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1. Introduction

The concept of multisets as noted in [17], was first suggested by N. G. de Bruijn
(cf. [6]) in a private communication to D. E. Knuth, as an important generalisa-
tion of Cantorian set theory, by violating a basic property of Cantorian sets that
an element can belong to a set only once. The notion of multisets is a boost to the
concept of multigroups via multisets, which generalises group theory. In [18], the
concept of multigroups in multisets framework was proposed and a number of re-
sults were obtained. The notion is parallel to other non-classical groups (e.g., fuzzy
groups, intuitionistic fuzzy groups [5, 20], etc). A complete survey on the concept
of multigroups was carried out in [14], and it was established that multigroup via
multiset is a generalisation of group theory.

The concept of multigroups via multisets has been extensively researched upon
since inception. A number of algebraic properties of order of an element in a multi-
group were considered in [3] and some results on multigroups which cut across some
homomorphic properties were explored in [4]. The notions of upper and lower cuts
of multigroups were proposed and discussed in details with some results in [7], and
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the notions were extended to homomorphic sense and a number of results were ex-
plored [12]. The ideas of submultigroups of multigroups and abelian multigroups
were explicated with some results in [13]. In continuation, the concepts of normal
submultigroups and characteristic submultigroups of multigroups were proposed in
[9, 16] with some results, and some homomorphic properties of multigroups were
studied in [8]. Some group’s analogous theoretic concepts were established in multi-
group context like direct product of multigroups, comultisets, factor multigroups
and multigroup actions on multiset with some number of results. See [9, 10, 11, 15]
for details. The concept of multigroups has been extended to soft multigroups [1, 19]
as a generalisation of soft groups [2].

The concept of multigroups which is an application of multisets to group theory
has been elaborated in literature (cf. [4, 7, 8, 9, 10, 11, 12, 13, 15, 18]). Notwith-
standing, some group’s analogous results could be explored which are not hitherto
studied in multigroup setting, hence the motivation of the work. In a nutshell, this
present paper seeks to explicate some group theoretic results and concept (e.g., com-
mutator) in the light of multigroup, which are fallowed in multigroup context. The
paper is organised by presenting some definitions and existing results on multisets,
multigroups, cuts of multigroups, comultisets, normal submultigroups, characteris-
tic submultigroups, homomorphic properties and direct product of multigroups in
Section 2. Section 3 discusses some further results of multigroup’s concepts and
proposes the notion of commutator in multigroup setting. Section 4 summarises and
concludes the paper with future research direction.

2. Preliminaries

In this section, we present some existing definitions and results to be used in the
sequel.

Definition 2.1 ([22]). Let X be a set. A multiset A over X is just a pair 〈X,CA〉,
where X is a set and CA : X → N is a function. Any ordinary set B is actually a
multiset 〈B,χB〉, where χB is its characteristic function.

The set X is called the ground or generic set of the class of all multisets (for
short, msets) containing objects from X. We denote the set of all multisets over X
by MS(X).

A multiset A = [a, a, b, b, c, c, c] over a set X = {a, b, c} can be represented as
A = [a2, b2, c3]. Other forms of multiset representations can be found in literature.

Definition 2.2 ([22]). Let A,B ∈ MS(X). Then A is called a submultiset of B
written as A ⊆ B, if CA(x) ≤ CB(x)∀x ∈ X. Also, if A ⊆ B and A 6= B, then A
is called a proper submultiset of B and denoted as A ⊂ B. A multiset is called the
parent in relation to its submultiset.

Definition 2.3 ([21]). Let A,B ∈ MS(X). Then the intersection, union and sum
of A and B, denoted by A ∩ B,A ∪ B and A + B respectively, are defined by the
rules that for any object x ∈ X,

(i) CA∩B(x) = CA(x) ∧ CB(x),
(ii) CA∪B(x) = CA(x) ∨ CB(x),
(iii) CA+B(x) = CA(x) + CB(x),
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where ∧ and ∨ denote minimum and maximum, respectively.

Definition 2.4 ([21]). Let A,B ∈MS(X). Then A and B are comparable to each
other if and only if A ⊆ B or B ⊆ A, and A = B if and only if

CA(x) = CB(x)∀x ∈ X.

Definition 2.5. A multiset B of a set X is said to have sup-property, if for any
subset W ⊂ X ∃ w0 ∈W such that

CB(w0) =
∨
w∈W
{CB(w)}.

Definition 2.6 ([13, 18]). Let X be a group. A multiset A over X is called a
multigroupoid of X, if for all x, y ∈ X,

CA(xy) ≥ CA(x) ∧ CA(y),

where CA denotes count function of A from X into a natural number N.
Also, a multiset A over a group X is said to be a multigroup of X, if it satisfies

the following two conditions:

(i) A is a multigroupoid of X,
(ii) CA(x−1) = CA(x),∀x ∈ X.

The set of all multigroups of X is denoted by MG(X).

It can be easily verified that if A is a multigroup of X, then

CA(e) =
∨
x∈X

CA(x) ∀x ∈ X,

that is, CA(e) is the tip of A, where e is the identity element of X. And a multigroup
A is said to be regular, if CA(x) = CA(y) ∀x, y ∈ X.

Remark 2.7 ([18]). Let X be a group and G be a multiset over X. If

CG(xy−1) ≥ CG(x) ∧ CG(y),

for all x, y ∈ X, then G is called a multigroup of X.

Remark 2.8 ([13]). Every multigroup is a multiset but the converse is not neces-
sarily true.

Definition 2.9 ([13]). Let A ∈MG(X). A submultiset B of A is called a submulti-
group of A denoted by B v A, if B is a multigroup. A submultigroup B of A is a
proper submultigroup denoted by B < A, if B v A and A 6= B.

Definition 2.10 ([11, 18]). Let X be a group. For any submultigroup A of a
multigroup G of X, the submultiset yA of G for y ∈ X defined by

CyA(x) = CA(y−1x) ∀x ∈ X

is called the left comultiset of A. Similarly, the submultiset Ay of G for y ∈ X
defined by

CAy(x) = CA(xy−1) ∀x ∈ X
is called the right comultiset of A.
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Proposition 2.11 ([18]). Let A ∈MG(X). Then the sets A∗ and A∗ defined by

A∗ = {x ∈ X | CA(x) > 0}
and

A∗ = {x ∈ X | CA(x) = CA(e)}
are subgroups of X.

Definition 2.12 ([7]). Let A ∈MG(X). Then the sets A[n] and A(n) defined by

A[n] = {x ∈ X | CA(x) ≥ n, n ∈ N}
and

A(n) = {x ∈ X | CA(x) > n, n ∈ N}
are called the strong and weak upper cuts of A, respectively.

Similarly, The sets A[n] and A(n) defined by

A[n] = {x ∈ X | CA(x) ≤ n, n ∈ N}
and

A(n) = {x ∈ X | CA(x) < n, n ∈ N}
are called the strong and weak lower cuts of A, respectively.

Theorem 2.13 ([7]). Let A ∈ MG(X). Then A[n], n ∈ N is a subgroup of X for

n ≤ CA(e) and A[n], n ∈ N is a subgroup of X, for n ≥ CA(e).

Definition 2.14 ([18]). Let A ∈MG(X). Then A−1 is defined by

CA−1(x) = CA(x−1),∀x ∈ X.

Thus we notice that A ∈MG(X)⇔ A−1 ∈MG(X).

Definition 2.15 ([9]). Let A,B ∈ MG(X) such that A ⊆ B. Then A is called a
normal submultigroup of B, if for all x, y ∈ X,

CA(xyx−1) ≥ CA(y).

Proposition 2.16 ([9]). Let A be a submultigroup of B ∈ MG(X). Then the
following statements are equivalent:

(1) A is a normal submultigroup of B,
(2) CA(xyx−1) = CA(y)∀x, y ∈ X,
(3) CA(xy) = CA(yx)∀x, y ∈ X.

Remark 2.17 ([9]). It follows that A is a normal submultigroup of B ∈MG(X) if
and only if

CA(xy) = CA(yx) or CA(xyx−1) = CA(y) ∀x, y ∈ X,
rewritten as CAx(y) = CA(y). That is, CAx(y) = CA(xyx−1).

Definition 2.18 ([18]). Let A ∈MG(X). Then A is said to be commutative, if for
all x, y ∈ X,

CA(xy) = CA(yx).

Definition 2.19 ([8]). Let X and Y be groups and let f : X → Y be a homomor-
phism. Suppose A and B are multigroups of X and Y , respectively. Then f induces
a homomorphism from A to B which satisfies
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(i) Cf(A)(y1y2) ≥ Cf(A)(y1) ∧ Cf(A)(y2) ∀y1, y2 ∈ Y ,
(ii) CB(f(x1x2)) ≥ CB(f(x1)) ∧ CB(f(x2)) ∀x1, x2 ∈ X,

where

(i) the image of A under f , denoted by f(A), is a multiset of Y defined by

Cf(A)(y) =

{ ∨
x∈f−1(y) CA(x), f−1(y) 6= ∅

0, otherwise

for each y ∈ Y and
(ii) the inverse image of B under f , denoted by f−1(B), is a multiset of X

defined by

Cf−1(B)(x) = CB(f(x)) ∀x ∈ X.

Definition 2.20 ([8]). Let f be a homomorphism of a group X into a group Y and
A ∈ MG(X). Then A is said to be f-invariant, if ∀ x, y ∈ X, f(x) = f(y) implies
CA(x) = CA(y).

Definition 2.21 ([8]). Let X be a group and let A ∈ MG(X). Then a homomor-
phism θ from X onto X is called an automorphism of A onto A, if θ is both injective
and surjective, that is, bijective.

Definition 2.22 ([16]). Let A,B ∈ MG(X) such that A ⊆ B. Then A is called a
characteristic submultigroup of B, if

CAθ (x) = CA(x) ∀x ∈ X

for every automorphism, θ of X. That is, θ(A) ⊆ A, for every θ ∈ Aut(X).

Definition 2.23 ([16]). Let A be a multigroup of a group X and θ a function from
X into itself. Define the multiset Aθ of X by

CAθ (x) = CA(xθ), where xθ = θ(x) = x ∀x ∈ X.

Proposition 2.24 ([16]). Let B ∈ MG(X). Then every characteristic submulti-
group of B is a normal submultigroup of B.

Definition 2.25 ([10]). Let X and Y be groups, A ∈ MG(X) and B ∈ MG(Y ),
respectively. The direct product of A and B depicted by A×B is a function

CA×B : X × Y → N

defined by

CA×B((x, y)) = CA(x) ∧ CB(y), ∀x ∈ X,∀y ∈ Y.

Theorem 2.26 ([10]). Let A and B be multigroups of groups X and Y , respectively.
Then A×B is a multigroup of X × Y .

Definition 2.27 ([10]). Let A1, A2, ..., Ak be multigroups of X1, X2, ..., Xk, respec-
tively. Then the direct product of A1, A2, ..., Ak is a function

CA1×A2×...×Ak : X1 ×X2 × ...×Xk → N

defined by

CA1×A2×...×Ak(x) = CA1
(x1) ∧ CA2

(x2) ∧ ... ∧ CAk−1
(xk−1) ∧ CAk(xk)
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where x = (x1, x2, ..., xk−1, xk), ∀x1 ∈ X1,∀x2 ∈ X2, ...,∀xk ∈ Xk. If we denote
A1, A2, ..., Ak by Ai, (i ∈ I), X1, X2, ..., Xk by Xi, (i ∈ I), A1 × A2 × ... × Ak by∏k
i=1Ai and X1 × X2 × ... × Xk by

∏k
i=1Xi. Then the direct product of Ai is a

function

C∏k
i=1 Ai

:

k∏
i=1

Xi → N

defined by

C∏k
i=1 Ai

((xi)i∈I) = ∧i∈ICAi((xi)) ∀xi ∈ Xi, I = 1, ..., k.

Unless otherwise specified, it is assumed that Xi is a group with identity ei for all

i ∈ I, X =
∏k
i∈I Xi, and so e = (ei)i∈I .

3. Main results

In this section, we present some results on multigroups. The first three results
are deduced from the concepts of cuts and comultisets of multigroups.

Proposition 3.1. Let A be a multigroup of X and let x ∈ X. Then CA(x) = n1 if
and only if x ∈ A[n1] and x /∈ A[n2] such n2 > n1 for n1, n2 ∈ N.

Proof. Let x ∈ X and A ∈MG(X). Suppose CA(x) = n1. It implies that x ∈ A[n1],
and if ∃ n2 ∈ N such that n2 > n1, then it follows that x /∈ A[n2].

Conversely, assume that x ∈ A[n1] and x /∈ A[n2], for n2 > n1. Then we can see
clearly by the hypothesis that CA(x) = n1. �

Theorem 3.2. Let A be a submultigroup of B ∈ MG(X). Then gA = hA, for
g, h ∈ X if and only if

CA(g−1h) = CA(h−1g) = CA(e).

Proof. Let gA = hA. Then CgA(g) = ChA(g) and CgA(h) = ChA(h) ∀g, h ∈ X.
Thus

CA(g−1h) = CA(h−1g) = CA(e).

Conversely, let CA(g−1h) = CA(h−1g), ∀g, h ∈ X. For every x ∈ X, we have

CgA(x) = CA(g−1x) = CA(g−1hh−1x)

≥ CA(g−1h) ∧ CA(h−1x)

= CA(h−1x)

= ChA(x).

Similarly,

ChA(x) = CA(h−1x) = CA(h−1gg−1x)

≥ CA(h−1g) ∧ CA(g−1x)

= CA(g−1x)

= CgA(x).

Then CgA(x) = ChA(x) ⇒ gA = hA. �
236
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Corollary 3.3. Let A be a submultigroup of B ∈ MG(X). Then Ag = Ah, for
g, h ∈ X if and only if

CA(gh−1) = CA(hg−1) = CA(e).

Proof. Straightforward from Theorem 3.2. �

Next, we consider some results that have to do with normal submultigroups of
multigroups.

Proposition 3.4. If B ∈MG(X) and A is a normal submultigroup of B. Then A∗
is a normal subgroup of B∗ and A∗ is a normal subgroup of B∗.

Proof. We know that A∗ and A∗ are subgroups of X, by Proposition 2.11. It is easy
to prove that A∗ and A∗ are normal subgroups of X.

Let x, y ∈ A∗. Then by the definition of A∗, it follows that CA(x) > 0 and
CA(y) > 0. That is,

CA(xyx−1) ≥ CA(y) > 0.

Thus xyx−1 ∈ A∗ ⇒ A∗ is a normal subgroup of X.
Similarly, assume x, y ∈ A∗. Then by the definition of A∗, it follows that

CA(x) = CA(e) = CA(y).

That is,
CA(xyx−1) ≥ CA(y) = CA(e) ≥ CA(xyx−1).

Thus CA(xyx−1) = CA(e) ∀x, y ∈ X. So xyx−1 ∈ A∗. Hence the result follows.
Recall that, A is a normal submultigroup of B, and A∗ and A∗ are normal sub-

groups of X. Synthesizing these, it implies that A∗ is a normal subgroup of B∗ and
A∗ is a normal subgroup of B∗. �

Proposition 3.5. Let A be a normal submultigroup of B ∈ MG(X). Then A[n]

is a normal subgroup of X ∀ n ≤ CA(e) and A[n] is a normal subgroup of X ∀
n ≥ CA(e), where e is the identity element of X and n ∈ N. Consequently, A[n] is

a normal subgroup of B[n] and A[n] is a normal subgroup of B[n].

Proof. It implies from Theorem 2.13 that, A[n] is a subgroup of X ∀ n ≤ CA(e) and

A[n] is a subgroup of X ∀ n ≥ CA(e), where n ∈ N. Now, we prove that A[n] and

A[n] are normal subgroups of X.
Let x, y ∈ A[n]. Then by the definition of A[n], we get

CA(x) ≥ n and CA(y) ≥ n.
That is,

CA(xyx−1) = CA(y) ≥ n.
Thus, xyx−1 ∈ A[n]. So A[n] is a normal subgroup of X. Similarly, it follows that

A[n] is a normal subgroup of X.
But we know that, A is a normal submultigroup of B, and A[n] and A[n] are normal

subgroups of X. Synthesizing these, it happens that A[n] is a normal subgroup of

B[n] and A[n] is a normal subgroup of B[n]. �

Theorem 3.6. For a submultigroup A of B ∈ MG(X), the following statements
are equivalent:
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(1) A is a normal submultigroup of B,
(2) A[n] (for n ∈ N and n ≤ CA(e), where e is the identity element of X) is a

normal subgroup of X. It also holds for A[n], whenever n ≥ CA(e).

Proof. (1)⇒(2): Let x ∈ X and y ∈ A[n]. Then by the hypothesis, we have

CA(xyx−1) = CA(y) ≥ n.

Thus y = xyx−1 ∈ A[n]. So A[n] is a normal subgroup of X.
(2)⇒(1): Let x, g ∈ X. Take n1 = CA(x) and n2 = CB(g). then x ∈ A[n1] and

g ∈ B[n2], for n1, n2 ∈ N.
Case 1: Suppose n1 ≥ n2. Then n0 ≥ CA(x) ≥ n2 = CB(g), for n1 ∈ [0, n0].

Thus x ∈ A[n2] and g ∈ B[n2]. So by the hypothesis, A[n2] is a normal subgroup of

B[n2]. Hence gxg−1 ∈ A[n2]. So,

CA(gxg−1) ≥ n2 = CB(g) = CA(x) ∧ CB(g).

Case 2: Suppose n2 ≥ n1. Thent

CB(g) ≥ n1 = CA(x).

Thus x ∈ A[n1] and g ∈ B[n1]. So by the hypothesis, A[n1] is a normal subgroup of

B[n1]. Consequently, gxg−1 ∈ A[n1]. Hence

CA(gxg−1) ≥ n1 = CA(x) = CA(x) ∧ CB(g).

Therefore (1) holds. �

Definition 3.7. Let A and B be submultigroups of C ∈ MG(X). Then the com-
mutator of A and B is the multiset (A,B) of X defined as follows:

C(A,B)(x) =

{ ∨
x=[a,b][CA(a) ∧ CB(b)], if x is a commutator inX

0, otherwise.

That is,

C(A,B)(x) =
∨

x=aba−1b−1

[CA(a) ∧ CB(b)].

Since the supremum of an empty set is zero, C(A,B)(x) = 0 if x is not a commutator.

Definition 3.8. Let A and B be submultigroups of C ∈ MG(X). Then the com-
mutator multigroup of A and B is the multigroup generated by the commutator
(A,B). It is denoted by [A,B].

Definition 3.9. Let A be a submultigroup of B ∈MG(X). Then the submultigroup
of B generated by A is the least submultigroup of B containing A. It is denoted by
< A >. That is

< A >=
⋂
{Ai ∈MG(X)|CA(x) ≤ CAi(x)}.

With the aid of Definitions 3.7 and 3.8, we obtain the result that follows.

Theorem 3.10. Let A and B be normal submultigroups of C ∈ MG(X). Then
[A,B] ⊆ A ∩B.
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Proof. Let x ∈ Xand assume that x is not a commutator. Then C(A,B)(x) = 0.

Thus there is nothing to prove. Suppose that x = aba−1b−1, for some a, b ∈ X.
Then

CA∩B(x) = CA(x) ∧ CB(x)

= CA(aba−1b−1) ∧ CB(aba−1b−1)

≥ (CA(a) ∧ CA(ba−1b−1)) ∧ (CB(aba−1) ∧ CB(b−1))

≥ (CA(a) ∧ CC(b)) ∧ (CB(b) ∧ CC(a))

= CA(a) ∧ CB(b).

This implies that

CA∩B(x) ≥
∨

x=aba−1b−1

CA(a) ∧ CB(b)

= C(A,B)(x).

Thus CA∩B(x) ≥ C(A,B)(x). So [A,B] ⊆ A ∩B. �

Theorem 3.11. Let A,B ∈ MG(X) such that CA(e) = CB(e), where e is the
identity element of X. Then B is commutative if and only if A is a commutative
multigroup of X.

Proof. Let X be a group such that x, y ∈ X. Suppose B is commutative. Then it
follows that

CB((xy)(xy)−1) = CB(e) = CB((xy)(yx)−1)

= CA((xy)(yx)−1)

= CA(e),

since CA(e) = CB(e). Thus CA(xy) = CA(yx) ∀x, y ∈ X.
Conversely, supposeA is a commutative multigroup ofX. Then we have CB(xy) =

CB(yx), ∀x, y ∈ X using the same logic in the necessity part. �

In what follow are some results on homomorphic properties of multigroups and
the notion of characteristic submultigroups.

Theorem 3.12. Let f : X → Y be a homomorphism and A ∈ MG(X). If A is
f-invariant, then A is regular.

Proof. Suppose A is f-invariant. Then ∀x, y ∈ X, it follows that f(x) = f(y), by
Definition 2.20. Thus

Cf(A)(f(x)) = Cf(A)(f(y)) ⇒ CA(f−1(f(x))) = CA(f−1(f(y)))

⇒ CA(x) = CA(y).

So A is regular. �

Corollary 3.13. With the same hypothesis as in Theorem 3.12, for all x, y ∈ X,
f(x) = f(y) if and only if A is f-invariant.
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Proof. Suppose f(x) = f(y) ∀x, y ∈ X. Then by Theorem 3.12, CA(x) = CA(y).
Thus A is f-invariant.

Conversely, suppose A is f-invariant. Then it follows that, A is regular by Theorem
3.12. Thus CA(x) = CA(y) ∀x, y ∈ X. So we get

CA(f−1(f(x))) = CA(f−1(f(y))) ⇒ Cf(A)(f(x)) = Cf(A)(f(y)).

So f(x) = f(y). �

Proposition 3.14. Let A ∈ MG(X) and g ∈ X. If θ is an automorphism of X
defined by θ(x) = gxg−1 ∀x ∈ X, then Ag = Aθ.

Proof. Let A ∈MG(X) and g ∈ X. Suppose θ : X → X is defined by θ(x) = gxg−1

∀x ∈ X. Then by Remark 2.17, we get

CAg (x) = CA(gxg−1) = CA(θ(x)) = CAθ (x).

Thus the result follows. �

Proposition 3.15. Let A ∈MG(X). If θ is a homomorphism of X into itself, then
Aθ is a multigroup of X.

Proof. Let x, y ∈ X. Then CAθ (xy) = CA((xy)θ) = CA(xθyθ), since θ is a homo-
morphism. Since A is a multigroup of X, we have

CA(xθyθ) ≥ CA(xθ) ∧ CA(yθ) = CAθ (x) ∧ CAθ (y).

Thus

CAθ (xy) ≥ CAθ (x) ∧ CAθ (y).

Also,

CAθ (x
−1) = CA((x−1)θ) = CA((xθ)−1) = CA(xθ) = CAθ (x).

So Aθ is a multigroup of X. �

Theorem 3.16. Let θ : X → X be an automorphism and A ∈ MS(X). Then
Aθ ∈MG(X) if and only if A ∈MG(X).

Proof. Suppose A ∈MG(X). Then using the same logic in the proof of Proposition
3.15, it follows that Aθ ∈MG(X).

Conversely, assume Aθ is a multigroup of X. Then

CAθ (xy) ≥ CAθ (x) ∧ CAθ (y) and CAθ (x
−1) = CAθ (x)

, ∀x, y ∈ X and for every θ ∈ Aut(X). Thus

CAθ (xy) = CA((xy)θ) = CA(θ(xy))

= CA(xy),

⇒ CA(xy) ≥ CA(x) ∧ CA(y) ∀x, y ∈ X.
Also,

CAθ (x
−1) = CA((x−1)θ) = CA((xθ)−1)

= CA((θ(x))−1) = CA(x−1),

implying that CA(x−1) = CA(x) ∀x ∈ X. So A ∈MG(X). �
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Proposition 3.17. If B ∈ MG(X) and A is a characteristic submultigroup of B.
Then A∗ and A∗ are characteristic subgroups of X. Also, A∗ is a characteristic
subgroup of B∗ and A∗ is a characteristic subgroup of B∗.

Proof. We know that A∗ and A∗ are subgroups of X, by Proposition 2.11. Now, we
prove that A∗ and A∗ are characteristic subgroups of X. It is sufficient to show that
θ(A∗) ⊆ A∗ ∀θ ∈ Aut(X).

Let θ ∈ Aut(X). Then CAθ (x) = CA(x), since A is a characteristic submultigroup
of B. Let x ∈ A∗. Then CA(x) = CA(e). Thus

CAθ (x) = CA(θ(x)) = CA(x) = CA(e).

So θ(x) ∈ A∗. Hence θ(A∗) ⊆ A∗. This completes the proof.
Similarly, the proof of the fact that A∗ is a characteristic subgroup of X follows.
Recall that, A is a characteristic submultigroup of B, and A∗ and A∗ are char-

acteristic subgroups of X. Synthesizing these, it implies that A∗ is a characteristic
subgroup of B∗ and A∗ is a characteristic subgroup of B∗. �

Theorem 3.18. Let X be a group and A be a characteristic submultigroup of B ∈
MG(X). Then A[n] is a characteristic subgroup of X ∀ n ≤ CA(e) and A[n] is a
characteristic subgroup of X ∀ n ≥ CA(e), where e is the identity element of X and
n ∈ N.

Proof. It implies from Theorem 2.13 that, A[n] is a subgroup of X ∀ n ≤ CA(e) and

A[n] is a subgroup of X ∀ n ≥ CA(e). Now, we prove first that A[n] is a characteristic
subgroups of X.

Whenever we show that θ(A[n]) ⊆ A[n] ∀θ ∈ Aut(X) we are done. Let θ ∈
Aut(X). Then CAθ (x) = CA(x), since A is a characteristic submultigroup of B. Let
x ∈ A[n]. Then CA(x) ≥ n, which implies that

CAθ (x) = CA(θ(x)) = CA(x) ≥ n.

Thus θ(x) ∈ A[n]. So θ(A[n]) ⊆ A[n]. Hence A[n] is a characteristic subgroups of X.

Similarly, A[n] is a characteristic subgroups of X. �

Remark 3.19. Since A is a characteristic submultigroup of B, and A[n] and A[n]

are characteristic subgroups of X. Synthesizing these, it happens that A[n] is a

characteristic subgroup of B[n] and A[n] is a characteristic subgroup of B[n].

Now, we give a statement of the converse of Theorem 3.18.

Theorem 3.20. Let X be a group and A be a submultigroup of B ∈MG(X). If A[n],

for n ∈ N (also A[n]) is a characteristic subgroup of X, then A is a characteristic
submultigroup of B.

Proof. By hypothesis, it follows that

A[n] = {x ∈ X| CA(x) ≥ ni}

is a characteristic subgroup of X, ∀i = 1, ..., k. Let θ ∈ Aut(X). Also

CAθ (x) = CA(θ(x)) = Cθ−1(A)(x) = CA(x).
241



Ejegwa and Ibrahim/Ann. Fuzzy Math. Inform. 17 (2019), No. 3, 231–245

Moreover, ∀i = 1, ..., k, we get (Aθ)[ni] = A[ni], since x ∈ (Aθ)[ni] ⇔ CAθ (x) ≥ ni ⇔
CA(θ(x)) ≥ ni ⇔ θ(x) ∈ A[ni] ⇔ x ∈ θ−1(A[ni]) ⇔ x ∈ A[ni]. Thus Aθ = A. The
result follows. �

In the next theorem, we combine Theorems 3.18 and 3.20 together and get:

Theorem 3.21. For a submultigroup A of B ∈ MG(X), the following statements
are equivalent:

(1) A is a characteristics submultigroup of B,
(2) A[n] for n ∈ N is a characteristic subgroup of X ∀ n ≤ CA(e), where e is the

identity element of X (also A[n] ∀ n ≥ CA(e)).

Proof. (1)⇒(2): Let θ ∈ Aut(X) and x ∈ A[α]. Then

CA(θ(x)) = CA(x) ≥ n,

since A is a characteristic submultigroup of B. It follows that θ(x) ∈ A[n]. Thus
θ(A[n]) ⊆ A[n]. We prove that A[n] ⊆ θ(A[n]), by symmetry. Let x ∈ A[n] and let
y ∈ X such that θ(y) = x. Then

CA(y) = CA(θ(y)) = CA(x) ≥ n.

Thus y ∈ A[n]. So x ∈ θ(A[n]). Hence A[n] ⊆ θ(A[n]). Therefore A[n] is a character-
istic subgroup of X.

(2)⇒(1): Let x ∈ X, θ ∈ Aut(X) and CA(x) = n1. Then x ∈ A[n1] and x /∈ A[n2]

∀n2 > n1, by Proposition 3.1. Thus by hypothesis, θ(A[n1]) = A[n1]. So θ(x) ∈ A[n1].
Hence CA(x) = CA(θ(x)) ≥ n1.

Let n2 = CA(θ(x)). Assume n2 > n1. Then θ(x) ∈ A[n2] = θ(A[n2]). Since θ is
one-to-one, it follows that x ∈ A[n2], which is a contradiction. Thus

CA(θ(x)) = n1 = CA(x),

implying that A is a characteristic submultigroup of B. �

Finally, we obtain some results on the concept of direct product in multigroup
setting.

Theorem 3.22. Let A ∈ MG(X) and B ∈ MG(Y ). Suppose C and D are two
submultisets of A and B, respectively. Then C ×D is a submultigroup of A × B if
and only if both C and D are submultigroups of A and B, respectively.

Proof. Suppose C and D are two submultigroups of A and B, respectively. Then it
is clear that C ∈ MG(X) and D ∈ MG(Y ). It follows that C ×D is a multigroup
of X × Y , by Theorem 2.26. Since A × B is a multigroup of X × Y by the same
reason, and C v A and D v B, C ×D is a submultigroup of A×B.

Conversely, suppose C × D is a submultigroup of A × B. Then it follows that
C v A and D v B. These complete the proof. �

Corollary 3.23. Let A ∈ MG(X) and B ∈ MG(Y ). Suppose C and D are two
submultigroups of A and B, respectively. Then C × D is a normal submultigroup
of A × B if and only if both C and D are normal submultigroups of A and B,
respectively.
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Proof. Combining both Definitions 2.15 and 2.25, and Theorems 2.26 and 3.22, the
proof follows. �

Corollary 3.24. Let A ∈ MG(X) and B ∈ MG(Y ). Suppose C and D are two
submultigroups of A and B, respectively. Then C ×D is a characteristic submulti-
group of A× B if and only if both C and D are characteristic submultigroups of A
and B, respectively.

Proof. Combining both Definition 2.22, Theorems 2.26 and 3.22, the proof follows.
�

Corollary 3.25. With the same hypothesis as in Corollary 3.24, it follows that
C × D is a normal submultigroup of A × B, if both C and D are characteristic
submultigroups of A and B, respectively.

Proof. Straightforward from Proposition 2.24 and Theorem 3.22. �

Corollary 3.26. Let A ∈ MG(X) and C be a submultiset of A. Then C × C is a
submultigroup of A×A if and only if C is a submultigroup of A.

Proof. The proof is straightforward from Theorem 3.22. �

Remark 3.27. Let A ∈MG(X) and C be a submultigroup of A. Then

(1) C × C is a normal submultigroup of A × A if and only if C is a normal
submultigroup of A,

(2) C × C is a characteristic submultigroup of A × A if and only if C is a
characteristic submultigroup of A,

(3) C ×C is a normal submultigroup of A×A if C is a characteristic submulti-
group of A.

Corollary 3.28. Let B1, ..., Bk be multigroups of groups X1, ..., Xk. Suppose A1, ..., Ak
are submultisets of B1, ..., Bk, respectively. Then A1× ...×Ak is a submultigroup of
B1 × ...×Bk if and only if A1, ..., Ak are submultigroups of B1, ..., Bk.

Proof. Similar to Theorem 3.22. �

Remark 3.29. LetB1, ..., Bk be multigroups of groupsX1, ..., Xk. SupposeA1, ..., Ak
are submultigroups of B1, ..., Bk, respectively. Then

(1) A1×...×Ak is a normal submultigroup of B1×...×Bk if and only if A1, ..., Ak
are normal submultigroups of B1, ..., Bk,

(2) A1 × ... × Ak is a characteristic submultigroup of B1 × ... × Bk if and only
if A1, ..., Ak are characteristic submultigroups of B1, ..., Bk,

(3) A1 × ... × Ak is a normal submultigroup of B1 × ... × Bk if A1, ..., Ak are
characteristic submultigroups of B1, ..., Bk.

Remark 3.30. Let A and B be multisets over groups X and Y , respectively such
that A×B is a multigroup of X × Y . Then

(1) either A or B is a multigroup of either X or Y ,
(2) both A and B are multigroups of X and Y , respectively.

Theorem 3.31. Let A and B be multigroups of groups X and Y , respectively. Then
A and B are commutative if and only if A×B is a commutative multigroup of X×Y .
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Proof. Suppose A and B are commutative. We show that A× B is a commutative
multigroup of X × Y . It is a known fact that A × B ∈ MG(X × Y ), by Theorem
2.26. Let (x, y) ∈ X1 ×X2 such that x = (x1, x2) and y = (y1, y2). Then we get

CA×B(xy) = CA×B((x1, x2)(y1, y2))

= CA×B(x1y1, x2y2)

= CA(x1y1) ∧ CB(x2y2)

= CA(y1x1) ∧ CB(y2x2)

= CA×B(y1x1, y2x2)

= CA×B((y1, y2)(x1, x2))

= CA×B(yx).

Thus A×B is a commutative multigroup of X × Y , by Definition 2.18.
Conversely, suppose A×B is a commutative multigroup of X×Y . Then it is clear

that both A and B are commutative multigroups of groups X and Y , respectively.
�

4. Conclusions

We have presented some results in the area of cuts of multigroups, comultisets,
normal submultigroups, characteristic submultigroups, homomorphic properties and
direct product of multigroups. The notion of commutator in multigroup setting was
proposed. Further results on multigroup theory could still be exploited, especially,
some properties of commutator in multigroup context.
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