the following properties: for any x, y ∈ L,

(i) (x ∨ y)∗ = x∗ ∧ y∗,
(ii) (x ∧ y)∗∗ = x∗∗ ∧ y∗∗,
(iii) 0∗ = 1 and 1∗ = 0,
(iv) x∗∗∗ = x∗,
(v) x∗ ∧ x∗∗ = 0.

As shown by Sankappanavara [12], in a demi-pseudocomplemented algebra, the
following property holds:

(vi) x∗ ∧ (x∗ ∧ y)∗ = x∗ ∧ y∗, for any x, y ∈ L.

Definition 2.2 ([6]). An Ockham algebra is a bounded distributive lattice L to-
gether with a dual endomorphism f : L −→ L. An MS-algebra is an Ockham algebra
in which dual endomorphism x −→ f(x) is determined by the inequality x ≤ f2(x).
As usual, we shall write x◦ for f(x).

Definition 2.3 ([8]). A demi-pseudocomplemented Ockham algebra is an algebra
(L,∧,∨, f,∗ , 0, 1) of type (2, 2, 1, 1, 0, 0) where (L,∧,∨, f, 0, 1) is an Ockham algebra,
(L,∧,∨,∗ , 0, 1) is a demi-p-lattice and the operations x −→ f(x) and x −→ x∗ are
linked by the identity f(x∗) = (f(x))∗.

Specially, if (L,◦ ) is an MS-algebra, then (L,∧,∨,◦ ,∗ , 0, 1) is called demi-pseudoco
-mplemented MS-algebra. We shall denote the class of demi-pseudocomplemented
MS-algebra by dpMS-algebra.

Theorem 2.4 ([8]). If (L,◦ ,∗ ) is a dpMS-algebra then the flowing statements hold:

(1) x∗ = x◦◦∗ ∀x ∈ L,
(2) x◦◦ = x∗∗ = x ∀x ∈ L∗,
(3) (x ∧ y)∗ = x∗ ∨ y∗ ∀x, y ∈ L,
(4) x∗ ∨ x∗∗ = 1 ∀x ∈ L,
(5) x∗ ∧ y = 0⇒ x∗ ≤ y∗ ∀x, y ∈ L,
(6) (L∗,∗ ) is a boolean algebra.
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Definition 2.5 ([9]). Let L be a lattice and let H ⊆ L × L. We denote by Θ(H)
the smallest congruence relation containing H, and call it the congruence relation
generated by H. If H = I × I, where I is an ideal, we write Θ[I] for Θ(H).

Definition 2.6 ([7]). An equivalence relation θ is a congruence relation in dpMS-
algebra L, if it is a lattice congruence and (a, b) ∈ θ implies (a◦, b◦) ∈ θ and
(a∗, b∗) ∈ θ for all a, b ∈ L. To distinguish lattice congruence of dpMS-algebra
L from congruence of dpMS-algebra L, we shall use the subscript ′lat′ to denote
lattice congruence.

As shown [9], if I is an ideal of a distributive lattice L, then

(x, y) ∈ Θ[I]⇔ (∃i ∈ I) x ∨ i = y ∨ i.(2.1)

Dully, if F is a filter of a distributive lattice L, then

(x, y) ∈ Θ[F ]⇔ (∃j ∈ F ) x ∧ j = y ∧ j.(2.2)

For an ideal I of dpMS-algebra (L,◦ ,∗ ), We shall write

I≥◦ = {x ∈ L : (∃i ∈ I) i◦ ≤ x}
I◦◦ = {x ∈ L : (∃i ∈ I) x ≤ i◦◦}

and
I◦ = {y ∈ L, x◦ = y : ∃x ∈ I}.

Clearly, I◦ ⊆ I≥◦ , I≥◦ is a filter of L and I◦◦ is ideal of L. By Definition of I≥◦ and
I◦ and by equation (2.2) Fang and Tan [7], characterize as

(x, y) ∈ Θlat[I
≥
◦ ]⇔ (∃i ∈ I) x ∧ i◦ = y ∧ i◦.(2.3)

Theorem 2.7 ([6]). Let I be an ideal of the dpMS-algebra L. Then

Θ[I] = Θlat[I
≥
◦ ] ∨Θlat[I◦◦].

We recall that for any nonempty set S, the characteristic function of S,

χS(x) =

{
1 if x ∈ S,
0 if x /∈ S.

Definition 2.8. [16] Let µ be a fuzzy subset of S and let α ∈ [0, 1]. Then the set

µα = {x ∈ L : α ≤ µ(x)}
is called a level subset of µ.

Definition 2.9 ([13]). A fuzzy subset µ of a bounded lattice L is said to be a fuzzy
ideal of L, if for all x, y ∈ L,

(i) µ(0) = 1,
(ii) µ(x ∨ y) ≥ µ(x) ∧ µ(y),
(iii) µ(x ∧ y) ≥ µ(x) ∨ µ(y).

In [13], Swamy and Raju observed that, a fuzzy subset µ of a a bounded lattice L
is a fuzzy ideal of L if and only if µ(0) = 1 and µ(x∨y) = µ(x)∧µ(y) for all x, y ∈ L.

A fuzzy relation θ on a set X is map θ : X ×X → [0, 1]. For any x, y ∈ X and
fuzzy relations θ and φ on X, (θ ∩ φ)(x, y) = min{θ(x, y), φ(x, y)}, (θ ∪ φ)(x, y) =
max{θ(x, y), φ(x, y)}, θ ⊆ φ means θ(x, y) ≤ φ(x, y).
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Definition 2.10 ([10]). Suppose that θ and φ are two fuzzy relations on a set X.
Then (θ ◦ φ)(x, y) = supz∈X(θ(x, z) ∧ φ(z, y)).

Definition 2.11 ([10]). A fuzzy relation φ on X is said to be a fuzzy equivalence
relation on X, if

(i) φ(x, x) = 1 for all x ∈ X (reflexive),
(ii) φ(x, y) = φ(y, x) for all x, y ∈ L (symmetric),
(iii) φ(x, z) ≥ φ(x, y) ∧ φ(y, z) for all x, y, z ∈ L (transitive).

Through out the next sections, L stands for demi-pseudocomplemented MS-
algebras unless otherwise mentioned.

3. Fuzzy congruences in demi-pseucodomplemented MS-algebras

Definition 3.1. A fuzzy relation φ on a demi-pseudomplemented MS-algebra (L,◦ ,∗ )
is called fuzzy congruence relation on (L,◦ ,∗ ), if the following are satisfied:

(i) φ(x, x) = 1 for all x ∈ L,
(ii) φ(x, y) = φ(y, x) for all x, y ∈ L,
(iii) φ(x, z) ≥ φ(x, y) ∧ φ(y, z) for all x, y, z ∈ L,
(iv) φ(x ∧ z, y ∧ w) ∧ φ(x ∨ z, y ∨ w) ≥ φ(x, y) ∧ φ(z, w) for all x, y, z, w ∈ L,
(v) φ(x◦, y◦) ∧ φ(x∗, y∗) ≥ φ(x, y) for all x, y ∈ L.

Example 3.2. Consider the dpMS-algebra (L,◦ ,∗ ) given in Hasse diagram 1 below,
unary operations ◦ and ∗ define in the table.

0 a b c d 1
◦ 1 d a 0 a 0
∗ 1 0 1 0 1 0

Diagram 1
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Define a fuzzy relation ϕ : L× L −→ [0, 1] in Table 1

(0,0) (a,a) (b,b) (c,c) (d,d) (1,1) (0,a) (a,0) (0,b) (b,0) (0,c)
ϕ(, ) 1 1 1 1 1 1 0.8 0.8 0.8 0.8 0.8

(c,0) (0,d) (d,0) (0,1) (1,0) (a,b) (b,a) (a,c) (c,a) (a,d) (d,a) (a,1) (1,a)
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

(b,c) (c,b) (b,d) (d,b) (b,1) (1,b) (c,d) (c,d) (d,c) (c,1) (1,c) (1,d) (d,1)
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

.

Table 1

We can be easily verified that ϕ is a fuzzy congruence on L.

Theorem 3.3. A fuzzy equivalence relation is a fuzzy congruence on (L,◦ ,∗ ) if and
only if φ(x, y) ≤ φ(x∧z, y∧z)∧φ(x∨z, y∨z)∧φ(x◦, y◦)∧φ(x∗, y∗), for all x, y, z ∈ L.

Proof. The forward proof is clear. Conversely, let φ be a fuzzy equivalence relation
satisfying the following: for all x, y, z ∈ L,

φ(x, y) ≤ φ(x ∧ z, y ∧ z) ∧ φ(x ∨ z, y ∨ z) ∧ φ(x◦, y◦) ∧ φ(x∗, y∗).

This implies

φ(x, y) ≤ φ(x ∧ z, y ∧ z), φ(x, y) ≤ φ(x ∨ z, y ∨ z),
φ(x, y) ≤ φ(x◦, y◦), φ(x, y) ≤ φ(x∗, y∗).

Thus for all x, y, z, w ∈ L,
φ(x, y) ∧ φ(z, w) ≤ φ(x ∧ z, y ∧ z) ∧ φ(y ∧ z, y ∧ w) ≤ φ(x ∧ z, y ∧ w).

Similarly, φ(x, y) ∧ φ(z, w) ≤ φ(x ∨ z, y ∨ w). So φ is a fuzzy congruence relation of
(L,◦ ,∗ ). �

Example 3.4. Let (L,◦ ,∗ ) be an dpMS-algebra. Define the fuzzy relations φ and
GF on L by:

φ(x, y) =

{
1 if x◦ = y◦

0 otherwise

and

GF (x, y) =

{
1 if x∗ = y∗

0 otherwise,

for any x, y ∈ L. Then

(1) φ and GF are fuzzy congruences of (L,◦ ,∗ ),
(2) φ ⊆ Θ.

We call the fuzzy congruence GF is Glievenko fuzzy congruence.

Theorem 3.5. A fuzzy relation φ on (L,◦ ,∗ ) is a fuzzy congruence relation if and
only if every level subsets φα of (L,◦ ,∗ ), α ∈ [0, 1] is a congruence relation on
(L,◦ ,∗ ).

Corollary 3.6. An equivalence relation φ is a congruence relation on L if and only
if its characteristic function χφ is a fuzzy congruence on L.
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Lemma 3.7. If {φi : i ∈ ∆} is a family of fuzzy congruences of (L,◦ ,∗ ), then
∩i∈∆φi is a fuzzy congruence on (L,◦ ,∗ ).

The set of all fuzzy congruences of L is denoted by FC(L) and the set of all
congruences of L is denoted by C(L). ω = {(x, y) ∈ L × L : x = y} and ι = L × L
are the smallest and the largest elements of C(L) respectively and

χω(x, y) =

{
1 if(x, y) ∈ ω
0 otherwise,

and χι(x, y) = 1 for all x, y ∈ L are the smallest and the largest elements of FC(L)
respectively.

Theorem 3.8. (FC(L),⊆) is a complete lattice.

Proof. Clearly, we note that both fuzzy congruence relations χω and χι are the least
and the greatest elements of FC(L), respectively. Then clearly, ∩i∈∆φi is a lower
bound of any family {φi : i ∈ ∆} of fuzzy congruences of L and (FC(L),⊆) is
poset. Let Θ be any lower bound of {φi : i ∈ ∆}. Then Θ ⊆ φi, for all i ∈ ∆. Thus
Θ ⊆ ∩i∈∆φi. So ∩i∈∆φi is a greatest lower bound of {φi : i ∈ ∆}. Hence (FC(L),⊆)
is a complete lattice. �

Next we define the fuzzy quotient demi-pseudocomplemented MS-algebra induced
by fuzzy congruence relation.

Definition 3.9. Let (L,∧,∨,◦ ,∗ , 0, 1) be a demi-pseudocomplemented MS-algebra,
x ∈ L and θ be a fuzzy congruence on L. The fuzzy congruence determined by x
and θ, denoted by θx, is the fuzzy subset of L defined by θx(y) = θ(x, y), ∀ y ∈ L.

Let L/θ denote the set of all fuzzy congruence class, that is L/θ = {θx : x ∈ L}.

Remark 3.10. If θ is a fuzzy congruence of L and x, y ∈ L, then θx = θy ⇔
θ(x, y) = 1.

Theorem 3.11. Let θ be a congruence of a demi-pseudocomplemented MS-algebra
(L,∧,∨,◦ ,∗ , 0, 1). For any θx, θy ∈ L/θ, define

θx ∧ θy = θx∧y, θx ∨ θy = θx∨y, (θx)◦ = θx◦ , and (θx)∗ = θx∗ .

Then (L/θ,∧,∨,◦ ,∗ , θ0, θ1) is a demi-pseudocomplemented MS-algebra, where θ0,
and θ1 are the smallest and largest elements of L/θ respectively.

Proof. we should first prove that the operations on L/θ are well defined. To do this,
for any any x, y, w and z ∈ L, suppose θx = θw and θy = θz. Then

θ(x,w) = 1 and θ(y, z) = 1
=⇒ θ(x ∧ y, w ∧ z) ≥ θ(x,w) ∧ θ(y, z) = 1
=⇒ θx∧y = θw∧z.

Similarly, θx∨y = θw∨z. Thus the operations of L/θ are well defined.
For any x ∈ L, θx ∧ θ0 = θx∧0 = θ0. Then θ0 ≤ θx, for all θx ∈ L/θ. Thus θ0 is

the smallest element of L/θ. Similarly, θ1 is the largest element of L/θ.
Now let θx, θy ∈ L/θ. Then

(θx ∨ θy)∗ = (θx∨y)∗ = θ(x∨y)∗ = θx∗∧y∗ = θx∗ ∧ θy∗ = (θx)∗ ∧ (θy)∗.
Thus
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(θx ∧ θy)∗∗ = (θx∧y)∗∗ = θ(x∧y)∗∗ = θx∗∗∧y∗∗

= θx∗∗ ∧ θy∗∗ = (θx)∗∗ ∧ (θy)∗∗.
Similarly, we can easily show that (θ0)∗ = θ1, (θ1)∗ = θ0, (θx)∗∗∗ = (θx)∗ and (θx)∗∧
(θx)∗∗ = θ0 and (θx)∗ ∧ ((θx)∗ ∧ θy)∗ = (θx)∗ ∧ (θy)∗. Hence (L/θ,∧,∨,∗ , θ0, θ1) is
a demi-pseudocomplemented algebra. Similarly, we can see that (L/θ,∧,∨,◦ , θ0, θ1)
is an MS-algebra. Hence (L/θ,∧,∨,◦ ,∗ , θ0, θ1) is a demi-pseudocomplemented MS-
algebra. �

L/θ is called the fuzzy quotient a demi-pseudocomplemented MS-algebra L in-
duced by θ. It is clear that the map x −→ L/θ is a homomorphism from L onto
L/θ.

Example 3.12. Consider the dpMS-algebra (L,◦ ,∗ ) given in Hasse diagram 2,
unary operations ◦ and ∗ define in the table.

0 a b c d e f g h 1
◦ 1 h h h h f g f d 0
∗ 1 1 1 1 1 0 1 0 0 0
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diagram 2

Define a fuzzy relation ϕ : L× L −→ [0, 1] in the Table 2

(0,0) (a,a) (b,b) (c,c) (d,d) (e,e) (f,f) (g,g) (h,h) (1,1) (0,a) (a,0)
ϕ(, ) 1 1 1 1 1 1 1 1 1 1 1 1

(0,b) (b,0) (0,c) (c,0) (0,d) (d,0) (a,b) (b,a) (a,c) (c,a) (a,d) (d,a) (c,b)
1 1 1 1 1 1 1 1 1 1 1 1 1

(b,c) (b,d) (d,b) (c,d) (d,c) (e,g) (g,e (h,1) (1,h) (0,e) (e,0) (0,f) (f,0)
1 1 1 1 1 1 1 1 1 0.7 0.7 0.7 0.7 0.7

(0,g) (g,0) (0,h) (h,0) (0,1) (1,0) (a,e) (e,a) (a,f) (f,a) (a,g) (g,a) (a,h)
0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

(h,a) (a,1) (1,a) (e,f) (f,e) (b,e) (e,b) (b,f) (f,b) (b,g) (g,b) (b,h) (h,b)
0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

(b,1) (1,b) (c,e) (e,c) (c,f) (f,c) (c,g) (g,c) (c,h) (h,c) (c,1) (1,c) (d,e)
0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

(e,d) (d,f) (f,d) (d,g) (g,d) (d,h) (h,d) (d,1) (1,d) (e,h) (h,e) (e,1) (1,e)
0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

(f,g) (g,f) (f,h) (h,f) (f,1) (1,f) (g,h) (h,g) (g,1) (1,g)
0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Table 2

we can easily verified that ϕ is a fuzzy congruence on L, ϕ0 = ϕa = ϕb = ϕc = ϕd ,
ϕe = ϕg and ϕh = ϕ1. This implies L/ϕ = {ϕ0, ϕe, ϕf , ϕ1} and (L/ϕ,∨,∧,◦ ,∗ , 0, 1)
is a dpMS-algebra, where ϕ0, and ϕ1 are the smallest and largest elements of L/ϕ
respectively.

Now we define the join of two fuzzy congruence of L.

Definition 3.13. Let φ and ϕ be any two fuzzy congruence relations of a dpMS-
algebra (L,◦ ,∗ ). Then define φ∨ϕ = ∩{Θ ∈ FC(L) : φ ⊆ Θ and ϕ ⊆ Θ}, i.e., φ∨ϕ
is the smallest fuzzy congruence containing φ ∪ ϕ.

Theorem 3.14. Let φ and ϕ be any fuzzy congruence relations on a dpMS-algebra
(L,◦ ,∗ ). Then φ ∨ ϕ = ∪∞n=1Θn, where Θ1 = φ ◦ ϕ ◦ φ, Θ2 = φ ◦ ϕ ◦ φ ◦ ϕ ◦ φ,
Θ3 = φ ◦ ϕ ◦ φ ◦ ϕ ◦ φ ◦ ϕ ◦ φ,... .

Proof. Let κ = ∪∞n=0Θn. We prove that κ is the smallest fuzzy congruence relation
in a dpMS-algebra (L,◦ ,∗ ) containing φ and ϕ. It can be easily verified that φ ⊆
Θ1 ⊆ Θ2 ⊆, ... and ϕ ⊆ Θ1 ⊆ Θ2 ⊆, ... and so Θn ⊆ φ ∨ ϕ.

Now we see that κ is a fuzzy congruence relation in dpMS-algebra (L,◦ ,∗ ).
(1) 1 = φ(x, x) ≤ Θ1(x, x) ≤ ∪∞n=0Θn(x, x) = κ(x, x). Then κ(x, x) = 1.
(2) Symmetric is straightforward.
(3) κ(x, y)∧κ(y, z) = ∪∞n=1Θn(x, y)∧∪∞n=1Θn(y, z) = supn Θn(x, y)∧supn Θn(y, z) ≤

∪∞n=1Θn(x, z) since Θn(x, y) ∧ Θm(y, z) ≤ Θn+m(x, z), for any real number n and
m.
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(4) κ(x, y) = ∪∞n=1Θn(x, y)
= supn(supz1,z2,...,z2n(φ(x, z1) ∧ ϕ(z1, z2) ∧ φ(z2, z3) ∧ ... ∧ φ(z2n, y)))
≤ supn(supz1∧c,z2∧c,...,z2n∧c(φ(x ∧ c, z1 ∧ c) ∧ ϕ(z1 ∧ c, z2 ∧ c)

∧φ(z2 ∧ c, z3 ∧ c)... ∧ φ(z2n ∧ c, y ∧ c)))
= ∪∞n=1Θn(x ∧ c, y ∧ c) = κ(x ∧ c, y ∧ c).

Similarly, we can show that κ(x, y) ≤ κ(x ∨ c, y ∨ c).
(5) κ(x, y) = ∪∞n=1Θn(x, y)

= sup
n

( sup
z1,z2,...,z2n

(φ(x, z1) ∧ ϕ(z1, z2) ∧ φ(z2, z3) ∧ ... ∧ φ(z2n, y)))

≤ sup
n

( sup
z◦1 ,z

◦
2 ,...,z

◦
2n

(φ(x◦, z◦1) ∧ ϕ(z◦1 , z
◦
2) ∧ φ(z◦2 , z

◦
3)... ∧ φ(z◦2n, y

◦)))

= ∪∞n=1Θn(x◦, y◦) = κ(x◦, y◦).

(6) κ(x, y) = ∪∞n=1Θn(x, y)

= sup
n

( sup
z1,z2,...,z2n

(φ(x, z1) ∧ ϕ(z1, z2) ∧ φ(z2, z3) ∧ ... ∧ φ(z2n, y)))

≤ sup
n

( sup
z∗1 ,z

∗
2 ,...,z

∗
2n

(φ(x∗, z∗1) ∧ ϕ(z∗1 , z
∗
2) ∧ φ(z∗2 , z

∗
3)... ∧ φ(z∗2n, y

∗)))

= ∪∞n=1Θn(x∗, y∗) = κ(x∗, y∗).

This implies κ is fuzzy congruence of a dpMS-algebra (L,◦ ,∗ ).
Finally, let τ be any fuzzy congruence relation such that φ ⊆ τ and ϕ ⊆ τ . Then

we prove that κ ⊆ τ .

κ(x, y) = ∪∞n=1Θn(x, y)

= sup
n

( sup
z1,z2,...,z2n

(φ(x, z1) ∧ ϕ(z1, z2) ∧ φ(z2, z3)... ∧ φ(z2n, y)))

≤ sup
n

( sup
z1,z2,...,z2n

(τ(x, z1) ∧ τ(z1, z2) ∧ ... ∧ τ(z2n, y)))

= sup
n
τ(x, y) = τ(x, y).

Thus κ is the smallest fuzzy congruence such that φ ⊆ τ and ϕ ⊆ τ . So φ ∨ ϕ =
∪∞n=0Θn. �

Definition 3.15. Let L be an dpMS-algebra. The fuzzy congruence generated by
the fuzzy relation φ of L is defined by Θ(φ) = ∩{ϑ ∈ FC(L) : φ ⊆ ϑ}. If φ = µ× µ
is the product of fuzzy ideal µ by itself, where (µ × µ)(x, y) = µ(x) ∧ µ(y) for
all (x, y) ∈ L × L. We write Θ[µ] instead of Θ(φ) i.e Θ[µ] is the smallest fuzzy
congruence containing µ× µ.

Theorem 3.16. Let φ be a fuzzy relation of dpMS-algebra (L,◦ ,∗ ). Then Θ(φ)(x, y) =
sup{α : (x, y) ∈ Θ(φα)}, for any (x, y) ∈ L× L and α ∈ [0, 1].

Proof. Let ϕ(x, y) = sup{α : (x, y) ∈ Θ(φα)}, for any (x, y) ∈ L× L and α ∈ [0, 1].
Then we prove that ϕ = Θ(φ). First we see that ϕ is a fuzzy congruence of (L,◦ ,∗ ).

(1) ϕ(x, x) = sup{α : (x, x) ∈ Θ(φα)} = 1 .
(2) Symmetric is straightforward.
(3) ϕ(x, y) ∧ ϕ(y, z) = sup{α : (x, y) ∈ Θ(φα)} ∧ sup{λ : (y, z) ∈ Θ(φλ)}

= sup{α ∧ λ : (x, y) ∈ Θ(φα), (y, z) ∈ Θ(φλ)}
≤ sup{α ∧ λ : (x, y) ∈ Θ(φα∧λ), (y, z) ∈ Θ(φα∧λ)}
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≤ sup{α ∧ λ : (x, z) ∈ Θ(φα∧λ)}
= ϕ(x, z).

(4) ϕ(x, y) ∧ ϕ(w, z) = sup{α : (x, y) ∈ Θ(φα)} ∧ sup{λ : (w, z) ∈ Θ(φλ)}
= sup{α ∧ λ : (x, y) ∈ Θ(φα), (w, z) ∈ Θ(φλ)}
≤ sup{α ∧ λ : (x, y) ∈ Θ(φα∧λ), (w, z) ∈ Θ(φα∧λ)}
≤ sup{α ∧ λ : (x ∧ w, y ∧ z) ∈ Θ(φα∧λ)}
= ϕ(x ∧ w, y ∧ z).

Similarly, we can prove that ϕ(x, y) ∧ ϕ(y, z) ≤ ϕ(x ∨ w, y ∨ z).
(5) ϕ(x, y) = sup{α : (x, y) ∈ Θ(φα)} ≤ sup{α : (x◦, y◦) ∈ Θ(φα)} = ϕ(x◦, y◦).

Similarly, ϕ(x, y) ≤ ϕ(x∗, y∗). Then ϕ is a fuzzy congruence of a dpMS-algebra
(L,◦ ,∗ ). Now φ(x, y) = sup{α : (x, y) ∈ φα} ≤ sup{α : (x, y) ∈ Θ(φα)} = ϕ(x, y),
for any x, y ∈ L. Thus φ ⊆ ϕ. Finally, let τ be any fuzzy congruence of a dpMS-
algebra (L,◦ ,∗ ) such that φ ⊆ τ . We see that ϕ ⊆ τ . If φ ⊆ τ , then φα ⊆ τα and
thus Θ(φα) ⊆ Θ(τα) = τα. Now,

ϕ(x, y) = sup{α : (x, y) ∈ Θ(φα)} ≤ sup{α : (x, y) ∈ τα} = τ(x, y).

So ϕ ⊆ τ . Hence ϕ = Θ(φ). �

4. Kernel fuzzy ideals and fuzzy congruences

Definition 4.1. Kernel fuzzy ideal of a dpMS-algebra (L,◦ ,∗ ) is a fuzzy ideal µ of
L for which there exists a fuzzy congruence ϕ on L such that µ = Kerϕ i.e., µ is
the kernel fuzzy congruence ϕ , where Kerϕ(x) = ϕ(x, 0) for all x ∈ L.

Definition 4.2. Cokernel fuzzy filter of a dpMS-algebra (L,◦ ,∗ ) is a fuzzy filter η
of L for which there exists a fuzzy congruence ψ on L such that η = CoKerψ i.e η
is the Cokernel fuzzy congruence ψ , where Cokerψ(x) = ψ(x, 1) for all x ∈ L.

Example 4.3. Consider the dpMS-algebra (L,◦ ,∗ ) and the fuzzy congruence ϕ in
Example 3.2. Define fuzzy subsets µ and η of (L,◦ ,∗ ) as follows:

µ(0) = 1, µ(a) = µ(b) = µ(c) = µ(d) = µ(1) = 0.8

and

η(1) = 1, η(a) = η(b) = η(c) = η(d) = η(0) = 0.8.

Then µ(x) = ϕ(0, x) for all x ∈ L and η(x) = ϕ(1, x), for all x ∈ L. Thus µ is a
kernel fuzzy ideal and η is a cokernel fuzzy filter of a dpMS-algebra (L,◦ ,∗ ).

In the the following Theorem, we characterized a kernel fuzzy ideal of a dpMS-
algebra.

Theorem 4.4. Let (L,◦ ,∗ ) be a dpMS-algebra. If µ be a kernel fuzzy ideal, then
µ(x) ≤ µ(x◦◦) ∧ µ(x◦∗) ∧ µ(x∗∗), ∀ x ∈ L.

Proof. The proof follows from the Definition 4.1. �

For a fuzzy ideal µ of a dpMS-algebra (L,◦ ,∗ ), define

µ≥◦ (x) = sup{µ(i) : i◦ ≤ x, i ∈ L} for ∀x ∈ L,
µ◦(x) = sup{µ(i) : i◦ = x, i ∈ L} for ∀x ∈ L,

µ◦◦(x) = sup{µ(i) : x ≤ i◦◦, i ∈ L} for ∀x ∈ L.
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Then it can be easily verified that µ≥◦ is a fuzzy filter of L, µ◦◦ is a fuzzy ideal of L
and the α-level subsets of µ≥◦ , µ◦, and µ◦◦ are

(µ≥◦ )α = {x ∈ L : ∃i ∈ µα i◦ ≤ x},

µ◦α = {y ∈ L, x◦ = y : ∃x ∈ µα}
and

(µ◦◦)α = {x ∈ L : (∃i ∈ µα) x ≤ i◦◦}, respectively.

By Definition 3.15, Theorem 3.16 and equations (2.1), (2.2), we can write
Θlat[µ](x, y) = sup{α : (x, y) ∈ Θlat[µα]},
Θlat[µ◦◦](x, y) = sup{α : (x, y) ∈ Θlat[(µ◦◦)α]}

= sup{α : x ∨ i = y ∨ i, i ∈ [(µ◦◦)α]}
= sup{α : x ∨ i = y ∨ i, i ≤ j◦◦ for some j ∈ µα}

and
Θlat[µ

≥
◦ ](x, y) = sup{α : (x, y) ∈ Θlat[(µ

≥
◦ )α]}

= sup{α : x ∧ i = y ∧ i, i ∈ (µ≥◦ )α]}
= sup{α : x ∧ i = y ∧ i, j◦ ≤ i for some j ∈ µα}.

Also by equation (2.3), we have Θlat[µ
≥
◦ ](x, y) = sup{α : x ∧ i◦ = y ∧ i◦, i ∈ µα}.

Corollary 4.5. If µ is a kernel fuzzy ideal of a dpMS-algebra (L,◦ ,∗ ), then µ =
µ◦◦ i.e µ(x◦◦) ≥ µ(x)) for ∀ x ∈ L.

Proof. µ◦◦(x) = sup{µ(i) : x ≤ i◦◦} ≤ sup{µ(i◦◦) : x ≤ i◦◦} ≤ µ(x). It is obvious
that µ ⊆ µ◦◦. This implies µ = µ◦◦. �

The description of Θlat[µ
≥
◦ ] can be characterized as follows.

Lemma 4.6. Let (L,◦ ,∗ ) be a dpMS-algebra and µ be a kernel fuzzy ideal of L.
Then following conditions hold.

(1) Θlat[µ
≥
◦ ](x, y) ≤ Θlat[µ](x◦, y◦] ∧Θlat[µ](x∗, y∗),

(2) Θlat[µ](x, y) ≤ Θlat[µ
≥
◦ ](x◦, y◦) ∧Θlat[µ

≥
◦ ](x∗, y∗).

Proof. (1) Θlat[µ
≥
◦ ](x, y) = sup{α : (x, y) ∈ Θlat[(µ

≥
◦ )α]}

= sup{α : x ∧ i = y ∧ i, i ∈ (µ≥◦ )α}
= sup{α : x ∧ i = y ∧ i, j◦ ≤ i for some j ∈ µα}
≤ sup{α : x◦ ∨ i◦ = y◦ ∨ i◦, i◦ ≤ j◦◦ for some j ∈ µα}
= Θlat[µ◦◦](x

◦, y◦) = Θlat[µ](x◦, y◦),
since µ is a kernel fuzzy ideal of L. Also

Θlat[µ
≥
◦ ](x, y) = sup{α : (x, y) ∈ Θlat[(µ

≥
◦ )α]}

= sup{α : x ∧ i = y ∧ i, i ∈ (µ≥◦ )α}
≤ sup{α : x∗ ∨ i∗ = y∗ ∨ i∗, i∗ ≤ j◦∗ = j◦∗◦◦ for some j◦∗ ∈ µα}
= Θlat[µ◦◦](x

∗, y∗) = Θlat[µ](x∗, y∗).

Thus Θlat(µ
≥
◦ )(x, y) ≤ Θlat(µ)(x◦, y◦) ∧Θlat(µ)(x∗, y∗).

(2) Θlat[µ](x, y) = sup{α : (x, y) ∈ Θlat[µα]}
= sup{α : x ∨ i = y ∨ i, i ∈ µα}
= sup{α : x ∨ i = y ∨ i, i ∈ (µ◦◦)α}
= sup{α : x ∨ i = y ∨ i, i ≤ j◦◦, j ∈ µα}
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≤ sup{α : x◦ ∧ i◦ = y◦ ∧ i◦, j◦ ≤ i◦, j ∈ µα}
= Θlat[µ

≥
◦ ](x◦, y◦),

Θlat[µ](x, y) = sup{α : (x, y) ∈ Θlat[µα]}
= sup{α : x ∨ i = y ∨ i, i ∈ µα}
= sup{α : x ∨ i = y ∨ i, i ∈ (µ◦◦)α}
= sup{α : x ∨ i = y ∨ i, i ≤ j◦◦, j ∈ µα}
≤ sup{α : x∗ ∧ i∗ = y∗ ∧ i∗, j◦◦∗ ≤ i∗ = i∗◦◦, j ∈ µα}
= Θlat(µ

≥
◦ )(x∗, y∗).

Thus Θlat[µ](x, y) ≤ Θlat[µ
≥
◦ ](x◦, y◦) ∧Θlat[µ

≥
◦ ](x∗, y∗). �

Theorem 4.7. Let (L,◦ ,∗ ) be a dpMS-algebra, and µ be a kernel fuzzy ideal of L.

Then we have Θ[µ] = Θlat[µ] ∨Θlat[µ
≥
◦ ].

Proof. Let ϕ = Θlat[µ
≥
◦ ] ∨ Θlat[µ]. We see that ϕ is the smallest fuzzy congruence

containing µ × µ. Clearly, µ × µ ⊆ ϕ. Now we prove that ϕ is a fuzzy congruence
of L. Since Θlat[µ

≥
◦ ] and Θlat[µ] are lattice fuzzy congruences, ϕ is a lattice fuzzy

congruence of L.
By Theorem 3.16 and Lemma 4.6 ,
ϕ(x, y)

= supn(supz1,z2,...,z2n(Θlat[µ
≥
◦ ](x, z1) ∧Θlat[µ](z1, z2) ∧Θlat[µ

≥
◦ ](z2, z3)∧

... ∧Θlat[µ
≥
◦ ](z2n, y))

≤ supn(supz◦1 ,z◦2 ,...,z◦2n(Θlat[µ](x◦, z◦1) ∧Θlat[µ
≥
◦ ](z◦1 , z

◦
2) ∧Θlat[µ](z◦2 , z

◦
3)∧

... ∧Θlat[µ
≥
◦ ](z◦2n, y

◦))
= ϕ(x◦, y◦).

Similarly, ϕ(x, y) ≤ ϕ(x∗, y∗). Thus ϕ is a fuzzy congruence of a dpMS-algebra L.
Finally, we see that ϕ is the smallest fuzzy congruence containing µ× µ. Since ϕ

is a fuzzy congruence containing µ× µ, Θ[µ] ⊆ ϕ.

Clearly Θlat[µ] ⊆ Θ[µ] and also by Theorem 2.7 and Corollary 4.5, Θlat[(µ
≥
◦ )](x, y) =

sup{α : (x, y) ∈ Θlat[(µ
≥
◦ )α]} ≤ sup{α : (x, y) ∈ Θ[µα]} = Θ[µ](x, y). Thus

Θlat[µ
≥
◦ ] ∨Θlat[µ] ⊆ Θ[µ]. So ϕ ⊆ Θ[µ]. Hence ϕ = Θ[µ]. �

5. (◦, ∗)-fuzzy ideals

Definition 5.1. A fuzzy ideal µ of a dpMS-algebra (L,◦ ,∗ ) is said to be a (◦, ∗)-
fuzzy ideal if µ(x) = µ(x◦∗) for all x ∈ L.

Example 5.2. In Example 4.3, the kernel fuzzy ideal µ is not (◦, ∗)-fuzzy ideal.
Because 0.8 = µ(b) 6= µ(b◦∗) = µ(a∗) = µ(0) = 1.

Theorem 5.3. Let (L,◦ ,∗ ) be a dpMS-algebra. If µ is (◦, ∗)-fuzzy ideal of L, then
µ(x∗∗) = µ(x) ∀ x ∈ L.

Proof. Suppose that µ is a (◦, ∗)-fuzzy ideal of L. Then µ(x) = µ(x◦∗) = µ(x(◦∗)◦∗) =
µ(x∗∗). �

Theorem 5.4. µ is a (◦, ∗)-fuzzy ideal of L if and only if µα, ∀ α ∈ [0, 1] is a
(◦, ∗)-ideal of L.

Corollary 5.5. I is a (◦, ∗)-ideal of L if and only if χI is (◦, ∗)-fuzzy ideal of L.
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Example 5.6. Consider the dpMS-algebra (L,◦ ,∗ ) discribe in the Hasse Diagram
2.
Define a fuzzy subset µ of L as follows:

µ(0) = µ(a) = µ(b) = µ(c) = µ(d) = µ(f) = 1

and
µ(e) = µ(g) = µ(h) = µ(1) = 0.7.

Then it can be easily verified that µ is a (◦, ∗)-fuzzy ideal.

As indicated in Example 5.6 , KerGF = µ is a (◦, ∗)-fuzzy ideal. The following
Theorem shows that it is true in general case.

Theorem 5.7. If (L,◦ ,∗ ) is a dpMS-algebra, then KerGF is the smallest a (◦, ∗)-
fuzzy ideal of L.

Proof. We prove that KerGF (x∗◦) = GF (x∗◦, 0) = KerGF (x),for any x ∈ L.
Suppose GF (x∗◦, 0) = 1. Then x∗◦∗ = 0∗. This implies x∗◦∗◦ = 0∗◦. Thus we have

x∗∗ = x∗◦∗◦ = 0. So x∗∗∗ = x∗◦∗◦ = 0∗ = x∗. Hence GF (x∗∗, 0) = GF (x, 0) = 1.
Therefore KerGF (x∗◦) = KerGF (x∗∗) = KerGF (x) = 1.

Suppose GF (x∗◦, 0) = 0. Then x∗◦∗ 6= 0∗. We see that x∗∗∗ 6= 0∗ and x∗ 6= 0∗.
Now we prove by contradiction. Assume that x∗ = 0∗. Then x∗◦∗ = 0∗. This
contradicts the hypothesis. Also assume that x∗∗∗ = 0∗. Then x∗◦∗ = x∗◦∗◦∗ =
0∗◦∗ = 0∗. It also contradicts the hypothesis. Thus

KerGF (x∗◦) = KerGF (x∗∗) = kerGF (x) = 0.

So in either cases, for any x ∈ L, KerGF (x∗◦) = KerGF (x∗∗) = KerGF (x). Hence
KerGF is (◦, ∗)-fuzzy ideal of L.

Let µ be any (◦, ∗)-fuzzy ideal. If KerGF (x) = GF (x, 0) = 1, then x∗ = 0∗. We
have x∗∗ = 0∗∗ = 0. This implies

KerGF (x) = KerGF (x∗∗) = 1 = µ(0) = µ(x∗∗) = µ(x).

If KerGF (x) = 0, then KerGF (x) = 0 ≤ µ(x). Thus for any x ∈ L, KerGF (x) ≤
µ(x). So KerGF ⊆ µ. Hence KerGF is the smallest (◦, ∗)-fuzzy ideal of L. �

Corollary 5.8. (L,◦ ,∗ ) be a dpMS-algebra. The KerGF = χ{0} if and only if every
fuzzy congruence kernel of L is a (◦, ∗)-fuzzy ideal.

Proof. (Necessity). Suppose KerGF = χ{0}. Then for every x ∈ L, we have x ∧
x∗ = 0. Let µ be the kernel of any fuzzy congruence ϕ of L, i.e., µ = Kerϕ.
Then µ(x) = Kerϕ(x) = ϕ(x, 0) ≤ ϕ(x∗◦, 0) = µ(x∗◦). Conversely, µ(x∗◦) =
ϕ(x∗◦, 0) ≤ ϕ(x∗, 1) = ϕ(x∗, 1) ∧ ϕ(x, x) ≤ ϕ(x ∧ x∗, x) = ϕ(0, x) = µ(x). Thus
µ(x) = µ(x∗◦), ∀ x ∈ L and so µ is a (◦, ∗)-fuzzy ideal of L.

(Sufficiency). Suppose every fuzzy congruence kernel of L is a (◦, ∗)-fuzzy ideal.
Then by Theorem 5.7 , KerGF (x) = 1 = Kerχω(x). Thus KerGF = χ{0}. �

Corollary 5.9. Let (L,◦ ,∗ ) be a dpMS-algebra. If ϕ is a fuzzy congruence on L
such that GF ⊆ ϕ, then Kerϕ is a (◦, ∗)-fuzzy ideal of L.

We denote the set of all (◦, ∗)-fuzzy ideals of L by FI◦∗(L) and the set of all fuzzy
ideals of L by FI(L).
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Theorem 5.10. If (L,◦ ,∗ ) a dpMS-algebra, then FI◦∗(L) is a sublattice of the
lattice FI(L) of fuzzy ideals of L.

Proof. It is clear that KerGF ∈ FI◦∗(L). Then FI◦∗(L) 6= ∅. Let µ, ν ∈ FI◦∗(L).
Then clearly, µ ∧ ν ∈ FI◦∗(L). We see that µ ∨ ν ∈ FI◦∗(L). Thus

(µ ∨ ν)(x) = sup{µ(i) ∧ ν(j) : x = i ∨ j}
≤ sup{µ(i∗◦) ∧ ν(j∗◦) : x∗◦ = i∗◦ ∨ j∗◦}
= (µ ∨ ν)(x∗◦).

Conversely,
(µ ∨ ν)(x∗◦) = sup{µ(i) ∧ ν(j) : x∗◦ = i ∨ j}

≤ sup{µ(i∗◦) ∧ ν(j∗◦) : x∗◦∗◦ = i∗◦ ∨ j∗◦}
= sup{µ(i∗◦) ∧ ν(j∗◦) : x∗∗ = i∗◦ ∨ j∗◦}
= (µ ∨ ν)(x∗∗).

Clearly, KerGF (x ∧ x∗) = 1, KerGF ⊆ µ and KerGF ⊆ ν. So KerGF ⊆ µ ∨ ν.
Since µ ∨ ν is anti-tone,

(µ ∨ ν)(x∗∗) = (µ ∨ ν)(x∗∗) ∧ (µ ∨ ν)(x ∧ x∗)
= (µ ∨ ν)(x∗∗ ∨ (x ∧ x∗))
= (µ ∨ ν)(x∗∗ ∨ x)
≤ (µ ∨ ν)(x).

Hence µ ∨ ν ∈ FI◦∗(L). Therefore FI◦∗(L) is a sublattice of FI(L). �

Theorem 5.11. If (L,◦ ,∗ ) is a dpMS-algebra then for each µ ∈ FI◦∗(L), there
exists a smallest fuzzy congruence on L with kernel µ given by the followings:

δ(µ)(x, y) = sup{µ(i) : (x ∨ i◦◦) ∧ i◦ = (y ∨ i◦◦) ∧ i◦}.

Proof. Reflexive and symmetric are clear. Next, we prove that δ(µ) is transitive.
Suppose that (x ∨ i◦◦) ∧ i◦ = (y ∨ i◦◦) ∧ i◦, (y ∨ j◦◦) ∧ j◦ = (z ∨ j◦◦) ∧ j◦, for any
x, y, i, j ∈ L. Put r = i ∨ j. Then we have

(x ∨ r◦◦) ∧ r◦ = (x ∨ (i◦◦ ∨ j◦◦)) ∧ (i◦ ∧ j◦)
= ((x ∨ i◦◦) ∨ j◦◦)) ∧ (i◦ ∧ j◦)
= ((x ∨ i◦◦) ∧ (i◦ ∧ j◦)) ∨ (j◦◦ ∧ (i◦ ∧ j◦)
= ((y ∨ i◦◦) ∧ (i◦ ∧ j◦)) ∨ (j◦◦ ∧ (i◦ ∧ j◦)
= ((y ∨ j◦◦) ∧ (i◦ ∧ j◦)) ∨ (i◦◦ ∧ (i◦ ∧ j◦)
= ((z ∨ j◦◦) ∧ (i◦ ∧ j◦)) ∨ (i◦◦ ∧ (i◦ ∧ j◦)
= (z ∨ (i◦◦ ∨ j◦◦)) ∧ (i◦ ∧ j◦)
= (z ∨ r◦◦) ∧ r◦.

Thus δ(µ)(x, y) ∧ δ(µ)(y, z)
= sup{µ(i) : (x∨i◦◦)∧i◦ = (y∨i◦◦)∧i◦}∧sup{µ(j) : (y∨j◦◦)∧j◦ = (z∨j◦◦)∧j◦}
= sup{µ(i) ∧ µ(j) : (x ∨ i◦◦) ∧ i◦ = (y ∨ i◦◦) ∧ i◦, (y ∨ j◦◦) ∧ j◦ = (z ∨ j◦◦) ∧ j◦}
≤ sup{µ(r) : (x ∨ r◦◦) ∧ r◦ = (z ∨ r◦◦) ∧ r◦}
= δ(µ)(x, z).

So δ(µ)(x, y) ∧ δ(µ)(y, z) ≤ δ(µ)(x, z). Hence δ(µ) is transitive.
For any z ∈ L,
δ(µ)(x, y)

= δ(µ)(x, y) ∧ δ(µ)(z, z)
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= sup{µ(i) : (x∨i◦◦)∧i◦ = (y∨i◦◦)∧i◦}∧ sup{µ(j) : (z∨j◦◦)∧j◦ = (z∨j◦◦)∧j◦}
= sup{µ(i)∧ µ(j) : (x∨ i◦◦)∧ i◦ = (y ∨ i◦◦)∧ i◦, (z ∨ j◦◦)∧ j◦ = (z ∨ j◦◦)∧ j◦}.

Put r = i ∨ j. Then we have r◦ = i◦ ∧ j◦, r◦◦ = i◦◦ ∨ j◦◦. Thus

(x ∨ z) ∨ r◦◦) ∧ r◦ = ((x ∨ z) ∨ (i◦◦ ∨ j◦◦)) ∧ (i◦ ∧ j◦)
= ((x ∨ i◦◦) ∨ (z ∨ j◦◦)) ∧ (i◦ ∧ j◦)
= ((x ∨ i◦◦) ∧ (i◦ ∧ j◦)) ∨ ((z ∨ j◦◦) ∧ (i◦ ∧ j◦))
= ((y ∨ i◦◦) ∧ (i◦ ∧ j◦)) ∨ ((z ∨ j◦◦) ∧ (j◦ ∧ j◦))
= ((y ∨ z) ∨ (i◦◦ ∨ j◦◦)) ∧ (i◦ ∧ j◦)
= (y ∨ z) ∨ r◦◦) ∧ r◦.

This implies δ(µ)(x, y) = δ(µ)(x, y) ∧ δ(µ)(z, z) ≤ δ(µ)(x ∨ z, y ∨ z). Similarly,
δ(µ)(x, y) ≤ δ(µ)(x ∧ z, y ∧ z). So δ(µ) is lattice fuzzy congruence of L.

Next, we see that δ(µ)(x, y) ≤ δ(µ)(x◦, y◦) ∧ δ(µ)(x∗, y∗).

(x ∨ i◦◦) ∧ i◦ = (y ∨ i◦◦) ∧ i◦ (∗)
⇒ (x◦ ∧ i◦) ∨ i◦◦ = (y◦ ∧ i◦) ∨ i◦◦

⇒ (x◦ ∨ i◦◦) ∧ (i◦ ∨ i◦◦) = (y◦ ∨ i◦◦) ∧ (i◦ ∨ i◦◦)
⇒ (x◦ ∨ i◦◦) ∧ (i◦ ∨ i◦◦) ∧ i◦ = (y◦ ∨ i◦◦) ∧ (i◦ ∨ i◦◦) ∧ i◦

⇒ (x◦ ∨ i◦◦) ∧ i◦ = (y◦ ∨ i◦◦) ∧ i◦.

Also from (*), we have
(x∗ ∧ i◦◦∗) ∨ i◦∗ = (y∗ ∧ i◦◦∗) ∨ i◦∗

⇒ (x∗ ∨ i◦∗) ∧ (i◦◦∗ ∨ i◦∗) = (y∗ ∨ i◦∗) ∧ (i◦◦∗ ∨ i◦∗)
⇒ (x∗ ∨ i◦◦◦∗) ∧ (i◦◦∗ ∨ i◦◦◦∗) = (y∗ ∨ i◦◦◦∗) ∧ (i◦◦◦∗ ∨ i◦∗).

Put j = i◦∗. Then
(x∗ ∨ j◦◦) ∧ (j◦ ∨ j◦◦ = (y∗ ∨ j◦◦) ∧ (j◦ ∨ j◦◦)

⇒ (x∗ ∨ j◦◦) ∧ (j◦ ∨ j◦◦) ∧ j◦ = (y∗ ∨ j◦◦) ∧ (j◦ ∨ j◦◦) ∧ j◦
⇒ (x∗ ∨ j◦◦) ∧ j◦ = (y∗ ∨ j◦◦) ∧ j◦.

On the other hand,
δ(µ)(x, y) = sup{µ(i) : (x ∨ i◦◦) ∧ i◦ = (y ∨ i◦◦) ∧ i◦}

≤ sup{µ(i) : (x◦ ∨ i◦◦) ∧ i◦ = (y◦ ∨ i◦◦) ∧ i◦}
= δ(µ)(x◦, y◦).

Also,
δ(µ)(x, y) = sup{µ(i) : (x ∨ i◦◦) ∧ i◦ = (y ∨ i◦◦) ∧ i◦}

≤ sup{µ(j) : (x∗ ∨ j◦◦) ∧ j◦ = (y∗ ∨ j◦◦) ∧ j◦}
= δ(µ)(x∗, y∗).

Thus δ(µ) is fuzzy congruence of L.
Next, we show that Kerδ(µ) = µ. It is obvious that µ ⊆ Kerδ(µ). Conversely,

Kerδ(µ)(x) = δ(µ)(x, 0)
= sup{µ(i) : (x ∨ i◦◦) ∧ i◦ = i◦◦ ∧ i◦}
≤ sup{µ(i) : (x∗∗ ∨ i∗∗) ∧ i◦∗∗ = i∗∗ ∧ i◦∗∗}.

Now (x∗∗ ∨ i∗∗) ∧ i◦∗∗ = i∗∗ ∧ i◦∗∗. Then (x∗∗ ∧ i◦∗∗) ∨ (i∗∗ ∧ i◦∗∗) = i∗∗ ∧ i◦∗∗. We
observe that x∗∗ ∧ i◦∗∗ ≤ i∗∗ ∧ i◦∗∗ ≤ i∗∗. Since µ ∈ FI◦∗(L),

µ(i) = µ(i∗∗) = µ(i◦∗) ≤ µ(x∗∗ ∧ i◦∗∗).
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Thus

Kerδ(µ)(x) ≤ sup{µ(i) : (x∗∗ ∨ i∗∗) ∧ i◦∗∗ = i∗∗ ∧ i◦∗∗}
= sup{µ(i◦∗) ∧ µ(x∗∗ ∧ i◦∗∗) : (x∗∗ ∨ i∗∗) ∧ i◦∗∗ = i∗∗ ∧ i◦∗∗}
= sup{µ(i◦∗ ∨ (x∗∗ ∧ i◦∗∗)) : (x∗∗ ∨ i∗∗) ∧ i◦∗∗ = i∗∗ ∧ i◦∗∗}
= sup{µ(i◦∗ ∨ x∗∗) : (x∗∗ ∨ i∗∗) ∧ i◦∗∗ = i∗∗ ∧ i◦∗∗}
≤ µ(x∗∗) = µ(x).

So µ = Kerδ(µ).
Let φ be any fuzzy congruence on L with Kerφ = µ. We prove that δ(µ) ⊆ φ.

Now
δ(µ)(x, y) = sup{µ(i) : (x ∨ i◦◦) ∧ i◦ = (y ∨ i◦◦) ∧ i◦}

= sup{φ(i, 0) : (x ∨ i◦◦) ∧ i◦ = (y ∨ i◦◦) ∧ i◦}.
Since φ is fuzzy congruence on L, φ(i, 0) ≤ φ(i◦, 1) ≤ φ(i◦◦, 0). Then

φ(i, 0) ≤ φ(i◦, 1) ≤ φ(x, (x ∨ i◦◦) ∧ i◦)) ∧ φ((y ∨ i◦◦) ∧ i◦, y) ≤ φ(x, y).

Thus δ(µ) ⊆ φ. So δ(µ) is as our required. �

Corollary 5.12. Let (L,◦ ,∗ ) be a dpMS-algebra. If µ ∈ FI◦∗(L), then Θ[µ] = δ(µ).

Proof. By Theorem 5.11, it is enough to show that KerΘ[µ] = µ. It is clear that
µ ⊆ KerΘ[µ]. Conversely, Theorem 4.7,

KerΘ[µ](x) = Θ[µ](0, x)

= supn(supz1,z2,...,z2n(Θlat[µ](0, z1) ∧Θlat[µ
≥
◦ ](z1, z2)

∧Θlat[µ](z2, z3) ∧ ... ∧Θlat[µ](z2n, x)))
≤ Θlat[µ](0, z1)
= sup{µ(i) : i = i ∨ z1}
= sup{µ(i ∨ z1) : i = i ∨ z1}
≤ µ(z1).

Or
KerΘ[µ](x) = Θ[µ](0, x)

≤ Θlat[µ
≥
◦ ](0, z1)

= sup{µ(j) : 0 = z1 ∧ j◦, j ∈ L}
≤ sup{µ(j) : 0 = z◦∗1 ∧ j∗, j ∈ L}
= sup{µ(j∗∗) : 0 = z◦∗1 ∧ j∗, j ∈ L}
≤ µ(z◦∗1 )
= µ(z1),

since z◦∗1 ≤ j∗∗.
Suppose that for r ≤ k, µ(i) ≤ µ(zr), for zr ∨ i = zr+1 ∨ i. Then

Θ[µ](0, x)

= supz1,z2,...,z2n(Θlat[µ](0, z1)∧Θlat[µ
≥
◦ ](z1, z2)∧Θlat[µ](z2, z3)∧...∧Θlat[µ](z2n, x))

≤ Θlat[µ](zk, zk+1)
= sup{µ(i) : i ∨ zk = i ∨ zk+1}
= sup{µ(i) ∧ µ(zk) : i ∨ zk = i ∨ zk+1}
= sup{µ(i ∨ zk) : i ∨ zk = i ∨ zk+1}
= sup{µ(i ∨ zk+1) : i ∨ zk = i ∨ zk+1}
≤ µ(zk+1).
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On the other hand, since j◦ ∧ zk = j◦ ∧ zk+1 and j∗∗ ∨ j∗ = 1, we have

j∗∗ ∧ z◦∗k = j∗∗ ∧ z◦∗k+1 ≥ z◦∗k+1.

Thus
Θ[µ](0, x) = Θlat[µ

≥
◦ ](zk, zk+1)

= sup{µ(j) : j◦ ∧ zk = j◦ ∧ zk+1, j ∈ L}
≤ µ(z◦∗k )
= µ(zk)

So it follows by induction that KerΘ[µ](x) ≤ µ(x). This implies µ = KerΘ[µ].
Hence the required equality holds. �

Theorem 5.13. If (L,◦ ,∗ ) be a dpMS-algebra, then for each µ ∈ FI◦∗(L), the
greatest fuzzy congruence on L with kernel µ is the relation σ(µ) given by:

σ(µ)(x, y) = µ((x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗)).

Proof. We prove that σ(µ) is a fuzzy congruence on L. It is obvious that σ(µ) is
reflexive and symmetric. We show that σ(µ) is transitive.

µ(x∗∗ ∧ z∗) = µ((x∗∗ ∧ z∗) ∧ (y∗ ∨ y∗∗))
= µ((x∗∗ ∧ z∗ ∧ y∗) ∨ ((x∗∗ ∧ z∗ ∧ y∗∗))
= µ((x∗∗ ∧ z∗ ∧ y∗) ∧ µ((x∗∗ ∧ z∗ ∧ y∗∗))
≥ µ(x∗∗ ∧ y∗) ∧ µ((z∗ ∧ y∗∗)
≥ µ(x∗∗ ∧ y∗) ∧ µ(x∗ ∧ y∗∗) ∧ µ(y∗ ∧ z∗∗) ∧ µ(z∗ ∧ y∗∗)
= µ((x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗)) ∧ µ((y∗ ∧ z∗∗) ∨ (z∗ ∧ y∗∗))
= σ(µ)(x, y) ∧ σ(µ)(y, z).

Similarly, µ(x∗ ∧ z∗∗) ≥ σ(µ)(x, y) ∧ σ(µ)(y, z). This implies

µ(x∗∗ ∧ z∗) ∧ µ(x∗ ∧ z∗∗) ≥ σ(µ)(x, y) ∧ σ(µ)(y, z).

Then σ(µ)(x, z) ≥ σ(µ)(x, y) ∧ σ(µ)(y, z). Also
σ(µ)(x ∧ a, y ∧ a) = µ(((x ∧ a)∗∗ ∧ (y ∧ a)∗) ∨ ((x ∧ a)∗ ∧ (y ∧ a)∗∗)))

= µ((x∗∗ ∧ y∗ ∧ a∗∗) ∨ (x∗ ∧ y∗∗ ∧ a∗∗))
= µ(((x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗)) ∧ a∗)
≥ µ((x∗∗ ∧ y∗) ∧ (x∗ ∧ y∗∗))
= σ(µ)(x, y).

Similarly, σ(µ)(x∨a, y∨a) ≥ σ(µ)(x, y). Thus σ(µ) is a lattice of fuzzy congruence.
On the other hand,

σ(µ)(x∗, y∗) = µ((x∗∗∗ ∧ y∗∗) ∨ (x∗∗ ∧ y∗∗∗))
= µ((x∗ ∧ y∗∗) ∨ (x∗∗ ∧ y∗))
= σ(µ)(x, y)

and
σ(µ)(x, y) = µ((x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗))

= µ(((x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗))◦∗))
= µ((x◦∗∗∗ ∧ y◦∗∗) ∨ (x◦∗∗ ∧ y◦∗∗))
= µ((x◦∗ ∧ y◦∗∗) ∨ (x◦∗∗ ∧ y◦∗))
= σ(µ)(x◦, y◦).

So σ(µ) is a fuzzy congruence of a dpMS-algebra L.
Also Kerσ(µ)(x) = σ(µ)(x, 0) = µ((x∗∗∧0∗)∨ (x∗∧0∗∗)) = µ(x∗∗) = µ(x). Then

Kerσ(µ) = µ. Thus σ(µ) is a fuzzy congruence of L with kernel µ.
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Finally, let ϕ be a congruence on L with Kerϕ = µ. Then

ϕ(x, y) ≤ ϕ(x∗, y∗) ≤ ϕ(x∗∗, y∗∗).

Thus
ϕ(x, y) ≤ ϕ(x∗, y∗)

= ϕ(x∗, y∗) ∧ ϕ(x∗∗, y∗∗) ∧ (x∗∗, x∗∗) ∧ ϕ(x∗, x∗)
≤ ϕ(x∗ ∧ x∗∗, y∗ ∧ x∗∗) ∧ ϕ(x∗∗ ∧ x∗, y∗∗ ∧ x∗)
≤ ϕ(((x∗ ∧ x∗∗) ∨ (x∗∗ ∧ x∗)), ((y∗ ∧ x∗∗) ∧ (y∗∗ ∧ x∗)))
= ϕ(0, ((y∗ ∧ x∗∗) ∧ (y∗∗ ∧ x∗)))
= Kerϕ((y∗ ∧ x∗∗) ∧ (y∗∗ ∧ x∗))
= µ((y∗ ∧ x∗∗) ∧ (y∗∗ ∧ x∗))
= σ(µ)(x, y).

So ϕ ⊆ σ(µ). Hence σ(µ) is the greatest fuzzy congruence of L with kernel µ. �

Theorem 5.14. If (L,◦ ,∗ ) be a dpMS-algebra then for each µ, ν ∈ FI◦∗(L), the
following statements hold:

(1) µ ⊆ ν ⇔ σ(µ) ⊆ σ(ν),
(2) σ(KerGF ) = GF ,
(3) GF ⊆ σ(µ).

As constituted in Theorems 5.11 and 5.13, for every µ ∈ FI◦∗(L), there exists
the smallest fuzzy congruence δ(µ) and the biggest fuzzy congruence σ(µ) on L with
kernel µ. The relationship between these two congruences can be characterized as
follows.

Theorem 5.15. Let (L,◦ ,∗ ) be a dpMS-algebra. If µ ∈ FI◦∗(L), then σ(µ) =
GF ∨ δ(µ).

Proof. By Theorems 5.11 and 5.13, we have clearly seen that GF ∨ δ(µ) ≤ σ(µ). To
show the reverse inequality, put t = (x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗). Then t◦◦ = t∗∗ = t and
x∗∗ ∨ t = y∗∗ ∨ t = x∗∗ ∨ y∗∗. This implies (x∗∗ ∨ t) ∧ t◦ = (y∗∗ ∨ t) ∧ t◦ and also
(x∗∗ ∨ t◦◦) ∧ t◦ = (y∗∗ ∨ t◦◦) ∧ t◦ as t◦◦ = t. Now

σ(µ)(x, y) = µ((x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗))
= µ(t)
≤ sup{µ(t) : (x∗∗ ∨ t◦◦) ∧ t◦ = (y∗∗ ∨ t◦◦) ∧ t◦}
= δ(µ)(x∗∗, y∗∗).

Clearly GF (z, z∗∗) = 1, for all z ∈ L. On the other hand,
δ(µ)(x∗∗, y∗∗) = δ(µ)(x∗∗, y∗∗) ∧GF (y∗∗, y) ∧GF (x∗∗, x)

≤ (δ(µ) ◦GF )(x, y) ≤ (δ(µ) ∨GF )(x, y).
Thus the result is holds. �

Theorem 5.16. Let (L,◦ ,∗ ) is a dpMS-algebra. A (◦, ∗)-fuzzy ideal of L is precisely
the kernel of the fuzzy congruence ϕ on L if and only if (L/ϕ,∗ ) is boolean.

Proof. Suppose µ is a (◦, ∗)-fuzzy ideal. Then by Theorem 5.14, GF ≤ σ(µ). Since
for each x ∈ L, 1 = KerGF (x∧x∗) ≤ Kerσ(µ)(x∧x∗) and 1 = CokerGF (x∨x∗) ≤
Cokerσ(µ)(x ∨ x∗), we have

1 = Kerϕ(x ∧ x∗) = ϕ(x ∧ x∗, 0)
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and

1 = Cokerσ(µ)(x ∨ x∗) = σ(µ)(x ∨ x∗, 1).

Thus σ(µ)x ∧ (σ(µ)x)∗ = σ(µ)0 and σ(µ)x ∨ (σ(µ)x)∗ = σ(µ)1. So (L/σ(µ),∗ ) is
boolean.

Conversely, suppose that ϕ is a congruence on L such that (L/ϕ, ∗) is boolean.
We prove that Kerϕ is a (◦, ∗)-fuzzy ideal of L. Let x ∈ L. Then

Kerϕ(x) = ϕ(x, 0) ≤ ϕ(x◦∗, 0) = Kerϕ(x◦∗).

Also Kerϕ(x◦∗) = ϕ(x◦∗, 0) ≤ ϕ(x∗, 1). Since (L/σ(µ),∗ ) is boolean, ϕx ∧ (ϕx)∗ =
ϕ0. Thus ϕ(x ∧ x∗, 0) = 1. On the other hand,

Kerϕ(x◦∗) ≤ ϕ(x∗, 1) ∧ ϕ(x, x) ≤ ϕ(x ∧ x∗, x)
= ϕ(x ∧ x∗, x) ∧ 1
≤ ϕ(x, 0) = Kerϕ(x).

So Kerϕ is (◦, ∗)-fuzzy ideal. �

Example 5.17. As indicated in Example 5.6, KerGF = µ ∈ FI◦∗(L). We can be
easily verified that (GF )0 = (GF )a = (GF )b = (GF )c = (GF )d = (GF )f , L/GF =
{(GF )0, (GF )e, (GF )g, (GF )h, (GF )1} and (L/GF ,

∗ ) is boolean.

Theorem 5.18. If (L,◦ ,∗ ) is a dpMS-algebra, then FI◦∗(L) ' [GF , χι].

Proof. Let µ, ν ∈ FI◦∗(L). Then σ(µ ∧ ν)(x, y) = (µ ∧ ν)((x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗)) =
µ((x∗∗ ∧ y∗)∨ (x∗ ∧ y∗∗))∧ ν((x∗∗ ∧ y∗)∨ (x∗ ∧ y∗∗)) = σ(µ)(x, y)∧σ(ν)(x, y). Thus
µ −→ σ(µ) is ∧ -monomorphism.
By Theorem 5.14, we see that the mapping µ −→ σ(µ) is an isotone from FI◦∗(L) −→
[GF , χι], so that for µ, ν ∈ FI◦∗(L), we have

(5.1) σ(µ) ∨ σ(ν) ≤ σ(µ ∨ ν).

The converse inequality of (5.1):
σ(µ ∨ ν)(x, y) = (µ ∨ ν)((x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗))

= sup{µ(i) ∧ ν(j) : i ∨ j = (x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗)}, i.e.,

(5.2) σ(µ ∨ ν)(x, y) = sup{µ(i) ∧ ν(j) : i ∨ j = (x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗)}.

Put t = (x∗∗∧y∗)∨(x∗∧y∗∗) = i∨j. Then t = t∗∗ = i∗∗∨j∗∗ and t∧ i∗ = j∗∗∧ i∗
and also observe that

[(x ∨ i)∗ ∧ (y ∨ i)∗∗] ∨ [(x ∨ i)∗∗ ∧ (y ∨ i)∗]
= [x∗ ∧ i∗ ∧ (y∗∗ ∨ i∗∗)] ∨ [(x∗∗ ∨ i∗∗) ∧ y∗ ∧ i∗]
= (x∗ ∧ y∗∗ ∧ i∗) ∨ (x∗∗ ∧ y∗ ∧ i∗) = [(x∗ ∧ y∗∗) ∨ (x∗∗ ∧ y∗)] ∧ i∗
= t ∧ i∗. (5.3)

[z∗ ∧ (z ∨ i)∗∗] ∨ [z∗∗ ∧ (z ∨ i)∗]
= [(z∗ ∧ z∗∗) ∨ (z∗ ∧ i∗∗)] ∨ [z∗∗ ∧ z∗∗ ∧ z∗ ∧ i∗]
= z∗ ∧ i∗∗,∀z ∈ L(z = x or z = y). (5.4)

From (5.2) and (5.3),
σ(µ ∨ ν)(x, y) = (µ ∨ ν)((x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗))

= sup{µ(i) ∧ ν(j) : i ∨ j = (x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗)}
≤ ν(j∗∗ ∧ i∗) = ν(t ∧ i∗)
= ν([(x ∨ i)∗ ∧ (y ∨ i)∗∗)] ∨ [(x ∨ i)∗∗ ∧ (y ∨ i)∗)])
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= σ(ν)(x∨ i, y ∨ i). (5.5)
From (5.2) and (5.4),

σ(µ ∨ ν)(x, y) = (µ ∨ ν)((x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗))
= sup{µ(i) ∧ ν(j) : i ∨ j = (x∗∗ ∧ y∗) ∨ (x∗ ∧ y∗∗)}
≤ µ(x∗ ∧ i∗∗)
= µ([x∗ ∧ (x ∨ i)∗∗] ∨ [x∗∗ ∧ (x ∨ i)∗])

= σ(µ)(x, x∨ i). (5.6)
From (5.5) and (5.6),

σ(µ ∨ ν)(x, y) ≤ σ(ν)(x ∨ i, y ∨ i) ∧ σ(µ)(x, x ∨ i) ≤ (σ(ν) ∨ σ(µ))(x, y ∨ i).

Similarly, σ(µ ∨ ν)(x, y) ≤ (σ(ν) ∨ σ(µ))(x ∨ i, y). Thus we obtain

σ(µ ∨ ν)(x, y) ≤ (σ(ν) ∨ σ(µ))(x, y).

So the reverse inequality of (5.2) holds. This implies µ −→ σ(µ) is a ∨-morphism.
In addition to this it is an injective by Theorem 5.14 (1).

Next we see that it is a surjective. Let ϕ ∈ [GF , χι]. Then by Corollary 5.9 ,
Kerϕ is a (◦, ∗)-fuzzy ideal of L. Now ϕ(x, y) ≤ ϕ(x∗, y∗) ≤ ϕ(x∗ ∧ x∗∗, y∗ ∧ x∗∗) =
ϕ(0, y∗ ∧ x∗∗) and ϕ(x, y) ≤ ϕ(0, x∗ ∧ y∗∗). Then

ϕ(x, y) ≤ ϕ(0, ((x∗ ∧ y∗∗) ∧ (y∗ ∧ x∗∗))
= Ker(ϕ)((x∗ ∧ y∗∗) ∧ (y∗ ∧ x∗∗))
= σ(Kerϕ)(x, y).

Conversely,
σ(Kerϕ)(x, y)) = Ker(ϕ)((x∗ ∧ y∗∗) ∨ (y∗ ∧ x∗∗))

≤ Ker(ϕ)(y∗ ∧ x∗∗)
= ϕ(0, y∗ ∧ x∗∗)
≤ ϕ(1, y∗∗ ∨ x∗).

Since GF ≤ ϕ, we have ϕ(x, x∗∗) = 1. Thus
σ(Kerϕ)(x, y)) ≤ ϕ(1, y∗∗ ∧ x∗)

≤ ϕ(x, (y∗∗ ∧ x∗) ∧ x∗∗)
≤ ϕ(x, x∗∗ ∧ y∗∗).

Similarly, σ(Kerϕ)(x, y)) ≤ ϕ(y, x∗∗ ∧ y∗∗). It follow that σ(Kerϕ)(x, y) ≤ ϕ(x, y).
So we have got σ(Kerϕ) = ϕ. Hence µ −→ σ(µ) is a surjective. Therefore it is a
lattice isomorphism. �

6. conclusion and future work

In this paper, we have studied the fuzzy congruences, kernel fuzzy ideals and
(◦, ∗)-fuzzy ideas of demi-Pseudocomplemented MS-algebras and their Properties.
In [14], Filters congruences of Pseudocomplemented MS-algebras have been studied.
One of the most promising ideas could be the investigation of fuzzy setting applied
to filters congruences of Pseudocomplemented MS-algebras.
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