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1. Introduction

In 2010, Torra [13, 14] introduced the notion of a hesitant fuzzy set (Refer to
[10, 12]) which further characterized an element by a set of membership values
thereby decreasing the loss of information during fuzzufication. After then, Jun et
al. [7] studied hesitant fuzzy bi-ideals in semigroups. Xia and Xu [15] applied hesi-
tant fuzzy set to decision making. Furthermore, Deepark and John [2] investigated
hesitant fuzzy rough sets through hesitant fuzzy relations. Also They [3, 4, 5] studied
homomorphisms of hesitant fuzzy subgroups, and hesitant fuzzy subrings and ideals.
Alshehri and Alshehri [1] applied Hesitant anti-fuzzy soft sets to BCK-algebras. So-
lariaju and Mahalakshmi [11] investigated hesitant intuitionistic fuzzy soft groups.
Deepark and Mashinchi [6] studied hesitant L-fuzzy relations. Recently, Kim et al
[8] introduced the category HSet(H) consisting of all hesitant H-fuzzy spaces and
all morphisms between them and studied HSet(H) in the sense of a topological
universe. Also they [9] studied hesitant fuzzy relations.

In this paper, we define a hesitant fuzzy subgroupoid and obtain some of its
properties. Next, we introduce the concepts of hesitant fuzzy subgroups, hesitant



J. Kim et al./Ann. Fuzzy Math. Inform. 18 (2019), No. 2, 105–122

fuzzy ideals and hesitant fuzzy normal subgroups, and obtain some of its properties,
respectively (In particular, see Theorems 4.5, 4.7 and 4.16, and Propositions 4.23
and 4.24). Finally, we define a hesitant fuzzy subring and investigate some of its
properties. In particular, we give a characteristic of a (usual) field by a hesitant
fuzzy ideal (See Proposition 5.9).

2. Preliminaries

In this section, we list some basic definitions and some properties needed in the
next sections.

Definition 2.1 ([8, 13]). Let X be a reference set and let P [0, 1] denote the power
set of [0, 1]. Then a mapping h : X → P [0, 1] is called a hesitant fuzzy set in X.

The hesitant fuzzy empty [resp. whole] set, denoted by h0 [resp. h1], is a hesitant
fuzzy set in X defined as: for each x ∈ X,

h0(x) = ϕ [resp. h1(x) = [0, 1]].

In this case, we will denote the set of all hesitant fuzzy sets in X as HS(X).

Definition 2.2 ([2]). Let h1, h2 ∈ HS(X). Then
we say that h1 is a subset of h2, denoted by h1 ⊂ h2, if h1(x) ⊂ h2(x), for each

x ∈ X,
(ii) we say that h1 is equal to h2, denoted by h1 = h2, if h1 ⊂ h2 and h2 ⊂ h1.

Definition 2.3 ([8]). Let h1, h2 ∈ HS(X) and let (hj)j∈J ⊂ HS(X). Then
(i) the intersection of h1 and h2, denoted by h1∩̃h2, is a hesitant fuzzy set in X

defined as follows: for each x ∈ X,

(h1∩̃h2)(x) = h1(x) ∩ h2(x),

(ii) the intersection of (hj)j∈J , denoted by
∩̃

j∈Jhj , is a hesitant fuzzy set in X
defined as follows: for each x ∈ X,

(
∩̃

j∈J
hj)(x) =

∩
j∈J

hj(x),

(iii) the union of h1 and h2, denoted by h1∪̃h2, is a hesitant fuzzy set in X defined
as follows: for each x ∈ X,

(h1∪̃h2)(x) = h1(x) ∪ h2(x),

(iv) the union of (hj)j∈J , denoted by
∪̃

j∈Jhj , is a hesitant fuzzy set in X defined
as follows: for each x ∈ X,

(
∪̃

j∈J
hj)(x) =

∪
j∈J

hj(x).

Definition 2.4 ([8]). Let X be a nonempty set and let h ∈ HS(X). Then the
complement of h, denoted by hc, is a hesitant fuzzy set in X defined as: for each
x ∈ X,

hc(x) = h(x)c = [0, 1] \ h(x).
106
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Result 2.5 ([8], Proposition 3.14). Let X be a nonempty set, let h, h1, h2, h3 ∈
HS(X) and let (hj)j∈J ⊂ HS(X). Then

(1) (Idempotent laws): h∪̃h = h, h∩̃h = h,
(2) (Commutative laws): h1∪̃h2 = h2∪̃h1, h1∩̃h2 = h2∩̃h1,
(3) (Associative laws): h1∪̃(h2∪̃h3) = (h1∪̃h2)∪̃h3, h1∩̃(h2∩̃h3) = (h1∩̃h2)∩̃h3,
(4) (Distributive laws): h1∪̃(h2∩̃h3) = (h1∪̃h2)∩̃(h1∪̃h3),

h1∩̃(h2∪̃h3) = (h1∩̃h2)∪̃(h1∩̃h3),

(4)
′
(Generalized Distributive laws): h∪̃(

∩̃
j∈Jhj) =

∩̃
j∈J(h∪̃hj),

h∩̃(
∪̃

j∈Jhj) =
∪̃

j∈J(h∩̃hj),

(5) (Absorption laws): h1∪̃(h1∩̃h2) = h1, h1∩̃(h1∪̃h2) = h1.
(6) (DeMorgan’s laws): (h1∪̃h2)

c = hc
1∩̃hc

2, (h1∩̃h2)
c = hc

1∪̃hc
2,

(6)
′
(Generalized DeMorgan’s laws): (

∪̃
j∈Jhj)

c =
∩̃

j∈Jh
c
j, (

∩̃
j∈Jhj)

c =
∪̃

j∈Jh
c
j,

(7) (hc)c = h,
(8) h1∩̃h2 ⊆ h1 and h2∩̃h1 ⊆ h2,
(9) h1 ⊆ h2∪̃h1 and h1 ⊆ h2∪̃h2,
(10) if h1 ⊆ h2 and h2 ⊆ h3, then h1 ⊆ h3,
(11) if h1 ⊆ h2, then h1∩̃h ⊆ h2∩̃h and h1∪̃h ⊆ h2∪̃h,
(12) h0 ⊆ h ⊆ h1,
(13) h∩̃h0 = h0, h∪̃h0 = h, h∩̃h1 = h, h∪̃h1 = h1.

From the above proposition, we can easily see that (HS(X), ∩̃, ∪̃,c ) is a Boolean
algebra with the least element h0 and the largest element h1.

Definition 2.6 ([8]). Let X and Y be a nonempty sets, let hX ∈ HS(X) and
hY ∈ HS(Y )) and let f : X → Y be a mapping. Then the image of hX under f ,
denoted by f(hX), is a hesitant fuzzy set in Y defined as follows: for each y ∈ Y ,

f(hX)(y) =

{ ∪̃
x∈f−1(y)hX(x) if f−1(y) ̸= ϕ

ϕ otherwise.

Result 2.7 ([8], Proposition 3.16). Let f : X → Y be a mapping, and let hX , hX1, hX2 ∈
HS(X), (hXj )j∈J ⊂ HS(X), hY , hY 1, hY 2 ∈ HS(Y ) and (hYj )j∈J ⊂ HS(Y ).
Then

(1) if hX1 ⊆ hX2, then f(hX1) ⊆ f(hX2),

(2) f(hX1∪̃hX2) = f(hX1)∪̃f(hX2), f(
∪̃

j∈JhXj ) =
∪̃

j∈Jf(hXj ),

(3) f(hX1∩̃hX2) ⊆ f(hX1)∩̃f(hX2), f(
∩̃

j∈JhXj ) ⊆
∩̃

j∈Jf(hXj ),

(3)
′
if f is injective, then f(hX1∩̃hX2) = f(hX1)∩̃f(hX2), f(

∩̃
j∈JhXj ) =

∩̃
j∈Jf(hXj ),

(4) f(A) = h0 if and only if A = h0,
(5) if hY 1 ⊆ hY 2, then f−1(hY 1) ⊆ f−1(hY 2),

(6) f−1(hY 1∪̃hY 2) = f−1(hY 1)∪̃f−1(hY 2), f
−1(

∪̃
j∈JhYj ) =

∪̃
j∈Jf

−1(hYj ),

(7) f−1(hY 1∩̃hY 2) ⊆ f−1(hY 1)∩̃f−1(hY 2), f
−1(

∩̃
j∈JhYj ) ⊆

∩̃
j∈Jf

−1(hYj ),

(8) f−1(hY ) = h1 if and only if hY ∩̃f(h1) = h1,
(9) hX ⊂ f−1 ◦ f(hX); in particular, hX = f−1 ◦ f(hX), if f is injective,
(10) f ◦ f−1(hY ) ⊂ hY ; in particular, f ◦ f−1(hY ) = hY , if f is sujective.
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3. Hesitant fuzzy subgroupoids

Definition 3.1. Let h ∈ HS(X). Then h is called a hesitant fuzzy point with the
support x ∈ X and the value λ, denoted by xλ, if xλ : X → P [0, 1] is the mapping
given by: for each y ∈ X,

xλ(y) =

{
λ ⊂ [0, 1] if y ̸= x
ϕ otherwise.

We will denote the set of all hesitant fuzzy points in X as HP (X).

Definition 3.2. Let h ∈ HS(X) and let xλ ∈ HP (X). Then xλ is said to be belong
to h, denoted by xλ ∈ h, if λ ⊂ h(x).

It is obvious that h =
∩̃

xλ∈Axλ.

The following is the immediate result of Definitions 2.2, 2.3 and 3.1.

Theorem 3.3. Let h1, h2 ∈ HS(X) and let (hj)j∈J ⊂ HS(X).
(1) h1 ⊂ h2 if and only if xλ ∈ h2, for each xλ ∈ h1.
(2) xλ ∈ h1∩̃h2 if and only if xλ ∈ h1 and xλ ∈ h2.
(3) If xλ ∈ h1 or xλ ∈ h2, then xλ ∈ h1∪̃h2.

(4) xλ ∈
∩̃

j∈Jhj if and only if xλ ∈ hj, for each j ∈ J .

(5) If xλ ∈ hj for some j ∈ J , then xλ ∈
∪̃

j∈Jhj.

Remark 3.4. The converses of (3) and (5) of Theorem 3.3 need not to be true in
general as shown the following example.

Example 3.5. Let X = {a, b, c}, let h1 and h2 be two hesitant fuzzy sets given by,
respectively: h1(a) = {0, 0.4, 0.7}, h1(b) = [0, 0.6), h1(c) = (0, 0.8]
and

h2(a) = {0, 0.5, 0.7}, h2(b) = [0.1, 0.7), h2(c) = [0, 0.8).
Let λ = {0, 0.4, 0.5} ∈ P [0, 1] and consider aλ ∈ HP (X). Then clearly, we can easily
check that aλ ∈ h1∪̃h2 but aλ ̸∈ h1 and aλ ̸∈ h2.

Definition 3.6. Let (X, ·) be a groupoid and let h1, h2 ∈ HS(X). Then the
hesitant fuzzy product of h1 and h2, denoted by h1 ◦h2, is a hesitant fuzzy set in X
defined by: for each x ∈ X,

(h1 ◦ h2)(x) =

{ ∪̃
yz=x[h1(y) ∩ h2(z)] if yz = x

ϕ otherwise.

Proposition 3.7. Let h1, h2 ∈ HS(X) and let xλ, yµ ∈ HP (X). Then
(1) xλ ◦ yµ = (xy)λ∩µ,

(2) h1 ◦ h2 =
∪̃

xλ∈h1, yµ∈h2
xλ ◦ yµ.

Proof. (1) Let z ∈ X and suppose z = x
′
y

′
. Then

(xλ ◦ yµ)(z) =
∪̃

x′y′=z[xλ(x
′
) ∩ yµ(y

′
)] = λ ∩ µ

(xλ ◦ yµ)(z) =

{ ∪̃
x′y′=z[xλ(x

′
) ∩ yµ(y

′
)] if x

′
y

′
= z

ϕ otherwise
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=

{
λ ∩ µ if xy = z
ϕ otherwise

= (xy)λ∩µ.

(2) Let h =
∪̃

xλ∈h1, yµ∈h2
xλ ◦ yµ. For each z ∈ X, we assume that there are

u, v ∈ X such that uv = z, xλ ̸= ϕ and yµ ̸= ϕ, without loss of generality. Then

(h1 ◦ h2)(z) =
∪̃

uv=z[h1(u) ∩ h2(v)]

⊃
∪̃

uv=z(
∪̃

xλ∈h1, yµ∈h2
[xλ(u) ∩ yµ(v)]

=
∪̃

xλ∈h1, yµ∈h2
[xλ ◦ yµ]

= h(z)
and

h(z) =
∪̃

xλ∈h1, yµ∈h2
(
∪̃

uv=z[xλ(u) ∩ yµ(v)])

=
∪̃

uv=z(
∪̃

xλ∈h1, yµ∈h2
[xλ(u) ∩ yµ(v)])

⊃
∪̃

uv=z[uh1(u)(u) ∩ vh2(v)(v)]

=
∪̃

uv=z[h1(u) ∩ h2(v)]
= (h1 ◦ h2)(z).

Thus h1 ◦ h2 = h. So h1 ◦ h2 =
∪̃

xλ∈h1, yµ∈h2
xλ ◦ yµ. �

The following is the immediate result of Definition 3.6.

Proposition 3.8. Let (X, ·) be a groupoid and let ◦ be the hesitant fuzzy product.
(1) If “·” is associative [resp. commutative], then so is “◦” in HS(X).
(2) If “·” has an identity e ∈ X, then e[0,1] is an identity of “◦” in HS(X), i.e.,

h ◦ e[0,1] = h = e[0,1] ◦ h, for each h ∈ HS(X).

Definition 3.9. Let (G, ·) be a groupoid and let ϕ ̸= h ∈ HS(X). Then h is called
a hesitant fuzzy subgroupoid (in short, HGP) in G, if h ◦ h ⊂ h.

We will denote the set of all HGPs in G as HGP (G).

Example 3.10. Let G = {a, b, c, d} be the groupoid in which · is given by:

· a b c d
a a b c d
b b c a b
c c d c a
d d b d a

Table 3.1

Consider two hesitant fuzzy sets h1 and h2 in defined by:

h1(a) = {0.1, 0.3, 0.7}, h1(b) = {0.3}, h1(c) = h1(d) = {0.3, 0.7}.

and

h2(a) = {0.1, 0.3}, h2(b) = (0.6, 1], h2(c) = {0.3, 0.8}, h2(d) = [0.1, 0.4).

Then h1 ◦ h1 is a hesitant fuzzy set in G given by:
(h1 ◦ h1)(a) = {0.1, 0.3}, (h1 ◦ h1)(b) = {0.3},
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(h1 ◦ h1)(c) = (h1 ◦ h1)(d) = {0.3, 0.7}.
Thus h1 ◦ h1 ⊂ h1. So h1 is a hesitant fuzzy subgroupoid in G.

On the other hand, (h2 ◦ h2)(a) = [0.1, 0.4) ∪ {0.8} ̸⊂ {0.1, 0.3} = h2(a). Then
h2 ◦ h2 ̸⊂ h2. Thus h2 is not a hesitant fuzzy subgroupoid in G.

Theorem 3.11. Let (G, ·) be a groupoid and let ϕ ̸= h ∈ HS(X). Then the follow-
ings are equivalent:

(1) h ∈ HGP (G),
(2) for any xλ, yµ ∈ h, xλ ◦ yµ ∈ h, i.e., (h, ◦) is a groupoid,
(3) for any x, y ∈ G, h(xy) ⊃ h(x) ∩ h(y).

Proof. (1)⇔(2): From Definitions 3.6 and 3.9, the proof is clear.
(1)⇒(3): Suppose h ∈ HGP (G) and let x, y ∈ G. Then

h(xy) ⊃ (h ◦ h)(xy) [By Definition 3.9]

=
∪̃

xy=uv[h(u) ∩ (v)] [By Definition 3.6]

⊃ h(x) ∩ h(y).
Thus h(xy) ⊃ h(x) ∩ h(y).

(3)⇒(1): The proof is obvious. �
From Proposition 3.11, we can define a HGP in a groupoid G as follows.

Definition 3.12. Let G be a groupoid and let h ∈ HS(G). Then h is called a
hesitant fuzzy subgroupoid (in short, HGP) in G, if

h(xy) ⊃ h(x) ∩ h(y), for any x, y ∈ G.

It is obvious that h0, h1 ∈ HGP (G).

Example 3.13. Let G = {a, b, c, d} the groupoid in which · is given by:

· a b c d
a a b c d
b b b b b
c c d c c
d d b d d

Table 3.2

Let h be the hesitant fuzzy set in G defined by:

h(a) = [0, 0.6], h(b) = (0.1, 0.7], h(c) = (0, 0.8), h(d) = [0.1, 0.9].

Then we can easily check that h is a hesitant fuzzy subgroupoid in G.

Proposition 3.14. If (hj)j∈J ⊂ HGP (G), then
∩̃

j∈Jhj ∈ HGP (G).

Proof. Let h =
∩̃

j∈Jhj and let x, y ∈ G. Then

h(xy) =
∩

j∈J hj(xy)

⊃
∩

j∈J [hj(x) ∩ hj(y)] [Since hj ∈ HGP (G)]

= (
∩

j∈J hj(x)) ∩ (
∩

j∈J hj(y))

= [
∩̃

j∈Jhj ](x) ∩ [
∩̃

j∈Jhj ](y)

= h(x) ∩ h(y).

Thus h(xy) ⊃ h(x) ∩ h(y). So
∩̃

j∈Jhj ∈ HGP (G). �
110
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Proposition 3.15. Let f : G → G
′
be a groupoid homomorphism, let hG ∈ HS(G)

and hG′ ∈ HS(G
′
).

(1) f(xλ ◦ yµ) = f(x)λ ◦ f(y)µ, for any xλ, yµ ∈ HP (G).

(2) If f is surjective and h ∈ HGP (G), then f(h) ∈ HGP (G
′
).

(3) If h ∈ HGP (G
′
), then f−1(h) ∈ HGP (G).

Proof. (1) Let xλ, yµ ∈ HP (G) and let z ∈ G
′
. Then

f(xλ ◦ yµ)(z) = f((xy)λ∩µ)(z) [By Proposition 3.7 (1)]

=

{ ∪̃
z′∈f−1(z)(xy)λ∩µ(z

′
) if f−1(z) ̸= ϕ

ϕ otherwise

=

{
λ ∩ µ if z = f(xy)
ϕ otherwise.

On the other hand,

[f(x)λ◦f(y)µ](z) =
{ ∪

z=uv[f(x)λ(u) ∩ f(y)µ(v) for (u, v) ∈ G
′ ×G

′
with z = uv

ϕ otherwise

=

{
λ ∩ µ if z = f(x)f(y)
ϕ otherwise.

Thus f(xλ ◦ yµ) = f(x)λ ◦ f(y)µ.
(2) Assume that f(h) ̸∈ HGP (G

′
). Then there are y, y

′ ∈ G
′
such that

f(h)(yy
′
) & f(h)(y) ∩ f(h)(y

′
).

Thus
∪

f(z)=yy′ h(z) & (
∪

f(x)=y h(x))∩(
∪

f(x′ )=y′ h(x
′
)). Since f is surjective, there

are x, x
′ ∈ G with f(x) = y and f(x

′
) = y

′
such that∪

f(z)=yy′

h(z) & h(x) ∩ h(x
′
).

So h(xx
′
) ⊂

∪
f(z)=yy′ h(z) & h(x) ∩ h(x

′
). This is a controdiction from the fact

that h ∈ HGP (G). Hence f(h) ∈ HGP (G
′
).

(3) The proof is easy. �

Definition 3.16. h ∈ HS(X) is said to have the sup-property, if for each subset T
of X, there is t0 ∈ T such that h(t0) =

∪
t∈T h(t).

Proposition 3.17. Let f : G → G
′
be a groupoid homomorphism and let h ∈

HS(G) has the sup-property. If h ∈ HGP (G), then f(h) ∈ HGP (G
′
).

Proof. Let y, y
′ ∈ G

′
. Then we can consider four cases:

(i) f−1(y) ̸= ϕ, f−1(y
′
) ̸= ϕ,

(ii) f−1(y) ̸= ϕ, f−1(y
′
) = ϕ,

(iii) f−1(y) = ϕ, f−1(y
′
) ̸= ϕ,

(iv) f−1(y) = ϕ, f−1(y
′
) = ϕ.

We will prove only the case (i) and omit the remainders. Since h has the sup-

property, there are x0 ∈ f−1(y) and x
′

0 ∈ f−1(y
′
) such that

h(x0) =
∪

t∈f−1(y)

h(t) and h(x
′

0) =
∪

t′∈f−1(y′ )

h(t
′
).
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Then
f(h)(yy

′
) =

∪
z∈f−1 h(z)

⊃ h(x0x
′

0) [Since f(x0x
′

0) = f(x0)f(x
′

0) = yy
′
]

⊃ h(x0) ∩ h(x
′

0) [Since h ∈ HGP (G)]

= (
∪

t∈f−1(y) h(t)) ∩ (
∪

t′∈f−1(y′ ) h(t
′
))

= f(h)(y) ∩ f(h)(y
′
).

Thus f(h) ∈ HGP (G
′
). �

Definition 3.18. Let f : X → Y be a mapping and let h ∈ HS(X). Then h is
said to be hesitant fuzzy invariant (in short, HF-invariant), if f(x) = f(y) implies
h(x) = h(y).

It is clear that if h is HF-invariant, then f−1 ◦ f(h) = h.

The following is the immediate result of Definition 3.18.

Proposition 3.19. Let f : X → Y be a mapping and let

H = {h ∈ HS(X) : h is HF − invariant and has the sup property}.

Then there is a one-to-one correspondence between H and HS(Imf), where Imf
denotes the image of f .

The following is the immediate result of Propositions 3.17 and 3.19.

Corollary 3.20. Let f : G → G
′
be a groupoid homomorphism and let

H = {h ∈ HGP (G) : h is HF − invariant and has the sup property}.

Then Then there is a one-to-one correspondence between H and HGP (Imf).

4. Hesitant fuzzy sugroups

Definition 4.1. Let G be a group and let h ∈ HS(G). Then h is called a hesitant
fuzzy subgroup (in short, HFG) in G, if it satisfies the following conditions: for any
x, y ∈ G,

(i) h(xy) ⊃ h(x) ∩ h(y),
(ii) h(x−1) ⊃ h(x).
We will denote the set of all HFGs in G as HFG(G).

Example 4.2. Consider the additive group (Z,+). We define h : Z → P [0, 1] as
follows: for each n ∈ Z,

h(n) = [
1

2
,
4

5
], if n is odd and h(n) = [

1

3
,
2

3
], if n is even, and h(0) = [0, 1].

Then we can easily see that h is a HFG in (Z,+).

The following is the immediate result of Proposition 3.13 and Definition 4.1.

Proposition 4.3. Let G be a group and let (hj)j∈J ⊂ HFG(G). Then
∩̃

j∈Jhj ∈
HFG(G).

112



J. Kim et al./Ann. Fuzzy Math. Inform. 18 (2019), No. 2, 105–122

Proposition 4.4. Let G be a group and let h ∈ HFG(G). Then
(1) h(x−1) = h(x), for each x ∈ G,
(2) h(e) ⊃ h(x), for each x ∈ G, where e is the identity of G.

Proof. (1) Let x ∈ G. Then by Definition 4.1, h(x) = h(x−1)−1) ⊃ h(x−1) ⊃ h(x).
Thus h(x−1) = h(x).

(2) Let x ∈ G. Then by Definition 4.1 and (1),

h(e) = h(xx−1) ⊃ h(x) ∩ h(x−1) = h(x) ∩ h(x) = h(x).

Thus h(e) ⊃ h(x). �

Theorem 4.5. Let G be a group and let h ∈ HS(G). Then h ∈ HFG(G) if and
only if h(xy−1) ⊃ h(x) ∩ h(y), for any x, y ∈ G.

Proof. Suppose h ∈ HFG(G) and let x, y ∈ G. Then by Definition 4.1 and Propo-
sition 4.4 (1) h(xy−1) ⊃ h(x) ∩ h(y−1) = h(x) ∩ h(y).

Conversely, suppose the necessary condition holds and let x ∈ G. Then h(e) =
h(xx−1) ⊃ h(x) ∩ h(x) = h(x). Thus h(x−1) = h(ex−1) ⊃ h(e) ∩ h(x) = h(x). So h
satisfies the condition (ii) of Definition 4.1.

Now let x, y ∈ G. Then h(xy) = h(x(y−1)−1) ⊃ h(x) ∩ h(y−1) ⊃ h(x) ∩ h(y).
Thus h(xy) ⊃ h(x) ∩ h(y). So h satisfies the condition (i) of Definition 4.1. Hence
h ∈ HFG(G). �

Proposition 4.6. Let G be a group and let h ∈ HS(G). If h ∈ HFG(G), then
h ◦ h = h.

Proof. Suppose h ∈ HFG(G). Then clearly, h ∈ HGP (G). Thus by Definition 3.9,
h ◦ h ⊂ h. Let x ∈ G such that x = yz, where y, z ∈ G. Then

(h ◦ h)(x) =
∪̃

x=yz[h(y) ∩ h(z)] [By Definition 3.6]

⊃ h(x) ∩ h(e) [Since G is group, x = xe = ex.]
= h(x). [By Proposition 4.4 (2)]

Thus h ◦ h ⊃ h. So h ◦ h = h. �

Theorem 4.7. Let G be a group and let h1, h2 ∈ HFG(G). Then h1◦h2 ∈ HFG(G)
if and only if h1 ◦ h2 = h2 ◦ h1.

Proof. Suppose h1 ◦ h2 ∈ HFG(G) and let x ∈ G and let x ∈ G. Then

(h1 ◦ h2)(x) =
∪̃

x=yz[h1(y) ∩ h2(z)] [By Definition 3.6]

=
∪̃

x=yz[h1(xz
−1) ∩ h2(y

−1x)]

[Since G is a group, y = xz−1 and z = y−1x]

=
∪̃

x=yz[h1(zx
−1) ∩ h2(x

−1y] [By Proposition 4.4 (1)]

=
∪̃

x−1=z−1y−1 [h1(y
−1) ∩ h2(z

−1)]

=
∪̃

x−1=z−1y−1 [h2(z
−1) ∩ h1(y

−1)]

= (h2 ◦ h1)(x
−1) [By Definition 3.6]

= (h2 ◦ h1)(x). [By the hypothesis]
Thus h1 ◦ h2 = h2 ◦ h1.

Conversely, suppose h1 ◦ h2 = h2 ◦ h1. Then
(h1 ◦ h2) ◦ (h1 ◦ h2) = h1 ◦ (h2 ◦ h1) ◦ h2 [By Proposition 3.8 (1)]
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= h1 ◦ (h1 ◦ h2) ◦ h2 [By the hypothesis]
= (h1 ◦ h1) ◦ (h2 ◦ h2)
⊂ h1 ◦ h2. [Since h1, h1 ∈ HFG(G)]

Thus by Definition 3.9, h1 ◦ h2 ∈ HGP (G). So h1 ◦ h2 satisfies the condition (i) of
Definition 4.1.

Let x ∈ G. Then
(h1 ◦ h2)(x

−1) = (h2 ◦ h1)(x
−1) [the hypothesis]

=
∪̃

x−1=yz[h2(y) ∩ h1(z)] [By Definition 3.7]

=
∪̃

x−1=yz[h2(x
−1z−1) ∩ h1(y

−1x−1)]

[Since y = x−1z−1 and z = y−1x−1]

=
∪̃

x−1=yz[h2(zx) ∩ h1(xy)] [By Proposition 4.4 (1)]

=
∪̃

x−1=yz[h2(y
−1) ∩ h1(z

−1)]

[Since zx = y−1 and xy = z−1]

=
∪̃

x=z−1y−1 [h2(y
−1) ∩ h1(z

−1)]

= (h1 ◦ h2)(x).
Thus h1 ◦ h2 satisfies the condition (ii) of Definition 4.1. So h1 ◦ h2 ∈ HFG(G). �

Proposition 4.8. Let G be a group and let h ∈ HFG(G). Then Gh = {x ∈ G :
h(x) = h(e)} is a subgroup.

Proof. Let x, y ∈ Gh. Then
h(xy−1) ⊃ h(x) ∩ h(y) [By Theorem 4.5]

= h(e) ∩ h(e) [Since x, y ∈ Gh]
= h(e).

Thus h(xy−1) ⊃ h(e). From Proposition 4.4 (2), it is obvious that h(e) ⊃ h(xy−1).
So h(xy−1) = h(e). Hence xy−1 ∈ Gh. Therefore Gh is a subgroup of G. �

Proposition 4.9. Let G be a group and let h ∈ HFG(G). If h(xy−1) = h(e), for
any x, y ∈ G, then h(x) = h(y).

Proof. Let x, y ∈ G. Then
h(x) = h((xy−1)y)

⊃ h(xy−1) ∩ h(y) [Since h ∈ HFG(G)]
= h(e) ∩ h(y) [By the hypothesis]
= h(y) [Proposition 4.4 (2)]

and
h(y) = h((yx−1)x)

⊃ h(yx−1) ∩ h(x) [Since h ∈ HFG(G)]
= h((yx−1)−1) ∩ h(x) [By Proposition 4.4 (1)]
= h(xy−1) ∩ h(x)
= h(e) ∩ h(x) [By the hypothesis]
= h(x). [Proposition 4.4 (2)]

Thus h(x) = h(y). �

Proposition 4.10. Let G be a group and let h ∈ HFG(G). If Gh is a normal
subgroup of G, then h is constant on each coset of Gh.
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Proof. Let a ∈ G and let x ∈ aGh. Then there is y ∈ G such that x = ay. Since
Gh is normal, xa−1 ∈ Gh. Thus by the definition of Gh, h(xa

−1) = h(e). So by
Proposition 4.9, h(x) = h(a). Hence h is constant on aGh, for each a ∈ G.

Similarly, we can easily see that h is constant on Gha, for each a ∈ G. This
completes the proof. �

Let H be a subgroup of a group G. Then the number of right [resp. left] coset of
H in G is called the index of H in G and denoted by [G : H]. If G is a finite group,
then there is only a finite number of distinct right [resp. left] cosets of H and thus
[G : H] is finite. However, if G is an infinite group, then [G : H] may be either finite
or infinite.

Proposition 4.11. Let G be a group, let h ∈ HFG(G) and let Gh be normal. If
[Gh : G] is finite, then h has the sup property.

Proof. Let T ⊂ G. Since [Gh : G] is finite, let [Gh : G] = n, say

A = {a1Gh, a2Gh, · · · , anGh},

where ai ∈ G (i = 1, 2, · · · , n) and aiGh ∩ ajGh = ϕ, for any i ̸= j.
Let t ∈ T . Since T ⊂ G =

∪
A =

∪n
i=1 aiGh, there is i ∈ {1, 2, · · · , n} such that

t ∈ aiGh. Since Gh be normal, by Proposition 4.10, h(t) = h(ai) on aiGh, say
h(t) = λi ∈ P [0, 1]. Thus there is t0 ∈ T such that h(t0) =

∪n
i=1 λi =

∪
t∈T h(t). So

h has the sup property. �

Proposition 4.12. A group G cannot be the union of two proper HFGs.

Proof. Assume that h1 and h2 are two proper HFGs of G such that

h1∪̃h2 = h1, h1 ̸= h1 and h2 ̸= h1.

Let x ∈ G. Then (h1∪̃h2)(x) = h1(x) ∪ h2(x) = [0, 1]. Thus h1(x) = [0, 1] or
h2(x) = [0, 1]. This is a contradiction. This completes the proof. �

Proposition 4.13. Let G be a finite group and let h ∈ HGP (G). Then h ∈
HFG(G).

Proof. Let x ∈ G. Since G is finite, x has the finite order, say n. Then xn = e,
where e is the identity of G. Thus x−1 = xn−1. Since h ∈ HGP (G),

h(x−1) = h(xn−1) = h(xn−2x) ⊃ h(x).

So h ∈ HFG(G). �

Theorem 4.14. Let G be a group, let h ∈ HFG(G) and let x ∈ G. Then h(xy) =
h(y), for each y ∈ G if and only if h(x) = h(e).

Proof. Suppose h(xy) = h(y), for each y ∈ G. Then clearly, h(x) = h(e).
Conversely, suppose h(x) = h(e) and let y ∈ G. Then by Proposition 4.4 (2),

h(x) ⊃ h(y). Thus h(xy) ⊃ h(x) ∩ h(y) = h(y). On the other hand,
h(y) = h(x−1xy) ⊃ h(x) ∩ h(xy) [By Proposition 4.4 (1)]

= h(xy). [By the hypothesis and Proposition 4.4 (2)
So h(xy) = h(y), for each y ∈ G. �
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Proposition 4.15. Let f : G → G
′
be a group homomorphism, let hG ∈ HFG(G)

and let hG′ ∈ HFG(G
′
).

(1) If hG has the sup-property, then f(hG) ∈ HFG(G
′
).

(2) f−1(hG′ ) ∈ HFG(G).

Proof. (1) From Proposition 3.17, it is clear that hG ∈ HGP (G). Then it is enough
to show that f(hG)(y

−1) ⊃ f(hG)(y), for each y ∈ f(G). Let y ∈ f(G). Then
clearly, ϕ ̸= f−1(y) ⊂ G. Since hG has the sup-property, there is x0 ∈−1 (y) such
that

hG(x0) =
∪

t∈f−1(y)

hG(t).

Thus f(hG)(y
−1) =

∪
t∈f−1(y−1) hG(t) ⊃ hG(x

−1
0 ) ⊃ hG(x) = f(hG)(y). So f(hG) ∈

HFG(G
′
).

(2) From Proposition 3.15, it is clear that f−1(hG′ ) ∈ HGP (G). Then it is
enough to show that f−1(hG′ )(x−1) ⊃ f−1(hG′ )(x), for each x ∈ G. Let x ∈ G.
Then

f−1(hG′ )(x−1) = hG′ (f(x−1))
= hG′ (f(x)−1)
=⊃ hG′ (f(x))
= f−1(hG′ )(x).

Thus f−1(hG′ ) ∈ HFG(G). �

Theorem 4.16. Let Gp be a cyclic group of prime order, say Gp = {0, 1, 2, · · · , p−
1}. Then h ∈ HFG(Gp) if and only if h(x) = h(1) ⊂ h(0), for each 0 ̸= x ∈ Gp.

Proof. Suppose h ∈ HFG(Gp) and let 0 ̸= x ∈ Gp. Since x is the sum of 1′s and 1
is the sum of x′s, h(x) ⊃ h(1) ⊃ h(x). Thus h(x) = h(1). Since 1 is the identity of
Gp, h(0) ⊃ h(x). So h(x) = h(1) ⊂ h(0), for each 0 ̸= x ∈ Gp.

Conversely, suppose h(x) = h(1) ⊂ h(0), for each 0 ̸= x ∈ Gp and let x, y ∈ Gp.
Then we have four cases: x ̸= 0, y ̸= 0 and x = y or x ̸= 0, y = 0 or x = 0, y ̸= 0 or
x ̸= 0, y ̸= 0 and x ̸= y.

Case (i): Suppose x ̸= 0, y ̸= 0. Then by the hypothesis,

h(x) = h(y) = h(1) ⊂ h(0).

Thus h(x− y) = h(0) ⊃ h(x) ∩ h(y).
Case (ii): Suppose x ̸= 0, y = 0. Then clearly, x−y ̸= 0. Thus by the hypothesis,

h(x− y) = h(x) = h(1) ⊂ h(0) = h(y). So h(x− y) ⊃ h(x) ∩ h(y).
Case (iii): The proof is similar to Case (ii).
Case (iv): Suppose x ̸= 0, y ̸= 0 and x ̸= y. Then clearly, x− y ̸= 0. Thus by the

hypothesis, h(x− y) = h(x) = h(y) = h(1) ⊂ h(0). So h(x− y) ⊃ h(x) ∩ h(y).
In all cases, h(x− y) ⊃ h(x) ∩ h(y). Hence by Theorem 4.5, h ∈ HFG(Gp). �

Definition 4.17. Let G be a groupoid and let h ∈ HS(G). Then h is called a:
(i) hesitant fuzzy left ideal (in short, HFLI) ofG, if h(xy) ⊃ h(y), for any x, y ∈ G,
(ii) hesitant fuzzy right ideal (in short, HFRI) of G, if h(xy) ⊃ h(x), for any

x, y ∈ G,
(iii) hesitant fuzzy ideal (in short, HFI) of G, if it is both a HFLI and a HFRI.
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We will denote the set of all HFLIs [resp. HFRIs and HFIs] of a G as HFLI(G)
[resp. HFRI(G) and HFI(G)].

It is obvious that h ∈ HFI(G) if and only if h(xy) ⊃ h(x)∪h(y), for any x, y ∈ G.
Furthermore, a HFI [resp. HFLI and HFRI] is a HGP of G.

It is clear that for each h ∈ HGP (G), H(xn) ⊃ h(x) for each x ∈ G and if h is a
constant hesitant fuzzy set in G, then h is a HFI of G.

Example 4.18. Let G = {a, b, c, d} the groupoid in which · is given by:

· a b c d
a a b c d
b b b d c
c c a c b
d c b d d

Table 4.1

Let h1 and h2 be the hesitant fuzzy sets in G defined by, respectively:

h1(a) = h1(b) = [0, 0.6], h1(c) = h1(d) = [0, 0.7),

h2(a) = [0.1, 0.7], h2(b) = h2(c) = h2(d) = [0, 0.7],

Then we can easily check that h1 is a HFLI and h1 is a HFRI of G.

Proposition 4.19. The HFLIs [resp. HFRIs and HFIs] of a group G are just
constant mappings.

Proof. Suppose h : G → P [0, 1] be a constant mapping and let x, y ∈ G. Then
clearly, h(xy) = h(x) = h(y). Thus h ∈ HFLI(G) [resp. HFRI(G) and HFI(G)].

Suppose h ∈ HFLI(G). Then h(xy) ⊃ h(y), for any x, y ∈ G. In particular,
h(x) = h(xe) ⊃ h(x), for each x ∈ G. On the other hand, h(e) = h(x−1x) ⊃ h(x),
for each x ∈ G. Thus h(x) = h(e), for each x ∈ G. So h is a constant mapping.
This completes the proof. �

Definition 4.20. Let G be a group and let h ∈ HFG(G). Then h is called a
hesitant fuzzy normal subgroup (in short, HFNG) of G, if h(xy) = h(yx), for any
x, y ∈ G.

We will denote the set of all HFNGs of G as HFNG(G). It is obvious that if G
is abelian, then h ∈ HFNG(G), for each h ∈ HFG(G).

Example 4.21. Consider the general linear group of degree n, GL(n,R). Then
clearly, GL(n,R) is not abelian. Let In be the unit matrix in GL(n,R). We define
the mapping h : GL(n,R) → P [0, 1] as follows: for each In ̸= M ∈ GL(n,R),

h(M) = [ 15 ,
2
3 ], if M is not a triangular matrix,

h(M) = [ 13 ,
1
2 ], if M is a triangular matrix

and
h(In) = [0, 1].

Then we can easily see that h ∈ HFNG(GL(n,R)).
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Proposition 4.22. Let G be a group, let h1 ∈ HS(G) and let h2 ∈ HFNG(G).
Then h1 ◦ h2 = h2 ◦ h1.

Proof. Let x ∈ G. Then

(h1 ◦ h2)(x) =
∪̃

x=yz[h1(y) ∩ h2(z)]

=
∪̃

x=yz[h1(y) ∩ h2(y
−1x)]

=
∪̃

x=(xy−1)y[h1(y) ∩ h2(xy
−1)] [Since h2 ∈ HFNG(G)]

=
∪̃

x=(xy−1)y[h2(xy
−1) ∩ h1(y)]

= (h2 ◦ h1)(x).
Thus h1 ◦ h2 = h2 ◦ h1. �
Proposition 4.23. Let G be a group, let h1 ∈ HFNG(G) and let h2 ∈ HFG(G).
Then h2 ◦ h1 ∈ HFG(G).

Proof. From Definitions 3.6 and 3.9, we can easily see that h2◦h1 ∈ HGP (G). Then
it is sufficient to show that (h2 ◦h1)(x

−1) ⊃ (h2 ◦h1)(x), for each x ∈ G. Let x ∈ G.
Then

(h2 ◦ h1)(x
−1) =

∪̃
x−1=yz[h2(y) ∩ h1(z)]

=
∪̃

x=z−1y−1 [h2((y
−1)−1) ∩ h1((z

−1)−1)]

⊃
∪̃

x=z−1y−1 [h2(y
−1)) ∩ h1(z

−1)]

= (h1 ◦ h2)(x)
= (h2 ◦ h1)(x). [By Proposition 4.21]

Thus h2 ◦ h1 ∈ HFG(G). �
Proposition 4.24. Let G be a group and let h1, h2 ∈ HFNG(G). Then h1 ◦ h2 ∈
HFNG(G).

Proof. From Propositions 4.7, 4.22 and 4.23, it is clear that h1 ◦ h2 ∈ HFG(G).
Let a, b ∈ G. Then there are x, y ∈ G such that ab = xy. Since b = a−1xy,
ba = (a−1xa)(a−1ya). Thus

(h1 ◦ h2)(ab) =
∪̃

ab=xy[h1(x) ∩ h2(y)]

=
∪̃

ab=xy[h1(a
−1xa) ∩ h2(a

−1ya)] [Since h1, h2 ∈ HFNG(G)]

=
∪̃

ba=(a−1xa)(a−1ya)[h1(a
−1xa) ∩ h2(a

−1ya)]

= (h1 ◦ h2)(ba).
So h1 ◦ h2 ∈ HFNG(G). �
Proposition 4.25. Let G be a group and let h ∈ HFNG(G). Then Gh is a normal
subgroup of G.

Proof. From Proposition 4.8, it is obvious that Gh is a subgroup of G and Gh ̸= ϕ.
Let x ∈ Gh and let y ∈ G. Then

h(yxy−1) = h((yx)y−1)
= h(y−1(yx)) [Since h ∈ HFNG(G)]
= h((y−1y)x)
= h(x)
= h(e). [Since x ∈ Gh]

Thus yxy−1 ∈ Gh. So Gh is a normal subgroup of G. �
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The converse of Proposition 4.25 need not to be true as shown in the following
example.

Example 4.26. Let G = {e, a, b, c} be the group in which · is given by:

· e a b c
e e a b c
a a e b c
b b a e c
c c a b e

Table 4.2

Let h be the hesitant fuzzy set in X defined by:

h(e) = h(a) = [0, 1], h(b) = (0, 1], h(c) = [0, 1).

Then we can easily check that h is a hesitant fuzzy subgroup of G. Moreover,
Gh = {e, a} is a normal subgroup of G. But h(ab) = (0, 1] ̸= [0, 1] = h(ba). Thus h
is not a hesitant fuzzy normal subgroup of G.

Definition 4.27. Let G be a group and let h ∈ HFNG(G). Then the quotient
group G/Gh is called the hesitant fuzzy quotient subgroup (in short, HFQG) of G
with respect to h.

Proposition 4.28. Let G be a group, let h1 ∈ HFNG(G), let h2 ∈ HS(G) and let
π : G → G/Gh be the natural mapping. Then π−1(π(h2)) = Gh1

◦ h2.

Proof. Let x ∈ G. Then
[π−1(π(h2))](x) = π(h2)(π(x))

=
∪̃

π(x)=π(y)h2(y)

=
∪̃

xy−1∈Gh1
h2(y)

and
(Gh ◦ h2)(x) =

∪̃
x=zy[Gh1(z) ∩ h2(y)]

=
∪̃

z=xy−1∈Gh1
[h1(e) ∩ h2(y)] [By the definition of Gh1 ]

=
∪̃

z=xy−1∈Gh1
h2(y). [By proposition 4.4 (2)]

Thus π−1(π(h2)) = Gh1 ◦ h2. �

5. Hesitant fuzzy subrings

Definition 5.1. Let (R,+, ·) be a ring and let ϕ ̸= h ∈ HS(R). Then h is called a
hesitant fuzzy subring (in short, HFR), if it satisfies the following conditions:

(i) h ∈ HFG(R,+),
(ii) h ∈ HGP (R, ·).

We will denote the set of all HFRs of R as HFR(R).

Example 5.2. Consider the ring (Z2,+, ·), where Z2 = {0, 1}. We define the
mapping h : Z2 → P [0.1] as follows: h(0) = [0.2, 0.7] and h(1) = [0.4, 0.7). Then we
can easily see that h ∈ HFR(Z2).
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The following is the immediate result of Definition 3.12 and Theorem 4.5.

Theorem 5.3. Let R) be a ring and let ϕ ̸= h ∈ HS(R). Then h ∈ HFR(R) if and
only if for any x, y ∈ R,

(1) h(x− y) ⊃ h(x) ∩ h(y),
(2) h(xy) ⊃ h(x) ∩ h(y).

Definition 5.4. Let R) be a ring and let ϕ ̸= h ∈ HFR(R). Then h is called a:
(i) hesitant fuzzy left ideal (in short, HFLI) ofR, if h(xy) ⊃ h(y), for any x, y ∈ R,
(ii) hesitant fuzzy right ideal (in short, HFRI) of R, if h(xy) ⊃ h(x), for any

x, y ∈ R,
(iii) hesitant fuzzy ideal (in short, HFI), if it is both a HFLI and a HFRI of R.

We will denote the set of all HFLIs [resp. HFRIs and HFIs] of R as HFLI(R)
[resp. HFRI(R) and HFI(R)].

Example 5.5. Consider the ring (Z4,+, ·), where Z4 = {0, 1, 2, 3}. We define the
mapping h : Z4 → P [0.1] as follows:

h(0) = [0.2, 0.8), h(1) = (0.3, 0.7) = h(3) and h(2) = [0.4, 0.5].

Then we can easily see that h ∈ HFI(Z4).

The following is the immediate result of Theorem 5.3 and Definition 5.4.

Theorem 5.6. Let R) be a ring and let ϕ ̸= h ∈ HS(R). Then h ∈ HFI(R) [resp.
HFLI(R) and HFRI(R)] if and only if for any x, y ∈ R,

(1) h(x− y) ⊃ h(x) ∩ h(y),
(2) h(xy) ⊃ h(x) ∪ h(y) [resp. h(xy) ⊃ h(y) and h(xy) ⊃ h(x)].

Theorem 5.7. Let R) be a skew field (also a division ring) and let ϕ ̸= h ∈ HS(R).
Let 0 BE the identity of R for “+” and let e be the identity of R for “·”. Then the
followings are equivalent:

(1) h ∈ HFI(R) [resp. HFLI(R) and HFRI(R)],
(2) for each 0 ̸= x ∈ R, h(x) = h(e) ⊂ h(0).

Proof. (1)⇒(2): Suppose h ∈ HFLI(R) and let 0 ̸= x ∈ R. Then

h(x) = h(xe) ⊃ h(e) and h(e) = h(x−1x) ⊃ h(x).

Thus h(x) = h(e). On the other hand, h(0) = h(e − e) ⊃ h(e) ∩ h(e) = h(e). So
h(x) = h(e) ⊂ h(0).

(2)⇒(1): Suppose h(x) = h(e) ⊂ h(0), for each 0 ̸= x ∈ R and let x, y ∈ R.
Then we have four cases: x ̸= 0, y ̸= 0 and x ̸= y or x ̸= 0, y ̸= 0 and x = y or
x ̸= 0, y = 0 or x = 0, y ̸= 0.

Case (i): Suppose x ̸= 0, y ̸= 0 and x ̸= y. Then clearly, x − y ̸= 0 and xy ̸= 0.
Thus by the hypothesis,

h(x− y) = h(e) ⊃ h(x) ∩ h(y) and h(xy) = h(e) ⊃ h(x) ∪ h(y).

Case (ii): Suppose x ̸= 0, y ̸= 0 and x = y. Then clearly, x− y = 0 and xy ̸= 0.
Thus by the hypothesis,

h(x− y) = h(0) ⊃ h(x) ∩ h(y) and h(xy) = h(e) ⊃ h(x) ∪ h(y).
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Case (iii): Suppose x ̸= 0, y = 0. Then clearly, x − y ̸= 0 and xy = 0. Thus by
the hypothesis,

h(x− y) = h(x) = h(e) ⊃ h(x) ∩ h(y) and h(xy) = h(0) ⊃ h(x) ∪ h(y).

Case (iv): Suppose x = 0, y ̸= 0. Then the proof is similar to case (iii).
So in all cases, h ∈ HFI(R). This completes the proof. �

Remark 5.8. Proposition 5.7 shows that a HFLI [resp. HFRI] is a HFI in a skew
field.

The following gives a characteristic of a (usual) field by a HFI.

Proposition 5.9. Let R be a commutative ring with a unity e. Suppose for each
h ∈ HFI(R) and each 0 ̸= x ∈ R, h(x) = h(e) ⊂ h(0). Then R is a field.

Proof. Let A be a ideal of R such that A ̸= R. Then we can consider A as A = χA,
where χA : R → {0, 1} ⊂ [0, 1] is the characteristic function of A. Thus A ∈ HS(R).
Moreover, we can easily see that A ∈ HFI(R) such that A ̸= h1. So there is y ∈ R
such that y ̸∈ A and thus χA(y) = {0}. By the hypothesis, χA(x) = χA(e) ⊂ χA(0),
each 0 ̸= x ∈ R. Hence χA(0) = {1}, i.e., A = {0}. Therefore R is a field. �

6. Conclusions

We introduced the concepts of a hesitant fuzzy subgroupoid, a hesitant fuzzy
subgroup, a hesitant fuzzy normal subgroup, a hesitant fuzzy subring and a hesitant
fuzzy ideal and obtained some of its properties, respectively. In particular, we gave
a characteristic of a (usual) field by a hesitant fuzzy ideal (See Proposition 5.9). In
the future, we will apply the concept of hesitant fuzzy set to BCK/BCI-algebras,
d-algebras, B-algebras, etc.
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