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1. Introduction

In 1965, Zadeh proposed the pioneering work of fuzzy subsets of a set [20], and
in 1971, Rosenfeld introduced the notion of fuzzy subgroups of a group [14] which
led to the fuzzification of algebraic structures. In 1982, Pawlak initiated the rough
set theory to study incomplete and insufficient information[13].

Dubois, Prade first investigated fuzzy rough set and rough fuzzy set in [7],
which attracting many scholars attentions. From the view of the theory of groups,
Budimirović, Davvaz, Kuroki, Mordeson, Tărnăuceanu,etc studied the notion of
fuzzy subgroups of a group in [3, 6, 11, 12, 15]. In [2, 10, 19], Biswas, Kuroki,
Yaqoob, etc considered the notions of rough groups and rough subgroups. More-
over, Davvaz, Kuroki, Yaqoob, etc investigated the theory of rough fuzzy groups
and rough fuzzy subgroups in [6, 11, 18].

In [16], Wang and Chen investigated the theory of rough subgroups by means
of a normal subgroup, and obtained some interesting results. As a generalization
of [12, 16], in the paper, we define the notions of L-group, rough L-group, and
investigate some of their properties.

The above contents are arranged into three parts, Section 3: L-group, and Section
4: Rough L-group. In Section 2, we give an overview of L-sets, group, rough sets,
which surveys Preliminaries.
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2. Preliminaries

The section is devoted to some main notions for each area, i.e., L-sets [1, 8],
groups, rough sets [4, 5, 9, 13, 17].

2.1. L-sets. The seminal paper on fuzzy sets is [20]. As a generalization, the notion
of an L-set was introduced in [8]. An overview of the theory of L-sets and L-relations
(i.e., fuzzy sets and relations in the framework of complete residuated lattices) can
be found in [1]. In this paper, we assume that L is a complete Heyting algebra.

Definition 2.1. A complete Heyting algebra is a complete lattice L= 〈L,∨,∧, 0, 1〉
which satisfies the following infinite distributive law:

a ∧
∨

B =
∨
{a ∧ b | b ∈ B},

for all elements a and all subsets B.

Next, an L-set is defined in the following manner.
For a universe set X, an L-set in X is a mapping A : X → L. A(x) indicates the

truth degree of “x belongs to A”. We use the symbol LX to denote the set of all
L-sets in X. For instance: 1X : X → L, 0X : X → L are defined as: for all x ∈ X,
1X(x) = 1, 0X(x) = 0, respectively.

For A,B ∈ LX , if ∀x ∈ X, we have A(x) ≤ B(x), then A ⊆ B. and A = B, if
A ⊆ B, B ⊆ A.

Corresponding the operations ∨,∧ on L, two operations are defined on L-sets as
follows.

Definition 2.2. Suppose A,B ∈ LX , then A∩B and A∪B are defined as follows:

(A ∩B)(x) = A(x) ∧B(x), (A ∪B)(x) = A(x) ∨B(x),

for every x ∈ X.

2.2. Rough Sets. Pawlak proposed the rough set theory in [13]. Let (X,R) be an
approximation space, and R ⊆ X ×X be an equivalence relation, then for A ⊆ X,
two subsets R(A) and R(A) of X are defined:

R(A) = {x ∈ X | [x]R ⊆ A}, R(A) = {x ∈ X | [x]R ∩A 6= ∅},

where [x]R = {y ∈ X | xRy}.
If R(A) = R(A), A is called a definable set; if R(A) 6= R(A), A is called an

undefinable set, and (R(A), R(A)) is referred to as a pair of rough set. Therefore, R
and R are called two rough operators.

Furthermore, as generalizations, they also were defined by an arbitrary binary
relation in [17], a mapping in [5, 9], and other methods. Dubois, Prade investigated
fuzzy rough set and rough fuzzy set in [7].

2.3. Group. We assume familiarity with the notion of a group as used in the intu-
itive set theory. Suppose G is a multiplicative group with an identity e, and A is a
subgroup of G, if ∀x, y ∈ A, we have xy ∈ A.

N is a normal subgroup of G, if ∀x ∈ G, and y ∈ N , we have xyx−1 ∈ N .
46
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3. L-Group

Suppose G is a group with an identity e and L is a complete Heyting algebra.

Definition 3.1. A : G → L is called an L-subgroup of G, if for every x, y ∈ G, we
have A(x) ∧A(y) ≤ A(xy) and A(x) ≤ A(x−1).

Example 3.2. Suppose G = {e, x, y, z} with the operator as the following table:

· e x y z
e e x y z
x x e z y
y y z e x
z z y x e

Then A1 = {a/e, b/x, b/y, b/z} is an L-subgroup of G, where a, b ∈ L, and b ≤ a. In
special, when L = [0, 1], we choose a = 0.6, b = 0.4, A1 = {0.6/e, 0.4/x, 0.4/y, 0.4/z}
(See [12]).

From [12], Propositions 3.3, 3.4 and 3.5 hold.

Proposition 3.3. A is an L-subgroup of G if and only if A(x−1y) ≥ A(x−1)∧A(y),
for all x, y ∈ G.

Proposition 3.4. Suppose A is an L-subgroup of G. Then for all x ∈ G,
(1) A(e) ≥ A(x),
(2) A(x) = A(x−1),
(3) A(xn) ≥ A(x).

Proposition 3.5. Suppose A,B are two L-subgroups of G. Then A ∩ B is also an
L-subgroup of G.

Definition 3.6. N is called a normal L-subgroup of G, if for every x, y ∈ G,
N(y) ≤ N(xyx−1).

Clearly A1 is a normal L-subgroup of G.
From [12], Propositions 3.7 and 3.8 hold.

Proposition 3.7. Suppose N is an L-subgroup of G. Then the following conditions
are equivalence:

(1) N is normal,
(2) N(xy) = N(yx) for all x, y ∈ G,
(3) N(xyx−1) = N(y) for all x, y ∈ G.

Proposition 3.8. Suppose A,B are two normal L-subgroups of G. Then A ∩ B is
also a normal L-subgroup of G.

In the classical case, for two subsets A,B of G, AB = {z | z = xy, x ∈ A, y ∈ B},
as a generalization, we give the following definition.

Definition 3.9. For A,B ∈ LG, we define AB as follows: for every z ∈ G,

(AB)(z) =
∨

z=xy

A(x) ∧B(y).
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In special, ({a/x}B)(w) =
∨

w=st
{a/x}(s) ∧B(t) =

∨
w=xt

a ∧B(t) = a ∧B(x−1w).

{a/x}{b/y} = {c/z}, where z = xy, c = a ∧ b.

Example 3.10. From Example 3.2, clearly A2 = {d/e, c/y} is also an L-subgroup
of G, where c, d ∈ L and c ≤ d.

In special, when L = [0, 1], let c = 0.7, d = 0.5, A2 = {0.7/e, 0.5/y}, then
A1A2 = {0.6/e, 0.4/x, 0.4/y, 0.4/z} (See [12]).

4. Rough L-group

In the section, we introduce the notion of a rough L-group defined by a normal
L-subgroup and investigate some of their properties.

First, we give the notion of a rough L-group.

Definition 4.1. Suppose N is a L-normal subgroup of G and for every L-subset
A of G, A 6= 0G. We define N−(A) and N−(A) as follows, respectively: for every
x ∈ G,

N−(A)(x) =
∨

{a/x}∈M
{a |

∨
z∈G

({a/x}N)(z) ∧A(z) 6= 0}

=
∨

{a/x}∈M
{a |

∨
z∈G

a ∧N(x−1z) ∧A(z) 6= 0},

N−(A)(x) =
∨

{a/x}∈M
{a |

∧
z∈G

({a/x}N)(z) ≤ A(z)}

=
∨

{a/x}∈M
{a |

∧
z∈G

a ∧N(x−1z) ≤ A(z)},

where M = {{a/x} | x ∈ G, a ∈ L, a > 0} of all fuzzy singletons .

Then N−(A), N−(A) are called the upper approximation, the lower approxima-
tion of A with respect to the L-normal subgroup N , respectively.

If L = 2, then A is a classical subgroup, and N−(A) = {x | xN ∩ A 6= 0} and
N−(A) = {x | xN ⊆ A}, which coincide with the definition in [16]. If L = [0, 1], the
above definition coincides with [12].

Example 4.2. In Example 3.2, let N = A2 be a normal L-subgroup of G. Then for
A1, we have

N−(A1)(e) =
∨

{a/e}∈M
{a |

∨
w∈G

({a/e}N)(w) ∧A1(w) 6= 0} = 1,

N−(A1)(x) =
∨

{a/x}∈M
{a |

∨
w∈G

({a/x}N)(w) ∧A1(w) 6= 0} = 1,

N−(A1)(y) =
∨

{a/y}∈M
{a |

∨
w∈G

({a/y}N)(w) ∧A1(w) 6= 0} = 1,

N−(A1)(z) =
∨

{a/z}∈M
{a |

∨
w∈G

({a/z}N)(w) ∧A1(w) 6= 0} = 1,

that is, N−(A1) = G.
N−(A1)(e) =

∨
{a/e}∈M

{a |
∧

w∈G
({a/e}N)(w) ≤ A1(w)} = 0.6,

N−(A1)(x) =
∨

{a/x}∈M
{a |

∧
w∈G

({a/x}N)(w) ≤ A1(w)} = 0.4,

48



X.Chen /Ann. Fuzzy Math. Inform. 18 (2019), No. 1, 45–55

N−(A1)(y) =
∨

{a/y}∈M
{a |

∧
w∈G

({a/y}N)(w) ≤ A1(w)} = 0.4,

N−(A1)(z) =
∨

{a/z}∈M
{a |

∧
w∈G

({a/z}N)(w) ≤ A1(w)} = 0.4,

that is, N−(A1) = {0.4/e, 0.4/x, 0.4/y, 0.4/z}.

Next, we discuss the following properties.

Proposition 4.3. Suppose N is a normal L-subgroups of G and A ∈ LG. Then we
have:

(1) N−(A) ⊆ A,
(2) N−(A) ⊇ NA.

Proof. (1) For every w ∈ G, we obtain A(w)∧N(w−1w) ≤ A(w) but for z ∈ G with
z 6= w, A(w) ∧N(w−1z) ≤ A(z) may be not holds. Then

N−(A)(w) =
∨

{c/w}∈M
{c |

∧
z∈G

({c/w}N)(z) ≤ A(z)}

=
∨

{c/w}∈M
{c |

∧
z∈G

c ∧N(w−1z) ≤ A(z)}

≤
∨
{A(w) | A(w) ∧N(w−1w) ≤ A(w)}

= A(w).
Thus we have N−(A) ⊆ A.

(2) For every w ∈ G, if (AN)(w) 6= 0, then we have

N−(A)(w) =
∨

{c/w}∈M
{c |

∨
z∈G

c ∧N(w−1z) ∧A(z) 6= 0}

=
∨

{c/w}∈M
{c | c ∧ [

∨
z∈G

N(w−1z) ∧A(z)] 6= 0}

=
∨

{c/w}∈M
{c | c ∧ (AN)(zw−1z) 6= 0}

≥
∨
{(AN)(w) | (AN(w) ∧ (AN)(w) 6= 0}

(Note: c = (AN)(w), z = w)

= (AN)(w).
Thus N−(A) ⊇ NA. �

Proposition 4.4. Suppose A,B ∈ LG such that A ⊆ B and N is a normal L-
subgroup. Then

(1) N−(A) ⊆ N−(B),
(2) N−(A) ⊆ N−(B).

Proof. By Definition 4.1, they can be easily proved. �

Proposition 4.5. Suppose N is a normal L-subgroups of G and A,B ∈ LG. Then
we have:

(1) N−(A ∪B) ⊇ N−(A) ∪N−(B),
(2) N−(A ∩B) ⊆ N−(A) ∩N−(B),
(3) N−(A ∪B) ⊇ N−(A) ∪N−(B),
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(4) N−(A ∩B) ⊇ N−(A) ∩N−(B).

Proof. By Definition 4.1, they can be easily proved. �

Proposition 4.6. Suppose N is a normal L-subgroups of G and A is an (normal)
L-subgroup of G. Then N−(A) is an (normal) L-subgroups of G.

Proof. Let s, t ∈ G. Then
N−(A)(s) ∧N−(A)(t)

=
∨

{a/s}∈M
{a |

∨
x∈G

a ∧N(s−1x) ∧A(x) 6= 0}

∧
∨

{b/t}∈M
{b |

∨
y∈G

b ∧N(t−1y) ∧A(y) 6= 0}

=
∨

{a/s}∈M

∨
{b/t}∈M

[{a |
∨

x∈G
a ∧N(s−1x) ∧A(x) 6= 0}

∧{b |
∨

y∈G
b ∧N(t−1y) ∧A(y) 6= 0}]

=
∨

{a/s}∈M

∨
{b/t}∈M

{a ∧ b |
∨

x∈G

∨
y∈G

a ∧ b ∧N(s−1x) ∧N(t−1y) ∧A(x) ∧A(y) 6= 0}

=
∨

{c/w}∈M
{c |

∨
z=xy∈G

c ∧N(s−1x) ∧N(t−1y) ∧A(x) ∧A(y) 6= 0}

≤
∨

{c/w}∈M
{c |

∨
z=xy∈G

c ∧N(w−1z) ∧A(z) 6= 0}

= N−(A)(w) (Note w = st, z = xy).
Thus N−(A) is an L-subgroup of G.

Furthermore, if A is a normal L-subgroup of G, then for s, t ∈ G, let w = s−1ts.
Then we have

N−(A)(s−1ts) = N−(A)(w)

=
∨

{c/w}∈M
{c |

∨
z∈G

c ∧N(w−1z) ∧A(w) 6= 0}

=
∨

{c/w}∈M
{c |

∨
z∈G

c ∧N((s−1ts)−1z) ∧A(s−1ts) 6= 0}

=
∨

{c/w}∈M
{c |

∨
z∈G

c ∧N(st−1s−1z) ∧A(t) 6= 0}

=
∨

{c/w}∈M
{c |

∨
z∈G

c ∧N(st−1zs−1) ∧A(t) 6= 0}

=
∨

{c/w}∈M
{c |

∨
z∈G

c ∧N(t−1z) ∧A(t) 6= 0}

=
∨

{a/t}∈M
{a |

∨
z∈G

a ∧N(t−1z) ∧A(t) 6= 0}

= N−(A)(t).
Thus N−(A) is a normal L-subgroup of G. �

In general, N−(A) is not an L-subgroup of G. But if N−(A) is an L-subgroup of
G, and A is a normal L-subgroup of G, in the similar method, we can prove N−(A)
is also a normal L-subgroup of G.
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Proposition 4.7. Suppose N , H are two normal L-subgroups of G and A,B ∈ LG.
Then we have:

(1) N−(A)N−(B) ⊆ N−(AB),
(2) N−(A)N−(B) ⊆ N−(AB),
(3) (N ∩H)−(A) ⊇ N−(A) ∩H−(A),
(4) (N ∩H)−(A) ⊆ N−(A) ∩H−(A).

Proof. (1) For every w ∈ G,

N−(AB)(w) =
∨

{c/w}∈M
{c |

∨
z∈G

c ∧N(w−1z) ∧ (AB)(z) 6= 0}

=
∨

{c/w}∈M
{c |

∨
z∈G

c ∧N(w−1z) ∧ [
∨

z=xy
A(x) ∧B(y)] 6= 0}

=
∨

{c/w}∈M
{c |

∨
z=xy

c ∧N(w−1z) ∧A(x) ∧B(y) 6= 0},

(N−(A)N−(B))(w)
=

∨
w=st

N−(A)(s) ∧N−(B)(t)

=
∨

w=st
[

∨
{a/s}∈M

{a |
∨

x∈G
a ∧N(s−1x) ∧A(x) 6= 0}

∧
∨

{b/t}∈M
{b |

∨
y∈G

b ∧N(t−1y) ∧B(y) 6= 0}]

=
∨

w=st

∨
{a/s}∈M

∨
{b/t}∈M

[{a |
∨

x∈G
a ∧N(s−1x) ∧A(x) 6= 0}

∧{b |
∨

y∈G
b ∧N(t−1y) ∧B(y) 6= 0}]

=
∨

w=st

∨
{a/s}∈M

∨
{b/t}∈M

{a∧b |
∨

x∈G

∨
y∈G

a∧N(s−1x)∧A(x)∧b∧N(t−1y)∧B(y) 6= 0}

=
∨

w=st

∨
{c/w}∈M

{c |
∨

z=xy
c ∧N(s−1x) ∧N(t−1y) ∧A(x) ∧B(y) 6= 0}

(Note {c/w} = {a/s}{b/t})
≤

∨
w=st

∨
{c/w}∈M

{c |
∨

z=xy
c ∧N(s−1xt−1y) ∧A(x) ∧B(y) 6= 0}

=
∨

w=st

∨
{c/w}∈M

{c |
∨

z=xy
c ∧N(s−1t−1xy) ∧A(x) ∧B(y) 6= 0}

=
∨

w=st

∨
{c/w}∈M

{c |
∨

z=xy
c ∧N(w−1z) ∧A(x) ∧B(y) 6= 0}

= N−(AB)(w).
(2) For every w ∈ G,

N−(AB)(w) =
∨

{c/w}∈M
{c |

∧
z∈G

({c/w}N)(z) ≤ (AB)(z)}

=
∨

{c/w}∈M
{c |

∧
z∈G

({c/w}N)(z) ≤
∨

z=xy
A(x) ∧B(y)}

=
∨

z=xy

∨
w=st

[
∨

{a/s}∈M
{a |

∧
z∈G

({a/s}N)(z) ≤ A(x)}]

∧[
∨

{b/t}∈M
{b |

∧
z∈G

({b/t}N)(z) ≤ B(y)}]

(Note {c/w} = {a/s}{b/t})
=

∨
z=xy

∨
w=st

[
∨

{a/s}∈M
{a |

∧
z∈G

a ∧N(s−1z) ≤ A(x)}]
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∧[
∨

{b/t}∈M
{b |

∧
z∈G

b ∧N(t−1z) ≤ B(y)}]

≥
∨

w=st
[

∨
{a/s}∈M

{a |
∧

x∈G
a ∧N(s−1x) ≤ A(x)}]

∧[
∨

{b/t}∈M
{b |

∧
y∈G

b ∧N(t−1y) ≤ B(y)}]

=
∨

w=st
N−(A)(s) ∧N−(B)(t)

= (N−(A)N−(B))(w).
Then N−(A)N−(B) ⊆ N−(AB).

(3) For every w ∈ G, we have

(N ∩H)−(A)(w) =
∨

{c/w}∈M
{c |

∨
z∈G

({c/w}(N ∩H))(z) ∧A(z) 6= 0}

=
∨

{c/w}∈M
{c |

∨
z∈G

c ∧ (N ∩H)(w−1z) ∧A(z) 6= 0}

=
∨

{c/w}∈M
{c |

∨
z∈G

c ∧N(w−1z) ∧H(w−1z) ∧A(z) 6= 0}

≥ [
∨

{c/w}∈M
{c |

∨
z∈G

c ∧N(w−1z) ∧A(z) 6= 0}]

∧[
∨

{c/w}∈M
{c |

∨
z∈G

c ∧H(w−1z) ∧A(z) 6= 0}]

= N−(A)(w) ∧H−(A)(w)

= (N−(A) ∩H−(A))(w).

(4) For every w ∈ G, we have

(N ∩H)−(A)(w) =
∨

{c/w}∈M
{c |

∧
z∈G

({c/w}(N ∩H))(z) ≤ A(z)}

=
∨

{c/w}∈M
{c |

∧
z∈G

c ∧ (N ∩H)(w−1z) ≤ A(z)}

=
∨

{c/w}∈M
{c |

∧
z∈G

c ∧N(w−1z) ∧H(w−1z) ≤ A(z)}

≤
∨

{c/w}∈M
{c |

∧
z∈G

c ∧N(w−1z) ≤ A(z)}

∧
∨

{c/w}∈M
{c |

∧
z∈G

c ∧H(w−1z) ≤ A(z)}

= N−(A)(w) ∧H−(A)(w)

= (N−(A) ∩H−(A))(w). �

Proposition 4.8. Suppose N , H are two normal L-subgroups of G. Then for every
L-subgroup A of G, we have N−(A)H−(A) ⊆ (NH)−(A).

Proof. For every w ∈ G, we have

(NH)−(A)(w) =
∨

{c/w}∈M
{c |

∨
z∈G

({c/w}(NH))(z) ∧A(z) 6= 0}
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=
∨

{c/w}∈M
{c |

∨
z∈G

c ∧ (NH)(w−1z) ∧A(z) 6= 0},

(N−(A)H−(A))(w)
=

∨
w=st

N−(A)(s) ∧H−(A)(t)

=
∨

w=st
[

∨
{a/s}∈M

{a |
∨

x∈G
({a/s}N)(x) ∧A(x) 6= 0}]

∧[
∨

{b/t}∈M
{b |

∨
y∈G

({b/t}H)(y) ∧A(y) 6= 0}]

=
∨

w=st
[

∨
{a/s}∈M

{a |
∨

x∈G
a ∧N(s−1x) ∧A(x) 6= 0}]

∧[
∨

{b/t}∈M
{b |

∨
y∈G

b ∧H(t−1y) ∧A(y) 6= 0}]

=
∨

w=st

∨
{a/s}∈M

∨
{b/t}∈M

{a∧b |
∨

x∈G

∨
y∈G

a∧b∧N(s−1x)∧H(t−1y)∧A(x)∧A(y) 6= 0}

=
∨

{c/w}∈M
{c |

∨
x∈G

∨
y∈G

c ∧N(s−1x) ∧H(t−1y) ∧A(x) ∧A(y) 6= 0}

=
∨

{c/w}∈M
{c |

∨
z=xy∈G

c ∧N(s−1x) ∧H(t−1y) ∧A(x) ∧A(y) 6= 0}

=
∨

{c/w}∈M
{c |

∨
z=xy∈G

c ∧ (NH)(w−1z) ∧A(x) ∧A(y) 6= 0} (w = st)

≤
∨

{c/w}∈M
{c |

∨
z=xy∈G

c ∧ (NH)(w−1z) ∧A(z) 6= 0}

= (NH)−(A)(w). �

Proposition 4.9. Suppose N , H are two normal L-subgroups of G. Then for every
L-subgroup A of G, we have (NH)−(A) ⊇ (N−(A))H ∩ (H−(A))N .

Proof. For every w ∈ G, we have
((N−(A))H ∩ (H−(A))N)(w)

= ((N−(A))H)(w) ∧ ((H−(A))N)(w)
= [

∨
w=st

(N−(A)(s) ∧H(t)] ∧ [
∨

w=st
H−(A)(t) ∧N(s)]

= [
∨

w=st

∨
{a/s}∈M

{a |
∨

x∈G
a ∧N(s−1x) ∧A(x) 6= 0} ∧H(t)]

∧[
∨

w=st

∨
{b/t}∈M

{b |
∨

y∈G
b ∧H(t−1y) ∧A(y) 6= 0} ∧N(s)]

= [
∨

w=st

∨
{a/s}∈M

{a ∧H(t) |
∨

x∈G
a ∧N(s−1x) ∧A(x) 6= 0}]

∧[
∨

w=st

∨
{b/t}∈M

{b ∧N(s) |
∨

y∈G
b ∧H(t−1y) ∧A(y) 6= 0}]

=
∨

w=st

∨
{a/s}∈M

∨
{b/t}∈M

[{a ∧H(t) |
∨

x∈G
a ∧N(s−1x) ∧A(x) 6= 0}]

∧[{b ∧N(s) |
∨

y∈G
b ∧H(t−1y) ∧A(y) 6= 0}]

=
∨

w=st

∨
{a/s}∈M

∨
{b/t}∈M

{a ∧H(t) ∧ b ∧N(s) |∨
x∈G

∨
y∈G

a ∧N(s−1x) ∧A(x) ∧ b ∧H(t−1y) ∧A(y) 6= 0}

=
∨

w=st

∨
{c/w}∈M

{c∧H(t)∧N(s) |
∨

z=xy
c∧N(s−1x)∧A(x)∧H(t−1y)∧A(y) 6= 0}

≤
∨

w=st

∨
{c/w}∈M

{c |
∨

z=xy
c∧N(s−1x)∧H(t−1y)∧A(z) 6= 0} (A(x)∧A(y) ≤ A(z))
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=
∨

{c/w}∈M
{c |

∨
z∈G

c ∧ (NH)(w−1z) ∧A(z) 6= 0}

= (NH)−(A)(w). �

Proposition 4.10. Suppose N , H are two normal L-subgroups of G. Then for
every L-subgroup A of G, we have N−(A)H−(A) ⊆ (NH)−(A).

Proof. For every w ∈ G,
(N−(A)H−(A))(w)

=
∨

w=st
N−(A)(s) ∧H−(A)(t)

=
∨

w=st
[

∨
{a/s}∈M

{a |
∨

x∈G
a ∧N(s−1x) ≤ A(x)}]

∧[
∨

{b/t}∈M
{b |

∨
y∈G

b ∧H(t−1y) ≤ A(y)}]

=
∨

w=st

∨
{a/s}∈M

∨
{b/t}∈M

[{a |
∨

x∈G
a ∧N(s−1x) ≤ A(x)}]

∧[{b |
∨

y∈G
b ∧H(t−1y) ≤ A(y)}]

=
∨

w=st

∨
{a/s}∈M

∨
{b/t}∈M

[{a∧b |
∨

x∈G

∨
y∈G

a∧b∧N(s−1x)∧H(t−1y) ≤ A(x)∧A(y)}]

=
∨

w=st

∨
{c/w}∈M

[{c |
∨

z=xy∈G
c ∧N(s−1x) ∧H(t−1y) ≤ A(x) ∧A(y)}]

=
∨

w=st

∨
{c/w}∈M

[{c |
∨

z=xy∈G
c ∧ (NH)(w−1z) ≤ A(x) ∧A(y)}]

≤
∨

{c/w}∈M
[{c |

∨
z=xy∈G

c ∧ (NH)(w−1z) ≤ A(z)}]

= (NH)−(A)(w). �

5. Conclusion

In the paper, we investigated two problems. One is generalized the notion of a
group in fuzzy setting; The other is defined two rough operators on an L-group, and
discussed some of their properties.
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