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1. Introduction

In 1965, Zadeh [34] introduced a fuzzy set as the generalization of an ordinary
set. After that time, many researchers [4, 7, 8, 12, 22, 26, 27] investigated fuzzy sets
in the sense of category theory, for instance, Set(H), Setf (H), Setg(H), Fuz(H).
In particular, Carrega [4], Eytan [7], Goguen [8], Pittes [26], Ponasse [27] studied
Set(H) in topos view-point.

In 1984, Nel [23] introduced the concept of a topological universe which implies
quasitopos [1]. Its notion has already been put to effective use several areas of
mathematics in [19, 20, 24].

Hur [12] investigated Set(H) in topological universe view-point. Lim et al [22]
introduced the new category VSet(H) and investigated it in the sense of topological
universe. Moreover, by using the concept of an intutionistic fuzzy set introduced by
Atanasossov [2], Hur et al. [13] introduced the category ISet(H) and studied it
in a view point of topological universe. Recently, Hur et al [14, 15] studied the
categories NSet(H) of neutrosophic sets which were introduced by Smarandache
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[29] and NCSet(H) of neutrosophic crisp set defined by Salama and Smarandache
[28] in the sense of topological view-point, respectively. Moreover, Kim et al. [18]
investigated the category NCSet of intuitionistic sets introduced by Coker [5] in
the sense of topological universe. Also Lee et al. [21] studied the category BPSet
of bipolar fuzzy sets defined by Zhang [35] in the same sense.

In 2010, Torra [31] introduced the notion of a hesitant fuzzy set (Refer to [25, 30]).
After then, Jun et al. [9] studied hesitant fuzzy bi-ideals in semigroups. Xia and Xu
[32] applied hesitant fuzzy set for decision making. Furthermore, Deepark and John
[6] investigated hesitant fuzzy rough sets through hesitant fuzzy relations.

In this paper, we redefine the hesitant fuzzy empty set, the hesitant fuzzy whole
set, the intersection and the union of two hesitant fuzzy sets, and prove that the
family HS(X) of all hesitant fuzzy sets in a set X is a Boolean algebra. Next, we in-
troduce the category HSet(H) consisting of hesitant H-fuzzy spaces and preserving
mappings between them and study the category HSet(H) in the sense of a topo-
logical universe and prove that it is Cartesian closed over Set (See Theorem 4.15),
where Set denotes the category consisting of ordinary sets and ordinary mappings
between them.

2. Preliminaries

In this section, we list some basic definitions and well-known results with respect
to category theory from [10, 17, 23, 31] which are needed in the next sections. Let
us recall that a concrete category is a category of sets which are endowed with an
unspecified structure.

Definition 2.1 ([17]). Let A be a concrete category and ((Yj , ξj))J a family of
objects in A indexed by a class J. For any set X, let (fj : X → Yj)J be a source of
mappings indexed by J . Then anA-structure ξ onX is said to be initial with respect
to (in short, w.r.t.) (X, (fj), ((Yj , ξj))J ), if it satisfies the following conditions:

(i) for each j ∈ J , fj : (X, ξ) → (Yj , ξj) is an A-morphism,
(ii) if (Z, ρ) is an A-object and g : Z → X is a mapping such that for each j ∈ J ,

the mapping fj ◦ g : (Z, ρ) → (Yj , ξj) is an A-morphism, then g : (Z, ρ) → (X, ξ) is
an A-morphism.

In this case, (fj : (X, ξ) → (Yj , ξj))J is called an initial source in A.

Dual notion: cotopological category.

Definition 2.2 ([17]). Let A be a concrete category.
(i) The A-fibre of a set X is the class of all A-structures on X.
(ii) A is said to be properly fibred over Set, if it satisfies the following:

(a) (Fibre-smallness) for each set X, the A-fibre of X is a set,
(b) (Terminal separator property) for each singleton set X, the A-fibre of X

has precisely one element,
(c) if ξ and η are A-structures on a set X such that id : (X, ξ) → (X, η) and

id : (X, η) → (X, ξ) are A-morphisms, then ξ = η.

Definition 2.3 ([10]). A category A is said to be Cartesian closed if it satisfies the
following conditions:

(i) for each A-object A and B, there exists a product A×B in A,
58
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(ii) exponential objects exist in A, i.e., for each A-object A, the functor A×− :
A → A has a right adjoint, i.e., for any A-object B, there exist an A-object BA

and a A-morphism eA,B : A × BA → B (called the evaluation) such that for any
A-object C and any A-morphism f : A×C → B, there exists a unique A-morphism
f̄ : C → BA such that eA,B ◦ (1A × f̄) = f , i.e., the diagram commutes:

eA,BA×BA B-

∃1A × f f

A× C

J
J

J
J

J
J
J]














�

Definition 2.4 ([23]). A category A is called a topological universe over Set if it
satisfies the following conditions:

(i) A is well-structured, i.e. (a) A is concrete category; (b) fibre-smallness con-
dition; (c) A has the terminal separator property,

(ii) A is cotopological over Set,
(iii) final episinks in A are preserved by pullbacks, i.e., for any episink (gj : Xj →

Y )J and any A-morphism f : W → Y , the family (ej : Uj → W )J , obtained by
taking the pullback f and gj , for each j ∈ J , is again a final episink.

Definition 2.5 ([27]). A category A is called a topos, if the following conditions
hold:

(i) There is a terminal object U in A,
(ii) A has equalizers,
(iii) A is Cartesian closed,
(iv) There is a subobject classifier in A, i.e., there is an Ω and a morphism ν

from U to Ω such that for each morphism m from A
′
to A, there exists a unique

morphism ϕm from A to Ω such that the diagram is a pullback:

A
′

U-

m ν

A

? ?

ϕm

- Ω.

Definition 2.6 ([31]). Let X be a reference set and let P [0, 1] denote the power set
of [0, 1]. Then a mapping h : X → P [0, 1] is called a hesitant fuzzy set in X.

The empty hesitant fuzzy set (denoted by h0) and the full hesitant fuzzy set
(denoted by h1) are defined by: for each x ∈ X,

h0(x) = {0} and h1(x) = {1}.
We will denote the set of all hesitant fuzzy sets in X as HFS(X).
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For each h ∈ HFS(X), the lower bound and upper bound of h, denoted by h−

and h+, are defined by: for each x ∈ X,

h−(x) = inf h(x) =
∧

h(x) and h+(x) = sup h(x) =
∨

h(x).

Then clearly, h− and h+ are fuzzy sets in X introduced by Zadeh [34].

Definition 2.7 ([31]). Let h ∈ HFS(X). Then the complement of h, denoted by
hc, is a hesitant fuzzy set in X defined as follows: for each x ∈ X,

hc(x) =
∪

γ∈h(x)

{1− γ}.

Result 2.8 ([31], Proposition 3.8). The complement is involutive, i.e.,

(hc)c = h.

Definition 2.9 ([31]). Let h1, h2 ∈ HFS(X). Then
(i) the union of h1 and h2, denoted by h1∪h2, is a hesitant fuzzy set in X defined

as follows: for each x ∈ X,
(h1 ∪ h2)(x) = {γ ∈ (h1(x) ∪ h2(x) : γ ≥ max(h−

1 (x), h
−
2 (x))}

=
∪

γ1∈h1(x), γ2∈h2(x)
(γ1 ∨ γ2),

(ii) the intersection of h1 and h2, denoted by h1 ∩ h2, is a hesitant fuzzy set in X
defined as follows: for each x ∈ X,

(h1 ∩ h2)(x) = {γ ∈ (h1(x) ∪ h2(x) : γ ≤ min(h+
1 (x), h

+
2 (x))}

=
∪

γ1∈h1(x), γ2∈h2(x)
(γ1 ∧ γ2).

Example 2.10. Let X = {a, b, c} and let h1, h2 ∈ HFS(X) given by:
h1(a) = [0.3, 0.7], h1(b) = {0.1, 0.5}, h1(c) = {0.1, 0.8}

and
h2(a) = {0.3, 0.5}, h2(b) = [0.1, 0.6], h2(c) = {0.4, 0.8}.

Then

(h1 ∪ h2)(a) =
∪

γ1∈h1(a), γ2∈h2(a)

(γ1 ∨ γ2) = [0.3, 0.7]

and

(h1 ∩ h2)(a) =
∪

γ1∈h1(a), γ2∈h2(a)

(γ1 ∧ γ2) = [0.3, 0.5].

Similarly, we can calculate the following:
(h1 ∪ h2)(b) = [0.1, 0.6], (h1 ∪ h2)(c) = {0.4, 0.8}

and
(h1 ∩ h2)(b) = [0.1, 0.5], (h1 ∩ h2)(c) = {0.1, 0.4, 0.8}.

Remark 2.11. From Definition 2.9, we can easily see that for any h1, h2 ∈
HFS(X), if h1(x) = ϕ or h2(x) = ϕ for some x ∈ X, then h1 ∪ h2 and h1 ∩ h2

are not defined.

Result 2.12 ([32], Theorem 1). Let h1, h2 ∈ HFS(X). Then
(1) (h1 ∩ h2)

c = hc
1 ∪ hc

2,
(2) (h1 ∪ h2)

c = hc
1 ∩ hc

2.
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Definition 2.13 ([6]). Let h1, h2 ∈ HFS(X). Then
we say that h1 is a subset of h2, denoted by h1 ⊆ h2, if h1(x) ⊆ h2(x), for each

x ∈ X,
(ii) we say that h1 is equal to h2, denoted by h1 = h2, if h1 ⊆ h2 and h2 ⊆ h1.

Definition 2.14 ([6]). Let h1, h2 ∈ HFS(X). Then we say that h1 is a proper
subset of h2, denoted by h1 ⊂ h2, if

h1(x) ⊆ h2(x), for each x ∈ X
and

h1(x) ̸= h2(x), for some x ∈ X.

Result 2.15 ([6], Lemma 2.15). Let h, h1, h2, h3 ∈ HFS(X). Then
(1) (h ∪ h1) = h1, (h ∩ h1) = h,
(2) (h ∪ h0) = h, (h ∩ h0) = h0,
(3) h ∪ hc ̸= h1, h ∩ hc ̸= h0, in general,
(4) (Commutative laws): h1 ∪ h2 = h2 ∪ h1, h1 ∩ h2 = h2 ∩ h1,
(5) (Associative laws): h1∪(h2∪h3) = (h1∪h2)∪h3, h1∩(h2∩h3) = (h1∩h2)∩h3,
(5) (Distributive law): h1 ∩ (h2 ∪ h3) = (h1 ∩ h2) ∪ (h1 ∩ h3),

Remark 2.16. For any h1, h2 ∈ HFS(X), in general, the following do not hold:

h1 ∩ h2 ⊆ h1, h1 ∩ h2 ⊆ h2 and h1 ⊆ h1 ∪ h2, h2 ⊆ h1 ∪ h2.

Consider Example 2.10,

(h1 ∩ h2)(a) = [0.3, 0.5] ̸⊆ {0.3, 0.5} = h2(a)

and

(h1 ∩ h2)(b) = [0.1, 0.5] ̸⊆ {0.1, 0.5} = h1(b).

Also

h1(c) = {0.1, 0.8} ̸⊆ {0.4, 0.8} = (h1 ∪ h2)(c).

Definition 2.17 ([31]). For a hesitant fuzzy set h in X, we define the intuitionistic
fuzzy set as the envelope of h, denoted by Aenv(h), is represented by the pair (µ, ν)
defined as follows: for each x ∈ X,

µ(x) = h−(x) and ν(x) = 1− h+(x).

The following is the relationship between hesitant fuzzy sets and fuzzy multisets
introduced by Yager [33].

Remark 2.18 ([31], Lemma 14). All hesitant fuzzy sets can be represented as fuzzy
multisets.

3. Further properties of hesitant fuzzy sets

In this section, we find some properties of hesitant fuzzy sets, and redefine the
intersection and the union of hesitant fuzzy sets.

Proposition 3.1. Let h1, h2, h3 ∈ HFS(X). Then
(1) h1 ∩ (h2 ∪ h3) = (h1 ∩ h2) ∪ (h1 ∩ h3),
(2) h1 ∪ (h2 ∩ h3) = (h1 ∪ h2) ∩ (h1 ∪ h3).
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Proof. (1) The proof is well-known in [6]. But we will prove it differently.
Let x ∈ X and let γ ∈ [h1 ∩ (h2 ∪ h3)](x). Then there are γ1 ∈ h1(x), γ2 ∈

(h2 ∪ h3)(x) such that γ = γ1 ∧ γ2. Since γ2 ∈ (h2 ∪ h3)(x), there are γ21 ∈
h2(x), γ22 ∈ h3(x) such that γ2 = γ21 ∨ γ22 . Thus

γ = γ1 ∧ γ2 = γ1 ∧ (γ21 ∨ γ22) = (γ1 ∧ γ21) ∨ (γ1 ∧ γ22).

Since γ1 ∈ h1(x), γ21 ∈ h2(x), γ22 ∈ h3(x),

γ1 ∧ γ21 ∈ (h1 ∩ h2)(x) and γ1 ∧ γ22 ∈ (h1 ∩ h3)(x).

So γ ∈ [(h1∩h2)∪(h1∩h3)](x). Hence [h1∩(h2∪h3)](x) ⊆ [(h1∩h2)∪(h1∩h3)](x).
Similarly, we can show that [(h1∩h2)∪(h1∩h3)](x) ⊆ [h1∩(h2∪h3)](x). Therefore

the result holds.
(2) Let x ∈ X and let γ ∈ [h1 ∪ (h2 ∩ h3)](x). Then there are γ1 ∈ h1(x), γ2 ∈

(h2 ∩ h3)(x) such that γ = γ1 ∨ γ2. Since γ2 ∈ (h2 ∩ h3)(x), there are γ21 ∈
h2(x), γ22 ∈ h3(x) such that γ2 = γ21 ∧ γ22 . Thus

γ = γ1 ∨ γ2 = γ1 ∨ (γ21 ∧ γ22) = (γ1 ∨ γ21) ∧ (γ1 ∨ γ22).

Since γ1 ∈ h1(x), γ21 ∈ h2(x), γ22 ∈ h3(x),

γ1 ∨ γ21 ∈ (h1 ∪ h2)(x) and γ1 ∨ γ22 ∈ (h1 ∪ h3)(x).

So γ ∈ [(h1∪h2)∩(h1∪h3)](x). Hence [h1∪(h2∩h3)](x) ⊆ [(h1∪h2)∩(h1∪h3)](x).
Similarly, we can show that [(h1∪h2)∩(h1∪h3)](x) ⊆ [h1∪(h2∩h3)](x). Therefore

the result holds. �
Definition 3.2. Let (hj)j∈J ⊂ HFS(X). Then

(i) the union of (hj)j∈J , denoted by
∪

j∈J hj , is a hesitant fuzzy set in X defined
as follows: for each x ∈ X,

(
∪
j∈J

hj)(x) =
∪

γj∈hj(x)

∨
j∈J

γj ,

(ii) the intersection of (hj)j∈J , denoted by
∩

j∈J hj , is a hesitant fuzzy set in X
defined as follows: for each x ∈ X,

(
∩
j∈J

hj)(x) =
∪

γj∈hj(x)

∧
j∈J

γj .

Example 3.3. Let X = {a, b, c} and let h1, h2, h3, h4 ∈ HFS(X) given by:
h1(a) = {0.1} ∪ [0.2, 0.6], h1(b) = {0.3, 0.7}, h1(c) = [0, 1],
h2(a) = {0.3, 0.7}, h2(b) = [0.4, 0.6], h2(c) = {0.2, 0.8},
h3(a) = {0.8}, h3(b) = [0, 1], h3(c) = {0.6},
h4(a) = [0, 1], h4(b) = {0.2, 0, 8}, h4(c) = {0.1, 0.6}.

Let γj ∈ hj(a), (j = 1, 2, 3, 4). Then

γa =
∨4

j=1 γj = γ1 ∨ γ2 ∨ γ3 ∨ γ4
and

γa ∈ h1(a) ∪ h2(a) ∪ h3(a) ∪ h4(a) = [0, 1].

Since γ3 ∈ h3(a), γ3 = 0.8. Thus γa ∈ [0.8, 0.1]. So (
∪4

j=1 hj)(a) = [0.8, 1].

Similarly, we can see that (
∪4

j=1 hj)(b) = [0.3, 1], (
∪4

j=1 hj)(c) = [0.1, 1]. Also we

can confirm that (
∩4

j=1 hj)(a) = (
∩4

j=1 hj)(b) = (
∩4

j=1 hj)(c) = [0, 0.6].
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Remark 3.4. For any h1, h2 ∈ HFS(X), in general, the following does not hold:

h1 ∩ h2 ⊆ h1 ∪ h2.

Let h1, h2 ∈ HFS(X) in Example 3.3. Then clearly,

(h1 ∩ h2)(a) = {0.1} ∪ [0.2, 0.6] ̸⊆ [0.3, 0.6] ∪ {0.7} = (h1 ∪ h2)(a).

Proposition 3.5 (Generalized Distributive Laws). Let h ∈ HFS(X) and let (hj)j∈J ⊂
HFS(X). Then

(1) h ∩ (
∪

j∈J hj) =
∪

j∈J(h ∩ hj),

(2) h ∪ (
∩

j∈J hj) =
∩

j∈J(h ∪ hj).

Proof. (1) Let x ∈ X and let γ ∈ [h ∩ (
∪

j∈J hj)](x). Then there are γ1 ∈ h(x) and

γ2 ∈ (
∪

j∈J hj)(x) such that γ = γ1 ∧ γ2. Since γ2 ∈ (
∪

j∈J hj)(x), for each j ∈ J ,

there is γj ∈ hj(x) such that γ2 =
∨

j∈J γj . Thus

γ = γ1 ∧ γ2 = γ1 ∧ (
∨
j∈J

γj) =
∨
j∈J

(γ1 ∧ γj).

Furthermore, γ1 ∧ γj ∈ (h ∩ hj)(x), for each j ∈ J . So γ ∈ [
∪

j∈J (h ∩ hj)](x), i.e.,

[h ∩ (
∪
j∈J

hj)](x) ⊆ [
∪
j∈J

(h ∩ hj)](x).

Similarly, we can prove that [
∪

j∈J(h ∩ hj)](x) ⊆ [h ∩ (
∪

j∈J hj)](x). Hence the
result holds.

(2) The proof is similar to (1). �

Proposition 3.6 (Generalized DeMorgan’s Laws). Let (hj)j∈J ⊂ HFS(X). Then
(1) (

∪
j∈J hj)

c =
∩

j∈J hc
j ,

(2) (
∩

j∈J hj)
c =

∪
j∈J hc

j .

Proof. (1) Let x ∈ X and let 1− γ ∈ (
∪

j∈J hj)
c(x). Then γ ∈ (

∪
j∈J hj)(x). Thus

γ =
∨

j∈J γj and γj ∈ hj(x), for each j ∈ J . So 1 − γj ∈ hc
j(x), for each j ∈ J .

Moreover, 1− γ = 1−
∨

j∈J γj =
∧

j∈J(1− γj). Hence 1− γ ∈ (
∩

j∈J hc
j)(x), i.e.,

(
∪
j∈J

hj)
c(x) ⊆ (

∩
j∈J

hc
j)(x).

Similarly, we can show that (
∩

j∈J hc
j)(x) ⊆ (

∪
j∈J hj)

c(x). Therefore the result
holds.

(2) The proof is similar to (1). �

Definition 3.7. Let X and Y be a nonempty sets, let hX ∈ HFS(X) and hY ∈
HFS(Y )) and let f : X → Y be a mapping. Then

(i) the image of hX under f , denoted by f(hX), is a hesitant fuzzy set in Y defined
as follows: for each y ∈ Y ,

f(hX)(y) =

{ ∪
x∈f−1(y) hX(x) if f−1(y) ̸= ϕ

ϕ otherwise,
63
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(ii) the preimage of hY under f , denoted by f−1(hY ), is a hesitant fuzzy set in
Y defined as follows: for each x ∈ X,

f−1(hY )(x) = hY ◦ f(x).

Proposition 3.8. Let f : X → Y be a mapping, and let hX , hX1, hX2 ∈ HFS(X),
(hXj )j∈J ⊂ HFS(X), hY , hY 1, hY 2 ∈ HFS(Y ) and (hYj )j∈J ⊂ HFS(Y ). Then

(1) if hX1 ⊆ hX2, then f(hX1) ⊆ f(hX2),
(2) f(hX1 ∪ hX2) = f(hX1) ∪ f(hX2), f(

∪
j∈J hXj ) =

∪
j∈J f(hXj ),

(3) f(hX1 ∩ hX2) ⊆ f(hX1) ∩ f(hX2), f(
∩

j∈J hXj ) ⊆
∩

j∈J f(hXj ),

(3)
′
if f is injective, then f(hX1 ∩ hX2) = f(hX1) ∩ f(hX2), f(

∩
j∈J hXj ) =∩

j∈J f(hXj
),

(4) f(A) = h0 if and only if A = h0,
(5) if hY 1 ⊆ hY 2, then f−1(hY 1) ⊆ f−1(hY 2),
(6) f−1(hY 1 ∪ hY 2) = f−1(hY 1) ∪ f−1(hY 2), f

−1(
∪

j∈J hYj ) =
∪

j∈J f−1(hYj ),

(7) f−1(hY 1 ∩ hY 2) ⊆ f−1(hY 1) ∩ f−1(hY 2), f
−1(

∩
j∈J hYj ) ⊆

∩
j∈J f−1(hYj ),

(8) f−1(hY ) = h0 if and only if hY ∩ f(h1) = h1,
(9) hX ⊂ f−1 ◦ f(hX); in particular, hX = f−1 ◦ f(hX), if f is injective,
(10) f ◦ f−1(hY ) ⊂ hY ; in particular, f ◦ f−1(hY ) = hY , if f is sujective.

Proof. (1) Suppose that hX1 ⊆ hX2 and let y ∈ Y such that f−1(y) ̸= ϕ. Then

[f(hX1)](y) =
∪

x∈f−1(y)

hX1(x) ⊆
∪

x∈f−1(y)

hX2(x) = [f(hX2)](y).

Thus f(hX1) ⊆ f(hX2).
(2) Let y ∈ Y such that f−1(y) ̸= ϕ and let γ ∈ [f(hX1 ∪ hX2)](y). Since

[f(hX1 ∪ hX2)](y) =
∪

x∈f−1(y)

(hX1 ∪ hX2)(x),

for each x ∈ f−1(y), there is γx ∈ (hX1 ∪ hX2)(x) such that γ =
∨

x∈f−1(y) γx.

Since γx ∈ (hX1 ∪ hX2)(x), there are γx1 ∈ hX1(x) and γx2 ∈ hX2(x) such that
γx = γx1 ∨ γx2 . Then

γ =
∨

x∈f−1(y)

γx =
∨

x∈f−1(y)

(γx1 ∨ γx2) = (
∨

x∈f−1(y)

γx1) ∨ (
∨

x∈f−1(y)

γx2).

Furthermore, ∨
x∈f−1(y)

γx1 ∈
∪

x∈f−1(y)

hX1(x) = f(hX1)(y)

and ∨
x∈f−1(y)

γx2 ∈
∪

x∈f−1(y)

hX2(x) = f(hX2)(y).

Thus γ ∈ f(hX1)(y) ∪ f(hX2)(y). So [f(hX1 ∪ hX2)](y) ⊆ f(hX1)(y) ∪ f(hX2)(y).
Similarly, we can prove that f(hX1)(y) ∪ f(hX2)(y) ⊆ [f(hX1 ∪ hX2)](y). Hence

the result holds.
The proof of the second part also can be proved, similarly.
The proofs of the remainder are omitted. �
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For any ordinary subsets A, B of a set X, the following hold always:

A ∩B ⊆ A, A ∩B ⊆ B and A ⊆ A ∪B, B ⊆ A ∪B.

But from Remark 2.16, we can see that for any hesitant fuzzy sets h1, h2 in X, the
following do not hold, in general:

(4.1) h1 ∩ h2 ⊆ h1, h1 ∩ h2 ⊆ h2 and h1 ⊆ h1 ∩ h2, h2 ⊆ h1 ∩ h2.

Then we will define newly the intersection and the union of hesitant fuzzy sets so
that (4.1) holds.

Definition 3.9. Let h1, h2 ∈ HFS(X) and let (hj)j∈J ⊂ HFS(X). Then
(i) the intersection of h1 and h2, denoted by h1∩̃h2, is a hesitant fuzzy set in X

defined as follows: for each x ∈ X,

(h1∩̃h2)(x) = h1(x) ∩ h2(x),

(ii) the intersection of (hj)j∈J , denoted by
∩̃

j∈Jhj , is a hesitant fuzzy set in X
defined as follows: for each x ∈ X,

(
∩̃

j∈J
hj)(x) =

∩
j∈J

hj(x),

(iii) the union of h1 and h2, denoted by h1∪̃h2, is a hesitant fuzzy set in X defined
as follows: for each x ∈ X,

(h1∪̃h2)(x) = h1(x) ∪ h2(x),

(iv) the union of (hj)j∈J , denoted by
∪̃

j∈Jhj , is a hesitant fuzzy set in X defined
as follows: for each x ∈ X,

(
∪̃

j∈J
hj)(x) =

∪
j∈J

hj(x).

Example 3.10. (1) Let h1, h2 be hesitant fuzzy sets in X given in Example 2.10.
Then

(h1∩̃h2)(a) = h1(a) ∩ h2(a) = {0.3, 0.7}
and

(h1∪̃h2)(a) = h1(a) ∪ h2(a) = [0.3, 0.7].

Similarly, we can calculate the following:
(h1∩̃h2)(b) = {0.1, 0.5}, (h1∩̃h2)(c) = {0.8}

and
(h1∪̃h2)(b) = [0.1, 0.6], (h1∪̃h2)(c) = {0.1, 0.4, 0.8}.

(2) Consider h1, h2 h3 h4 be hesitant fuzzy sets in X given in Example 3.3. Then

(
∩̃4

j=1
hj)(a) =

4∩
j=1

hj(a) = ϕ

and

(
∪̃4

j=1
hj)(a) =

4∪
j=1

hj(a) = [0, 1].

Similarly, we can calculate the following:
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(
∩̃4

j=1hj)(b) = (
∩̃4

j=1hj)(b) = ϕ
and

(
∪̃4

j=1hj)(b) = (
∪̃4

j=1hj)(c) = [0, 1].

Remark 3.11 (Compare to Result 2.15 (1) and (2)). For each h ∈ HFS(X), the
following do not hold, in general:

h∪̃h1 = h1, h∩̃h1 = h

and
h∪̃h0 = h0, h∩̃h0 = h0.

Then we will redefine the hesitant fuzzy empty set and the hesitant fuzzy whole set
as follows.

Definition 3.12. Let X be a nonempty set. Then the hesitant fuzzy empty [resp.
whole] set, denoted by h0 [resp. h1], is a hesitant fuzzy set in X defined as: for each
x ∈ X,

h0(x) = ϕ [resp. h1(x) = [0, 1]].

In this case, we will denote the set of all hesitant fuzzy sets in X as HS(X).

Definition 3.13. Let X be a nonempty set and let h ∈ HS(X). Then the comple-
ment of h, denoted by hc, is a hesitant fuzzy set in X defined as: for each x ∈ X,

hc(x) = h(x)c = [0, 1] \ h(x).

The following are the immediate results of Definitions 2.13, 3.9, 3.12 and 3.13.

Proposition 3.14. Let X be a nonempty set, let h, h1, h2, h3 ∈ HS(X) and let
(hj)j∈J ⊂ HS(X). Then

(1) (Idempotent laws): h∪̃h = h, h∩̃h = h,
(2) (Commutative laws): h1∪̃h2 = h2∪̃h1, h1∩̃h2 = h2∩̃h1,
(3) (Associative laws): h1∪̃(h2∪̃h3) = (h1∪̃h2)∪̃h3, h1∩̃(h2∩̃h3) = (h1∩̃h2)∩̃h3,
(4) (Distributive laws): h1∪̃(h2∩̃h3) = (h1∪̃h2)∩̃(h1∪̃h3),

h1∩̃(h2∪̃h3) = (h1∩̃h2)∪̃(h1∩̃h3),

(4)
′
(Generalized Distributive laws): h∪̃(

∩̃
j∈Jhj) =

∩̃
j∈J(h∪̃hj),

h∩̃(
∪̃

j∈Jhj) =
∪̃

j∈J(h∩̃hj),

(5) (Absorption laws): h1∪̃(h1∩̃h2) = h1, h1∩̃(h1∪̃h2) = h1.
(6) (DeMorgan’s laws): (h1∪̃h2)

c = hc
1∩̃hc

2, (h1∩̃h2)
c = hc

1∪̃hc
2,

(6)
′
(Generalized DeMorgan’s laws): (

∪̃
j∈Jhj)

c =
∩̃

j∈Jh
c
j, (

∩̃
j∈Jhj)

c =
∪̃

j∈Jh
c
j,

(7) (hc)c = h,
(8) h1∩̃h2 ⊆ h1 and h2∩̃h1 ⊆ h2,
(9) h1 ⊆ h2∪̃h1 and h1 ⊆ h2∪̃h2,
(10) if h1 ⊆ h2 and h2 ⊆ h3, then h1 ⊆ h3,
(11) if h1 ⊆ h2, then h1∩̃h ⊆ h2∩̃h and h1∪̃h ⊆ h2∪̃h,
(12) h0 ⊆ h ⊆ h1,
(13) h∩̃h0 = h0, h∪̃h0 = h, h∩̃h1 = h, h∪̃h1 = h1.

From the above proposition, we can easily see that (HS(X), ∩̃, ∪̃,c ) is a Boolean
algebra with the least element h0 and the largest element h1.

Now we redefine the image of a hesitant fuzzy set under a mapping.
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Definition 3.15. Let X and Y be a nonempty sets, let hX ∈ HS(X) and hY ∈
HS(Y ) and let f : X → Y be a mapping. Then the image of hX under f , denoted
by f(hX), is a hesitant fuzzy set in Y defined as follows: for each y ∈ Y ,

f(hX)(y) =

{ ∪̃
x∈f−1(y)hX(x) if f−1(y) ̸= ϕ

ϕ otherwise.

From the above Definition, we have the same result of Proposition 3.8.

Proposition 3.16. Let f : X → Y be a mapping, and let hX , hX1, hX2 ∈ HS(X),
(hXj )j∈J ⊂ HS(X), hY , hY 1, hY 2 ∈ HS(Y ) and (hYj )j∈J ⊂ HS(Y ). Then

(1) if hX1 ⊆ hX2, then f(hX1) ⊆ f(hX2),

(2) f(hX1∪̃hX2) = f(hX1)∪̃f(hX2), f(
∪̃

j∈JhXj ) =
∪̃

j∈Jf(hXj ),

(3) f(hX1∩̃hX2) ⊆ f(hX1)∩̃f(hX2), f(
∩̃

j∈JhXj ) ⊆
∩̃

j∈Jf(hXj ),

(3)
′
if f is injective, then f(hX1∩̃hX2) = f(hX1)∩̃f(hX2), f(

∩̃
j∈JhXj ) =

∩̃
j∈Jf(hXj ),

(4) f(A) = h0 if and only if A = h0,
(5) if hY 1 ⊆ hY 2, then f−1(hY 1) ⊆ f−1(hY 2),

(6) f−1(hY 1∪̃hY 2) = f−1(hY 1)∪̃f−1(hY 2), f
−1(

∪̃
j∈JhYj ) =

∪̃
j∈Jf

−1(hYj ),

(7) f−1(hY 1∩̃hY 2) ⊆ f−1(hY 1)∩̃f−1(hY 2), f
−1(

∩̃
j∈JhYj ) ⊆

∩̃
j∈Jf

−1(hYj ),

(8) f−1(hY ) = h1 if and only if hY ∩̃f(h1) = h1,
(9) hX ⊂ f−1 ◦ f(hX); in particular, hX = f−1 ◦ f(hX), if f is injective,
(10) f ◦ f−1(hY ) ⊂ hY ; in particular, f ◦ f−1(hY ) = hY , if f is sujective.

4. Properties of the category HSet(H)

Definition 4.1 ([3, 16]). A lattice H is called a complete Heyting algebra, if it
satisfies the following conditions:

(i) it is a complete lattice,
(ii) for any a, b ∈ H, the set {x ∈ H : x ∧ a ≤ b} has a greatest element denoted

by a → b (called the relative pseudo-complement of a in b), i.e., x∧a ≤ b if and only
if x ≤ (a → b).

In particular, if H is a complete Heyting algebra with the least element 0, then
for each a ∈ H, N(a) = a → 0 is called negation or the pseudo-complement of a.
Moreover, if H is a complete Heyting algebra with the least element 0 and largest
element 1, then for each a ∈ H, a ∧ N(a) = 0 but a ∨ N(a) = 1 does not hold, in
general.

Result 4.2 ([3], Ex. 6 in p. 46). Let H be a complete Heyting algebra and a, b ∈ H.
(1) If a ≤ b, then N(b) ≤ N(a).

In fact, N : H → H is an order reversing operation in (H,≤).
(2) a ≤ NN(a).
(3) N(a) = NNN(a).
(4) N(a ∨ b) = N(a) ∧N(b) and N(a ∧ b) = N(a) ∨N(b).

Definition 4.3. Let X be a nonempty set. Then a mapping h : X → P (H) is called
an hesitant H-fuzzy set, where P (H) denote the power set of H. The pair (X,h) is
called a hesitant H-fuzzy space.
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Definition 4.4. Let (X,hX) and (Y, hY ) be two hesitant H-fuzzy spaces. Then a
mapping f : (X,hX) → (Y, hY ) is a preserving mapping, if for each x ∈ X,

hX(x) ⊆ hY ◦ f(x), i.e., hX ⊆ hY ◦ f.

Proposition 4.5. Let (X,hX), (Y, hY ) and (Z, hZ) be three hesitant H-fuzzy spaces.
(1) The identity mapping 1X : (X,hX) → (X,hX) is a preserving mapping.
(2) If f : (X,hX) → (Y, hY ) and g : (Y, hY ) → (Z, hZ) are preserving mappings,

then g ◦ f : (X,hX) → (Z, hZ) is a preserving mapping.

Proof. (1) The proof is clear.
(2) Suppose f : (X,hX) → (Y, hY ) and g : (Y, hY ) → (Z, hZ) are preserving

mappings and let x ∈ X. Then
hZ ◦ (g ◦ f)(x) = hZ ◦ (g ◦ f(x))

⊇ hY ◦ (f(x)) [Since g is a preserving mapping]
= hY ◦ f(x)
⊇ hX(x). [Since f is a preserving mapping]

Thus g ◦ f is a preserving mapping. �
We will denote the collection consisting of all hesitant H-fuzzy spaces and all

preserving mappings between any two hesitant H-fuzzy spaces as HSet(H). Then
from Proposition 4.5, we can easily see that HSet(H) forms a concrete category. In
the sequel, a preserving mapping between any two hesitant H-fuzzy spaces will be
called a HSet(H)-mapping.

Lemma 4.6. The category HSet(H) is topological over Set.

Proof. Let X be a set and let (Xj , hj)j∈J be any family of hesitant H-fuzzy spaces
indexed by a class J . Suppose (fj : X → Xj)J be a source of mappings. We define
a mapping hX : X → P (H) as follows: for each x ∈ X,

hX(x) = [
∩̃

j∈J
f−1
j (hj)](x) =

∩
j∈J

hj ◦ fj(x).

Then clearly, fj : (X,hX) → (Xj , hj) is a HSet(H)-mapping, for each j ∈ J .
For any object (Y, hY ), let g : Y → X be any mapping for which fj ◦f : (Y, hY ) →

(Xj , hj) is a HSet(H)-mapping, for each j ∈ J and let y ∈ Y . Then for each j ∈ J ,

hY (y) ⊆ hj ◦ (fj ◦ f)(y) = (hj ◦ fj) ◦ g(y).
Thus by the definition of hX ,

hY (y) ⊆ (
∩
j∈J

hj ◦ fj) ◦ g(y) = hX ◦ g(y).

So g : (Y, hY ) → (X,hX) is a HSet(H)-mapping. Hence (fj : (X,hX) → (Xj , hj))J
is an initial source in HSet(H). �
Example 4.7. (1) (Inverse image of a hesitant H-fuzzy set structure) Let X
be a set, let (Y, hY ) be a hesitant H-fuzzy space and let f : X → Y be a mapping.
Then there exists a unique initial hesitant H-fuzzy set structure hX in X for which
f : (X,hX) → (Y, hY ) is a HSet(H)-mapping. In fact,

hX = f−1(hY ) = hY ◦ f.
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In this case, hX is called the inverse image under f of the hesitant H-fuzzy set
structure hY in Y .

In particular, if X ⊂ Y and f : X → Y is the inclusion mapping, then the inverse
image hX of hY under f is called a hesitant H-fuzzy subset of (Y, hY ). In fact,

hX(x) = hY (x), for each x ∈ X.

(2) (Hesitant H-fuzzy product structure) Let ((Xj , hj))j∈J be any family of
hesitant H-fuzzy spaces and let X = Πj∈JXj . For each j ∈ J , let prj : X → Xj

be the ordinary projection. Then there exists a unique hesitant H-fuzzy set hX in
X for which prj : (X,hX) → (Xj , hj) is a HSet(H)-mapping, for each j ∈ J . In
this case, hX is called the hesitant H-fuzzy product of (hj)j∈J and (X,hX) is called
the hesitant H-fuzzy product space of ((Xj , hj))j∈J , and denoted as the following,
respectively:

hX = Πj∈Jhj and (X,hX) = (Πj∈JXj ,Πj∈Jhj).

In fact, hX(x) =
∩̃

j∈Jhj ◦ prj(x), for each x ∈ X.

In particular, if J = {1, 2}, then for each (x, y) ∈ X1 ×X2,

(h1 × h2)(x, y) = h1(x) ∩ h2(y).

The following is obvious from Lemma 5.4 and Theorem 1.6 in [17] or Proposition
in Section 1 in [11].

Corollary 4.8. The category HSet(H) is complete and cocomplete over Set.

It is well-known that a concrete category is topological if and only if it is co-
topological (See Theorem 1.5 in [17]). But we prove directly that HSet(H) is
cotopological.

Lemma 4.9. The category HSet(H) is cotopological over Set.

Proof. Let X be any set and let ((Xj , hj))j∈J be any family of hesitant H-fuzzy
spaces indexed by a class J . Suppose (fj : Xj → X)j∈J is a sink of mappings. We
define a mapping hX : X → P (H) as follows: for each x ∈ X,

hX(x) =
∪
j∈J

[
∪̃

xj∈f−1(x)
hj ](xj) =

∪
j∈J

∪
xj∈f−1(x)

hj(xj).

Then clearly, fj : (Xj , Aj) → (X,A) is a HSet(H)-mapping, for each j ∈ J .
For any hesitant H-fuzzy space (Y, hY ), let g : X → Y be any mapping such that

g ◦ fj : (Xj , hj) → (Y, hY ) is a HSet(H)-mapping, for each j ∈ J and let x ∈ X.
Then for each each j ∈ J and each xj ∈ f−1(x),

hj(xj) ⊆ (hY ◦ (g ◦ fj))(xj) = hY ◦ (g(fj)(xj)) = hY ◦ g(x).

Thus by the definition of hX , hX(x) ⊆ hY ◦ g(x). So g : (X,hX) → (Y, hY ) is a
HSet(H)-mapping. Hence HSet(H) is cotopological over Set. �

Example 4.10. (Hesitant H-fuzzy quotient structure) Let (X,hX) be a hesi-
tant H-fuzzy space, let ∼ be an equivalence relation on X and let π : X → X/ ∼ be
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the canonical mapping. We define a mapping h−
X/∼ : X/ ∼→ P (H) as follows: for

each [x] ∈ X/ ∼,

hX/∼([x]) = [
∪̃

x′∈π−1([x])
hX ](x

′
) =

∪
x′∈π−1([x])

hX(x
′
).

Then hX/∼ ∈ HS(X/ ∼). Furthermore, π : (X,hX) → (X/ ∼, hX/∼) is a HSet-
mapping. Thus hX/∼ is the final hesitant H-fuzzy set in X/ ∼.

In this case, hX/∼ is called the hesitant H-fuzzy quotient set in X by ∼.

Definition 4.11 ([11]). Let A be a concrete category and let f, g : A → B be
two A-morphisms. Then a pair (E, e) is called an equalizer in A of f and g, if the
following conditions hold:

(i) e : E → A is an A-morphism,
(ii) f ◦ e = g ◦ e,
(iii) for any A-morphism e

′
: E

′ → A such that f ◦ e
′
= g ◦ e

′
, there exists a

unique A-morphism ē : E
′ → E such that e

′
= e ◦ ē.

In this case, we say that A has equalizers.

Dual notion: Coequalizer.

Proposition 4.12. HSet(H) has equalizers.

Proof. Let f, g : (X,hX) → (Y, hY ) be two HSet(H)-mappings. Let E = {a ∈ X :
f(a) = g(a)} and define a mapping hE : E → P (H) as follows: for each a ∈ E,

hE(a) = hX(a).

Then clearly, hE ⊆ hX and hE is a hesitant H-fuzzy set in E. Consider the inclusion
mapping i : E → X. Then clearly, i : (E, hE) → (X,hX) is a HSet(H)-mapping
and f ◦ i = g ◦ i.

Let k : (E
′
, hE′ ) → (X,hE) be a HSet(H)-mapping such that f ◦ k = g ◦ k. We

define a mapping k̄ : E
′ → E as follows: for each e

′ ∈ E
′
,

k̄(e
′
) = i−1 ◦ k(e

′
).

Then clearly, k = i ◦ k̄.
Let e

′ ∈ E
′
. Since k : (E

′
, hE′ ) → (X,hE) is a HSet(H)-mapping,

hE ◦ k̄(e′
) = hE ◦ k̄(e′

)

= hE ◦ (i−1 ◦ k(e′
))

= hE ◦ k(e′
)

⊆ hE′ (e
′
).

Thus k̄ : (E
′
, hE′ ) → (E, hE) is a HSet(H)-mapping. The uniqueness of k̄ can be

easily proved. So HSet(H) has equalizers. �

Lemma 4.13. Final episinks in HSet(H) are preserved by pullbacks.

Proof. Let (gj : (Xj , hj) → (Y, hY ))j∈J be any final episink in HSet(H) and let
f : (W,hW ) → (Y, hY ) be any HSet(H)-mapping. For each j ∈ J , let

Uj = {(w, xj) ∈ W ×Xj : f(w) = gj(xj)},
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and let us consider a mapping hUj : Uj → P (H) as follows: for each (w, xj) ∈ Uj ,

hUj (w, xj) = (hW × hj)(w, xj) = hW (w) ∩ hj(xj), i.e., hUj = (hW × hj) |Uj×Uj .

For each j ∈ J , let ej : Uj → W and pj : Uj → Xj be the usual projections.
Then clearly, ej : (Uj , hUj ) → (W,hW ) and pj : (Uj , hUj ) → (Xj , hj) are HSet(H)-
mappings and gj ◦ pj = f ◦ ej , for each j ∈ J . Thus we have the following pullback
square in HSet(H):

pj(Uj , hUj ) (Xj , hj)-

ej gj

(W,hW )

? ?

f

- (Y, hY ).

We will prove that (ej : (Uj , hUj ) → (W,hW ))j∈J is a final episink in HSet(H).
Let w ∈ W . Since (gj)j∈J is an episink in HSet(H), there is j ∈ J such that
gj(xj) = f(w), for some xj ∈ Xj . Thus (w, xj) ∈ Uj and ej(w, xj) = w. So (ej)j∈J

is an episink in HSet(H).
Finally, let us show that (ej)J is final in HSet(H). Let h∗

W be the final structure
in W w.r.t. (ej)j∈J and let w ∈ W . Then

hW (w) = hW (w) ∩ hW (w)
⊆ hW (w) ∩ hY ◦ f(w)

[Since f : (W,hW ) → (Y, hY ) is a HSet(H)-mapping]
= hW (w) ∩ [

∪
j∈J

∪
xj∈g−1

j (f(w)) hj(xj)]

[Since (gj : (Xj , hj) → (Y, hY ))j∈J is a final episink in HSet(H)]
=

∪
j∈J

∪
xj∈g−1

j (f(w))[hW (w) ∩ hj(xj)]

=
∪

j∈J

∪
(w,xj)∈e−1

j (w)[hW (w) ∩ hj(xj)]

=
∪

j∈J

∪
(w,xj)∈e−1

j (w)[hUj (w, xj)]

= h∗
W (w).

Thus hW (w) ⊆ (h∗
W )(w). So hW ⊆ h∗

W . Since (ej : (Uj , hUj ) → (W,hW ))j∈J is
final, 1W : (W,h∗

W ) → (W,hW ) is a HSet(H)-mapping and thus h∗
W ⊆ hW . Hence

h∗
W = hW . Therefore (ej)j∈J is final. This completes the proof. �

For any singleton set {a}, since the hesitant fuzzy set h{a} in {a} is not unique,
the category HSet(H) is not properly fibred over Set. Then From Definitions 2.2
and 2.4, Lemmas 4.7 and 4.11, we have the following result.

Theorem 4.14. The category HSet(H) satisfies all the conditions of a topological
universe over Set except the terminal separator property.

Theorem 4.15. The category HSet(H) is Cartesian closed over Set.

Proof. From Lemma 4.4, it is clear that HSet(H) has products. Then it is sufficient
to prove that HSet(H) has exponential objects.
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For any hesitant H-fuzzy spaces X = (X,hX) and Y = (X,hY ), let Y X be the
set of all ordinary mappings from X to Y . For each f ∈ Y X , let

D(f) = {x ∈ X : hX(x) ⊃ hY ◦ f(x)}.

We define a mapping hY X : Y X → P (H) as follows: for each f ∈ Y X ,

hY X (f) =

{ ∩
x∈D(f) hY ◦ f(x) if D(f) ̸= ϕ

H if D(f) = ϕ.

Then clearly, hY X is a hesitant H-fuzzy set in Y X .
Let YX = (Y X , hY X ) and let us define a mapping eX,Y : X×Y X → Y as follows:

for each (x, f) ∈ X × Y X ,

eX,Y (x, f) = f(x).

Let (x, f) ∈ X × Y X .
Case (i): Suppose D(f) = ϕ. Then

hX × hY X (x, f) = hX(x) ∩ hY X (f)
= hX(x) [Since D(f) = ϕ, hY X (f) = H.]
⊆ hY ◦ f(x) [Since D(f) = ϕ]
= hY ◦ eX,Y (x, f).

Case (ii) Suppose D(f) ̸= ϕ. Then
hX × hY X (x, f) = hX(x) ∩ hY X (f)

= hX(x) ∩ [
∩

a∈(f) hY ◦ f(a)] [Since D(f) ̸= ϕ]

⊆ hY ◦ f(x)
= hY ◦ eX,Y (x, f).

Thus in all cases, eX,Y : X ×YX → Y is a HSet(H)-mapping, where X ×YX =
(X × Y X , hX × hY X ).

For any hesitant H-fuzzy space Z = (Z, hZ), let k : X× Z → Y be a HSet(H)-
mapping. We define a mapping k̄ : Z → Y X as follows: for each z ∈ Z and each
x ∈ X,

[k̄(z)](x) = k(x, z).

Then by the similar arguments of proof of Theorem k̄ is a HSet(H)-mapping. More-
over, we can see that k̄ is a unique Het(H)-mapping such that eX,Y ◦ (1X × k̄) = k.
This completes the proof. �

Remark 4.16. The category HSet(H) is not a topos, since it has no subobject
classifier.

Example 4.17. Let I = {0, 1} be two points chain, respectively and let X = {a}.
Let h1 and h2 be the hesitant H-fuzzy sets in X defined by:

h1(a) = {0} and h2(a) = {1}.

Let 1X : (X,h1) → (X,h2) be the identity mapping. Then clearly, 1X is both
monomorphism and epimorphism in HSet(H). But 1X is not an isomorphism in
HSet(H). Thus HSet(H) has no subobject classifier.
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5. Conclusions

We constructed the category HSet(H) consisting of hesitant fuzzy spaces and
preserving mappings between them and studied it in a view of a topological universe.
In particular, we obtained an exponential objects in HSet(H) (See Theorems 4.15)
and we confirmed that HSet(H) is not a topos (See Remark 4.16 and Example
4.17).
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