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1. INTRODUCTION

Ward et al. [30] introduced a complete residuated lattice which is an algebraic
structure for many valued logic. Bélohldvek [3] investigated information systems
and decision rules over complete residuated lattices. Hohle [13] introduced L-fuzzy
topologies with algebraic structure L (cqm, quantales, MV-algebra). It has devel-
oped in many directions [5, 11, 29, 33].

Interior operators are very useful tools in several areas of mathematical struc-
tures with direct applications, both mathematical (e.g. topology, logic) and extra-
mathematical (e.g. data mining, knowledge representation). In fuzzy set theory,
several particular case as well as general theory of interior operators which oper-
ate with fuzzy sets (so called fuzzy interior operators) are studied ([2, (]). Recently,
Bélohlavek [4] outlined a general theory of fuzzy interior operators and fuzzy interior
systems using the structure of the residuated lattice in place of the usual structure
of truth value on [0, 1]. Ramadan [25, 27, 28, 20] studied the relationship between
L-fuzzy interior systems and L- fuzzy topological spaces from a category viewpoint
for a complete residuated lattice L.
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Katsaras [16, 17, 18] introduced the concepts of fuzzy topogenous order and fuzzy
topogenous structures in completely distributive lattice which are a unified approach
to the three spaces: Chang’s fuzzy topologies 7], Katsaras’s fuzzy proximities [15, 19]

and Hutton’s fuzzy uniformities [14]. As an extension of Katsaras’s definition, El-
Dardery [9] introduced L-fuzzy topogenous order in view points of Sostak’s fuzzy
topology [31, 32] (see also [8, 10]) and Kim’s L-fuzzy proximities [21] on strictly

two-sided, commutative quantales. It has developed in many directions [38, 10, 12,

) ) ) ) }

In this paper, we introduce the notions of L-fuzzy pre-proximities, L-fuzzy interior
operators in complete residuated lattices. Moreover, we investigate the relations
among the L-fuzzy pre-proximities and L-fuzzy interior operators . We show that
there is a Galois correspondence between the category of separated L-fuzzy interior
spaces and that of separated L-fuzzy pre-proximity spaces.

The content of the paper is organized as follows. In section 2, we recall some fun-
damental concepts and related definitions of L-fuzzy interior and L-fuzzy topology in
complete residuated lattices. In section 3, we investigates the relationships between
L-fuzzy pre-proximities and L-fuzzy interior operators. In section 4, we investigates
the relationships between L-fuzzy pre-proximities and L-fuzzy topologies. In section
5, there is a Galois correspondence between the category of L-fuzzy pre-proximity
spaces and that of L-fuzzy interior spaces.

2. PRELIMINARIES

Definition 2.1 ([3, 11, 30, 33]). An algebra (L,A,V,®,—, L, T) is called a complete
residuated lattice, if it satisfies the following conditions:

(C1) (L,<,V,A, L, T) is a complete lattice with the greatest element T and the
least element 1,

(C2) (L,®, T) is a commutative monoid,

(CHaxoy<zilza<y— zforuzy,ze L.

In this paper, we assume that (L, <,®,*) is a complete residuated lattice with
an order reversing involution * which is defined by:

r@y=(x"Oy*)", x¥=x— L.
For a € L, f € LX, we denote (a — f),(a® f),ax € LX as (a — f)(z) = a —
f(@), (@0 f)z) =ao f(z),ax(r) = a

_ )T, ity=ug, w4, ify=u=,
Ta(y) _{ 1, otherwise, T2 _{ T, otherwise.

Some basic properties of the binary operation ® and residuated operation — are
collected in the following lemma, and they can be found in many works, for instance

([3, 11, 30, 33]).

Lemma 2.2. For each x,y, z,z;,y;,w € L, we have the following properties:
) T—oz=z, Lox=1,
(2)ify <z, thenxOy <20z, 2@y <@z, x mvy<z—zandz > <y —x,
Bz<yife—y=T,
(4) (Aswa)™ = Vv, (Viw)" = Niwi
192
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z = (Ajyi) = Ni(@ = vi),

(Vizi) =y = Ni(zi = v),

z® (V,41) = V;(z0ui),

(Nizi) @y = N\i(zi ©y),
(zoy)—z=x—>(y—=2)=y— (z—2),
zy=(—-y")" ,z2@y=2"—>yandx - y=y" — z*,
(z=yoz-w<(20z) = (yow),

)

|

)@=y okow) <(2d2) = (ydw),

)z (r—y)<yandy<z—(zOy),

YJ(Vy) o (zVw) < (zV2)Vyow)<(z@2)V (yoOw),

) Vier i = Vier i = Nier(@i = ¥i)s Nier @i = Nier ¥i = Nier (@i = 43),
;($®y)®(z®w)§(9€®z)@(y®w>»

zor<(z—oy) =2y ady—z< (z—>y) — (x— 2).

Definition 2.3 ([4, 25]). Amap Z : LX — L¥ is called an L-fuzzy interior operator
on X, if Z satisfies the following conditions:
M) Z(Tx) = Tx,
(I2) Z(f) < f, for all f € LX,
(I3) if g < f, then Z(g) < Z(f), for all f,g € LX,
(14) Z(f © 9) 2 Z(f) © Z(g).
The pair (X,Z) is called an L-Fuzzy interior space.

An L-fuzzy interior space is called:

(T) topological, if Z(Z(f)) = Z(f), Vf € LX,

(S) stratified, if Z(a ® f) > a @ Z(f), for all f € L* and a € L,

(CST) co-stratified, if Z(a — f) > a — Z(f), for all f € LX and a € L,

(S) strong, if it is both stratified and co-stratified, i.e., Z(ov = f) = o — Z(f) for
all fe LX anda € L,

(SE) separated, if Z(T,) = T,, for all z € X,

(GE) generalized, if Z(f)(z) > A cx f(2),

(AL) Alexandrov, if Z(A\;cp fi) = Nier Z(fi)-

Let (X,Zx) and (Y,Zy) be L-fuzzy interior spaces. Then ¢ : (X,Zx) — (Y,Zy)
is called an L F-interior map, if for each g € LY,

0" (Zyv (9)) < Ix(¢" (9))-

Remark 2.4. An L-fuzzy interior space (X,Z) is stratified if and only if Z(a —
f) <a—=I(f).

Definition 2.5 ([29]). A map 7 : LX — L is called an L-fuzzy topology on X, if it
satisfies the following conditions:

(T1) T(Llx)=T(Tx)=T,

(T2) T(f@9)=T(f)©T(9), ¥ f.g € LX,

(T3) TV, fi) > N; T(fi), ¥ {fitier € LX.

The pair (X, 7T) is called a L-fuzzy topological space.

193
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A L-fuzzy topological space is said to be:

(ST) stratified, if T(a® f) > T(f),

(CST) co-stratified, if T(a — f) > T(f),

(S) strong, if it is both stratified and co-stratified,

(AL) Alexandrov, if T(A; fi) > N\; T(fi), ¥ {fi}ier C L¥,
(SE) separated, if T(T,) =T, for all z € X.

A mapping ¢ : X — Y between L-fuzzy topological spaces is called continuous
from (X, Tx) to (Y, Ty), if it holds that Tx (o (f)) > Ty (f), for all f € LY.

3. THE RELATIONSHIPS BETWEEN L-FUZZY PRE-PROXIMITIES AND L-FUZZY
INTERIOR SPACES

Definition 3.1. A mapping § : LX x LX — L is called a L-fuzzy pre-proximity on
X, if it satisfies the following axioms:

Pl)§(Tx,lx)=060Llx,Tx)=1,

P2) 3(£,9) 2 V,ex ( @ 9)(a),

PS) if f1 < fg,h1 < hg, then (5(f1,h1) < (S(fg,hz) Vhe LX,

P4) for every fi, fa, h1, ha € LX, we have

~ N N

3(f1 © fa,h1 @ ha) < (f1,h1) ® 6(f2, ha),

0(f1 @ fa,h1 © ha) < (f1,h1) @ 0(fa, ha).
The pair (X, 0) is called a L-fuzzy pre-proximity space.

An L-fuzzy pre-proximity is called an L-fuzzy quasi-proximity on X, if

An L-fuzzy quasi-proximity is called an L-fuzzy proximity on X, if

(P) 6% =6 where, §°(f,g) =0d(g, f).

An L-fuzzy pre-proximity is called:
(St) stratified, if 6(a ® f,a — g) < 46(f,¢9) and d(a— f,a®g) <i(f,9),
(SE) separated, if §(T,, T5) =46(T%, T,) = 1L, for each z € X,
( ) Alexandrow if 5(\/1'61“ fi’ g) < Viel" 5(f1a g)a 5(f’ \/iGF gi) < \/iel" 5(fa gi)»
( ) generahZEda lf 5(fa g) S VrEX f((E) @ \/zEX g(x)
(

Let (X,dx) and (Y,dy) be two L-fuzzy pre-proximity spaces. A mapping ¢ :
(X,0x) — (Y,0y) is said to be L- proximity map, if
or equivalently, 5x (¢ (f), ¢ (9)) < oy (f,9).

From the following theorem, we obtain the L-fuzzy interior operator induced by
an L-fuzzy pre-proximity.

Theorem 3.2. Let (X,0) be a L-fuzzy pre-proximity space. Define two mapping
Is : LX — LX as follows:

=\ {0"(g.9") @ g(x) | g < f}.

geLX
194
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Then
(1) (X,Zs) is an L-fuzzy interior space,
(2) if & is stratified, then so is ZLs,
(3) if § is separated, then Ty is separated.

Proof. (1) (I1) Since §(Tx, Lx) =1,
Is(Tx)(@) =Vyerx{d(9,9") ©9(@) g < f}
> (0%(Tx,Lx)© Tx(x)) = Tx(x).
(12)
Zs(f)(z) =Vyerx{0"(9,9") ©g(z) | g < f}
<VyerxtAiex(9(z) = g(2)) © g9(x) [ g < f} < f(2).
(I3) If f < g,

Zs(f)(x) =Vpepx{d*(h,h*) O h(z) |[h<f}
<Vherx{ *(hh*) O h(z) | h<g}=TLs5(g)(z).

(I4) From Lemma 2.2, we obtain

(/) ©Zs(h) = (V< (07(9,9) © 9)) © (V)< (67 (K, k") © k)
= vggf,kgh(é*(gyg*> ©6*(k, k") © g ©k)
< Vyor<ion(0" (9@ k,g" ® k") © (9 © k) < Is(f © h).

(2) If ¢ is a stratified, then Zs is stratified by
a®Zs(f) a®V,<;(0%(9:97) ©9)

\/ggf((s*(gag*) ©(a©yg))
<Viog<@on@ (@0 g a—=g")0(a0g) =Ls(a f).

(3) By (12) and Z5(T2) = V<1 (6%(9, 97) © 9) = (T, TE)® Ty = To, we have
I(;(TI) =T, O

Example 3.3. (1) Define 6; : LX x LX — L as 6§,(f,g) = Veyex(f(@) ©g(y)).
Then (P1), (P2) and (P3) are easily proved.
(P4) For all flaf?vhlahQ € LX7

61(f1® foshi @ ha) =V, ex((f1 © f2)(@) © (h1 & h2)(y))
= V.oyex((f1 © f2)(2) © (b1 & ha)(y))
< Vigex((fi(z) © hi(y)) @ (f2(z) © ha(y)))
< 01(f1, 1) @ 91 (f2, ha).

Thus 6, is a L-fuzzy pre-proximity on X.
Since 81 (T4, T%) = T, 61 is not separated. By Theorem 3.2, we have

s, (f) = V ((C N\ (9(z) = 9w) @ g) < f.

g<f wyeX

(2) Define &5 : LX x LX — L as 62(f,9) = V,ex(f(z) ® g(x)). Then (P1), (P2)
and (P3) are easily proved.

195
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(P4) For all fl, fz, hi,ho € LX
92(f1 © fa,h1 @ ho)

INIA I

Nnerx (02(f,h) & 62(h", g)

)
= Nnerx Voex (f(2) ©h(@)) &V, ex (b (2) © g(2)))
(Put h =g,)

<Vaex(F(@) ©g(2) © Ve x (97 (2) © g(2))
= V,ex(f(@) © g(x) ® L = 02(f, 9).

Thus 02 is an L-fuzzy proximity on X. Since d2(T,, T:) = L, do is separated. By
Theorem 3.2, we have

o, (f) = V(A (g(2) = g(2) © g = f.
g<f wzeX
(3) Let R € LX*X be a reflexive fuzzy relation on X such that
R(z,y) < R(z,y) © R(z,y).

Define  85(/,9) = V, e x (R(z,y) © f(2) © g(y)). Then (P1), (P2) and (P3)
(P4) For all fy, fa, h1,ha € LX,
63(f1,h1) ® d3(f2, h2)
= (Vayex (B(@,y) © i) @ hay
(Vo yex (R,9) © fo(2) © ha(y)
~Vayex (By) @ fil@) 0 ()  (R@,p) © fa() © hay))

>V, yex (B(@,9) © R(@,9) © fi(2) © f2(2)) © (b (y) & hay))
>V pex (R.9) © (f1 © f2)(@) © (1 © ha(y))) = S5(f1 © fo by @ ho).

It is easy to see that ds is Alexandrov L-fuzzy pre-proximity on X. Since

G300 fra—=g) =V, ,ex(@® f)(z)o (a—9)(y)
< Vayex(f(@) ©@g(y)) = 03(f, 9),

~—

)

N— N

d3 stratified.
Since d2(T,, TE) = L, d3 is separated. If R is a transitive, d3 is L-fuzzy quasi-
proximity on X from

©)

Anerx (s(f,h) & 65(h", 9))
= Anerx (Vo yex (R(,9) © (F@) © h(©) @V, ex R(,2) © (0" (4) © 9(2)))
(Put h(y >—(vzeX(R(x 9 © f@))

< Vaex(°0) © M) &V, er (R © Vcx (R

=LV, .ex(Vyex(B(y,2) © (R(z,9))(f(2) © g(2)

= V. zex(R(z, 26 f(x) @ 9(2) = 3(7,9).
196
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For R(x,y) = T xxx, we have

55(f,9) =\ (Txxx(@y) o f@ogy)=\/ (f@)ogly) =2d.

z,yeX z,yeX
For R(.ﬁ,y) = AXXX7

_ T) lf y=x,
Axxx(z,y) = { 1, otherwise,

55(£,9) =\ Dxxx(z,9)0 f(@)0gly) = \/ (f(2) ©g(x)) = b2.

z,yeX rzeX
Thus §; < §3 < d1. By Theorem 3.2, we have

T, (f) < V(O (9(2) = g(@) @ 9) = f.

gsf zeX

From the following theorem, we obtain the L-fuzzy pre-proximity induced by an
L-fuzzy interior operator.

Theorem 3.4. Let (X,ZI) be an L-fuzzy interior space. Define a map 67 : LX x
LX — L by:
0r(f,9) =\ (f(@) ©T(¢")(x)) V¥ f,g€L*.
rzeX

Then we have the following properties.
(1) 61 is an L-fuzzy pre-proximity,

)
) 02(f,9) < Vperx (0z(f,h) © 6z(h*,g)), the equality holds if T is topological,
) if T is topological, then 07 is a L-fuzzy quasi-proximity on X,
) I > TIs,, the equality holds if T is topological,
) if T is separated, then 07 is separated,

) 6:[6 < 67

) if T is generalized (resp. Alexandrov), then dz is generalized (resp. Alexan-

Proof. (1) (P1) Since Z(Lx) = Lx and Z(Tx) = Tx, we have

0r(Tx, Lx) = Vaex(Tx(z) © T5(LX)(2))
07(Lx, Tx) = Vyex(Lx(x) ©T(Tx)(2))

(P2) Since Z(g) < g, we have

6r(f.9) =\ (f(2) ©T"(g")()) = \/ (f(2) © g(x)).

zeX reX

(P3) If g < g1, f < f1 and by (I3), then Z*(g”) < Z*(g7). Thus
0z(f,9) = V,ex(f(z) ©Z*(g%)(2))
Vaex(f i

L,
1

<V (@) o T () @) = 82(f1.01).
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(P4) For fi, f2, 91,92 € LX
0z(f1,91) ® 6z(f2,92)

> VzeX(fl( ) ® fa(z) ©Z*((91 ® g2)")(2))
=0z(f1© f2,91 ® g2).

So d7 is a L-fuzzy pre-proximity.

(2)

53(f,h) © 35(*, 9) *

= (Veex(f@) 0T (0)(@))) © (Vaex (h(@) © T (9) (@) )

= Auex (f(@) = T(")(@)) & Ayex (*(@) = T(g")(@)  (Since T(h*) < h*)
< Nuex(f(@) = 17(@) © Ay (0" (2) = Z(g") (@)

< Nwex (F(2) = Z(9°)(2)) = 35 (£, 9)

Then 0z(f,9) < Apepx (0z(f, h) © oz(h*,g)).
If 7 is topological, then

Vierx (07(f,h) © 5%571*7

9))
= \/heLX (/\mGX(f(‘r *

> Moo (@) = Z(T(6°)(2)) © Agex (a7 () = T(g)(x)
= Mo () = T(g*) (@) = 62(f.9).
(4) By (2), it is trivial.

—~

5)
L5, (f)(@) = Vy<s(67(9,97) © g(x))
= Vggf Nuex(9(@) (
< Vz(g)gz(f) Z(g9)(z) = Z(f)(=).
If 7 is topological, then

Ls, (f)(x) (02(9,9") © 9)

(Asex(9(z) = I(9)) © g(2))

()I(f)(ﬂc) = Z(Z(f)(x)) ©Z(f)(x)) (Put g =Z(g))
(6) Let Z be separated, then 0z(T., T%) =V, cx(T2(2) ©T*(T.)(2)) = L.
(7)

v I
}:l><<
m \/\ \/\
(ST

8
S~—"
/-\

675(£.9) = Voex(f(@) 0 T3 (9")(@)) *
~Vaex (@) @ (Ve (6 (17 @ (a))) )
< Vaex (@) © (Vi Asex (ha) = (@) © h(a))) )
< Vaex (F@) © 9(@) < 6(/.9).
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Corollary 3.5. Let (X,Z) be an L-fuzzy interior space. Define a map 65 : L x
LX — L by:
05(f,9) =\ (9(x) ©T*(f*)(x)) ¥ f,g€L*.
rzeX

Then we have the following properties.

(1) 6% is an L-fuzzy pre-prozimity. If T is stratified, then 65 is stratified.

(2) 05(f,9) < Viyerx (03(f,h) © 65(h*, g)), the equality holds if T is topological.

(3) If T is topological, then 65 is a L-fuzzy quasi-prozimity on X.

(4) I > Iss, the equality holds if T is topological.

(5) If T is sepamted then 65 is separated.

(6) 9 < 69
(7) IfI is generalized (resp. Alexandrov), then 0% is generalized (resp. Alexan-
drov).

Example 3.6. (1) Define Z; : LX — LX as Iy (f) = A,cx f(2). Then (I1), (12),
(I3) and (I4) are easily proved. Thus Z; is a topological L-fuzzy interior operator
on X. Since Z;(T,) = Lx and 67, (T, T%) = T, Z; and dz, are not separated. So
by Theorem 3.5, we have

611 <f> g) = \/mex(f<x) © If(
07, (f,9) = Vaex(9(@) © Zi(
Since Z; is topological, Zs, = 1.
(3) Define Zp : LX — LX as  Iy(f) = f. Then (I1), (12), (I3) and (I4) are easily
proved. Thus Zs is a topological L-fuzzy interior operator on X. Since Zo(T,) = Tx
and 0z,(T4, T%) = L, Iy and 07, are separated. So by Theorem 3.5, we have

07,(f,9) = Vaex(f(2) © L7 (97)(2)) = Vyex (f(2) © g(x)),
07,(f,9) = Vaex(9(@) O L7 (f*) (@) = Vaex (9(x) © f()).

Since Z, is topological, Zs, = Z,.

VW) = Vayex(f(@) ©9(y)),
= Voyex(f(y) © 9(2)).

-
*
N
—~
N
=

4. THE RELATIONSHIPS BETWEEN L-FUZZY PRE-PROXIMITIES AND L-FUZZY
TOPOLOGIES

Theorem 4.1. Let § be Alexandrov L-fuzzy pre-proximity on X. Define a mapping
Ts: LX — L by: Ts(f) = 0*(f, f*). Then

(1) Ts is an L-fuzzy topology on X,

(2) if § is stratified, then so is T,

(3) if 6 is separated, then so is Ts.

PTOOf. (1) (Tl) %(Lx) = 6*(Lx,—rx) = T, %(Tx) = 5*(Tx,Lx) = T.
(T2) Ts(f © 9) =6"(f@g,fr&g") =6 (f. f*) ©6"(g,97) = Ts(f) © T5(9)-
(T3) Ts(Vier i) = 0" Vier fis Nier 1) 2 Nier 07 (i £7) = Nier Ts(fa)-

(2) Ts(a® f) =6"(a® fa—= f*) =6 (f, ") = T5(f),

Ts(a—= f) =6"(a— f,a0 f) =6 (f, ") = Ts(f).
199
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(3) It is easy. O

Theorem 4.2. Let (X,T) be an L-fuzzy interior space. Define a mapping Tz; :

L¥ = L by: Tz, (f) = Npex (f(2) = Zs(f)(x)). Then
(1) Tz, is an L-fuzzy topology on X,
(2) if T is Alexandrov (resp. strong, separated), then Ts, is Alexandrov (resp.

strong, separated).
Proof. (1) (Tl) E&(TX> = /\zgx(TX(x) — I&(Tx)) =T,
Tr,(Lx) = N (Lx(z) = Ts(Lx)) = T.

reX
(T2)
T,(f©9) = Neex(FO9)(z) = Ts(f © 9)(2))
> Neex (f(@) © g(z) = (Z5(f)(2) © Zs(g9)(x)))
(by Lemma22( 1)
Z/\ x(f(z) = I(;( )(@)) © Npex(9(z) = Zs(9) ()
(T3)

Tz;(Vier fi) = NoexVier fi(x) = Zs(V e fi)(2))
> Neex Vier fi(z) = Vier Zs(fi)(2))
(by Lemma 2.2 (16))
> Nier Noex(filz) = Zs(fi)(2))) = Nier Tz, (fi)-

(2) By Lemma 2.2 (textcolorred16), we have

Trs (Nier fi) = Noex(Nier fi(x) = Ls(Aser fi)(2))
= Noex(Nier fi(®) = Nicr Zs(fi)(2)))
> Nier(Nwex filz) = Zs(fi) () = Aicr Tzs (fi)-

Hence, Tz, is Alexandrov L-fuzzy topology on X. By Lemma 2.2 (14) and (18),

we have
T, (a© f) = Npex((@© f(z) = (Zs(a © f)(z)))
> Npex((@® f(z)) = (@ © Zs(f)(2)))
> Npex (f(x) = Ls(f)(@)) = Tz, (f).
Tz,(c = f) 5(a—>f)( )

Other cases are easily proved.

Theorem 4.3. Let (X,0) be an L-fuzzy pre-proximity space. Define a mapping
T L% = Loby: V() = Apex (F(2) = 6%(Ta, £)). Then

(1) 7:;(1) is a L-fuzzy topology on X,

(2) if § is Alezandrov and 5(a® f,g) > a®(f, g), then so is T and 7:;(1) > Ts,

(3) if & is separated, then 7:;(1) 18 separated.
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>
-
&
I
>
8
m
N
4|
>
=
!
%3
3
8
_|
<
|
<
8
m
S
=
_|
s
4|
<
I
_|

TV (f @ g) 9) (@) = 5 (To, f* @ g%))
9)(@) = 8 (Tar ) @0 (Targ7))

“(Tay f7) © (9(x) = 0% (T2, 97)))

VIV IV I
&
1
[«

(T3)

T WVier 1) = AuexVier fi(®) = 6 (T, Aier £7)
> /\xEX(\/iEF fi(w) — Vier 6 (Tas £7))
> /\ieF /\wex(fz(x) - 6*(Tw7fi*)

(2) If § is Alexandrov, then

T Nser 1) = Naex Nier Fi@) = 8 (Ta. Vier £7))
= /\xEX(/\iEl" fi(w) — /\ier 6 (Tas £7))
> /\ieF /\wEX(fi('r) = 0 (T, f7)) = /\z‘eF 7:5(1)(fi)-

Thus ’7:;(1) is Alexandrov L-fuzzy topology on X.
If6(a® f,9) > a®d(f,g), we have

T = Apex (F(@) = 8 (Tu f9))

= (V,ex (f(@) ©8(To, f4)))*
- (5(\/16X(f($) @ Tz)7 f*))*
=5 (f.f7) = T5(f).

(3) Tt is easily proved. O

V

5. GALOIS CORRESPONDENCES

Theorem 5.1. Let (X,dx) and (Y,dy) be L-fuzzy pre-proximity spaces and ¢ :
(X,0x) — (Y,0y) is a LF-proximity map. Then

(1) ¢ : (X,Zs,) — (Y, Is, ) is a LF-interior map,

(2) v: (X, Ts) = (Y, Ts,) is a LF-continuous map,
(3) ¢ : (X, 7:5(;)) — (Y, 7:5(:)) is a LF-continuous map.

Proof. For each f € LY,

(1)
e Loy (@) =907 (Vy<05(9,9%) © g(2)
=V,<;0v(9,9) © g(p(2)))
< V<1 0% (9(9): 97 (97) © g(¢(2))
< Ve (gy<o- (0% (97(9), 97 (9") © 67 (9)(2)) = Ls (¢ () (@)
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(3)

@) = Auex (07 (N)(@) = 8% (0 (Tow)s ¢ (F7)))
= Nuex (F(p(@)) = 8% (p* (T W)so (/)
> Npex (F(0(@) = 85 (To@), F5)
> Aoy (@) = 65 (Ty 1) = TV ().

O

Theorem 5.2. Let (X,Zx) and (Y,Zy) be L-fuzzy interior spaces and ¢ : (X,Ix) —
(Y,Zy) be an LF-interior map. Then ¢ : (X,6z,) — (Y,0z1,) is a LF-proximity
map.

Proof. Since Ty (¢*)(¢(x)) < Ix(¢* (¢%))(x), we have

0z (07 (f), 97 (9)) = Viuex (7 (@) ©Zx (" (g
< Vaex (fle(2) © L3 (9°) (p(x
<V,yer (f0) 0 T30 ) = bz, (£.9):

(z
)

Definition 5.3 ([1]). Suppose that F': D — C,G : C — D are concrete functors.
The pair (F, Q) is called a Galois correspondence between C and D, if for each Y €
C,idy : FoG(Y) — Y is a C-morphism, and for each X € D,idx : X = Go F(X)
is a D-morphism.

If (F,G) is a Galois correspondence, then it is easy to check that F is a left adjoint
of G, or equivalently that G is a right adjoint of F.

The category of separated L-fuzzy pre-proximity spaces with LF-proximity map-
pings as morphisms is denoted by SPROX.

The category of separated L-fuzzy interior spaces with LF-interior mappings as
morphisms is denoted by SFI.

From Theorems 3.2 and 5.1, we obtain a concrete functor T : SPROX — SFI
defined as

T(Xv 5) = (sz5)a T(SO) = .
From Theorems 3.4 and 5.2, we obtain a concrete functor 2 : SFI — SPROX
defined as
QX,T) = (X,01), Qp) = .

Theorem 5.4. Q) : SFI — SPROX is a left adjoint of T : SPROX — SF1I, i.e.,
(T,Q) is a Galois correspondence.

Proof. By Theorem 3.4 (5), if Zx is an separated L-fuzzy interior operator on a

set X, then T(Q(Ix)) = Zs;, < Ix. Thus the identity map idx : (X,Ix) —

(X,Zrz, ) = (X, Y(Q(Ix))) is an LF-interior map. Moreover, if dy is a separated

L-fuzzy pre-proximity on a set Y, by Theorem 3.4 (7), Q(Y(dy)) = dz,, < dy. So

the identity map idy : (Y,dz,, ) — (Y,dy) is LF-proximity map. Hence (T,() is a

Galois correspondence. O
202



Ramadan et al./Ann. Fuzzy Math. Inform. 17 (2019), No. 2, 191-204

6. CONCLUSIONS

In this paper, L-fuzzy pre-proximities and L-fuzzy interior operators in complete
residuated lattice are investigated. From a given L-fuzzy pre-proximity d, we can
obtain an L-fuzzy interior operator Zs (see Theorem 3.2). Conversely, for given L-
fuzzy interior space Z, we obtain L-fuzzy pre-proximity dz (see Theorem 3.4) and
L-tuzzy topologies 75 and Tz, (Theorems 4.1, 4.2 and 4.3).

It is also shown that there is a Galois correspondence between the category of
(separated) L-fuzzy interior spaces and that of (separated) L-fuzzy pre-proximity
spaces (theorem 5.4).
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