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Abstract.
We define a bipolar fuzzy point and obtain some of its properties. Also
we introduce the concepts of a bipolar fuzzy topology, bipolar fuzzy base
and subbase and find some properties of each concept. Second, we define a
bipolar fuzzy neighborhood and continuity and obtain bipolar fuzzy ana-
logues of many results concerning to classical neighborhood and continuity.
Third, we introduce the concepts of a bipolar fuzzy subspace and a bipolar
fuzzy quotient space and find some properties of each concept. In partic-
ular, we prove the existence of the bipolar fuzzy initial topology Finally,
we define a compactness in bipolar fuzzy topological spaces and investi-
gate some of its properties. In particular, we obtain ‘Alexander Subbase
Theorem’ in the sense of bipolar fuzzy sets.
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1. Introduction

In 1994, Zhang [19] introduced the notion of a bipolar fuzzy set (Refer to [11, 12,
18]). After then, Jun and Park [6], Jun et al. [7] and Lee [10] applied bipolar fuzzy
sets to BCK/BCI-algebras. Moreover, Akram and Dudek [1] studied bipolar fuzzy
graph, and Majumder [14] introduced bipolar fuzzy Γ-semigroup. Moreover, Talebi
et al [16] investigated operations on bipolar fuzzy graph. In particular, Azhagappan
and Kamaraj [3] investigated bipolar fuzzy topological spaces. Recently, Kim et al.
[9] constructed the category consisting of bipolar fuzzy set and preserving mappings
between them and studied it in the sense of a topological universe.
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In this paper, first, we define a bipolar fuzzy point and obtain some of its proper-
ties. Also we introduce the concepts of a bipolar fuzzy topology, bipolar fuzzy base
and subbase and find some properties of each concept. Second, we define a bipolar
fuzzy neighborhood and continuity and obtain bipolar fuzzy analogues of many re-
sults concerning to classical neighborhood and continuity. Third, we introduce the
concepts of a bipolar fuzzy subspace and a bipolar fuzzy quotient space and find
some properties of each concept. In particular, we prove the existence of the bipolar
fuzzy initial topology (See Proposition 6.2). Finally, we define a compactness in
bipolar fuzzy topological spaces and investigate some of its properties. In particu-
lar, we obtain ‘Alexander Subbase Theorem’ in the sense of bipolar fuzzy sets (See
Proposition 7.7).

2. Preliminaries

In this section, we list some concepts related to bipolar fuzzy sets (for examples,
the complement of a bipolar fuzzy set, the inclusion between two bipolar fuzzy sets,
the union and the intersection of two bipolar fuzzy sets, the intersection and union
of arbitrary bipolar fuzzy sets) and some properties needed later sections.

Definition 2.1 ([11]). Let X be a nonempty set. Then A pair A = (A+, A−) is
called a bipolar-valued fuzzy set (or, bipolar fuzzy set) in X, if A+ : X → [0, 1] and
A− : X → [−1, 0] are mappings.

In particular, the bipolar fuzzy empty set [resp. the bipolar fuzzy whole set] (See
[3]), denoted by 0bp = (0+

bp,0
−
bp) [resp. 1bp = (1+

bp,1
−
bp)], is a bipolar fuzzy set in X

defined by: for each x ∈ X,

0+
bp(x) = 0 = 0−bp(x) [resp. 1+

bp(x) = 1 and 1−bp(x) = −1].

We will denote the set of all bipolar fuzzy sets in X as BPF (X).

For each x ∈ X, we use the positive membership degree A+(x) to denote the
satisfaction degree of the element x to the property corresponding to the bipolar
fuzzy set A and the negative membership degree A−(x) to denote the satisfaction
degree of the element x to some implicit counter-property corresponding to the
bipolar fuzzy set A.

If A+(x) 6= 0 and A−(x) = 0, then it is the situation that x is regarded as
having only positive satisfaction for A. If A+(x) = 0 and A−(x) 6= 0, then it is
the situation that x does not satisfy the property of A, but somewhat satisfies the
counter-property of A. It is possible for some x ∈ X to be such that A+(x) 6= 0
and A−(x) 6= 0 when the membership function of the property overlaps that of its
counter-property over some portion of X.

Definition 2.2 ([11]). Let X be a nonempty set and let A, B ∈ BPF (X).
(i) We say that A is subset of B, denoted by A ⊂ B, if for each x ∈ X,

A+(x) ≤ B+(x) and A−(x) ≥ B−(x).
206
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(ii) The complement of A, denoted by Ac = ((Ac)+, (Ac)−), is a bipolar fuzzy set
in X defined as: for each x ∈ X, Ac(x) = (1−A+(x),−1−A−(x)), i.e.,

(Ac)+(x) = 1−A+(x), (Ac)−(x) = −1−A−(x).

(iii) The intersection of A and B, denoted by A ∩ B, is a bipolar fuzzy set in X
defined as: for each x ∈ X,

(A ∩B)(x) = (A+(x) ∧B+(x), A−(x) ∨B−(x)).

(iv) The union of A and B, denoted by A∪B, is a bipolar fuzzy set in X defined
as: for each x ∈ X,

(A ∪B)(x) = (A+(x) ∨B+(x), A−(x) ∧B−(x)).

Definition 2.3 (See [3, 11]). Let X be a nonempty set and let A, B ∈ BPF (X).
We say that A is equal to B, denoted by A = B, if A ⊂ B and B ⊂ A.

Result 2.4 ([9], Proposition 3.5). Let A, B, C ∈ BPF (X). Then
(1) (Idempotent laws): A ∪A = A, A ∩A = A,
(2) (Commutative laws): A ∪B = B ∪A, A ∩B = B ∩A,
(3) (Associative laws): A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C,
(4) (Distributive laws): A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
(5) (Absorption laws): A ∪ (A ∩B) = A, A ∩ (A ∪B) = A.
(6) (DeMorgan’s laws): (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc,
(7) (Ac)c = A,
(8) A ∩B ⊂ A and A ∩B ⊂ B,
(9) A ⊂ A ∪B and B ⊂ A ∪B,
(10) if A ⊂ B and B ⊂ C, then A ⊂ C,
(11) if A ⊂ B, then A ∩ C ⊂ B ∩ C and A ∪ C ⊂ B ∪ C.

Result 2.5 ([9], Corollary 3.6). Let A, B ∈ BPF (X). Then the followings are
equivalent:

(1) A ⊂ B,
(2) A ∩B = A,
(3) A ∪B = B.

Definition 2.6 ([9]). Let X be a nonempty set and let (Aj)j∈J ⊂ BPF (X).
(i) The intersection of (Aj)j∈J , denoted by

⋂
j∈J Aj , is a bipolar fuzzy set in X

defined by: for each x ∈ X,

(
⋂
j∈J

Aj)(x) = (
∧
j∈J

A+
j (x),

∨
j∈J

A−j (x)).

(ii) The union of (Aj)j∈J , denoted by
⋃
j∈J Aj , is a bipolar fuzzy set in X defined

by: for each x ∈ X,

(
⋃
j∈J

Aj)(x) = (
∨
j∈J

A+
j (x),

∧
j∈J

A−j (x)).

Result 2.7 ([9], Proposition 3.8). Let A ∈ BPF (X) and let (Aj)j∈J ⊂ BPF (X).
Then

(1) (Generalized distributive laws): A ∪ (
⋂
j∈J Aj) =

⋂
j∈J(A ∪Aj),
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A ∩ (
⋃
j∈J Aj) =

⋃
j∈J(A ∩Aj),

(2) (Generalized DeMorgan’s laws): (
⋃
j∈J Aj)

c =
⋂
j∈J A

c
j, (
⋂
j∈J Aj)

c =
⋃
j∈J A

c
j.

From Results 2.4 and 2.7, it is obvious that (BPF (X),∪,∩,c ,0bp,1bp) is a com-
plete distributive lattice satisfying the DeMorgan’s laws.

Definition 2.8. Let X and Y be a nonempty sets, let AX ∈ BPF (X) and AY ∈
BPF (Y ) and let f : X → Y be a mapping. Then

(i) The image of AX under f , denoted by f(AX) = (f(A+
X), f(A−X)), is a bipolar

fuzzy set in Y defined as follows: for each y ∈ Y ,

[(f(A+
X)](y) =

{ ∨
x∈f−1(y)A

+
X(x) if f−1(y) 6= φ

0 otherwise

and

[(f(A−X)](y) =

{ ∧
x∈f−1(y)A

−
X(x) if f−1(y) 6= φ

0 otherwise.

(ii) The preimage of AY under f , denoted by f−1(AY ) = (f−1(A+
Y ), f−1(A−Y )),

is a bipolar fuzzy set in Y defined as follows: for each x ∈ X,

[f−1(A+
Y )](x) = A+

Y ◦ f(x) and [f−1(A−Y )](x) = A−Y ◦ f(x).

Result 2.9 ([9], Proposition 3.10). Let f : X → Y be a mapping, and let A, A1, A2 ∈
BPF (X), (Aj∈J) ⊂ BPF (X), B, B1, B2 ∈ BPF (Y ) and (Bj∈J) ⊂ BPF (Y ).
Then

(1) if A1 ⊂ A2, then f(A1) ⊂ f(A2),
(2) f(A1 ∪A2) = f(A1) ∪ f(A2), f(

⋃
j∈J Aj) =

⋃
j∈J f(Aj),

(3) f(A1 ∩A2) ⊂ f(A1) ∩ f(A2), f(
⋂
j∈J Aj) ⊂

⋂
j∈J f(Aj),

(3)
′

if f is injective, then f(A1∩A2) = f(A1)∩f(A2), f(
⋂
j∈J Aj) =

⋂
j∈J f(Aj),

(4) f(A) = 0bp if and only if A = 0bp,
(5) if B1 ⊂ B2, then f−1(B1) ⊂ f−1(B2),
(6) f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2), f−1(

⋃
j∈J Bj) =

⋃
j∈J f

−1(Bj),

(7) f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2), f−1(
⋂
j∈J Bj) =

⋂
j∈J f

−1(Bj),

(8) f−1(B) = 0bp if and only if B ∩ f(1bp) = 0bp,
(9) A ⊂ f−1 ◦ f(A); in particular, A = f−1 ◦ f(A), if f is injective,
(10) f ◦ f−1(B) ⊂ B; in particular, f ◦ f−1(B) = B, if f is sujective.
(11) f−1(Bc) = f−1(B)c,
(12) if f : X → Y, g : Y → Z are mappings, then (g ◦ f)(A) = g(f(A)), for each

A ∈ BPF (X),
(13) if f : X → Y, g : Y → Z are mappings, then (g ◦ f)−1(C) = f−1(g−1(C)),

for each C ∈ BPF (Z).

3. Bases and subbases in a bipolar fuzzy topological space

In this section, we introduce the concepts of bipolar fuzzy point, bipolar fuzzy
topology, base and subbase, and study some of their properties. Also we give some
examples.
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Definition 3.1. Let x ∈ X, (α, β) ∈ (0, 1]× [−1, 0) and let A ∈ BPF (X). Then
(i) x(α,β) is called a bipolar fuzzy point in X with the value (α, β) and the support

x, if for each y ∈ X,

[x(α,β)](y) =

{
(α, β) if y = x
(0, 0) otherwise ,

(ii) x(α,β) is said to belong to A, denoted by x(α,β) ∈ A, if

A+(x) ≥ α and A−(x) ≤ β.
We will denote the set of all bipolar fuzzy points in X as BPFP (X).
It is clear that A =

⋃
{x(α,β) ∈ BPFP (X) : x(α,β) ∈ A}, for each A ∈ BPF (X).

Theorem 3.2. Let A, B ∈ BPF (X). If A ⊂ B, then x(α,β) ∈ B for all x(α,β) ∈ A.

Proof. Suppose A ⊂ B and let x(α,β) ∈ A. Then A+(x) ≥ α and A−(x) ≤ β. Since

A ⊂ B, A+(x) ≤ B+(x) and A−(x) ≥ B−(x). Thus B+(x) ≥ α and B−(x) ≤ β. So
x(α,β) ∈ B. �

But the converse of Theorem 3.2 does not hold.

Example 3.3. Let X = {a, b}, A(a) = (1, 0), A(b) = (0,−0.1), B(a) = (0.5,−0.5),
and B(b) = (0.2,−0.1). Suppose a(α,β) ∈ A. Then A−(a) ≤ β, and hence β ≥ 0.

Since β ∈ [−1, 0), this is a contradiction. Suppose b(α,β) ∈ A. Then A+(b) ≥ α,
and hence α ≤ 0. Since α ∈ (0, 1], this is a contradiction. Thus for all x ∈ X,
x(α,β) 6∈ A. Therefore the statement “x(α,β) ∈ B, ∀x(α,β) ∈ A” is a tautology. But

A 6⊂ B because A+(a) = 1 > 0.5 = B+(a).

Theorem 3.4. Let A, B ∈ BPF (X) and let x(α,β) ∈ BPFP (X). Then
(1) x(α,β) ∈ A and x(α,β) ∈ B if and only if x(α,β) ∈ A ∩B,
(2) If x(α,β) ∈ A or x(α,β) ∈ B, then x(α,β) ∈ A ∪B.

Proof. (1) Suppose x(α,β) ∈ A ∩ B. Then (A ∩ B)+(x) = A+(x) ∧ B+(x) ≥ α

and (A ∩ B)−(x) = A−(x) ∨ B−(x) ≤ β. Thus A+(x) ≥ α, A−(x) ≤ β and
B+(x) ≥ α, B−(x) ≤ β. So x(α,β) ∈ A and x(α,β) ∈ B.

The converse is proved similarly.
(2) Suppose x(α,β) ∈ A or x(α,β) ∈ B. Then [A+(x) ≥ α and A−(x) ≤ β] or

[B+(x) ≥ α and B−(x) ≤ β]. This implies that

[A+(x) ≥ α or B+(x) ≥ α] and [A−(x) ≤ β or B−(x) ≤ β].

So A+(x) ∨B+(x) ≥ α and A−(x) ∧B−(x) ≤ β. Thus x(α,β) ∈ A ∪B. �

Theorem 3.5. Let (Aj)j∈J ⊂ BPF (X) and let x(α,β) ∈ BPFP (X). Then
(1) x(α,β) ∈

⋂
j∈J Aj if and only if x(α,β) ∈ Aj for each j ∈ J ,

(2) if there is a j ∈ J such that x(α,β) ∈ Aj, then x(α,β) ∈
⋃
j∈J Aj.

Proof. (1) Suppose x(α,β) ∈
⋂
j∈J Aj . Then (

⋂
j∈J Aj)

+(x) =
∧
j∈J A

+
j (x) ≥ α and

(
⋂
j∈J Aj)

−(x) =
∨
j∈J A

−
j (x) ≤ β. Thus A+

j (x) ≥ α, A−j (x) ≤ β for each j ∈ J .
So x(α,β) ∈ Aj for each j ∈ J .

The converse is proved similarly.
(2) It is immediate from Aj ⊂

⋃
j∈J Aj . �
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The converses of Theorem 3.4 (2) and 3.5 (2) do not hold.

Example 3.6. Let X be the closed unit interval [0, 1] and let A,B ∈ BPF (X) such
that for each x ∈ X,

A+(x) = x2, A−(x) = −x2

B+(x) =
1

x+ 1
, B−(x) = −0.5x3.

Then
A+(0.5) = 0.25 < 0.3, A−(0.5) = −0.25 ≤ −0.2

B+(0.5) = 2/3 ≥ 0.3, B−(0.5) = −0.0625 ≥ −0.2

and
(A ∪B)+(0.5) = A+(0.5) ∨B+(0.5) = 2/3 ≥ 0.3

(A ∪B)−(0.5) = A−(0.5) ∧B−(0.5) = −0.25 ≤ −0.2.

Therefore we have 0.5(0.3,−0.2) ∈ A ∪B, 0.5(0.3,−0.2) 6∈ A, and 0.5(0.3,−0.2) 6∈ B.

Definition 3.7 ([3]). Let X be a nonempty set and let τ ⊂ BPF (X). Then τ is
called a bipolar fuzzy topology on X, if it satisfies the following axioms:

(BPFO1) 0bp, 1bp ∈ τ ,
(BPFO2) A ∩B ∈ τ for any A, B ∈ τ ,
(BPFO3)

⋃
j∈J Aj ∈ τ for any (Aj)j∈J ⊂ τ .

In this case, the pair (X, τ) is called a bipolar fuzzy topological space and each
member of τ is called a bipolar fuzzy open set (in short, BPFOS) in X. A ∈ BPF (X)
is said to be closed in X, if Ac ∈ τ .

We will denote the set of all bipolar fuzzy topologies on X as BPFT (X).

It is obvious that for any bipolar fuzzy topological space (X, τ), the following
families

τ+ = {U+ ∈ [0, 1]X : U ∈ τ}, τ− = {−U− ∈ [0, 1]X : U ∈ τ}
are fuzzy topological spaces in Chang’s sense (See [4]). Then (X, τ+, τ−) is a bifuzzy
topological space.

Example 3.8. (1) Let X be a nonempty set and let τ0 = {0bp,1bp}. Then clearly,
τ0 is a bipolar fuzzy topology on X. In this case, τ0 is called the indiscrete bipolar
fuzzy topology on X and the pair ((X, τ0) is called the indiscrete bipolar fuzzy space.

(2) Let X be a nonempty set and let τ1 = BPF (X). Then clearly, τ1 is a bipolar
fuzzy topology on X. In this case, τ1 is called the discrete bipolar fuzzy topology
on X and the pair (X, τ1) is called the discrete bipolar fuzzy space.

We will denote the set of all bipolar fuzzy topologies on X as BPFT (X).
(3) Let X be a nonempty set. Then for any A ∈ BPF (X), the set

S(A) = {x ∈ X : A+(x) > 0, A−(x) < 0}
is called the support of A. If S(A) is finite [resp. countable], then A is said to be
finite [resp. countable].

Let τ = {A ∈ BPF (X) : A = 0bp or Ac is finite}. Then clearly, τ is a bipolar
fuzzy topology on X. In this case, τ is called the bipolar fuzzy cofinite topology on
X and is denoted by Cofbp(X).
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(4) Let τ = {A ∈ BPF (X) : A = 0bp or Ac is countable}. Then clearly, τ is a
bipolar fuzzy topology on X. In this case, τ is called the bipolar fuzzy cocountable
topology on X and is denoted by Cocbp(X).

(5) Let (X, τ) be a fuzzy topological space in Chang’s sense, where τ = {0, 1} ∪
{Aj : j ∈ J}. Then we can construct two bipolar fuzzy topologies on X as follows:

τ1 = {0bp,1bp} ∪ {(Aj ,0−bp) : Aj ∈ τ} and τ2 = {0bp,1bp} ∪ {(0+
bp,−Aj) : Aj ∈ τ}.

(6) Let (X, τ) be a bipolar fuzzy topological space. Then we can also construct
two bipolar fuzzy topologies on X as follows:

τ0,1 = {(A+,−A+) : A ∈ τ} and τ0,2 = {(−A−, A−) : A ∈ τ}.

Let τ1, τ2 ∈ BPFT (X). Then we say that τ1 is weaker (or coarser) than τ2,
denoted by τ1 � τ2, if τ1 ⊂ τ2. In this case, we say that τ2 is stronger (or finer)
then τ1, denoted by τ2 � τ1. In particular, if τ1 6= τ2, then we say that τ1 is strictly
coarser than τ2 or τ2 is strictly finer than τ1.

We can easily see that τ0 � τ � τ1, for each τ ∈ BPFT (X).

Proposition 3.9. Let (τj)j∈J ⊂ BPFT (X). Then
⋂
j∈J τj ∈ BPFT (X) and thus

(BPFT (X),�) is a meet complete lattice with the smallest τ0 and the largest τ1,
where ‘meet’ denotes the ‘intersection’.

Proof. It is straightforward. �

Remark 3.10. The following does not hold, in general: τ1 ∪ τ2 ∈ BPFT (X), for
any τ1, τ2 ∈ BPFT (X).

Example 3.11. Let X = {a, b, c} and let τ1 = {0bp,1bp, A}, τ2 = {0bp,1bp, B},
where A(a) = (0.7,−0.6), A(b) = (0.4,−0.7), A(c) = (0.6,−0.3),

B(a) = (0.8,−0.5), B(b) = (0.3,−0.8), B(c) = (0.7,−0.5).
Then τ1 ∪ τ2 = {0bp,1bp, A,B} and (A∪B)(a) = (0.8,−0.6). Thus A∪B 6∈ τ1 ∪ τ2.
So τ1 ∪ τ2 6∈ BPFT (X).

Proposition 3.12. Let (X, τ) be a bipolar fuzzy topological space and let F be the
collection of all bipolar fuzzy closed sets in X. Then

(1) 0bp, 1bp ∈ F ,
(2) F1 ∪ F2 ∈ F , for any F1, F2 ∈ F ,
(3)

⋂
j∈J Fj, for any (Fj)j∈J ⊂ F .

Proof. It is straightforward. �

Proposition 3.13. Let (X, τ) be a bipolar fuzzy topological space and let A ∈
BPF (X). If for each x(α,β) ∈ A, there is U(α,β) ∈ τ such that x(α,β) ∈ U(α,β) ⊂ A,
then A ∈ τ .

Proof. Suppose the sufficient condition holds. Then clearly, A =
⋃
x(α,β)∈A U(α,β).

Thus by the condition (BPFO3), A ∈ τ . �

Definition 3.14. Let (X, τ) be a bipolar fuzzy topological space.

(i) B ⊂ τ is called a base for τ , provided that for each U ∈ τ , U = 0bp; or for
each x(α,β) ∈ U , there is B ∈ B such that x(α,β) ∈ B ⊂ U .
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(ii) S ⊂ τ is called a subbase for τ , if the family of all finite intersections of
members of S forms a base for τ .

Theorem 3.15. Suppose that B ⊂ BPF (X) satisfies the following:

(i) 1bp =
⋃
B,

(ii) if B1, B2 ∈ B and x(α,β) ∈ B1 ∩B2, then there is B ∈ B such that x(α,β) ∈
B ⊂ B1 ∩B2.

Then B is a base for a bipolar fuzzy topology τ on X.

Proof. Let

τ = {0bp} ∪ {U ∈ BPF (X) : U is a union of members of B}.
(BPFO1) From the definition of τ and the hypothesis, it is clear that 0bp, 1bp ∈ τ .
(BPFO3) Let (Uj)j∈J ⊂ τ . Then by the definition of τ , for each j ∈ J , there is

Bj ⊂ B such that Uj =
⋃
Bj . Thus

⋃
j∈J Uj =

⋃
j∈J

⋃
Bj . So

⋃
j∈J Uj is a union of

member of B. Hence
⋃
j∈J Uj ∈ τ .

(BPFO2) Let U1, U1 ∈ τ . Then there are B1 ⊂ B and B2 ⊂ B such that U1 =
⋃
B1

and U2 =
⋃
B2. Thus U1 ∩ U2 =

⋃
(B1 ∩ B2). Let x(α,β) ∈ U1 ∩ U2. Then there

are B1 ∈ B1 and B2 ∈ B2 such that x(α,β) ∈ B1 ∩ B2 ⊂ U1 ∩ U2. By the condition
(i), there is B ∈ B such that x(α,β) ∈ B ⊂ B1 ∩ B2. Thus there is B ∈ B such that
x(α,β) ∈ B ⊂ U1∩U2. So U1∩U2 is a union of members of B. Hence U1∩U1 ∈ τ . �

But the converse of Theorem 3.15 does not hold as we see the following example.

Example 3.16. For a singleton X = {x}, let

τ = {0bp} ∪ {Ai,j , Bi,j , Ci,j , Di,j : i, j ∈ N}
where for each positive integers i, j,

Ai,j(x) =

(
1

2i
,− 1

2j

)
, Bi,j(x) =

(
1

2i
,− 1

2j − 1

)
,

Ci,j(x) =

(
1

2i− 1
,− 1

2j

)
, Di,j(x) =

(
1

2i− 1
,− 1

2j − 1

)
.

One can show easily that D1,1 = 1bp and τ ∈ BPFTS(X). Denote

B = {Bi,j , Ci,j : i, j ∈ N}.
Since Ai,j = Bi,k ∪ Ck,j if 2k − 1 > max{2i, 2j} and since Di,j = Bk,j ∪ Ci,k if
2k > max{2i− 1, 2j − 1}, we obtain that B is a base for τ .

But B does not satisfy Theorem 3.15 (ii). For, (B1,2 ∩ C2,1) (x) =
(
1
3 ,−

1
3

)
and

x(0.3,−0.3) ∈ B1,2∩C2,1. But for all Bi,j ∈ B such that Bi,j ⊂ B1,2∩C2,1, x(0.3,−0.3) 6∈
Bi,j because 1

3 > 0.3 > 1
4 >

1
5 · · · . For all Ci,j ∈ B, we have the same argument.

Proposition 3.17. Let (X, τ) be a bipolar fuzzy topological space. Suppose B ⊂ τ
satisfies the following condition: for each x(α,β) ∈ BPFP (X) and each U ∈ τ such
that x(α,β) ∈ U , there is B ∈ B such that x(α,β) ∈ B ⊂ U. Then B is a base for τ .

Proof. Let x(α,β) ∈ BPFP (X). Since 1bp ∈ τ , by the hypothesis, there is B ∈ B
such that x(α,β) ∈ B ⊂ 1bp. Then 1bp =

⋃
B. Thus the condition (i) of Theorem

3.15 holds.
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Suppose B1, B2 ∈ B and x(α,β) ∈ B1 ∩ B2. Since B ⊂ τ , B1, B2 ∈ τ . Then
B1∩B2 ∈ τ . Thus by the hypothesis, there is B ∈ B such that x(α,β) ∈ B ⊂ B1∩B2.
So the condition (ii) of Theorem 3.15 holds. Hence by Theorem 3.15, B is a base for
τ . �

Proposition 3.18. Let S ⊂ BPF (X) such that 1bp =
⋃
S. Then there is a unique

τ ∈ PFT (X) such that S is a subbase for τ .
In this case, τ is called the bipolar fuzzy topology on X induced by S.

Proof. The proof is similar to Theorem 3.15. �

Example 3.19. Let X = {a, b, c, d, e} and let S = {S1, S2, S3, S4}, where
S1(a) = (1,−1), S1(b) = S1(c) = S1(d) = S1(e) = (0, 0),
S2(a) = S2(b) = S2(c) = (1,−1), S2(d) = S2(e) = (0, 0),
S3(b) = S3(c) = S3(d) = (1,−1), S3(a) = S3(e) = (0, 0),
S4(c) = S4(e) = (1,−1), S4(a) = S4(b) = S4(d) = (0, 0).

Then clearly,
⋃
S = S1∪S2∪S3∪S4 = 1bp. Moreover, B = {0bp, S1, S2, S3, S4, B1, B2},

where B1(b) = B1(c) = (1,−1), B1(a) = B1(d) = B1(e) = (0, 0),
B2(c) = (1,−1), B2(a) = B2(b) = B2(d) = B2(e) = (0, 0).

Thus τ = {0bp,1bp, S1, S2, S3, S4, B1, B2, U1, U2, U3, U4, U5, U6}, where
U1(a) = U1(c) = (1,−1), U1(b) = U1(d) = U1(e) = (0, 0),
U2(a) = U2(c) = U2(e) = (1,−1), U2(b) = U2(d) = (0, 0),
U3(b) = U3(c) = U3(e) = (1,−1), U3(a) = U3(d) = (0, 0),
U4(a) = U4(b) = U4(c) = U4(d) = (1,−1), U4(e) = (0, 0),
U5(a) = U5(b) = U5(c) = U5(e) = (1,−1), U5(d) = (0, 0),
U6(b) = U5(c) = U5(d) = U5(e) = (1,−1), U5(a) = (0, 0).

Definition 3.20. Let (X, τ) be a bipolar fuzzy topological space and let a(α,β) ∈
BPFP (X). Then Ba(alpha,β) ⊂ τ is called a local base at a(α,β), if the following
conditions hold:

(i) if B ∈ Ba(α,β) , then a(α,β) ∈ B,

(ii) if U ∈ τ and a(α,β) ∈ U , then there is B ∈ Ba(α,β) such that B ⊂ U.

Definition 3.21. Let BPFb−(X) = {A ∈ BPF (X) : A+ ≤ −A−} (See [9], Propo-
sition 3.15). Then τb ⊂ BPFb−(X) is called a bipolar fuzzy bounded topology on
X, if it satisfies the following axioms:

(i) 0bp, 1bp ∈ τb,
(ii) if A, B ∈ τb, then A ∩B ∈ τb,
(iii) if (Aj)j∈JAj ⊂ τb, then

⋃
j∈J Aj ∈ τb.

In this case, the pair (X, τb) is called a bipolar fuzzy bounded topological space.

Remark 3.22. Let (X, τb) be a bipolar fuzzy bounded topological space. Let

τb,1 = {(U+, 1 + U−) : U ∈ τb}
and

τb,2 = {[U+,−U−] : U ∈ τb}.
Then τb,1 is an intuitionistic fuzzy topology on X in Coker’s sense (See [5]) and
τb,2 = {[U+,−U−] : U ∈ τb} is an interval-valued fuzzy topology on X in the sense
of Mondal and Samanta (See [15]).
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4. Continuities in a bipolar fuzzy topological space

We define a bipolar fuzzy neighborhood and continuity and study bipolar fuzzy
analogues of many results concerning to classical neighborhood and continuity.

Definition 4.1. Let (X, τ) be a bipolar fuzzy topological space and letA ∈ BPF (X).
Then A is called a neighborhood (in short, nbd) of x(α,β) ∈ BPFP (X), if there is
U ∈ τ such that x(α,β) ∈ U ⊂ A.

We will denote the set of all bipolar fuzzy nbds at x(α,β) as Nbp(x(α,β)).

Lemma 4.2. Let (X, τ) be a bipolar fuzzy topological space and let A ∈ BPF (X).
Then A ∈ τ if and only if for each x(α,β) ∈ A, there is U ∈ Nbp(x(α,β)) such that
U ⊂ A.

Proof. Suppose A ∈ τ and let x(α,β) ∈ A. Then clearly, A ∈ Nbp(x(α,β)).
Conversely, suppose the necessary condition holds and let x(α,β) ∈ A. Then there

is Ux(α,β)
∈ τ such that x(α,β) ∈ Ux(α,β)

⊂ A. Thus A ∈ τ by Proposition 3.13. �

Proposition 4.3. Let (X, τ) be a bipolar fuzzy topological space. Then
(BPFN1) 1bp ∈ Nbp(x(α,β)), ∀x(α,β) ∈ BPFP (X) and if A ∈ Nbp(x(α,β)), then

x(α,β) ∈ A,
(BPFN2) if A, B ∈ Nbp(x(α,β)), then A ∩B ∈ Nbp(x(α,β)),
(BPFN3) if A ⊂ B and A ∈ Nbp(x(α,β)), then B ∈ Nbp(x(α,β)),
(BPFN4) if A ∈ Nbp(x(α,β)), then there is B ∈ Nbp(x(α,β)) such that

B ⊂ A and B ∈ Nbp(y(δ,η)), ∀y(δ,η) ∈ B.

Proof. The proofs of (BPFN1) and (BPFN3) are straightforward.
(BPFN2) Suppose A, B ∈ Nbp(x(α,β)). Then there are U, V ∈ τ such that

x(α,β) ∈ U ⊂ A and x(α,β) ∈ V ⊂ B. Thus x(α,β) ∈ U ∩ V ⊂ A ∩B and U ∩ V ∈ τ .
So A ∩B ∈ Nbp(x(α,β)).

(BPFN4) Suppose A ∈ Nbp(x(α,β)). Then there is U ∈ τ such that x(β,α) ∈ U ⊂
A. Thus by Lemma 4.2, U ∈ Nbp(y(δ,η)), for each y(δ,η) ∈ U. So the result holds. �

Definition 4.4. Let (X, τ) be a bipolar fuzzy topological space and let S ⊂ N (x(α,β)).
Then S is called a fundamental system of bipolar fuzzy neighborhoods of x(α,β) ∈
BPFP (X), if for each U ∈ N (x(α,β)), there is V ∈ S such that V ⊂ U .

Theorem 4.5. Let (X, τ) be a bipolar fuzzy topological space and let B ⊂ τ . Then
B is a bipolar fuzzy base for τ if and only if for each x(α,β) ∈ BPFP (X), the set
{B ∈ B : x(α,β) ∈ B} is a fundamental system of bipolar fuzzy neighborhoods of
x(α,β).

Proof. Suppose B ⊂ τ is a bipolar fuzzy base for τ and for each x(α,β) ∈ BPFP (X),
let us consider the set S = {B ∈ B : x(α,β) ∈ B}. Let U ∈ N (x(α,β)). Then there
is O ∈ τ such that x(α,β) ∈ O ⊂ U . Since B ⊂ τ is a bipolar fuzzy base for τ , there
is B ∈ B such that x(α,β) ∈ B ⊂ O. So by the definition of S, B ∈ S and B ⊂ U .
Hence the necessary condition holds.

Conversely, suppose the necessary condition holds. Let U ∈ τ and let x(α,β) ∈ U .
Then by the hypothesis, there is Bx(α,β)

∈ B such that x(α,β) ∈ Bx(α,β)
⊂ U . Thus

U =
⋃
x(α,β)∈U Bx(α,β)

. So B is a bipolar fuzzy base for τ . �
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Definition 4.6 ([3]). Let (X, τ) be a bipolar fuzzy topological space and let A ∈
BPF (X). Then the bipolar fuzzy closure of A, denoted by bclτ (A) (in short, bcl(A)),
is a bipolar fuzzy set in X defined by

bclτ (A) =
⋂
{F ∈ BPF (X) : F c ∈ τ, A ⊂ F}.

Result 4.7 ([3], Theorem 1.8). Let (X, τ) be a bipolar fuzzy topological space and
let A, B ∈ BPF (X). Then

(1) bcl(A) is the smallest bipolar fuzzy closed set containing A,
(2) A is bipolar fuzzy closed in X if and only if A = bcl(A),
(3) bcl(0bp) = 0bp,
(4) bcl(bcl((A)) = bcl((A),
(5) bcl(A ∪B) = bcl(A) ∪ bcl(B),
(6) bcl(A ∩B) ⊂ bcl(A) ∩ bcl(B).

A mapping bcl : BPF (X) → BPF (X) satisfying (1), (3), (4) and (5) of Result
4.7 is called a bipolar fuzzy closure operator on a set X. Then we have the similar
one to the property induced by an ordinary closure operator on X.

Proposition 4.8. Let bcl∗ be a bipolar fuzzy closure operator on a set X. Let
F = {F ∈ BPF (X) : bcl∗(F ) = F} and let τ = {U ∈ BPF (X) : U c ∈ F}. Then
τ ∈ BPFT (X). Moreover, if bcl is the bipolar fuzzy closure operator defined by τ ,
then bcl∗(A) = bcl(A), for each A ∈ BPF (X).

Proof. The proof is similar to ordinary closure operator. �

Definition 4.9 ([3]). Let (X, τ) be a bipolar fuzzy topological space and let A ∈
BPF (X). Then the bipolar fuzzy interior of A, denoted by bintτ (A) (in short,
bint(A)), is a bipolar fuzzy set in X defined by

bintτ (A) =
⋃
{U ∈ BPF (X) : U ∈ τ, U ⊂ A}.

Result 4.10 ([3], Theorem 1.10). Let (X, τ) be a bipolar fuzzy topological space and
let A, B ∈ BPF (X). Then

(1) bint(A) is the largest bipolar fuzzy open set contained in A,
(2) A is bipolar fuzzy open in X if and only if A = bint(A),
(3) if A ⊂ B, then bint(A) ⊂ bint(B),
(4) bint(bint((A)) = bint((A),
(5) bint(A ∩B) = bint(A) ∩ bint(B),
(6) bint(A ∪B) ⊃ bint(A) ∪ bint(B),
(7) bint(Ac) = (bcl(A))c,
(8) bcl(Ac) = (bint(A))c.

The following is an immediate result of Definition 4.9.

Proposition 4.11. Let (X, τ) be a bipolar fuzzy topological space. Then bint(1bp) =
1bp.

Remark 4.12. A mapping bint : BPF (X) → BPF (X) satisfying (1), (4) and (5)
of Result 4.10 and Proposition 4.11 is called a bipolar fuzzy interior operator on a
set X. Then as one might expect, a proposition analogous to Proposition 4.8 holds
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for the bipolar fuzzy interior. Thus a bipolar fuzzy interior completely determines a
bipolar fuzzy topology (a bipolar fuzzy set is open iff it equals its own interior) and
in that topology, the operator is the bipolar fuzzy interior.

Definition 4.13. Let (X, τ1), (Y, τ2) be two bipolar fuzzy topological spaces. Then
a mapping f : (X, τ1) → (Y, τ2) is said to be continuous, if f−1(V ) ∈ τ1, for each
V ∈ τ2

The following is an immediate result of the above definition.

Proposition 4.14. The identity mapping 1X : (X, τ)→ (X, τ) is continuous.

Proposition 4.15. If mappings f : (X, τ1) → (Y, τ2) and g : (Y, τ2) → (Z, τ3) are
continuous, then g ◦ f : (X, τ1)→ (Z, τ3) is continuous.

Proof. Let W ∈ τ3 and let x ∈ X. Then by Result 2.9 (13),

(g ◦ f)−1(W ) = f−1(g−1(W )).

Since g : (Y, τ2)→ (Z, τ3), g−1(W ) ∈ τ2. Since f : (X, τ1)→ (Y, τ2), f−1(g−1(W )) ∈
τ1. So (g ◦ f)−1(W ) ∈ τ1. Hence g ◦ f is continuous. �

Remark 4.16. Let BPFTop be the collection of all bipolar fuzzy topological spaces
and continuous mappings. Then we can easily see that BPFTop forms a concrete
category from Propositions 4.14 and 4.15.

From Definition 2.8, it is obvious that for a mapping f : X → Y and each
x(α,β) ∈ BPFP (X), f(x(α,β)) = f(x)(α,β) ∈ BPFP (Y ).

Definition 4.17. Let (X, τ1), (Y, τ2) be two bipolar fuzzy topological spaces. Then
a mapping f : (X, τ1) → (Y, τ2) is continuous at a(α,β) ∈ BPFP (X), if for each

V ∈ Nbp(f(a(α,β))) = Nbp(f(a)(α,β)), f
−1(V ) ∈ Nbp(a(α,β)).

Lemma 4.18. A mapping f : (X, τ1) → (Y, τ2) is continuous if and only if f is
continuous at each a(α,β) ∈ BPFP (X).

Proof. It is simple to verify. �

Theorem 4.19. Let f : (X, τ1) → (Y, τ2) be a mapping. Then the followings are
equivalent:

(1) f is continuous,
(2) f−1(F ) is closed in X, for each bipolar fuzzy closed set F in Y ,
(3) f−1(S) ∈ τ1, for each member S of the subbase S for τ2,
(4) f is continuous at each a(α,β) ∈ BPFP (X),
(5) for each a(α,β) ∈ BPFP (X) and each V ∈ Nbp(f(a)(α,β)), there is U ∈

Nbp(a(α,β)) such that f(U) ⊂ V ,
(6) f(bcl(A)) ⊂ bcl(f(A)), for each A ∈ BPF (X),
(7) bcl(f−1(B)) ⊂ f−1(bcl(B)), for each B ∈ BPF (Y ).

Proof. (1)⇔ (2): Suppose f is continuous and let F be any bipolar fuzzy closed set
in Y . Then clearly, F c ∈ τ2. By Result 2.9 (11), f−1(F c) = f−1(F )c. Since f is
continuous, f−1(F )c ∈ τ1. Thus f−1(F ) is closed in X.

The proof of the converse is similar.
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(1)⇒ (3): It is obvious.
(3)⇒ (4): Let a(α,β) ∈ BPFP (X) and let V ∈ Nbp(f(a)(α,β)). Then there

is a finite subcollection S ′ = {S1, S2, · · · , Sn} of the subbase S for τ2 such that
f(a)(α,β) ∈ ∩S ′ ⊂ V . Since f−1(∩S ′) = ∩ni=1f

−1(Si) and since f−1(Si) ∈ τ1 for

each i by (3), we obtain f−1(∩S ′) ∈ τ1. It also follows from f(a)(α,β) ∈ ∩S ′ ⊂ V

that a(α,β) ∈ f−1(∩S ′) ⊂ f−1(V ). So f−1(V ) ∈ Nbp(a(α,β)).
(4)⇒ (5): It is obvious.
(5)⇒ (1): It is obvious.
(2)⇒ (6): Let A ∈ BPF (X). Then clearly, bcl(f(A)) is closed in Y . By (2),

f−1(bcl(f(A))) is closed in X. Since f(A) ⊂ bcl(f(A)), A ⊂ f−1(bcl(f(A))). Thus

bcl(A) ⊂ bcl[f−1(bcl(f(A)))] = f−1(bcl(f(A))).

So f(bcl(A)) ⊂ bcl(f(A)).
(6)⇒ (7): For any B ∈ BPF (Y ), let A = f−1(B). Then by (6), f(bcl(A)) ⊂

bcl(f(A)). Thus f(bcl(f−1(B))) ⊂ bcl(f(f−1(B))), i.e., f(bcl(f−1(B))) ⊂ bcl(B).
So bcl(f−1(B)) ⊂ f−1(bcl(B)).

(7)⇒ (2): Let F be any bipolar fuzzy closed set in Y . Then clearly, F = bcl(F ).
Thus by (7), bcl(f−1(F )) ⊂ f−1(bcl(F )) = f−1(F ). So f−1(F ) = bcl(f−1(F )).
Hence f−1(F ) is closed in X. �

The following is an immediate result of Result 4.10 and Theorem 4.19.

Corollary 4.20. A mapping f : (X, τ1) → (Y, τ2) is continuous if and only if
f−1(bint(B)) ⊂ bint(f−1(B)).

From Definition 4.13, we have the following lemma.

Lemma 4.21. Let τ1, τ2 ∈ BPFT (X). Then τ1 � τ2 if and only if the identity
mapping 1X : (X, τ2)→ (X, τ1) is continuous.

The following is an immediate result of Definition 4.13, Theorem 4.19 and Lemma
4.21.

Theorem 4.22. Let τ1, τ2 ∈ BPFT (X). Then the followings are equivalent:
(1) τ1 is coarser than τ2,
(2) for each x(α,β) ∈ BPFP (X), Nbp,τ1(x(α,β)) ⊂ Nbp,τ2(x(α,β)),
(3) for each A ∈ BPF (X), bclτ2(A) ⊂ bclτ1(A),
(4) if F is closed in (X, τ1), then F is closed in (X, τ2),
(5) if F is open in (X, τ1), then F is open in (X, τ2).

Remark 4.23. (1) The finer bipolar fuzzy topology, the more bipolar fuzzy open
sets, bipolar fuzzy closed sets and bipolar fuzzy neighborhoods; the finer the bipolar
fuzzy topology, the smaller (resp. the larger) bipolar fuzzy closure (resp. bipolar
fuzzy interior) of a bipolar fuzzy set.

(2) Let f : X → Y is a continuous mapping. Then the continuity is preserved
when the bipolar fuzzy topology of X is replaced by the finer bipolar fuzzy topology
and the bipolar fuzzy topology of Y is replaced by the coarser one. In other words,
the finer bipolar fuzzy topology of X and the coarser bipolar fuzzy topology of Y ,
there are the more continuous mappings of X to Y .
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Definition 4.24. Let (X, τ1), (Y, τ2) be two bipolar fuzzy topological spaces. Then
a mapping f : (X, τ1)→ (Y, τ2) is said to be:

(i) open, if f(U) ∈ τ2 for each U ∈ τ1,
(ii) closed, if f(F ) is closed in Y for each bipolar fuzzy closed set F in Y .

Proposition 4.25. Let f : (X, τ1)→ (Y, τ2) and g : (Y, τ2)→ (Z, τ3) be mappings.
If f and g are open [resp. closed], then so is g ◦ f .

Proof. Suppose f and g are open and let U ∈ τ1. Then by Result 2.9 (12),

(g ◦ f)(U) = g(f(U)).

Since f is open, f(U) ∈ τ2. Since g is open, (g(f(U)) ∈ τ3. Thus g ◦ f is open.
The proof of the second part is similar. �

Theorem 4.26. Let f : (X, τ1)→ (Y, τ2) be a mapping. Then f is open if and only
if f(bint(A)) ⊂ bint(f(A)), for each A ∈ BPF (X).

Proof. Suppose f is open and let A ∈ BPF (X). Since bint(A) ∈ τ1, f(bint(A)) ∈ τ2
and f(bint(A)) ⊂ f(A). Moreover, bint(f(A)) is the largest bipolar fuzzy open set
contained in f(A). Thus f(bint(A)) ⊂ bint(f(A)).

Conversely, suppose the necessary condition holds and let U ∈ τ1. Then clearly,
U = bint(U). Thus by the hypothesis, f(U) = f(bint(U)) ⊂ bint(f(U)). Since
bint(f(U)) ⊂ f(U), f(U) = bint(f(U)). Hence f is open. �

Proposition 4.27. Let f : (X, τ1)→ (Y, τ2) be a injective mapping. If f is contin-
uous, then bint(f(A)) ⊂ f(bint(A)), for each A ∈ BPF (X).

Proof. Suppose f is continuous and let A ∈ BPF (X). Then clearly, bint(f(A)) ∈ τ2.
Since f is continuous, f−1(bint(f(A))) ∈ τ1. Since bint(f(A)) ⊂ f(A) and f is
injective, by Result 2.9 (5) and (9),

f−1(bint(f(A))) ⊂ f−1(f(A)) = A.

Since bint(A) is the largest bipolar fuzzy open set contained in A,

f−1(bint(f(A))) ⊂ bint(A).

Therefore bint(f(A)) ⊂ f(bint(A)). �

The following is an immediate result of Theorem 4.26 and Proposition 4.27.

Corollary 4.28. Let f : (X, τ1) → (Y, τ2) be a continuous, open and injective
mapping. Then f(bint(A)) = bint(f(A)) for each A ∈ BPF (X).

Theorem 4.29. Let f : (X, τ1) → (Y, τ2) be a mapping. Then f is closed if and
only if bcl(f(A)) ⊂ f(bcl(A)) for each A ∈ BPF (X).

Proof. Suppose f is closed and let A ∈ BPF (X). Then clearly, A ⊂ bcl(A) and
bcl(A) is closed in Y . Thus f(A) ⊂ f(bcl(A)). Since f is closed, f(bcl(A)) is a
bipolar fuzzy closed set containing f(A). So bcl(f(A)) ⊂ f(bcl(A)).

Conversely, suppose the necessary condition holds and let F be any bipolar fuzzy
closed set in X. Then clearly, F = bcl(F ). Thus by the hypothesis,

bcl(f(F )) ⊂ f(bcl(F )) = f(F ) ⊂ bcl(f(F )).
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So bcl(f(F )) = f(F ), i.e., f(F ) is a bipolar fuzzy closed set in Y . Hence f is
closed. �

The following is an immediate result of Theorems 4.19 and 4.29.

Corollary 4.30. Let f : (X, τ1)→ (Y, τ2) be a mapping. Then f is continuous and
closed if and only if bcl(f(A)) = f(bcl(A)) for each A ∈ BPF (X).

Definition 4.31. A mapping f : (X, τ1)→ (Y, τ2) is called a homeomorphism if it
is bijective, continuous and open.

A few useful facts about continuity are collected in the following.

Proposition 4.32. Let f : (X, τ1)→ (Y, τ2) be a mapping.
(1) If (X, τ1) is the discrete bipolar fuzzy space, i.e., τ1 = τ1, then f is continuous.
(2) If (Y, τ2) is the indiscrete bipolar fuzzy space, i.e., τ2 = τ0, then f is contin-

uous.
(3) If both (X, τ1) and (Y, τ2) are the discrete bipolar fuzzy spaces, then f is

continuous and open.
(4) For the discrete bipolar fuzzy spaces (X, τ1) and (Y, τ2), f is a homeomorphism

if and only if f is bijective.

5. Bipolar fuzzy subspaces and bipolar fuzzy quotient spaces

In this section, we define the concepts of a bipolar fuzzy subspace and a bipolar
fuzzy quotient space, and investigate some properties of each concept.

Definition 5.1. Let (X, τ) be a bipolar fuzzy topological space, let A ∈ BPF (X)
be fixed and let δ ⊂ BPF (X). Then δ is called a bipolar fuzzy topology on A, if it
satisfies the following axioms:

(i) if B ∈ δ, then B ⊂ A,
(ii) 0bp, A ∈ δ,
(iii) if B, C ∈ δ, then B ∩ C ∈ δ,
(iv) if (Bj)j∈J ⊂ δ, then

⋃
j∈J Bj ∈ δ.

It is clear that the set τA = {U ∩ A : U ∈ τ} is a bipolar fuzzy topology on A.
In this case, τA is called the bipolar fuzzy subspace topology or the bipolar fuzzy
relative topology induced by A, and a pair (A, τA) is called a bipolar fuzzy subspace.

Example 5.2. (1) Let X be a discrete bipolar fuzzy space and let A ∈ BPF (X).
Then τ1A is the discrete bipolar fuzzy topology on A, i.e., τ1A = {B ∩ A : B ∈
BPF (X)}.

(2) Let X be an indiscrete bipolar fuzzy space and let A ∈ BPF (X). Then τ0A is
the indiscrete bipolar fuzzy topology on A, i.e., τ0A = {0bp, A}.

Proposition 5.3. Let (X, τ) be a bipolar fuzzy topological space and let A, B ∈
BPF (X) such that A ⊂ B. Then τA = (τB)A.

Proof. Let C ∈ τA. Then there is U ∈ τ such that C = U ∩ A. Since A ⊂ B,
A = A ∩B. Thus C = U ∩ (A ∩B) = (U ∩B) ∩A and U ∩B ∈ τB . So C ∈ (τB)A.
Hence τA ⊂ (τB)A.
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Now let D ∈ (τB)A. Then there is V ∈ τB such that D = V ∩ A. Since V ∈ τB ,
there is U ∈ τ such that V = U ∩ B. Thus D = (U ∩ B) ∩ A = U ∩ A. So D ∈ τA.
Hence (τB)A ⊂ τA. Therefore τA = (τB)A. �

Proposition 5.4. Let (X, τ) be a bipolar fuzzy topological space and let A ∈ τ . If
U ∈ τA, then U ∈ τ .

Proof. Suppose U ∈ τA. Then there is V ∈ τ such that U = V ∩ A. Since A ∈ τ ,
V ∩A ∈ τ . Thus U ∈ τ . �

Proposition 5.5. Let (X, τ) be a bipolar fuzzy topological space, let A ∈ BPF (X)
and let B be a base for τ . Then BA = {B ∩A : B ∈ B} is a base for τA.

Proof. Let U ∈ τA and let x(α,β) ∈ U . Then there is V ∈ τ such that U = V ∩ A,
x(α,β) ∈ V and x(α,β) ∈ A. Since V ∈ τ , there is B ∈ B such that x(α,β) ∈ B ⊂ V .
Thus x(α,β) ∈ B ∩A ⊂ V ∩A. So by Theorem 3.15, BA is a base for τA. �

Remark 5.6. Let (X, τ) be a bipolar fuzzy topological space, let A ∈ BPF (X)
and let x(α,β) ∈ A. Then Nbp,A(x(α,β)) = {U ∩A : U ∈ Nbp(x(α,β))} is the set of all
neighborhoods of x(α,β) in (A, τA).

For any A ∈ BPF (X), the set {x ∈ X : A+(x) > 0, A−(x) < 0} is called the
support of A and denoted by S(A).

Definition 5.7. Let X, Y be nonempty sets, let A ∈ BPF (X), B ∈ BPF (Y ) and
let f : S(A) → S(B) be a mapping. Then f is called a mapping from A to B,
denoted by f : A→ B, if for each x ∈ S(A),

B+ ◦ f(x) ≥ A+(x) and B− ◦ f(x) ≤ A−(x).

Definition 5.8. Let X, Y be nonempty sets, let A ∈ BPF (X), B ∈ BPF (Y )
and let f : A → B. Let Pbp(A) be the set of all bipolar fuzzy subsets of A and let
λ ∈ Pbp(A), µ ∈ Pbp(B).

(i) The image of λ under f , denoted by f(λ) = (f(λ+), f(λ−)), is a bipolar fuzzy
subset of B defined as: for each y ∈ S(B),

[(f(λ+)](y) =

{ ∨
x∈f−1(y) λ

+(x) if f−1(y) 6= φ

0 otherwise

and

[(f(λ−)](y) =

{ ∧
x∈f−1(y) λ

−(x) if f−1(y) 6= φ

0 otherwise.

(ii) The preimage of µ under f , denoted by f−1(µ) = (f−1(µ+), f−1(µ−)), is a
bipolar fuzzy set in X defined as: for each x ∈ S(A),

[f−1(µ+)](x) = A+(x) ∧ (µ+ ◦ f(x)) and [f−1(µ−)](x) = A−(x) ∨ (µ− ◦ f(x)).

Proposition 5.9. Let X, Y be nonempty sets, let A ∈ BPF (X), B ∈ BPF (Y )
and let f : A → B. Let λ, λ1, λ2 ∈ Pbp(A), (λj)j∈J ⊂ Pbp(A) and µ, µ1, µ2 ∈
Pbp(B), (µk)k∈K ⊂ Pbp(B). Then

(1) f(λ) ⊂ B, f−1(µ) ⊂ A,
(2) f(

⋃
j∈J λj) =

⋃
j∈J f(λj),

(3) if λ1 ⊂ λ2, then f(λ1) ⊂ f(λ2),
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(4) f−1(
⋃
k∈K µk) =

⋃
k∈K f

−‘(µk), f−1(
⋂
k∈K µk) =

⋂
k∈K f

−1(µk),

(5) f ◦ f−1(µ) ⊂ µ,
(6) λ ⊂ f−1 ◦ f(λ).

Proof. We will prove only (2) and (4).
(2) Let y ∈ S(B) such that f−1(y) 6= φ. Then

[f(
⋃
j∈J λj)]

+(y) = f((
⋃
j∈J λj)

+)(y)

=
∨
x∈f−1(y)(

⋃
j∈J λj)

+(x)

=
∨
x∈f−1(y)

∨
j∈J λ

+
j (x)

=
∨
j∈J

∨
x∈f−1(y) λ

+
j (x)

=
∨
j∈J f(λ+j )(y)

= [
⋃
j∈J f(λ+j )](y).

Similarly, we have [f(
⋃
j∈J λj)]

−(y) = [
⋃
j∈J f(λ−j )](y). Thus the result holds.

(4) Let x ∈ S(A). Then
[f−1(

⋃
k∈K µk)]+(x) = A+(x) ∧ (

⋃
k∈K µk)+ ◦ f(x)

= A+(x) ∧ (
∨
k∈K µ

+
k ◦ f(x))

=
∨
k∈K [A+(x) ∧ (µ+

k ◦ f(x))]

=
∨
k∈K [f−1(µ+

k )](x)

= [
⋃
k∈K f

−1(µ+
k )](x)

and
[f−1(

⋃
k∈K µk)]−(x) = A−(x) ∨ (

⋃
k∈K µk)− ◦ f(x)

= A−(x) ∨ (
∧
k∈K µ

−
k ◦ f(x))

=
∧
k∈K [A−(x) ∨ (µ−k ◦ f(x))]

=
∧
k∈K [f−1(µ−k )](x)

= [
⋃
k∈K f

−1(µ−k )](x).

Thus f−1(
⋃
k∈K µk) =

⋃
k∈K f

−1(µk).
The proof of the second part is similar. �

Let f : X → Y be a mapping, let A ∈ BPF (X), B = f(A) ∈ BPF (Y ) and let
fA = f | S(A). Then clearly, for each x ∈ S(A),

B+ ◦ f(x) ≥ A+(x) and B− ◦ f(x) ≤ A−(x).

Thus fA is a mapping from A to B, i.e., fA : A→ B. So we have following.

Proposition 5.10. Let (X, τ), (Y, δ) be two bipolar fuzzy topological spaces, f :
(X, τ) → (Y, δ) be a mapping and let A ∈ BPF (X), B = f(A) ∈ BPF (Y ). If f is
continuous, then fA : (A, τA)→ (B, δB) is continuous.

Proposition 5.11. Let (X, τ) be a bipolar fuzzy topological space and let f : X → Y
be a mapping. Let δ = {U ∈ BPF (Y ) : f−1(U) ∈ τ}. Then

(1) δ is a bipolar fuzzy topology on Y ,
(2) f : (X, τ)→ (Y, δ) is continuous,
(3) if η is a bipolar fuzzy topology on Y such that f : (X, τ)→ (Y, η) is continuous,

then δ is finer than η, i.e., η � δ.
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Proof. (1) (BPFO1) Let 0bp,X [resp. 1bp,X ] denotes the bipolar fuzzy empty [whole]
set in X. Then clearly, f−1(0bp,Y ) = 0bp,X and f−1(1bp,Y ) = 1bp,X . Thus

0bp,Y ∈ δ and 1bp,Y ∈ δ.
(BPFO2) Let U, V ∈ δ. Then f−1(U), f−1(V ) ∈ τ . Thus

f−1(U ∩ V ) = f−1(U) ∩ f−1(V ) ∈ τ.
So U ∩ V ∈ δ.

(BPFO3) Let (Uj)j∈J ⊂ δ. Then clearly, (f−1(Uj))j∈J ⊂ τ . Thus

f−1(
⋃
j∈J

Uj) =
⋃
j∈J

f−1(Uj) ∈ τ.

So
⋃
j∈J Uj ∈ δ. Hence δ is a bipolar fuzzy topology on Y

(2), (3) The proofs are straightforward. �

Definition 5.12. Let (X, τ) be a bipolar fuzzy topological space, let Y be a set and
let f : X → Y be a sujective mapping. Then

δ = {U ∈ BPF (Y ) : f−1(U) ∈ τ}
is a bipolar fuzzy topology on Y (See Proposition 5.11). In this case, δ is called the
bipolar fuzzy quotient topology on Y induced by f , (Y, δ) is called a bipolar fuzzy
quotient space of X and f is called a quotient mapping.

Proposition 5.13. Let (X, τ), (Y, η) be two bipolar fuzzy topological spaces and let
f : (X, τ) → (Y, η) be sujective and continuous. Let δ be the bipolar fuzzy quotient
topology on Y induced by f . If either f is open or closed, then δ = η.

Proof. Suppose f is open. Since f : (X, τ) → (Y, η) is continuous, by Proposition
5.11, η � δ. Let U ∈ δ. Then by the definition of δ, f−1(U) ∈ τ . Since f : (X, τ)→
(Y, η) is surjective and open, U = f ◦ f−1(U) ∈ η. Thus δ � η. So δ = η.

When f is closed, we also have δ = η by the same argument. �

Remark 5.14. From Definition 5.12 and Proposition 5.13, we can easily see that
if f : (X, τ) → (Y, η) is open (or closed), surjective and continuous, then f is a
quotient mapping.

Proposition 5.15. If f : (X, τ) → (Y, η) and g : (Y, η) → (Z, δ) are quotient
mappings, then g ◦ f is a quotient mapping

Proof. It is straightforward. �

Theorem 5.16. Let (X, τ), (Z, η) be bipolar fuzzy topological spaces, let Y be a
set, f : X → Y be a sujective mapping and let δ be the bipolar fuzzy quotient
topology on Y induced by f . Then g : (Y, δ) → (Z, η) is continuous if and only if
g ◦ f : (X, τ)→ (Z, η) is continuous.

Proof. Suppose g : (Y, δ) → (Z, η) is continuous. Since δ be the bipolar fuzzy
quotient topology on Y induced by f , f : (X, τ)→ (Y, δ) is continuous. Then g ◦ f
is continuous.

Conversely, suppose g ◦f is continuous and let V ∈ η. Then (g ◦f)−1(V ) ∈ τ and
(g ◦ f)−1(V ) = f−1(g−1(V )). Thus by the definition of the bipolar fuzzy quotient
topology, g−1(V ) ∈ δ. So g is continuous. �
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6. Bipolar fuzzy initial topologies

Definition 6.1. Let X be a set, let (Yj , τj)j∈J be a family of bipolar fuzzy topo-
logical space and let let (fj : X → (Yj , τj))j∈J be a family of mappings. Let

S = {f−1j (Uj) ∈ BPF (X) : Uj ∈ τj , j ∈ J}.

Then the topology τ generated by the subbase S is called the bipolar fuzzy initial
topology on X induced by (fj)j∈J and ((Yj , τj))j∈J .

In fact, let B be the set of all finite intersections of members of S. Then B is a
base for τ and τ is the set of all unions of members of B.

Proposition 6.2. Let τ be the bipolar fuzzy initial topology on X induced by (fj)j∈J
and (Yj , τj)j∈J . Then τ is the coarsest topology on X for which

fj : (X, τ)→ (Yj , τj) is continuous for each j ∈ J.

Furthermore, for any bipolar fuzzy topological space (Z, δ), g : (Z, δ) → (X, τ) is
continuous if and only if fj ◦ g is continuous for each j ∈ J .

Proof. It is straightforward. �

Remark 6.3. From Proposition 6.2, we can see that the category BPFTop forms
a topological category.

Example 6.4. (1) (Inverse image of a bipolar fuzzy topology) Let X be a set,
let (Y, δ) be a bipolar fuzzy topological space and let f : X → (Y, δ) be a mapping.
Then by Proposition 6.2, there is the bipolar fuzzy initial topology τ on X for which
f : (X, τ)→ (Y, δ) is continuous.

In fact, the set S = {f−1(U) ∈ BPF (X) : U ∈ δ} is a subbase for τ .
In this case, τ is called the inverse image under f of δ.
In particular, f : (X, τ) → (X

′
, δ) is continuous if and only if τ is finer than the

inverse image τX under f of δ.
(2) (bipolar fuzzy product topology) Let (Xj , τj)j∈J be a family of bipolar fuzzy

topological spaces and let X = Πj∈JXj be the product set of (Xj)j∈J . Then by
Proposition 6.2, there is the bipolar fuzzy initial topology τ on X for which the
projection prj : (X, τ)→ (Xj , τj) is continuous for each j ∈ J .

In fact, the set S = {pr−1j (U) ∈ BPF (X) : U ∈ τj} is a subbase for τ .
In this case, τ is called the bipolar fuzzy product topology on X and denoted by

τ = Πj∈Jτj and the pair (X, τ) is called a bipolar fuzzy product space.

Proposition 6.5. Let (τj)j∈J ⊂ BPFT (X). Then there is a bipolar fuzzy topology
on X for which is the coarsest among all the bipolar fuzzy topologies on X which are
finer than each τj, i.e., (τj)j∈J has the least upper bound in (BPFT (X),�).

Proof. For each j ∈ J , let (Yj , τj) = (X, τj) and fj be the identity mapping X →
(Yj , τj). Then by by Proposition 6.2, there is a bipolar fuzzy initial topology τ on
X for which all the mappings fj : (X, τ)→ (Yj , τj) are continuous. Since each fj is
the identity mapping, by Lemma 4.21, τj � τ . Thus τ is finer than each τj . So τ is
the least upper bound in (BPFT (X),�). �

Remark 6.6. In Example 6.4 (2), the projection mappings are not necessarily open.
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Example 6.7. Let X1 = {a, b} = X2 and let

τ1 = {0bp,X1 ,1bp,X1 , A}, τ2 = {0bp,X2 ,1bp,X2 , B},

where
A(a) = (0.4,−0.7), A(b) = (0.6,−0.5)

and
B(a) = (0.8,−0.3), B(b) = (0.3,−0.6).

Let τ = {0bp,X1×X2 ,1bp,X1×X2 , U1, U2, U1 ∩ U2, U1 ∪ U2}, where U1 = pr−11 (A) and

U2 = pr−12 (B). Then clearly, τ = τ1 × τ2 ∈ BPFT (X1 × X2) and pr2(U1) 6∈
τ2, pr1(U2) 6∈ τ1. Thus pr1 and pr2 are not open.

Let the bipolar fuzzy set in X whose value is (a, b) ∈ [0, 1]×[−1, 0] for each x ∈ X,
be denoted by (a, b)bp. In particular, we will denote (a,−a)bp as abp.

Definition 6.8. Let (X, τ) be a bipolar fuzzy topological space. Then τ is said to
be Lowen-type (See [13]), if (a, b)bp ∈ τ , for each (a, b) ∈ [0, 1]× [−1, 0].

Proposition 6.9. Let (Xj , τj)j∈J be a family of be Lowen-type bipolar fuzzy topolog-
ical spaces and let X = Πj∈JXj , τ = Πj∈Jτj. Then each projection prj : (X, τ) →
(Xj , τj) is open.

Proof. Let V =
⋂n
i=1 pr

−1
ji

(Uji), where Uji ∈ τji , for i = 1, 2, · · · , n.

Suppose k(6= ji) ∈ J , i = 1, 2, · · · , n and let xk ∈ Xk. Then
[prk(V )]+(xk) =

∨
x∈pr−1

k (xk)
V +(x)

=
∨
x∈pr−1

k (xk)
[
⋂n
i=1 pr

−1
ji

(Uji)]
+(x)

=
∨
x∈pr−1

k (xk)
[
∧n
i=1 U

+
ji
◦ prji(x)]

=
∧n
i=1[

∨
ξ∈Xji

U+
ji

(ξ)]

= a ∈ [0, 1] (say).
Similarly, we have [prk(V )]−(xk) =

∨n
i=1[

∧
ξ∈Xji

U−ji (ξ)] = b ∈ [−1, 0] (say). Thus

prk(V ) = (a, b)bp.

Suppose k = ji0 ∈ J , i0 = 1, 2, · · · , n and let xk ∈ Xk. Then
[prk(V )]+(xk) =

∨
x∈pr−1

k (xk)
V +(x)

=
∨
x∈pr−1

k (xk)
[
∧n
i=1 U

+
ji
◦ prji(x)]

=
∧

1≤i(6=i0)≤n[
∨
ξ∈Xji

U+
ji

(ξ))] ∧ U+
i0

(xk)

= a
′ ∧ U+

i0
(xk),

where a
′

=
∧

1≤i(6=i0)≤n[
∨
ξ∈Xji

U+
ji

(ξ))].

Similarly, we have [prk(V )]+(xk) = b
′ ∨ U−i0 (xk),

where b
′

=
∨

1≤i( 6=i0)≤n[
∧
ξ∈Xji

U−ji (ξ))].

Thus prk(V ) = (a
′ ∧ U+

i0
(xk), b

′ ∨ U−i0 (xk)bp. So either cases, prk(V ) ∈ τk. Hence
prk is open. �

7. Compactness in a bipolar fuzzy topological space

Definition 7.1. Let (X, τ) be a bipolar fuzzy topological space and let C ⊂ BPF (X).
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(i) C is called a cover of X, if 1bp ⊂
⋃
C, i.e.,

(
⋃
C)+(x) = 1 and (

⋃
C)−(x) = −1, ∀x ∈ X.

(ii) Let C be a cover of X. Then D ⊂ C is a subcover of C, if D is a cover of X.
(iii) C is called an open cover of X, if C is a cover of X and C ⊂ τ .

Definition 7.2. A bipolar fuzzy topological space (X, τ) is said to be compact, if
each open cover of X has a finite subcover.

Proposition 7.3. Let (X, τ) be a bipolar fuzzy compact space, (Y, δ) be a a bipolar
fuzzy topological space and let f : (X, τ)→ (Y, δ) be surjective and continuous. Then
(Y, δ) is compact.

Proof. Let C be any open cover of Y . Then clearly, U = {f−1(V ) : V ∈ C} is an
open cover of X. Since (X, τ) is compact, there is a finite subcover

V = {f−1(Vi) : Vi ∈ C, 1 ≤ i ≤ n}.

Thus for each x ∈ X,

(
⋃
V)+(x) =

n∨
i=1

f−1(V +
i )(x) =

n∨
i=1

V +
i ◦ f(x) ≥ 1

and

(
⋃
V)−(x) =

n∧
i=1

f−1(V −i )(x) =

n∧
i=1

V −i ◦ f(x) ≤ −1.

Let y ∈ Y . Since f is surjctive, f−1(y) 6= φ, say y = f(x). Then
(
⋃n
i=1 Vi)

+(y) =
∨n
i=1 V

+
i (y)

=
∨n
i=1 V

+
i (f(x))

=
∨n
i=1 V

+
i ◦ f(x) ≥ 1.

Similarly, we have (
⋃n
i=1 Vi)

−(y) ≤ −1. Thus A = {Vi ∈ C : f−1(Vi) ∈ V} is a finite
subcover of C. So (Y, δ) is compact. �

Definition 7.4 (See [8]). Let C ⊂ BPF (X). Then
(i) C is said to be inadequate, if it fails to cover X,
(ii) C is said to be finitely inadequate, if no finite subfamily of C covers X.

Definition 7.5 ([8]). A family A of ordinary sets is said to be of finite character, if
each finite subset of a member of A is a member of A.

Result 7.6 ([8], Tukey Lemma of Theorem 0.25). There is a maximal member of
nonempty family of finite character.

Now we will prove the Alexander Theorem on compactness (See Theorem 5.6 in
[8]) in bipolar fuzzy setting.

Proposition 7.7 (Alexander Subbase Theorem). Let (X, τ) be a bipolar fuzzy topo-
logical space and let S be a subbase for τ . If every cover of X by members of S has
a finite subcover, then (X, τ) is compact.
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Proof. By Definition 7.4, (X, τ) is compact iff each finitely inadequate family of
bipolar fuzzy open sets in X is inadequate. Observe that the class of finitely in-
adequate families of bipolar fuzzy open sets in X is of finite character and thus
each finitely inadequate family of bipolar fuzzy open sets in X is contained in a
maximal finitely inadequate family A by Result 7.6. Then A has a special prop-
erty which is established as follows: If C 6∈ A and C ∈ τ , then by the maximality,
there is a finite subfamily {U1, U2, · · · , Un} of A such that {U1, U2, · · · , Un, C} is
a cover of X, i.e., 1bp ⊂ C ∪ U1 ∪ · · · ∪ Un. Thus no bipolar fuzzy open set con-
taining C belongs to A. Similarly, if D 6∈ A and C ∈ τ , then there is a finite
subfamily {V1, V2, · · · , Vm} of A such that {V1, V2, · · · , Vm, D} is a cover of X. So
{U1, U2, · · · , Un, V1, V2, · · · , Vm, C ∩D} is a cover of X. Hence C ∩D 6∈ A. There-
fore if no member of a finite family of bipolar fuzzy open sets belongs to A, then
no bipolar fuzzy open set containing the intersection belongs to A, i.e., if a member
of A contains a finite intersection C1 ∩ C2 · · · ∩ Cp of bipolar fuzzy open sets, then
some Ci ∈ A.

Suppose S is a subbase for τ such that every cover of X by members of S has a
finite subcover (i.e., each finitely inadequate subfamily is inadequate). Let B be a
finitely inadequate family of bipolar fuzzy open sets in X. Then there is a maximal
finitely inadequate family A of bipolar fuzzy open sets such that B ⊂ A. If A is
inadequate, then the family S

⋂
A of all members of A which belongs to S is finitely

inadequate. Thus S
⋂
A is inadequate, i.e., S

⋂
A does not cover X. Now let us

show that A is inadequate.
Assume that A is not inadequate. Then A covers X, i.e., 1bp ⊂

⋃
A. Let x ∈ X.

Then 1 = 1+
bp(x) ≤

∨
A∈AA

+(x) and −1 = 1−bp(x) ≥
∧
A∈AA

−(x). Let ε > 0. Then

there is A ∈ A such that A+(x) > 1 − ε
2 . Since A ∈ τ , there is {Bi}i∈4 such that

A =
⋃
i∈4Bi, where {Bi}i∈4 is a set of basic open sets. Since each Bi is a basic

open set, there is a finite index set Ji such that Bi =
⋂
j∈Ji Sj , where Sj ∈ S and

Bi ⊂ A. Since A ∈ A, there is ji ∈ Ji such that Bi =
⋂
j∈Ji Sj ⊂ Cji ∈ A∩S. Since

A =
⋃
i∈4Bi, there is Bi0 such that

B+
i0

(x) > A+(x)− ε

2
.

Thus C+
ji0

(x) ≥ B+
i0

(x) > 1 − ε
2 −

ε
2 . Since ε > 0 is arbitrary,

∨
Cj∈S∩A C

+
j (x) ≥

1. Similarly
∧
Cj∈S

⋂
A C

−
j (x) ≤ −1. So 1bp ⊂

⋃
(S ∩ A). Hence S

⋂
A is not

inadequate. This is a contradiction. This completes the proof. �

Definition 7.8. Let A ∈ BPF (X) and let C ⊂ BPF (X). Then C is said to be
cover of A, if A ⊂

⋃
C.

Definition 7.9. Let (X, τ) be a bipolar fuzzy topological space, let A ∈ BPF (X)
and let µ ∈ Pbp(A). Then µ is said to be compact in (A, τA), if every open cover of
µ by members of τA has a finite subcover.

Definition 7.10. Let (X, τ), (Y, δ) be two bipolar fuzzy topological spaces, let
A ∈ BPF (X), B ∈ BPF (Y ) and let f : A → B be a mapping. Then f is said to
be continuous, if f−1(µ) ∈ τA, for each µ ∈ τB .
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Proposition 7.11. Let (X, τ), (Y, δ) be two bipolar fuzzy topological spaces, let
A ∈ BPF (X), B ∈ BPF (Y ) and let f : (A, τA) → (B, τB) be continuous. If
λ ∈ Pbp(A) is compact in (A, τA), then f(λ) is compact in (B, τB).

Proof. Let C be any open cover of f(λ) and let x ∈ S(A), y = f(x) ∈ S(B). Then
clearly, f(λ) ⊂

⋃
C, i.e., f(λ)+(y) ≤ (

⋃
C)+(y) and f(λ)−(y) ≥ (

⋃
C)−(y), for each

y ∈ S(B).
Case (i): Suppose f(λ)+(y) = 0. Then clearly, f(λ)+(y) ≤ U+(y), for each U ∈ C.

Thus
∨
x∈f−1(y) λ

+(x) ≤ U+ ◦ f(x) = [f−1(U)]+(x). So λ+(x) ≤ [f−1(U)]+(x).

Case (ii): Suppose f(λ)+(y) > 0 and let ε > 0 such that f(λ)+(y)− ε > 0. Then
there is µε ∈ C such that µ+

ε (y) > f(λ)+(y)− ε. On the other hand,
[f−1(µε)]

+(x) = A+(x) ∧ µ+
ε ◦ f(x)

= A+(x) ∧ µ+
ε (y)

≥ A+(x) ∧ (f(λ)+(y)− ε)
= A+(x) ∧ [(

∨
z∈f−1(y) λ

+(z))− ε]
≥ A+(x) ∧ (λ+(x)− ε)
= λ+(x)− ε.

Thus [
⋃
µ∈C f

−1(µ)]+(x) =
∨
µ∈C [f

−1(µ)]+(x) ≥ λ+(x)− ε. Since ε is arbitrary,

[
⋃
µ∈C

f−1(µ)]+(x) ≥ λ+(x).

Similarly, we have

[
⋃
µ∈C

f−1(µ)]−(x) ≤ λ−(x).

So f−1(C) = {f−1(µ) : µ ∈ C} is an open cover of λ. Since λ is compact in (A, τA),
there is a finite subfamily {f−1(µ1), f−1(µ2), · · · , f−1(µn)} of f−1(C) which covers
λ. Let y ∈ S(B).

Case (1): Suppose f−1(y) = φ. Then f(λ)+(y) = 0 = f(λ)−(y). Thus

[

n⋃
i=1

ff−1(µi)]
+(y) ≥ f(λ)+(y).

Similarly, we have

[

n⋃
i=1

ff−1(µi)]
−(y) ≤ f(λ)−(y).

Case (2): Suppose f−1(y) 6= φ. Then f(λ) ⊂ f(
⋃n
i=1 f

−1(µi)). Thus f(λ) ⊂⋃n
i=1 ff

−1(µi). So
⋃n
i=1 µi ⊃

⋃n
i=1 ff

−1(µi) ⊃ f(λ). Hence {µ1, µ2, · · · , µn} is
a cover of f(λ) which is a finite subfamily of C. Therefore f(λ) is compact in
(B, τB). �

8. Conclusions

We dealt with some properties of bipolar fuzzy topology, neighborhood, conti-
nuity, base (subbase), subspace, quotient space and compactness. In particular, we
proved that analogues to classical neighborhood system and Alexander Subbase The-
orem hold in bipolar fuzzy topological spaces (See Proposition 4.3 and Proposition
7.7).
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In the future, we try to study separation axioms and connectedness in bipolar
fuzzy topological space. Also we will investigate the degree of openness of any
ordinary set in the sense of bipolar fuzzy sets.
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