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1. Introduction

Ward et al. [30] introduced a complete residuated lattice which is an algebraic
structure for many valued logic. Bělohlávek [3] investigated information systems
and decision rules over complete residuated lattices. Höhle [13] introduced L-fuzzy
topologies with algebraic structure L (cqm, quantales, MV -algebra). It has devel-
oped in many directions [5, 11, 29, 33].

Interior operators are very useful tools in several areas of mathematical struc-
tures with direct applications, both mathematical (e.g. topology, logic) and extra-
mathematical (e.g. data mining, knowledge representation). In fuzzy set theory,
several particular case as well as general theory of interior operators which oper-
ate with fuzzy sets (so called fuzzy interior operators) are studied ([2, 6]). Recently,
Bělohlávek [4] outlined a general theory of fuzzy interior operators and fuzzy interior
systems using the structure of the residuated lattice in place of the usual structure
of truth value on [0, 1]. Ramadan [25, 27, 28, 26] studied the relationship between
L-fuzzy interior systems and L- fuzzy topological spaces from a category viewpoint
for a complete residuated lattice L.
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Katsaras [16, 17, 18] introduced the concepts of fuzzy topogenous order and fuzzy
topogenous structures in completely distributive lattice which are a unified approach
to the three spaces: Chang’s fuzzy topologies [7], Katsaras’s fuzzy proximities [15, 19]
and Hutton’s fuzzy uniformities [14]. As an extension of Katsaras’s definition, El-
Dardery [9] introduced L-fuzzy topogenous order in view points of Sostak’s fuzzy
topology [31, 32] (see also [8, 10]) and Kim’s L-fuzzy proximities [21] on strictly
two-sided, commutative quantales. It has developed in many directions [8, 10, 12,
20, 22, 23, 24, 34].

In this paper, we introduce the notions of L-fuzzy pre-proximities, L-fuzzy interior
operators in complete residuated lattices. Moreover, we investigate the relations
among the L-fuzzy pre-proximities and L-fuzzy interior operators . We show that
there is a Galois correspondence between the category of separated L-fuzzy interior
spaces and that of separated L-fuzzy pre-proximity spaces.

The content of the paper is organized as follows. In section 2, we recall some fun-
damental concepts and related definitions of L-fuzzy interior and L-fuzzy topology in
complete residuated lattices. In section 3, we investigates the relationships between
L-fuzzy pre-proximities and L-fuzzy interior operators. In section 4, we investigates
the relationships between L-fuzzy pre-proximities and L-fuzzy topologies. In section
5, there is a Galois correspondence between the category of L-fuzzy pre-proximity
spaces and that of L-fuzzy interior spaces.

2. Preliminaries

Definition 2.1 ([3, 11, 30, 33]). An algebra (L,∧,∨,�,→,⊥,>) is called a complete
residuated lattice, if it satisfies the following conditions:

(C1) (L,≤,∨,∧,⊥,>) is a complete lattice with the greatest element > and the
least element ⊥,

(C2) (L,�,>) is a commutative monoid,
(C3) x� y ≤ z iff x ≤ y → z for x, y, z ∈ L.

In this paper, we assume that (L,≤,�,∗ ) is a complete residuated lattice with
an order reversing involution ∗ which is defined by:

x⊕ y = (x∗ � y∗)∗, x∗ = x→ ⊥.
For α ∈ L, f ∈ LX , we denote (α → f), (α � f), αX ∈ LX as (α → f)(x) = α →
f(x), (α� f)(x) = α� f(x), αX(x) = α,

>x(y) =

{
>, if y = x,
⊥, otherwise,

>∗x(y) =

{
⊥, if y = x,
>, otherwise.

Some basic properties of the binary operation � and residuated operation → are
collected in the following lemma, and they can be found in many works, for instance
([3, 11, 30, 33]).

Lemma 2.2. For each x, y, z, xi, yi, w ∈ L, we have the following properties:
(1) > → x = x, ⊥� x = ⊥,
(2) if y ≤ z, then x�y ≤ x�z, x⊕y ≤ x⊕z, x→ y ≤ x→ z and z → x ≤ y → x,
(3) x ≤ y iff x→ y = >,
(4) (

∧
i yi)

∗ =
∨
i y
∗
i , (
∨
i yi)

∗ =
∧
i y
∗
i ,
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(5) x→ (
∧
i yi) =

∧
i(x→ yi),

(6) (
∨
i xi)→ y =

∧
i(xi → y),

(7) x� (
∨
i yi) =

∨
i(x� yi),

(8) (
∧
i xi)⊕ y =

∧
i(xi ⊕ y),

(9) (x� y)→ z = x→ (y → z) = y → (x→ z),
(10) x� y = (x→ y∗)∗ , x⊕ y = x∗ → y and x→ y = y∗ → x∗,
(11) (x→ y)� (z → w) ≤ (x� z)→ (y � w),
(12) x→ y ≤ (x� z)→ (y � z) and (x→ y)� (y → z) ≤ x→ z,
(13) (x→ y)� (z → w) ≤ (x⊕ z)→ (y ⊕ w),
(14) x� (x→ y) ≤ y and y ≤ x→ (x� y),
(15) (x ∨ y)� (z ∨ w) ≤ (x ∨ z) ∨ (y � w) ≤ (x⊕ z) ∨ (y � w),
(16)

∨
i∈Γ xi →

∨
i∈Γ yi ≥

∧
i∈Γ(xi → yi),

∧
i∈Γ xi →

∧
i∈Γ yi ≥

∧
i∈Γ(xi → yi),

(17) (x� y)� (z ⊕ w) ≤ (x� z)⊕ (y � w),
(18) z → x ≤ (x→ y)→ (z → y) and y → z ≤ (x→ y)→ (x→ z).

Definition 2.3 ([4, 25]). A map I : LX → LX is called an L-fuzzy interior operator
on X, if I satisfies the following conditions:

(I1) I(>X) = >X ,
(I2) I(f) ≤ f , for all f ∈ LX ,
(I3) if g ≤ f , then I(g) ≤ I(f), for all f, g ∈ LX ,
(I4) I(f � g) ≥ I(f)� I(g).
The pair (X, I) is called an L-Fuzzy interior space.

An L-fuzzy interior space is called:
(T) topological, if I(I(f)) = I(f), ∀f ∈ LX ,
(S) stratified, if I(α� f) ≥ α� I(f), for all f ∈ LX and α ∈ L,
(CST) co-stratified, if I(α→ f) ≥ α→ I(f), for all f ∈ LX and α ∈ L,
(S) strong, if it is both stratified and co-stratified, i.e., I(α→ f) = α→ I(f) for

all f ∈ LX and α ∈ L,
(SE) separated, if I(>x) = >x, for all x ∈ X,
(GE) generalized, if I(f)(x) ≥

∧
x∈X f(x),

(AL) Alexandrov, if I(
∧
i∈Γ fi) =

∧
i∈Γ I(fi).

Let (X, IX) and (Y, IY ) be L-fuzzy interior spaces. Then ϕ : (X, IX)→ (Y, IY )
is called an LF -interior map, if for each g ∈ LY ,

ϕ←(IY (g)) ≤ IX(ϕ←(g)).

Remark 2.4. An L-fuzzy interior space (X, I) is stratified if and only if I(α →
f) ≤ α→ I(f).

Definition 2.5 ([29]). A map T : LX → L is called an L-fuzzy topology on X, if it
satisfies the following conditions:

(T1) T (⊥X) = T (>X) = >,
(T2) T (f � g) ≥ T (f)� T (g), ∀ f, g ∈ LX ,
(T3) T (

∨
i fi) ≥

∧
i T (fi), ∀ {fi}i∈Γ ⊆ LX .

The pair (X, T ) is called a L-fuzzy topological space.
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A L-fuzzy topological space is said to be:
(ST) stratified, if T (α� f) ≥ T (f),
(CST) co-stratified, if T (α→ f) ≥ T (f),
(S) strong, if it is both stratified and co-stratified,
(AL) Alexandrov, if T (

∧
i fi) ≥

∧
i T (fi), ∀ {fi}i∈Γ ⊆ LX ,

(SE) separated, if T (>x) = >, for all x ∈ X.

A mapping φ : X −→ Y between L-fuzzy topological spaces is called continuous
from (X, TX) to (Y, TY ), if it holds that TX(ϕ←(f)) ≥ TY (f), for all f ∈ LY .

3. The relationships between L-fuzzy pre-proximities and L-fuzzy
interior spaces

Definition 3.1. A mapping δ : LX × LX → L is called a L-fuzzy pre-proximity on
X, if it satisfies the following axioms:

(P1) δ(>X ,⊥X) = δ(⊥X ,>X) = ⊥,
(P2) δ(f, g) ≥

∨
x∈X(f � g)(x),

(P3) if f1 ≤ f2, h1 ≤ h2, then δ(f1, h1) ≤ δ(f2, h2), ∀ h ∈ LX ,
(P4) for every f1, f2, h1, h2 ∈ LX , we have

δ(f1 � f2, h1 ⊕ h2) ≤ δ(f1, h1)⊕ δ(f2, h2),

δ(f1 ⊕ f2, h1 � h2) ≤ δ(f1, h1)⊕ δ(f2, h2).

The pair (X, δ) is called a L-fuzzy pre-proximity space.

An L-fuzzy pre-proximity is called an L-fuzzy quasi-proximity on X, if
(Q) δ(f, g) ≥

∧
h{δ(f, h)⊕ δ(h∗, g)},

An L-fuzzy quasi-proximity is called an L-fuzzy proximity on X, if
(P) δs = δ where, δs(f, g) = δ(g, f).

An L-fuzzy pre-proximity is called:
(St) stratified, if δ(α� f, α→ g) ≤ δ(f, g) and δ(α→ f, α� g) ≤ δ(f, g),
(SE) separated, if δ(>x,>∗x) = δ(>∗x,>x) = ⊥, for each x ∈ X,
(AL) Alexandrov, if δ(

∨
i∈Γ fi, g) ≤

∨
i∈Γ δ(fi, g), δ(f,

∨
i∈Γ gi) ≤

∨
i∈Γ δ(f, gi),

(GL) generalized, if δ(f, g) ≤
∨
x∈X f(x)�

∨
x∈X g(x).

Let (X, δX) and (Y, δY ) be two L-fuzzy pre-proximity spaces. A mapping φ :
(X, δX)→ (Y, δY ) is said to be L- proximity map, if

δX(f, g) ≤ δY (φ→(f), φ→(g)), ∀ f, g ∈ LX ,
or equivalently, δX(φ←(f), φ←(g)) ≤ δY (f, g).

From the following theorem, we obtain the L-fuzzy interior operator induced by
an L-fuzzy pre-proximity.

Theorem 3.2. Let (X, δ) be a L-fuzzy pre-proximity space. Define two mapping
Iδ : LX → LX as follows:

Iδ(f)(x) =
∨
g∈LX

{δ∗(g, g∗)� g(x) | g ≤ f}.
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Then
(1) (X, Iδ) is an L-fuzzy interior space,
(2) if δ is stratified, then so is Iδ,
(3) if δ is separated, then Iδ is separated.

Proof. (1) (I1) Since δ(>X ,⊥X) = ⊥,

Iδ(>X)(x) =
∨
g∈LX{ δ∗(g, g∗)� g(x) | g ≤ f}

≥ (δ∗(>X ,⊥X)�>X(x)) = >X(x).

(I2)

Iδ(f)(x) =
∨
g∈LX{δ∗(g, g∗)� g(x) | g ≤ f}

≤
∨
g∈LX{

∧
x∈X(g(x)→ g(x))� g(x) | g ≤ f} ≤ f(x).

(I3) If f ≤ g,

Iδ(f)(x) =
∨
h∈LX{ δ∗(h, h∗)� h(x) | h ≤ f }

≤
∨
h∈LX{ δ∗(h, h∗)� h(x) | h ≤ g } = Iδ(g)(x).

(I4) From Lemma 2.2, we obtain

Iδ(f)� Iδ(h) = (
∨
g≤f (δ∗(g, g∗)� g))� (

∨
k≤h(δ∗(k, k∗)� k))

=
∨
g≤f,k≤h(δ∗(g, g∗)� δ∗(k, k∗)� g � k)

≤
∨
g�k≤f�h(δ∗(g � k, g∗ ⊕ k∗)� (g � k) ≤ Iδ(f � h).

(2) If δ is a stratified, then Iδ is stratified by

α� Iδ(f) = α�
∨
g≤f (δ∗(g, g∗)� g)

=
∨
g≤f (δ∗(g, g∗)� (α� g))

≤
∨

(α�g)≤(α�f)(δ
∗(α� g, α→ g∗)� (α� g)) = Iδ(α� f).

(3) By (I2) and Iδ(>x) =
∨
g≤>x(δ∗(g, g∗)�g) ≥ δ∗(>x,>∗x)�>x = >x, we have

Iδ(>x) = >x. �

Example 3.3. (1) Define δ1 : LX × LX → L as δ1(f, g) =
∨
x,y∈X(f(x) � g(y)).

Then (P1), (P2) and (P3) are easily proved.
(P4) For all f1, f2, h1, h2 ∈ LX ,

δ1(f1 � f2, h1 ⊕ h2) =
∨
x,y∈X((f1 � f2)(x)� (h1 ⊕ h2)(y))

=
∨
x,y∈X((f1 � f2)(x)� (h1 ⊕ h2)(y))

≤
∨
x,y∈X((f1(x)� h1(y))⊕ (f2(x)� h2(y)))

≤ δ1(f1, h1)⊕ δ1(f2, h2).

Thus δ1 is a L-fuzzy pre-proximity on X.
Since δ1(>x,>∗x) = >, δ1 is not separated. By Theorem 3.2, we have

Iδ1(f) =
∨
g≤f

((
∧

x,y∈X
(g(x)→ g(y)))� g) ≤ f.

(2) Define δ2 : LX × LX → L as δ2(f, g) =
∨
x∈X(f(x)� g(x)). Then (P1), (P2)

and (P3) are easily proved.
195



Ramadan et al./Ann. Fuzzy Math. Inform. 17 (2019), No. 2, 191–204

(P4) For all f1, f2, h1, h2 ∈ LX ,

δ2(f1 � f2, h1 ⊕ h2) =
∨
x∈X((f1 � f2)(x)� (h1 ⊕ h2)(x))

=
∨
x∈X((f1 � f2)(x)� (h1 ⊕ h2)(x))

≤
∨
x∈X((f1(x)� h1(x))⊕ (f2(x)� h2(x)))

≤ δ2(f1, h1)⊕ δ2(f2, h2).

(Q) ∧
h∈LX (δ2(f, h)⊕ δ2(h∗, g))

=
∧
h∈LX (

∨
x∈X(f(x)� h(x))⊕

∨
x∈X(h∗(x)� g(x)))

(Put h = g,)
≤
∨
x∈X(f(x)� g(x))⊕

∨
x∈X(g∗(x)� g(x))

=
∨
x∈X(f(x)� g(x))⊕⊥ = δ2(f, g).

Thus δ2 is an L-fuzzy proximity on X. Since δ2(>x,>∗x) = ⊥, δ2 is separated. By
Theorem 3.2, we have

Iδ2(f) =
∨
g≤f

((
∧
x∈X

(g(x)→ g(x)))� g = f.

(3) Let R ∈ LX×X be a reflexive fuzzy relation on X such that

R(x, y) ≤ R(x, y)�R(x, y).

Define δ3(f, g) =
∨
x,y∈X(R(x, y)� f(x)� g(y)). Then (P1), (P2) and (P3)

(P4) For all f1, f2, h1, h2 ∈ LX ,

δ3(f1, h1)⊕ δ3(f2, h2)

=
(∨

x,y∈X(R(x, y)� f1(x)� h1(y)
)

⊕
(∨

x,y∈X(R(x, y)� f2(x)� h2(y)
)

=
∨
x,y∈X

(
R(x, y)� f1(x)� h1(y)

)
⊕
(
R(x, y)� f2(x)� h2(y)

)
≥
∨
x,y∈X(R(x, y)�R(x, y)� f1(x)� f2(x))� (h1(y)⊕ h2(y))

≥
∨
x,y∈X(R(x, y)� (f1 � f2)(x)� (h1 ⊕ h2(y))) = δ3(f1 � f2, h1 ⊕ h2).

It is easy to see that δ3 is Alexandrov L-fuzzy pre-proximity on X. Since

δ3(α� f, α→ g) =
∨
x,y∈X((α� f)(x)� (α→ g)(y))

≤
∨
x,y∈X(f(x)� g(y)) = δ3(f, g),

δ3 stratified.
Since δ2(>x,>∗x) = ⊥, δ3 is separated. If R is a transitive, δ3 is L-fuzzy quasi-

proximity on X from
(Q)∧

h∈LX (δ3(f, h)⊕ δ3(h∗, g))
=
∧
h∈LX (

∨
x,y∈X(R(x, y)� (f(x)� h(y))⊕

∨
y,z∈X R(y, z)� (h∗(y)� g(z)))

(Put h(y) =
(∨

z∈X(R(x, y)� f(x))
)∗

)

≤
∨
y∈X(h∗(y)� h(y))⊕

∨
y,z∈X(R(y, z)�

∨
z∈X(R(x, y)� f(x)� g(z))))

= ⊥⊕
∨
x,z∈X(

∨
y∈X(R(y, z)� (R(x, y))(f(x)� g(z))))

=
∨
x,z∈X(R(x, z)� f(x)� g(z) = δ3(f, g).
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For R(x, y) = >X×X , we have

δ3(f, g) =
∨

x,y∈X
(>X×X(x, y)� f(x)� g(y) =

∨
x,y∈X

(f(x)� g(y)) = δ1.

For R(x, y) = 4X×X ,

4X×X(x, y) =

{
>, if y = x,
⊥, otherwise,

δ3(f, g) =
∨

x,y∈X
4X×X(x, y)� f(x)� g(y) =

∨
x∈X

(f(x)� g(x)) = δ2.

Thus δ2 ≤ δ3 ≤ δ1. By Theorem 3.2, we have

Iδ3(f) ≤
∨
g≤f

((
∧
x∈X

(g(x)→ g(x)))� g) = f.

From the following theorem, we obtain the L-fuzzy pre-proximity induced by an
L-fuzzy interior operator.

Theorem 3.4. Let (X, I) be an L-fuzzy interior space. Define a map δI : LX ×
LX → L by:

δI(f, g) =
∨
x∈X

(f(x)� I∗(g∗)(x)) ∀ f, g ∈ LX .

Then we have the following properties.
(1) δI is an L-fuzzy pre-proximity,
(2) if I is a stratified then, then so is δI ,
(3) δI(f, g) ≤

∨
h∈LX (δI(f, h)� δI(h∗, g)), the equality holds if I is topological,

(4) if I is topological, then δI is a L-fuzzy quasi-proximity on X,
(5) I ≥ IδI , the equality holds if I is topological,
(6) if I is separated, then δI is separated,
(7) δIδ ≤ δ,
(8) if I is generalized (resp. Alexandrov), then δI is generalized (resp. Alexan-

drov).

Proof. (1) (P1) Since I(⊥X) = ⊥X and I(>X) = >X , we have

δI(>X ,⊥X) =
∨
x∈X(>X(x)� I∗(⊥∗X)(x)) = ⊥,

δI(⊥X ,>X) =
∨
x∈X(⊥X(x)� I∗(>∗X)(x)) = ⊥.

(P2) Since I(g) ≤ g, we have

δI(f, g) =
∨
x∈X

(f(x)� I∗(g∗)(x)) ≥
∨
x∈X

(f(x)� g(x)).

(P3) If g ≤ g1, f ≤ f1 and by (I3), then I∗(g∗) ≤ I∗(g∗1). Thus

δI(f, g) =
∨
x∈X(f(x)� I∗(g∗)(x))

≤
∨
x∈X(f1(x)� I∗(g∗1)(x)) = δI(f1, g1).
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(P4) For f1, f2, g1, g2 ∈ LX ,

δI(f1, g1)⊕ δI(f2, g2) =
∨
x∈X(f1(x)� I∗(g∗1)(x))

⊕
∨
x∈X(f2(x)� I∗(g∗2)(x))

≥
∨
x∈X(f1(x)� f2(x)� (I∗(g∗1)(x)⊕ I∗(g∗2)(x))

(by Lemma 2.2 (11))
≥
∨
x∈X(f1(x)� f2(x)� I∗((g1 ⊕ g2)∗)(x))

= δI(f1 � f2, g1 ⊕ g2).

So δI is a L-fuzzy pre-proximity.
(2)

δI(α� f, α→ g) =
∨
x∈X(α� f(x)� I∗(α� g∗)(x))

≤
∨
x∈X(α� f(x)� (α→ I∗(g∗)(x))

≤
∨
x∈X(f(x)� I∗(g∗)(x)) = δI(f, g).

(3) For f, g, h ∈ LX ,

δ∗I(f, h)� δ∗I(h∗, g)

=
(∨

x∈X(f(x)� I∗(h∗)(x))
)∗
�
(∨

x∈X(h∗(x)� I∗(g∗)(x))
)∗

=
∧
x∈X(f(x)→ I(h∗)(x))�

∧
x∈X(h∗(x)→ I(g∗)(x)) (Since I(h∗) ≤ h∗)

≤
∧
x∈X(f(x)→ h∗(x))�

∧
x∈X(h∗(x)→ I(g∗)(x))

≤
∧
x∈X(f(x)→ I(g∗)(x)) = δ∗I(f, g).

Then δI(f, g) ≤
∧
h∈LX (δI(f, h)⊕ δI(h∗, g)).

If I is topological, then∨
h∈LX (δ∗I(f, h)� δ∗I(h∗, g))

=
∨
h∈LX (

∧
x∈X(f(x)→ I(h∗)(x))�

∧
x∈X(h∗(x)→ I(g∗)(x))) (Put h∗ = I(g∗))

≥
∧
x∈X(f(x)→ I(I(g∗)(x)))�

∧
x∈X(I(g∗)(x)→ I(g∗)(x))

=
∧
x∈X(f(x)→ I(g∗)(x)) = δ∗I(f, g).

(4) By (2), it is trivial.
(5)

IδI (f)(x) =
∨
g≤f (δ∗I(g, g∗)� g(x)))

=
∨
g≤f

∧
x∈X(g(x)→ I(g)(x))� g(x)

≤
∨
I(g)≤I(f) I(g)(x) = I(f)(x).

If I is topological, then

IδI (f)(x) =
∨
g≤f (δ∗I(g, g∗)� g)

=
∨
g≤f (

∧
x∈X(g(x)→ I(g))� g(x))

≥
∧
x∈X(I(f)(x)→ I(I(f)(x))� I(f)(x)) (Put g = I(g))

= I(f)(x).

(6) Let I be separated, then δI(>z,>∗z) =
∨
x∈X(>z(x)� I∗(>z)(x)) = ⊥.

(7)

δIδ(f, g) =
∨
x∈X(f(x)� I∗δ (g∗)(x))

=
∨
x∈X(f(x)�

(∨
h≤g∗(δ

∗(h, h∗)� h(x))
)∗

)

≤
∨
x∈X(f(x)�

(∨
h≤g∗(

∧
x∈X(h(x)→ h(x))� h(x))

)∗
)

≤
∨
x∈X(f(x)� g(x)) ≤ δ(f, g).
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�

Corollary 3.5. Let (X, I) be an L-fuzzy interior space. Define a map δsI : LX ×
LX → L by:

δsI(f, g) =
∨
x∈X

(g(x)� I∗(f∗)(x)) ∀ f, g ∈ LX .

Then we have the following properties.
(1) δsI is an L-fuzzy pre-proximity. If I is stratified, then δsI is stratified.
(2) δsI(f, g) ≤

∨
h∈LX (δsI(f, h)� δsI(h∗, g)), the equality holds if I is topological.

(3) If I is topological, then δsI is a L-fuzzy quasi-proximity on X.
(4) I ≥ IδsI , the equality holds, if I is topological.
(5) If I is separated, then δsI is separated.
(6) δsIδ ≤ δ

s.
(7) If I is generalized (resp. Alexandrov), then δsI is generalized (resp. Alexan-

drov).

Example 3.6. (1) Define I1 : LX → LX as I1(f) =
∧
x∈X f(x). Then (I1), (I2),

(I3) and (I4) are easily proved. Thus I1 is a topological L-fuzzy interior operator
on X. Since I1(>x) = ⊥X and δI1(>x,>∗x) = >, I1 and δI1 are not separated. So
by Theorem 3.5, we have

δI1(f, g) =
∨
x∈X(f(x)� I∗1 (g∗)(y)) =

∨
x,y∈X(f(x)� g(y)),

δsI1(f, g) =
∨
x∈X(g(x)� I∗1 (f∗)(y)) =

∨
x,y∈X(f(y)� g(x)).

Since I1 is topological, IδI1 = I1.

(3) Define I2 : LX → LX as I2(f) = f. Then (I1), (I2), (I3) and (I4) are easily
proved. Thus I2 is a topological L-fuzzy interior operator on X. Since I2(>x) = >X
and δI2(>x,>∗x) = ⊥, I2 and δI2 are separated. So by Theorem 3.5, we have

δI1(f, g) =
∨
x∈X(f(x)� I∗1 (g∗)(x)) =

∨
x∈X(f(x)� g(x)),

δsI1(f, g) =
∨
x∈X(g(x)� I∗1 (f∗)(x)) =

∨
x∈X(g(x)� f(x)).

Since I2 is topological, IδI2 = I2.

4. The relationships between L-fuzzy pre-proximities and L-fuzzy
topologies

Theorem 4.1. Let δ be Alexandrov L-fuzzy pre-proximity on X. Define a mapping
Tδ : LX → L by: Tδ(f) = δ∗(f, f∗). Then

(1) Tδ is an L-fuzzy topology on X,
(2) if δ is stratified, then so is Tδ,
(3) if δ is separated, then so is Tδ.

Proof. (1) (T1) Tδ(⊥X) = δ∗(⊥X ,>X) = >, Tδ(>X) = δ∗(>X ,⊥X) = >.

(T2) Tδ(f � g) = δ∗(f � g, f∗ ⊕ g∗) ≥ δ∗(f, f∗)� δ∗(g, g∗) = Tδ(f)� Tδ(g).

(T3) Tδ(
∨
i∈Γ fi) = δ∗(

∨
i∈Γ fi,

∧
i∈Γ f

∗
i ) ≥

∧
i∈Γ δ

∗(fi, f
∗
i ) =

∧
i∈Γ Tδ(fi).

(2) Tδ(α� f) = δ∗(α� f, α→ f∗) ≥ δ∗(f, f∗) = Tδ(f),

Tδ(α→ f) = δ∗(α→ f, α� f∗) ≥ δ∗(f, f∗) = Tδ(f).
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(3) It is easy. �

Theorem 4.2. Let (X, I) be an L-fuzzy interior space. Define a mapping TIδ :
LX → L by: TIδ(f) =

∧
x∈X(f(x)→ Iδ(f)(x)). Then

(1) TIδ is an L-fuzzy topology on X,
(2) if I is Alexandrov (resp. strong, separated), then TδI is Alexandrov (resp.

strong, separated).

Proof. (1) (T1) TIδ(>X) =
∧
x∈X(>X(x)→ Iδ(>X)) = >,

TIδ(⊥X) =
∧
x∈X

(⊥X(x)→ Iδ(⊥X)) = >.

(T2)

TIδ(f � g) =
∧
x∈X(f � g)(x)→ Iδ(f � g)(x))

≥
∧
x∈X(f(x)� g(x)→ (Iδ(f)(x)� Iδ(g)(x)))
(by Lemma 2.2 (11))

≥
∧
x∈X(f(x)→ Iδ(f)(x))�

∧
x∈X(g(x)→ Iδ(g)(x))

= TIδ(f)� TIδ(g).

(T3)

TIδ(
∨
i∈Γ fi) =

∧
x∈X(

∨
i∈Γ fi(x)→ Iδ(

∨
i∈Γ fi)(x))

≥
∧
x∈X(

∨
i∈Γ fi(x)→

∨
i∈Γ Iδ(fi)(x))

(by Lemma 2.2 (16))
≥
∧
i∈Γ

∧
x∈X(fi(x)→ Iδ(fi)(x))) =

∧
i∈Γ TIδ(fi).

(2) By Lemma 2.2 (textcolorred16), we have

TIδ(
∧
i∈Γ fi) =

∧
x∈X(

∧
i∈Γ fi(x)→ Iδ(

∧
i∈Γ fi)(x))

=
∧
x∈X(

∧
i∈Γ fi(x)→

∧
i∈Γ Iδ(fi)(x)))

≥
∧
i∈Γ(

∧
x∈X fi(x)→ Iδ(fi)(x))) =

∧
i∈Γ TIδ(fi).

Hence, TIδ is Alexandrov L-fuzzy topology on X. By Lemma 2.2 (14) and (18),
we have

TIδ(α� f) =
∧
x∈X((α� f(x))→ (Iδ(α� f)(x)))

≥
∧
x∈X((α� f(x))→ (α� Iδ(f)(x)))

≥
∧
x∈X(f(x)→ Iδ(f)(x)) = TIδ(f).

TIδ(α→ f) =
∧
x∈X((α→ f(x))→ Iδ(α→ f)(x))

=
∧
x∈X((α→ f(x))→ (α→ Iδ(f)(x)))

≥
∧
x∈X(f(x)→ Iδ(f)(x)) = TIδ(f).

Other cases are easily proved. �

Theorem 4.3. Let (X, δ) be an L-fuzzy pre-proximity space. Define a mapping

T (1)
δ : LX → L by: T (1)

δ (f) =
∧
x∈X(f(x)→ δ∗(>x, f∗)). Then

(1) T (1)
δ is a L-fuzzy topology on X,

(2) if δ is Alexandrov and δ(α�f, g) ≥ α�δ(f, g), then so is T (1) and T (1)
δ ≥ Tδ,

(3) if δ is separated, then T (1)
δ is separated.
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Proof. (1) (T1)

T (1)
δ (⊥X) = >,
T (1)
δ (>X) =

∧
x∈X(>X(x)→ δ∗(>x,>∗X)) = (

∨
x∈X δ(>x,>∗X))∗ = >.

(T2)

T (1)
δ (f � g) =

∧
x∈X((f � g)(x)→ δ∗(>x, f∗ ⊕ g∗))

≥
∧
x∈X((f � g)(x)→ δ∗(>x, f∗)� δ∗(>x, g∗))

≥
∧
x∈X((f(x)→ δ∗(>x, f∗))� (g(x)→ δ∗(>x, g∗)))

≥ T (1)
δ (f)� T (1)

δ (g).

(T3)

T (1)
δ (

∨
i∈Γ fi) =

∧
x∈X(

∨
i∈Γ fi(x)→ δ∗(>x,

∧
i∈Γ f

∗
i ))

≥
∧
x∈X(

∨
i∈Γ fi(x)→

∨
i∈Γ δ

∗(>x, f∗i ))

≥
∧
i∈Γ

∧
x∈X(fi(x)→ δ∗(>x, f∗i )) =

∧
i∈Γ T

(1)
δ (fi).

(2) If δ is Alexandrov, then

T (1)
δ (

∧
i∈Γ fi) =

∧
x∈X(

∧
i∈Γ fi(x)→ δ∗(>x,

∨
i∈Γ f

∗
i ))

=
∧
x∈X(

∧
i∈Γ fi(x)→

∧
i∈Γ δ

∗(>x, f∗i ))

≥
∧
i∈Γ

∧
x∈X(fi(x)→ δ∗(>x, f∗i )) =

∧
i∈Γ T

(1)
δ (fi).

Thus T (1)
δ is Alexandrov L-fuzzy topology on X.

If δ(α� f, g) ≥ α� δ(f, g), we have

T (1)
δ (f) =

∧
x∈X(f(x)→ δ∗(>x, f∗))

= (
∨
x∈X(f(x)� δ(>x, f∗)))∗

≥ (δ(
∨
x∈X(f(x)�>x), f∗))∗

= δ∗(f, f∗) = Tδ(f).

(3) It is easily proved. �

5. Galois correspondences

Theorem 5.1. Let (X, δX) and (Y, δY ) be L-fuzzy pre-proximity spaces and φ :
(X, δX)→ (Y, δY ) is a LF -proximity map. Then

(1) ϕ : (X, IδX )→ (Y, IδY ) is a LF -interior map,
(2) ϕ : (X, TδX )→ (Y, TδY ) is a LF -continuous map,

(3) ϕ : (X, T (1)
δX

)→ (Y, T (1)
δY

) is a LF -continuous map.

Proof. For each f ∈ LY ,
(1)

ϕ←(IδY (f))(x) = ϕ←(
∨
g≤f δ

∗
Y (g, g∗)� g(x)

=
∨
g≤f δ

∗
Y (g, g)� g(ϕ(x)))

≤
∨
g≤f δ

∗
X(ϕ←(g), ϕ←(g∗))� g(φ(x))

≤
∨
ϕ←(g)≤φ←(f)(δ

∗
X(ϕ←(g), ϕ←(g∗)� φ←(g)(x)) = IδX (ϕ←(f))(x).

(2) TδX (ϕ←(f)) = δ∗X(ϕ←(f), ϕ←(f∗)) ≥ δ∗Y (f, f∗) = TδY (f).
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(3)

T (1)
δX

(ϕ←(f)) =
∧
x∈X(ϕ←(f)(x)→ δ∗X(ϕ←(>ϕ(x)), ϕ

←(f∗)))
=
∧
x∈X(f(ϕ(x))→ δ∗X(ϕ←(>ϕ(x)), ϕ

←(f∗)))
≥
∧
x∈X(f(ϕ(x))→ δ∗Y ((>ϕ(x)), f

∗))

≥
∧
y∈Y (f(y)→ δ∗Y (>y, f∗)) = T (1)

δY
(f).

�

Theorem 5.2. Let (X, IX) and (Y, IY ) be L-fuzzy interior spaces and ϕ : (X, IX)→
(Y, IY ) be an LF -interior map. Then ϕ : (X, δIX ) → (Y, δIY ) is a LF -proximity
map.

Proof. Since IY (g∗)(ϕ(x)) ≤ IX(ϕ←(g∗))(x), we have

δIX (ϕ←(f), ϕ←(g)) =
∨
x∈X

(
ϕ←(f)(x)� I∗X(ϕ←(g)∗)(x)

)
≤
∨
x∈X

(
f(ϕ(x))� I∗Y (g∗)(ϕ(x))

)
≤
∨
y∈Y

(
f(y)� I∗Y (g∗)(y)

)
= δIY (f, g).

�

Definition 5.3 ([1]). Suppose that F : D → C, G : C → D are concrete functors.
The pair (F,G) is called a Galois correspondence between C and D, if for each Y ∈
C, idY : F ◦G(Y )→ Y is a C-morphism, and for each X ∈ D, idX : X → G ◦ F (X)
is a D-morphism.

If (F,G) is a Galois correspondence, then it is easy to check that F is a left adjoint
of G, or equivalently that G is a right adjoint of F .

The category of separated L-fuzzy pre-proximity spaces with LF -proximity map-
pings as morphisms is denoted by SPROX.

The category of separated L-fuzzy interior spaces with LF -interior mappings as
morphisms is denoted by SFI.

From Theorems 3.2 and 5.1, we obtain a concrete functor Υ : SPROX → SFI
defined as

Υ(X, δ) = (X, Iδ),Υ(ϕ) = ϕ.

From Theorems 3.4 and 5.2, we obtain a concrete functor Ω : SFI → SPROX
defined as

Ω(X, I) = (X, δI),Ω(ϕ) = ϕ.

Theorem 5.4. Ω : SFI → SPROX is a left adjoint of Υ : SPROX → SFI, i.e.,
(Υ,Ω) is a Galois correspondence.

Proof. By Theorem 3.4 (5), if IX is an separated L-fuzzy interior operator on a
set X, then Υ(Ω(IX)) = IδIX ≤ IX . Thus the identity map idX : (X, IX) →
(X, ITIX ) = (X,Υ(Ω(IX))) is an LF -interior map. Moreover, if δY is a separated

L-fuzzy pre-proximity on a set Y , by Theorem 3.4 (7), Ω(Υ(δY )) = δIδY ≤ δY . So

the identity map idY : (Y, δIδY )→ (Y, δY ) is LF -proximity map. Hence (Υ,Ω) is a
Galois correspondence. �
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6. Conclusions

In this paper, L-fuzzy pre-proximities and L-fuzzy interior operators in complete
residuated lattice are investigated. From a given L-fuzzy pre-proximity δ, we can
obtain an L-fuzzy interior operator Iδ (see Theorem 3.2). Conversely, for given L-
fuzzy interior space I, we obtain L-fuzzy pre-proximity δI (see Theorem 3.4) and
L-fuzzy topologies Tδ and TIδ (Theorems 4.1, 4.2 and 4.3).

It is also shown that there is a Galois correspondence between the category of
(separated) L-fuzzy interior spaces and that of (separated) L-fuzzy pre-proximity
spaces (theorem 5.4).
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